1
|
Paul S, Das S, Banerjea M, Chaudhuri S, Das B. The ATP-dependent DEAD-box RNA helicase Dbp2 regulates the glucose/nitrogen stress response in baker's yeast by modulating reversible nuclear retention and decay of SKS1 mRNA. Genetics 2025; 229:iyae221. [PMID: 39739574 DOI: 10.1093/genetics/iyae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p. Consistent with this observation, a significant portion of these NR-mRNAs was found to localize into the cytoplasm in a yeast strain carrying a deletion in the DBP2 gene with the concomitant enhancement of its steady-state level and stability. This observation supports the view that Dbp2p promotes the nuclear retention of NR-mRNAs to trigger their subsequent nuclear degradation. Further analysis revealed that Dbp2p-dependent nuclear retention of SKS1 mRNA is reversible, which plays a crucial role in the adaptability and viability of the yeast cells in low concentrations of glucose/nitrogen in the growth medium. At high nutrient levels when the function of Sks1p is not necessary, SKS1 mRNA is retained in the nucleus and degraded. In contrast, during low glucose/nitrogen levels when Sks1p is vital to respond to such situations, the nuclear retention of SKS1 mRNA is relieved to permit its increased nuclear export and translation leading to a huge burst of cytoplasmic Sks1p.
Collapse
Affiliation(s)
- Soumita Paul
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Shouvik Chaudhuri
- Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Britton SJ, Dingemans T, Rogers LJ, White JS, Maskell DL. Excitation of filamentous growth in Dekkera spp. by quorum sensing aromatic alcohols 2-phenylethanol and tryptophol. FEMS Microbiol Lett 2025; 372:fnae105. [PMID: 39657076 PMCID: PMC11719618 DOI: 10.1093/femsle/fnae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
Fungi from the genus Dekkera, also known as Brettanomyces, are significant contaminants in commercial beer and wine production, and when present unintentionally, these non-domesticated yeasts result in the development of undesirable sensorial characteristics, in part due to the production of volatile phenols and acetate esters. The persistence of Dekkera spp. in industrial manufacturing environments can be attributed to its strong bioadhesive properties, allowing it to attach to various surfaces and form biofilms, which often contribute to recurrent contaminations. In other fungi, the yeast-to-filamentous transition is pivotal in enhancing bioadhesive properties, a process tightly regulated by density-dependent quorum-sensing mechanisms. However, there is no documented evidence regarding the influence of fungal quorum-sensing compounds on the yeast-to-filamentous transition in Dekkera, nor is there any evidence of existing quorum-sensing circuits in this genus. In this investigation, two Dekkera spp. were cultivated on a modified nitrogen-limiting synthetic low-ammonium dextrose medium supplemented with exogenous concentrations of quorum-sensing molecules 2-phenylethanol and tryptophol. Following cultivation, whole colonies were imaged and analyzed with a whole colony filamentation algorithm to quantify their filamentation. Our results demonstrate that the quorum-sensing compounds 2-phenylethanol and tryptophol significantly promote the yeast-to-filamentous transition in Dekkera spp., underscoring the broader presence of quorum-regulated social behaviors within this genus.
Collapse
Affiliation(s)
- Scott J Britton
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Research and Development, Brouwerij Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | - Thijs Dingemans
- Research and Development, Brouwerij Duvel Moortgat, 2870 Puurs-Sint-Amands, Belgium
| | | | - Jane S White
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Dawn L Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
3
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
El Harati R, Fancello F, Multineddu C, Zara G, Zara S. Screening and In Silico Analyses of the Yeast Saccharomyces cerevisiae Σ1278b Bank Mutants Using Citral as a Natural Antimicrobial. Foods 2024; 13:1457. [PMID: 38790757 PMCID: PMC11119076 DOI: 10.3390/foods13101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 μL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.
Collapse
Affiliation(s)
| | | | | | | | - Severino Zara
- Department di Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (R.E.H.); (F.F.); (C.M.); (G.Z.)
| |
Collapse
|
6
|
Sunder S, Bauman JS, Decker SJ, Lifton AR, Kumar A. The yeast AMP-activated protein kinase Snf1 phosphorylates the inositol polyphosphate kinase Kcs1. J Biol Chem 2024; 300:105657. [PMID: 38224949 PMCID: PMC10851228 DOI: 10.1016/j.jbc.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
The yeast Snf1/AMP-activated kinase (AMPK) maintains energy homeostasis, controlling metabolic processes and glucose derepression in response to nutrient levels and environmental cues. Under conditions of nitrogen or glucose limitation, Snf1 regulates pseudohyphal growth, a morphological transition characterized by the formation of extended multicellular filaments. During pseudohyphal growth, Snf1 is required for wild-type levels of inositol polyphosphate (InsP), soluble phosphorylated species of the six-carbon cyclitol inositol that function as conserved metabolic second messengers. InsP levels are established through the activity of a family of inositol kinases, including the yeast inositol polyphosphate kinase Kcs1, which principally generates pyrophosphorylated InsP7. Here, we report that Snf1 regulates Kcs1, affecting Kcs1 phosphorylation and inositol kinase activity. A snf1 kinase-defective mutant exhibits decreased Kcs1 phosphorylation, and Kcs1 is phosphorylated in vivo at Ser residues 537 and 646 during pseudohyphal growth. By in vitro analysis, Snf1 directly phosphorylates Kcs1, predominantly at amino acids 537 and 646. A yeast strain carrying kcs1 encoding Ser-to-Ala point mutations at these residues (kcs1-S537A,S646A) shows elevated levels of pyrophosphorylated InsP7, comparable to InsP7 levels observed upon deletion of SNF1. The kcs1-S537A,S646A mutant exhibits decreased pseudohyphal growth, invasive growth, and cell elongation. Transcriptional profiling indicates extensive perturbation of metabolic pathways in kcs1-S537A,S646A. Growth of kcs1-S537A,S646A is affected on medium containing sucrose and antimycin A, consistent with decreased Snf1p signaling. This work identifies Snf1 phosphorylation of Kcs1, collectively highlighting the interconnectedness of AMPK activity and InsP signaling in coordinating nutrient availability, energy homoeostasis, and cell growth.
Collapse
Affiliation(s)
- Sham Sunder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S Bauman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart J Decker
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandra R Lifton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573138. [PMID: 38187743 PMCID: PMC10769413 DOI: 10.1101/2023.12.22.573138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N. Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260
| |
Collapse
|
8
|
Crandall JG, Fisher KJ, Sato TK, Hittinger CT. Ploidy evolution in a wild yeast is linked to an interaction between cell type and metabolism. PLoS Biol 2023; 21:e3001909. [PMID: 37943740 PMCID: PMC10635434 DOI: 10.1371/journal.pbio.3001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound impacts on evolutionary trajectories and life histories. The immediate consequences and molecular causes of ploidy variation on organismal fitness are frequently less clear, although extreme mating type skews in some fungi hint at links between cell type and adaptive traits. Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding yeast Saccharomyces eubayanus experimentally evolved for improvement of a key metabolic trait, the ability to use maltose as a carbon source. We find that haploids have a substantial, but conditional, fitness advantage in the absence of other genetic variation. Using engineered genotypes that decouple the effects of ploidy and cell type, we show that increased fitness is primarily due to the distinct transcriptional program deployed by haploid-like cell types, with a significant but smaller contribution from absolute ploidy. The link between cell-type specification and the carbon metabolism adaptation can be traced to the noncanonical regulation of a maltose transporter by a haploid-specific gene. This study provides novel mechanistic insight into the molecular basis of an environment-cell type fitness interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell types can drive karyotypic evolution in fungi.
Collapse
Affiliation(s)
- Johnathan G. Crandall
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kaitlin J. Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Vandermeulen MD, Cullen PJ. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. mSphere 2023; 8:e0028423. [PMID: 37732804 PMCID: PMC10597418 DOI: 10.1128/msphere.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.
Collapse
Affiliation(s)
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Le Montagner P, Guilbaud M, Miot-Sertier C, Brocard L, Albertin W, Ballestra P, Dols-Lafargue M, Renouf V, Moine V, Bellon-Fontaine MN, Masneuf-Pomarède I. High intraspecific variation of the cell surface physico-chemical and bioadhesion properties in Brettanomyces bruxellensis. Food Microbiol 2023; 112:104217. [PMID: 36906300 DOI: 10.1016/j.fm.2023.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Brettanomyces bruxellensis is the most damaging spoilage yeast in the wine industry because of its negative impact on the wine organoleptic qualities. The strain persistence in cellars over several years associated with recurrent wine contamination suggest specific properties to persist and survive in the environment through bioadhesion phenomena. In this work, the physico-chemical surface properties, morphology and ability to adhere to stainless steel were studied both on synthetic medium and on wine. More than 50 strains representative of the genetic diversity of the species were considered. Microscopy techniques made it possible to highlight a high morphological diversity of the cells with the presence of pseudohyphae forms for some genetic groups. Analysis of the physico-chemical properties of the cell surface reveals contrasting behaviors: most of the strains display a negative surface charge and hydrophilic behavior while the Beer 1 genetic group has a hydrophobic behavior. All strains showed bioadhesion abilities on stainless steel after only 3 h with differences in the concentration of bioadhered cells ranging from 2.2 × 102 cell/cm2 to 7.6 × 106 cell/cm2. Finally, our results show high variability of the bioadhesion properties, the first step in the biofilm formation, according to the genetic group with the most marked bioadhesion capacity for the beer group.
Collapse
Affiliation(s)
- Paul Le Montagner
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Laboratoire EXCELL, Floirac, France; Biolaffort, Floirac, France.
| | - Morgan Guilbaud
- Univ. Paris-Saclay, SayFood, AgroParisTech, INRAE UMR 782, 91300, Massy, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Lysiane Brocard
- Univ. Bordeaux, Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420, CNRS, 33000, Bordeaux, France
| | - Warren Albertin
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Patricia Ballestra
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, 33600, Pessac, France
| | | | | | | | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, OENO, UMR 1366, ISVV, 33140, Villenave d'Ornon, France; Bordeaux Sciences Agro, 33175, Gradignan, France
| |
Collapse
|
11
|
Guan G, Tao L, Li C, Xu M, Liu L, Bennett RJ, Huang G. Glucose depletion enables Candida albicans mating independently of the epigenetic white-opaque switch. Nat Commun 2023; 14:2067. [PMID: 37045865 PMCID: PMC10097730 DOI: 10.1038/s41467-023-37755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C. albicans white cells to undergo efficient sexual mating. The relative expression levels of pheromone-sensing and mating-associated genes (including STE2/3, MFA1, MFα1, FIG1, FUS1, and CEK1/2) are increased under glucose depletion conditions, while expression of mating repressors TEC1 and DIG1 is decreased. Cph1 and Tec1, factors that act downstream of the pheromone MAPK pathway, play opposite roles in regulating white cell mating as TEC1 deletion or CPH1 overexpression promotes white cell mating. Moreover, inactivation of the Cph1 repressor Dig1 increases white cell mating ~4000 fold in glucose-depleted medium relative to that in the presence of glucose. Our findings reveal that the white-to-opaque epigenetic switch may not be a prerequisite for sexual mating in C. albicans in nature.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Tao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chao Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ming Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, 02912, USA
| | - Guanghua Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, China.
| |
Collapse
|
12
|
Lupish B, Hall J, Schwartz C, Ramesh A, Morrison C, Wheeldon I. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:3623-3631. [PMID: 36042688 PMCID: PMC9825908 DOI: 10.1002/bit.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.
Collapse
Affiliation(s)
- Brian Lupish
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jordan Hall
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Cory Schwartz
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Present address:
iBio Inc.San DiegoCaliforniaUSA
| | - Adithya Ramesh
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Clifford Morrison
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Ian Wheeldon
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Center for Industrial BiotechnologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
13
|
Britton SJ, Rogers LJ, White JS, Maskell DL. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation. FEMS Yeast Res 2022; 22:6832773. [PMID: 36398755 PMCID: PMC9697609 DOI: 10.1093/femsyr/foac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae, also known as brewer's yeast, can undergo a reversible stress-responsive transition from individual ellipsoidal cells to chains of elongated cells in response to nitrogen- or carbon starvation. Whole colony morphology is frequently used to evaluate phenotypic switching response; however, quantifying two-dimensional top-down images requires each pixel to be characterized as belonging to the colony or background. While feasible for a small number of colonies, this labor-intensive assessment process is impracticable for larger datasets. The software tool HYPHAEdelity has been developed to semi-automate the assessment of two-dimensional whole colony images and quantify the magnitude of peripheral whole colony yeast filamentation using image analysis tools intrinsic to the OpenCV Python library. The software application functions by determining the total area of filamentous growth, referred to as the f-measure, by subtracting the area of the inner colony boundary from the outer-boundary area associated with hyphal projections. The HYPHAEdelity application was validated against automated and manually pixel-counted two-dimensional top-down images of S. cerevisiae colonies exhibiting varying degrees of filamentation. HYPHAEdelity's f-measure results were comparable to areas determined through a manual pixel enumeration method and found to be more accurate than other whole colony filamentation software solutions.
Collapse
Affiliation(s)
- Scott J Britton
- Corresponding author: Institute for Biological Chemistry, Biophysics and Bioengineering, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, EH14 4AS. Tel: +32470205380; E-mail:
| | | | - Jane S White
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| | - Dawn L Maskell
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| |
Collapse
|
14
|
Kokoreva AS, Isakova EP, Tereshina VM, Klein OI, Gessler NN, Deryabina YI. The Effect of Different Substrates on the Morphological Features and Polyols Production of Endomyces magnusii Yeast during Long-Lasting Cultivation. Microorganisms 2022; 10:microorganisms10091709. [PMID: 36144311 PMCID: PMC9506286 DOI: 10.3390/microorganisms10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30–35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5–0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.
Collapse
Affiliation(s)
- Anastasia S. Kokoreva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-954-4008
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
15
|
Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nat Ecol Evol 2022; 6:763-773. [PMID: 35484218 DOI: 10.1038/s41559-022-01730-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Deleterious mutations are generally considered to be irrelevant for morphological evolution. However, they could be compensated by conditionally beneficial mutations, thereby providing access to new adaptive paths. Here we use high-dimensional phenotyping of laboratory-evolved budding yeast lineages to demonstrate that new cellular morphologies emerge exceptionally rapidly as a by-product of gene loss and subsequent compensatory evolution. Unexpectedly, the capacities for invasive growth, multicellular aggregation and biofilm formation also spontaneously evolve in response to gene loss. These multicellular phenotypes can be achieved by diverse mutational routes and without reactivating the canonical regulatory pathways. These ecologically and clinically relevant traits originate as pleiotropic side effects of compensatory evolution and have no obvious utility in the laboratory environment. The extent of morphological diversity in the evolved lineages is comparable to that of natural yeast isolates with diverse genetic backgrounds and lifestyles. Finally, we show that both the initial gene loss and subsequent compensatory mutations contribute to new morphologies, with their synergistic effects underlying specific morphological changes. We conclude that compensatory evolution is a previously unrecognized source of morphological diversity and phenotypic novelties.
Collapse
|
16
|
Winters M, Aru V, Howell K, Arneborg N. Saccharomyces cerevisiae does not undergo a quorum sensing-dependent switch of budding pattern. Sci Rep 2022; 12:8738. [PMID: 35610257 PMCID: PMC9130263 DOI: 10.1038/s41598-022-12308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae can alter its morphology to a filamentous form associated with unipolar budding in response to environmental stressors. Induction of filamentous growth is suggested under nitrogen deficiency in response to alcoholic signalling molecules through quorum sensing. To investigate this further, we analysed the budding pattern of S. cerevisiae cells over time under low nitrogen conditions while concurrently measuring cell density and extracellular metabolite concentration. We found that the proportion of cells displaying unipolar budding increased between local cell densities of 4.8 × 106 and 5.3 × 107 cells/ml. This increase in unipolar budding was not reproduced with cells growing at the critical cell density and in conditioned media. Growth under high nitrogen conditions also resulted in increased unipolar budding between local cell densities of 5.2 × 106 and 8.2 × 107 cells/ml, but with differences in metabolite concentration compared to low nitrogen conditions. Neither cell density, metabolite concentration, nor nitrogen deficiency were therefore sufficient to increase unipolar budding. Therefore, by using the budding pattern as an early indicator of filamentous growth, our results suggest that quorum sensing may not control the switch of budding behaviour in S. cerevisiae. Only a high concentration of the putative signalling molecule, 2-phenylethanol, resulted in an increase in unipolar budding. However, this concentration was not physiologically relevant, suggesting toxicity rather than a known quorum sensing mechanism.
Collapse
Affiliation(s)
- Michela Winters
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, 3010, Australia
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Science, University of Melbourne, Parkville, 3010, Australia.
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| |
Collapse
|
17
|
Yeast-Mycelial Dimorphism in Pichia pastoris SMD1168 Is Triggered by Nutritional and Environmental Factors. Curr Microbiol 2022; 79:190. [PMID: 35556178 DOI: 10.1007/s00284-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
This study reports, for the first time, morphological transition from yeast-like to filamentous form, normally associated with pathogenicity/increased protein secretion, in Pichia pastoris SMD1168 strain. The response was recorded in response to nutritional and environmental cues. The factors affecting this switch were extracellular pH (under nitrogen starvation conditions), carbon and nitrogen source under nitrogen- and carbon-limiting conditions respectively. Under nitrogen-limiting conditions, addition of fructose and sucrose in the culture medium induced filamentous morphology in a segregated form whereas addition of galactose led to a mixture of yeast and the filamentous form of the cells. Under carbon-limiting conditions, isoleucine and proline forced a filamentous form whereas glycine, valine, alanine and phenylalanine promoted yeast-like morphology. Similar dimorphic shift was also displayed by a recombinant methanol slow utilizing (Muts) strain (SMD-GCSF Muts) producing human granulocyte colony-stimulating factor in response to change in the initial inoculum level. Analysis of the extracellular metabolome by GC-MS indicated that several amino acids (leucine, proline, tyrosine), carboxylic acids (phenylacetic-, propanoic acid), alcohols and butylamine were present at different levels in the culture broth of the two morphological forms. High accumulation of proline and butylamine was seen in the extracellular culture filtrate of the filamentous form of the yeast. Presence of quorum-sensing molecules (phenylethyl alcohol, dodecanol) suggested complex network of pathways involved in this morphological transition.
Collapse
|
18
|
Winters M, Aru V, Howell K, Arneborg N. Reliable budding pattern classification of yeast cells with time-resolved measurement of metabolite production. Biotechniques 2022; 72:100-103. [PMID: 35124979 DOI: 10.2144/btn-2021-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Filamentous growth in Saccharomyces cerevisiae is a stress response commonly induced under nutrient deprivation and by certain alcohols. It is a compound phenotype characterized by pseudohyphal growth, invasion and a shift to more polarized budding. Previous methods have not allowed the time-resolved determination of filamentous growth. Here we present a new method for budding pattern characterization that enables the measurement of filamentous growth and metabolite concentration during yeast cell growth at precise time intervals. By combining chemical cell immobilization and single-cell imaging using an oCelloScope™, this method provides more accurate budding pattern classification compared with previous methods. The applications of the method include, for example, investigation of quorum sensing-controlled yeast filamentous growth and metabolism under stress and identification of toxic metabolites.
Collapse
Affiliation(s)
- Michela Winters
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, 3010, Australia
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Kate Howell
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, 3010, Australia
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| |
Collapse
|
19
|
Dai L, Li H, Zheng J, Chen H. Transcriptome analyses of the Chinese white pine beetle-fungal symbiont Leptographium qinlingensis under terpene stress or growth on host pine sawdust. Symbiosis 2022. [DOI: 10.1007/s13199-021-00822-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
21
|
Hall R, Charlebois DA. Lattice-based Monte Carlo simulation of the effects of nutrient concentration and magnetic field exposure on yeast colony growth and morphology. In Silico Biol 2021; 14:53-69. [PMID: 34924371 PMCID: PMC8842992 DOI: 10.3233/isb-210233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeasts exist in communities that expand over space and time to form complex structures and patterns. We developed a lattice-based framework to perform spatial-temporal Monte Carlo simulations of budding yeast colonies exposed to different nutrient and magnetic field conditions. The budding patterns of haploid and diploid yeast cells were incorporated into the framework, as well as the filamentous growth that occurs in yeast colonies under nutrient limiting conditions. Simulation of the framework predicted that magnetic fields decrease colony growth rate, solidity, and roundness. Magnetic field simulations further predicted that colony elongation and boundary fluctuations increase in a nutrient- and ploidy-dependent manner. These in-silico predictions are an important step towards understanding the effects of the physico-chemical environment on microbial colonies and for informing bioelectromagnetic experiments on yeast colony biofilms and fungal pathogens.
Collapse
Affiliation(s)
- Rebekah Hall
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel A Charlebois
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens 2021; 10:pathogens10111509. [PMID: 34832664 PMCID: PMC8617999 DOI: 10.3390/pathogens10111509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.
Collapse
|
23
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
24
|
Chen X, Lu Z, Chen Y, Wu R, Luo Z, Lu Q, Guan N, Chen D. Deletion of the MBP1 Gene, Involved in the Cell Cycle, Affects Respiration and Pseudohyphal Differentiation in Saccharomyces cerevisiae. Microbiol Spectr 2021; 9:e0008821. [PMID: 34346754 PMCID: PMC8552743 DOI: 10.1128/spectrum.00088-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
Mbp1p is a component of MBF (MluI cell cycle box binding factor, Mbp1p-Swi6p) and is well known to regulate the G1-S transition of the cell cycle. However, few studies have provided clues regarding its role in fermentation. This work aimed to recognize the function of the MBP1 gene in ethanol fermentation in a wild-type industrial Saccharomyces cerevisiae strain. MBP1 deletion caused an obvious decrease in the final ethanol concentration under oxygen-limited (without agitation), but not under aerobic, conditions (130 rpm). Furthermore, the mbp1Δ strain showed 84% and 35% decreases in respiration intensity under aerobic and oxygen-limited conditions, respectively. These findings indicate that MBP1 plays an important role in responding to variations in oxygen content and is involved in the regulation of respiration and fermentation. Unexpectedly, mbp1Δ also showed pseudohyphal growth, in which cells elongated and remained connected in a multicellular arrangement on yeast extract-peptone-dextrose (YPD) plates. In addition, mbp1Δ showed an increase in cell volume, associated with a decrease in the fraction of budded cells. These results provide more detailed information about the function of MBP1 and suggest some clues to efficiently improve ethanol production by industrially engineered yeast strains. IMPORTANCE Saccharomyces cerevisiae is an especially favorable organism used for ethanol production. However, inhibitors and high osmolarity conferred by fermentation broth, and high concentrations of ethanol as fermentation runs to completion, affect cell growth and ethanol production. Therefore, yeast strains with high performance, such as rapid growth, high tolerance, and high ethanol productivity, are highly desirable. Great efforts have been made to improve their performance by evolutionary engineering, and industrial strains may be a better start than laboratory ones for industrial-scale ethanol production. The significance of our research is uncovering the function of MBP1 in ethanol fermentation in a wild-type industrial S. cerevisiae strain, which may provide clues to engineer better-performance yeast in producing ethanol. Furthermore, the results that lacking MBP1 caused pseudohyphal growth on YPD plates could shed light on the development of xylose-fermenting S. cerevisiae, as using xylose as the sole carbon source also caused pseudohyphal growth.
Collapse
Affiliation(s)
- Xiaoling Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhilong Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ying Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Renzhi Wu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Zhenzhen Luo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Qi Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Ni Guan
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| | - Dong Chen
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
25
|
Papp LA, Ács-Szabó L, Batta G, Miklós I. Molecular and comparative genomic analyses reveal evolutionarily conserved and unique features of the Schizosaccharomyces japonicus mycelial growth and the underlying genomic changes. Curr Genet 2021; 67:953-968. [PMID: 34427722 PMCID: PMC8594269 DOI: 10.1007/s00294-021-01206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
Fungal pathogens, from phytopathogenic fungus to human pathogens, are able to alternate between the yeast-like form and filamentous forms. This morphological transition (dimorphism) is in close connection with their pathogenic lifestyles and with their responses to changing environmental conditions. The mechanisms governing these morphogenetic conversions are still not fully understood. Therefore, we studied the filamentous growth of the less-known, non-pathogenic dimorphic fission yeast, S. japonicus, which belongs to an ancient and early evolved branch of the Ascomycota. Its RNA sequencing revealed that several hundred genes were up- or down-regulated in the hyphae compared to the yeast-phase cells. These genes belonged to different GO categories, confirming that mycelial growth is a rather complex process. The genes of transport- and metabolic processes appeared especially in high numbers among them. High expression of genes involved in glycolysis and ethanol production was found in the hyphae, while other results pointed to the regulatory role of the protein kinase A (PKA) pathway. The homologues of 49 S. japonicus filament-associated genes were found by sequence alignments also in seven distantly related dimorphic and filamentous species. The comparative genomic analyses between S. japonicus and the closely related but non-dimorphic S. pombe shed some light on the differences in their genomes. All these data can contribute to a better understanding of hyphal growth and those genomic rearrangements that underlie it.
Collapse
Affiliation(s)
- László Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Lajos Ács-Szabó
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
26
|
Prabhakar A, González B, Dionne H, Basu S, Cullen PJ. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast. J Cell Sci 2021; 134:jcs258341. [PMID: 34347092 PMCID: PMC8353523 DOI: 10.1242/jcs.258341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
27
|
Lebleux M, Denimal E, De Oliveira D, Marin A, Desroche N, Alexandre H, Weidmann S, Rousseaux S. Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool. J Fungi (Basel) 2021; 7:jof7080581. [PMID: 34436120 PMCID: PMC8396822 DOI: 10.3390/jof7080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Collapse
Affiliation(s)
- Manon Lebleux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
- Correspondence:
| | - Emmanuel Denimal
- AgroSup Dijon, Direction Scientifique, Appui à la Recherche, 26 Boulevard Docteur Petitjean, F-21000 Dijon, France;
| | - Déborah De Oliveira
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Ambroise Marin
- Plateau D’imagerie DimaCell, Esplanade Erasme, Agrosup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France;
| | | | - Hervé Alexandre
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Stéphanie Weidmann
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Sandrine Rousseaux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| |
Collapse
|
28
|
Kumar A. The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annu Rev Genet 2021; 55:1-21. [PMID: 34280314 DOI: 10.1146/annurev-genet-071719-020249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
29
|
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet 2021; 17:e1009640. [PMID: 34214075 PMCID: PMC8282090 DOI: 10.1371/journal.pgen.1009640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Despite the societal importance of glucose fermentation in yeast, the mechanisms by which these cells detect and respond to glucose have remained obscure. Glucose detection requires a cell surface receptor coupled to a G protein that is comprised of two subunits, rather than the more typical heterotrimer: an α subunit Gpa2 and the β subunit Asc1 (or RACK1 in humans). Asc1/RACK1 also serves as a subunit of the ribosome, where it regulates the synthesis of proteins involved in glucose fermentation. This manuscript uses global metabolomics and transcriptomics to demonstrate the distinct roles of each G protein subunit in transmitting the glucose signal. Whereas Gpa2 is primarily involved in the metabolism of carbohydrates, Asc1/RACK1 contributes to production of amino acids necessary for protein synthesis and cell division. These findings reveal the initial steps of glucose signaling and several unique and complementary functions of the G protein subunits. More broadly, the integrated approach used here is likely to guide efforts to determine the topology of complex G protein and metabolic signaling networks in humans.
Collapse
|
30
|
Weber M, Basu S, González B, Greslehner GP, Singer S, Haskova D, Hasek J, Breitenbach M, W.Gourlay C, Cullen PJ, Rinnerthaler M. Actin Cytoskeleton Regulation by the Yeast NADPH Oxidase Yno1p Impacts Processes Controlled by MAPK Pathways. Antioxidants (Basel) 2021; 10:322. [PMID: 33671669 PMCID: PMC7926930 DOI: 10.3390/antiox10020322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) that exceed the antioxidative capacity of the cell can be harmful and are termed oxidative stress. Increasing evidence suggests that ROS are not exclusively detrimental, but can fulfill important signaling functions. Recently, we have been able to demonstrate that a NADPH oxidase-like enzyme (termed Yno1p) exists in the single-celled organism Saccharomyces cerevisiae. This enzyme resides in the peripheral and perinuclear endoplasmic reticulum and functions in close proximity to the plasma membrane. Its product, hydrogen peroxide, which is also produced by the action of the superoxide dismutase, Sod1p, influences signaling of key regulatory proteins Ras2p and Yck1p/2p. In the present work, we demonstrate that Yno1p-derived H2O2 regulates outputs controlled by three MAP kinase pathways that can share components: the filamentous growth (filamentous growth MAPK (fMAPK)), pheromone response, and osmotic stress response (hyperosmolarity glycerol response, HOG) pathways. A key structural component and regulator in this process is the actin cytoskeleton. The nucleation and stabilization of actin are regulated by Yno1p. Cells lacking YNO1 showed reduced invasive growth, which could be reversed by stimulation of actin nucleation. Additionally, under osmotic stress, the vacuoles of a ∆yno1 strain show an enhanced fragmentation. During pheromone response induced by the addition of alpha-factor, Yno1p is responsible for a burst of ROS. Collectively, these results broaden the roles of ROS to encompass microbial differentiation responses and stress responses controlled by MAPK pathways.
Collapse
Affiliation(s)
- Manuela Weber
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Gregor P. Greslehner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Stefanie Singer
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Danusa Haskova
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (D.H.); (J.H.)
| | - Michael Breitenbach
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| | - Campbell W.Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK;
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA; (S.B.); (B.G.)
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (M.W.); (G.P.G.); (S.S.); (M.B.)
| |
Collapse
|
31
|
Sagarika P, Dobriyal N, Sahi C. Dosage sensitivity of JDPs, a valuable tool for understanding their function: a case study on Caj1 overexpression-mediated filamentous growth in budding yeast. Curr Genet 2021; 67:407-415. [PMID: 33492464 DOI: 10.1007/s00294-021-01153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
J-domain proteins (JDPs) partner with Hsp70s to oversee proper synthesis, folding, transport and turnover of proteins in the cell. In any subcellular compartment, often multiple JDPs collaborate with a single Hsp70 to perform a variety of functions. Being co-localized, JDPs may exhibit complex genetic and physical interactions with each other, their clients as well as the Hsp70 partners. Even though most JDPs are highly specialized, redundancy between them is possible, making their functional analysis challenging. In the absence of assayable deletion phenotypes, protein overexpression appears to be a powerful alternative strategy to study JDP function. Here, we show that high levels of Caj1, one of the cytosolic JDPs, cause filamentous growth and G2/M arrest in yeast cells. Mutation in the critical HPD motif in the J-domain of Caj1 completely abolished these phenotypes, suggesting that Hsp70 co-chaperone function is important for the dominant-negative phenotypes exhibited by Caj1 overexpression. In this paper, we discuss the possible underlying mechanisms responsible for the pleiotropic phenotypes displayed by Caj1 overexpression in the light of current models proposed for dosage-sensitive genes (DSGs). Finally, we present generalized mechanisms of JDP overexpression-mediated dominant-negative phenotypes in budding yeast.
Collapse
Affiliation(s)
- Preeti Sagarika
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India
| | - Neha Dobriyal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Room Number 117, Academic Block 3, Bhopal, MP, 462066, India.
| |
Collapse
|
32
|
Garcia-Albornoz M, Holman SW, Antonisse T, Daran-Lapujade P, Teusink B, Beynon RJ, Hubbard SJ. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae. Mol Omics 2021; 16:59-72. [PMID: 31868867 DOI: 10.1039/c9mo00136k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrated regulatory networks can be powerful tools to examine and test properties of cellular systems, such as modelling environmental effects on the molecular bioeconomy, where protein levels are altered in response to changes in growth conditions. Although extensive regulatory pathways and protein interaction data sets exist which represent such networks, few have formally considered quantitative proteomics data to validate and extend them. We generate and consider such data here using a label-free proteomics strategy to quantify alterations in protein abundance for S. cerevisiae when grown on minimal media using glucose, galactose, maltose and trehalose as sole carbon sources. Using a high quality-controlled subset of proteins observed to be differentially abundant, we constructed a proteome-informed network, comprising 1850 transcription factor interactions and 37 chaperone interactions, which defines the major changes in the cellular proteome when growing under different carbon sources. Analysis of the differentially abundant proteins involved in the regulatory network pointed to their significant roles in specific metabolic pathways and function, including glucose homeostasis, amino acid biosynthesis, and carbohydrate metabolic process. We noted strong statistical enrichment in the differentially abundant proteome of targets of known transcription factors associated with stress responses and altered carbon metabolism. This shows how such integrated analysis can lend further experimental support to annotated regulatory interactions, since the proteomic changes capture both magnitude and direction of gene expression change at the level of the affected proteins. Overall this study highlights the power of quantitative proteomics to help define regulatory systems pertinent to environmental conditions.
Collapse
Affiliation(s)
- M Garcia-Albornoz
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Jamalzadeh S, Pujari AN, Cullen PJ. A Rab escort protein regulates the MAPK pathway that controls filamentous growth in yeast. Sci Rep 2020; 10:22184. [PMID: 33335117 PMCID: PMC7746766 DOI: 10.1038/s41598-020-78470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
MAPK pathways regulate different responses yet can share common components. Although core regulators of MAPK pathways are well known, new pathway regulators continue to be identified. Overexpression screens can uncover new roles for genes in biological processes and are well suited to identify essential genes that cannot be evaluated by gene deletion analysis. In this study, a genome-wide screen was performed to identify genes that, when overexpressed, induce a reporter (FUS1-HIS3) that responds to ERK-type pathways (Mating and filamentous growth or fMAPK) but not p38-type pathways (HOG) in yeast. Approximately 4500 plasmids overexpressing individual yeast genes were introduced into strains containing the reporter by high-throughput transformation. Candidate genes were identified by measuring growth as a readout of reporter activity. Fourteen genes were identified and validated by re-testing: two were metabolic controls (HIS3, ATR1), five had established roles in regulating ERK-type pathways (STE4, STE7, BMH1, BMH2, MIG2) and seven represent potentially new regulators of MAPK signaling (RRN6, CIN5, MRS6, KAR2, TFA1, RSC3, RGT2). MRS6 encodes a Rab escort protein and effector of the TOR pathway that plays a role in nutrient signaling. MRS6 overexpression stimulated invasive growth and phosphorylation of the ERK-type fMAPK, Kss1. Overexpression of MRS6 reduced the osmotolerance of cells and phosphorylation of the p38/HOG MAPK, Hog1. Mrs6 interacted with the PAK kinase Ste20 and MAPKK Ste7 by two-hybrid analysis. Based on these results, Mrs6 may selectively propagate an ERK-dependent signal. Identifying new regulators of MAPK pathways may provide new insights into signal integration among core cellular processes and the execution of pathway-specific responses.
Collapse
Affiliation(s)
- Sheida Jamalzadeh
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, 532 Cooke Hall, Buffalo, NY, 14260-1300, USA.
| |
Collapse
|
34
|
Kijpornyongpan T, Aime MC. Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel) 2020; 6:jof6040368. [PMID: 33339287 PMCID: PMC7766764 DOI: 10.3390/jof6040368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.
Collapse
|
35
|
Li M, Meng Q, Zhang H, Shu R, Zhao Y, Wu P, Li X, Zhou G, Qin Q, Zhang J. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. BMC Genomics 2020; 21:789. [PMID: 33176684 PMCID: PMC7659167 DOI: 10.1186/s12864-020-07209-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Ophiocordyceps sinensis (Berk.) is a well-known entomopathogenic and medicinal fungus. It parasitizes and mummifies the underground ghost moth larvae to produce a fruiting body named Chinese cordyceps. Specific for the fungus, O. sinensis experiences a biotrophic vegetative growth period spanning over 5 months. During this vegetative growth, it appears successively in the host hemocoel in three/four morphotypes, namely, the yeast-like blastospores (subdivided into proliferative (BP) and stationary phase (BS)), prehyphae (PreHy) and the hyphae (Hy). This peculiar morphogenesis has been elucidated through morphological and ultrastructural observations, but its molecular basis remains cryptic. In this study, transcriptome and metabolome profiling of BP, BS, PreHy and Hy stages were performed to characterize the key genes, metabolites, and signaling pathways that regulated the vegetative development of O. sinensis in Thitarodes xiaojinensis larva. Results The molecular events and metabolic pathways that regulated different intracellular processes at various stages were examined. Cluster analyses of differentially expressed genes across the four stages revealed the stage specifically enriched pathways. Analysis of metabolome profiles showed that carbon metabolism and several amino acids biosynthesis were significantly perturbed during the tested development stages of O. sinensis in the host hemocoel. Genes homologous to Saccharomyces cerevisiae MAPK cascade were significantly up-regulated during the transition from blastospore to hypha. The up-regulation of Sho1, a regulator protein, suggested nutrient starvation act a role in activation of MAPK pathway and filamentous growth. In addition, up-regulation of several fatty acid synthesis genes and their corresponding products accumulation in the samples of BS might explain more lipid droplets were observed in BS than in BP. Coupled with the up-regulation of fatty acid degradation during PreHy and Hy stages, it is presumed that lipid accumulation and mobilization play important roles in filamentous development. Conclusions This is the first report comprehensively describing developmental transcriptomics and metabolomics of O. sinensis in vivo. Our findings provide new perspectives into the key pathways and hub genes involved in morphological changes of fungus developed in the hemocoel of its host, and are expected to guide future studies on morphogenesis and morphotype changes of entomopathogenic fungi in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07209-2.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruihao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanni Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guiling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Lee E, Jung D, Kim J. Roles of Dhh1 RNA helicase in yeast filamentous growth: Analysis of N-terminal phosphorylation residues and ATPase domains. J Microbiol 2020; 58:853-858. [PMID: 32989641 DOI: 10.1007/s12275-020-0431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
In yeast Saccharomyces cerevisiae, the Dhh1 protein, a member of the DEAD-box RNA helicase, stimulates Dcp2/Dcp1-mediated mRNA decapping and functions as a general translation repressor. Dhh1 also positively regulates translation of a selected set of mRNAs, including Ste12, a transcription factor for yeast mating and pseudohyphal growth. Given the diverse functions of Dhh1, we investigated whether the putative phosphorylation sites or the conserved motifs for the DEAD-box RNA helicases were crucial in the regulatory roles of Dhh1 during pseudohyphal growth. Mutations in the ATPase A or B motif (DHH1-K96R or DHH1-D195A) showed significant defects in pseudohyphal colony morphology and agar invasive phenotypes. The N-terminal phospho-mimetic mutation, DHH1-T16E, showed defects in pseudohyphal phenotypes. Decreased levels of Ste12 protein were also observed in these pseudohyphal-defective mutant cells under filamentous-inducing low nitrogen conditions. We suggest that the ATPase motifs and the Thr16 phosphorylation site of Dhh1 are crucial to its regulatory roles in pseudohyphal growth under low nitrogen conditions.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Jung
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
37
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
38
|
Sun P, Li X, Yang M, Zhao X, Zhang Z, Wei D. Deletion of a small, secreted and cysteine-rich protein Cpl1 leads to increased invasive growth of Cryptococcus neoformans into nutrient agar. Microbiol Res 2020; 241:126570. [PMID: 32805526 DOI: 10.1016/j.micres.2020.126570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Invasive growth of yeast cells into nutrient agar is induced by different stresses and contributes to the survival of yeast cells under several adverse conditions. The mechanism of invasive growth of Saccharomyces cerevisiae has been extensively investigated. However, there is very little information about the mechanism of invasive growth of another human pathogen yeast Cryptococcus neoformans. Here, we report that deletion of a small and secreted cysteine-rich protein Cpl1 in C. neoformans JEC21 leads to increased adhesive and invasive growth into nutrient agar. The increased adhesive and invasive growth does not depend on the only known adhesion protein Cfl1 and its main controller Znf2. Cpl1Δ accumulates significantly higher level of intracellular labile zinc ion, leading to increased glucose uptake, higher level of mitochondrial membrane potential, ATP and Reactive Oxygen Species(ROS) production. Higher level of ROS activates Snf1, leading to invasive growth of Cpl1Δ. Three cysteine residues at the N-terminals of the cysteine-rich domain controls the increased invasive growth under nutrient sufficient conditions. This is the first report that a small and secreted cysteine-rich protein negatively regulates invasive growth of C. neoformans through regulating the intracellular labile zinc ion level. The function of this cysteine-rich domain was systematically investigated by site-directed mutagenensis in C. neoformans. The work contributes to understanding the function of this protein family and the invasive growth mechanism in C. neoformans.
Collapse
Affiliation(s)
- Pei Sun
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Li
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengdi Yang
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueru Zhao
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, 300384, China.
| | - Dongsheng Wei
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
39
|
De S, Rebnegger C, Moser J, Tatto N, Graf AB, Mattanovich D, Gasser B. Pseudohyphal differentiation in Komagataella phaffii: investigating the FLO gene family. FEMS Yeast Res 2020; 20:5884885. [PMID: 32766781 PMCID: PMC7419694 DOI: 10.1093/femsyr/foaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many yeasts differentiate into multicellular phenotypes in adverse environmental conditions. Here, we investigate pseudohyphal growth in Komagataella phaffii and the involvement of the flocculin (FLO) gene family in its regulation. The K. phaffii FLO family consists of 13 members, and the conditions inducing pseudohyphal growth are different from Saccharomyces cerevisiae. So far, this phenotype was only observed when K. phaffii was cultivated at slow growth rates in glucose-limited chemostats, but not upon nitrogen starvation or the presence of fusel alcohols. Transcriptional analysis identified that FLO11, FLO400 and FLO5-1 are involved in the phenotype, all being controlled by the transcriptional regulator Flo8. The three genes exhibit a complex mechanism of expression and repression during transition from yeast to pseudohyphal form. Unlike in S. cerevisiae, deletion of FLO11 does not completely prevent the phenotype. In contrast, deletion of FLO400 or FLO5-1 prevents pseudohyphae formation, and hampers FLO11 expression. FAIRE-Seq data shows that the expression and repression of FLO400 and FLO5-1 are correlated to open or closed chromatin regions upstream of these genes, respectively. Our findings indicate that K. phaffii Flo400 and/or Flo5-1 act as upstream signals that lead to the induction of FLO11 upon glucose limitation in chemostats at slow growth and chromatin modulation is involved in the regulation of their expression.
Collapse
Affiliation(s)
- Sonakshi De
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Josef Moser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Nadine Tatto
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences-FH Campus Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Growth-decoupled Protein Production in Yeast, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
40
|
Stultz LK, Hunsucker A, Middleton S, Grovenstein E, O'Leary J, Blatt E, Miller M, Mobley J, Hanson PK. Proteomic analysis of the S. cerevisiae response to the anticancer ruthenium complex KP1019. Metallomics 2020; 12:876-890. [PMID: 32329475 PMCID: PMC7362344 DOI: 10.1039/d0mt00008f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019's many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy.
Collapse
Affiliation(s)
- Laura K Stultz
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Alexandra Hunsucker
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Sydney Middleton
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Evan Grovenstein
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Jacob O'Leary
- Department of Chemistry, Birmingham-Southern College, Birmingham, AL 35254, USA
| | - Eliot Blatt
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Mary Miller
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - James Mobley
- Department of Surgery, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | - Pamela K Hanson
- Department of Biology, Furman University, Greenville, SC 29613, USA.
| |
Collapse
|
41
|
Li X, Ye H, Xu CQ, Shen XL, Zhang XL, Huang C, Cheng B, Tan YL, Xiao ZT, Pei YP, Zou K. Transcriptomic analysis reveals MAPK signaling pathways affect the autolysis in baker's yeast. FEMS Yeast Res 2020; 20:5859490. [PMID: 32556321 DOI: 10.1093/femsyr/foaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Yeast autolysis refers to the process in which cells degrade and release intracellular contents under specific conditions by endogenous enzymes such as proteases, nucleases and lipid enzymes. Protein-rich baker's yeast is widely used to produce yeast extract in food industry, however, the molecular mechanism related to baker's yeast autolysis is still unclear. In this study, RNA-seq technology and biochemical analysis were performed to analyze the autolysis processes in baker's yeast. The differentially expressed genes (DEGs), 27 autolysis-related euKaryotic Ortholog Groups (KOG) and three types of autolysis-induced Gene Ontology (GO) were identified and analyzed in detail. A total of 143 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways under autolysis were also assigned. Interestingly, the DEGs were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathways and metabolic pathways, and key genes MID2, MTL1, SLT2, PTP2, HKR1 and GPD1 may play important roles in autolysis. Further quantitative PCR was performed to verify the expression pattern in baker's yeast autolysis. Together, all these results indicated that MAPK pathways might play an essential role during autolysis process through inhibiting the metabolism and disrupting cell wall in baker's yeast. This result may provide important clues for the in-depth interpretation of the yeast autolysis mechanism.
Collapse
Affiliation(s)
- Xiao Li
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China.,Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Han Ye
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chao-Qun Xu
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang-Ling Shen
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao-Long Zhang
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Cong Huang
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ben Cheng
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ya-Li Tan
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ze-Tao Xiao
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yu-Peng Pei
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Kun Zou
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
42
|
Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, Drescher K, Müller DJ, Oliver Essen L, Mösch HU. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. eLife 2020; 9:55587. [PMID: 32286952 PMCID: PMC7156268 DOI: 10.7554/elife.55587] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Microorganisms have evolved specific cell surface molecules that enable discrimination between cells from the same and from a different kind. Here, we investigate the role of Flo11-type cell surface adhesins from social yeasts in kin discrimination. We measure the adhesion forces mediated by Flo11A-type domains using single-cell force spectroscopy, quantify Flo11A-based cell aggregation in populations and determine the Flo11A-dependent segregation of competing yeast strains in biofilms. We find that Flo11A domains from diverse yeast species confer remarkably strong adhesion forces by establishing homotypic interactions between single cells, leading to efficient cell aggregation and biofilm formation in homogenous populations. Heterotypic interactions between Flo11A domains from different yeast species or Saccharomyces cerevisiae strains confer weak adhesive forces and lead to efficient strain segregation in heterogenous populations, indicating that in social yeasts Flo11A-mediated cell adhesion is a major mechanism for kin discrimination at species and sub-species levels. These findings, together with our structure and mutation analysis of selected Flo11A domains, provide a rationale of how cell surface receptors have evolved in microorganisms to mediate kin discrimination.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Rajib Schubert
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timo Kraushaar
- Department of Biochemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Hoffmann
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | - Eric Jelli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lars Oliver Essen
- Department of Biochemistry, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hans-Ulrich Mösch
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
43
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
44
|
Hwang J, Bang I, Kim D, Shin SC, Chin YW, Kim TW, Kim HJ. Genome sequence of the potential probiotic eukaryote Saccharomyces cerevisiae KCCM 51299. 3 Biotech 2020; 10:185. [PMID: 32257741 DOI: 10.1007/s13205-020-02174-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/20/2020] [Indexed: 10/24/2022] Open
Abstract
Saccharomyces cerevisiae KCCM 51299, a potential probiotic yeast overproducing glutathione, has been isolated from among 272 yeast strains from the relatively safe Nuruk. The genome sequence of S. cerevisiae KCCM 51299 was analyzed and a near-complete genome (12 Mb) with 19 contigs was assembled after PacBio single-molecule real-time (SMRT) sequencing. The genome of S. cerevisiae KCCM 51299 was compared to the S. cerevisiae s288c reference genome. Additionally, genes involved in glutathione biosynthesis were identified, and the glutathione biosynthesis pathway was constructed in silico based on these genes. Furthermore, S. cerevisiae KCCM 51299 genes were compared with those in other yeast genomes. Finally, genome-scale in silico flux analysis was carried out, and a metabolic engineering strategy for glutathione biosynthesis was generated. These results provide useful information to further develop eukaryotic probiotics to overproduce glutathione.
Collapse
|
45
|
Basu S, González B, Li B, Kimble G, Kozminski KG, Cullen PJ. Functions for Cdc42p BEM adaptors in regulating a differentiation-type MAP kinase pathway. Mol Biol Cell 2020; 31:491-510. [PMID: 31940256 PMCID: PMC7185891 DOI: 10.1091/mbc.e19-08-0441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras homology (Rho) GTPases regulate cell polarity and signal transduction pathways to control morphogenetic responses in different settings. In yeast, the Rho GTPase Cdc42p regulates cell polarity, and through the p21-activated kinase Ste20p, Cdc42p also regulates mitogen-activated protein kinase (MAPK) pathways (mating, filamentous growth or fMAPK, and HOG). Although much is known about how Cdc42p regulates cell polarity and the mating pathway, how Cdc42p regulates the fMAPK pathway is not clear. To address this question, Cdc42p-dependent MAPK pathways were compared in the filamentous (Σ1278b) strain background. Each MAPK pathway showed a unique activation profile, with the fMAPK pathway exhibiting slow activation kinetics compared with the mating and HOG pathways. A previously characterized version of Cdc42p, Cdc42pE100A, that is specifically defective for fMAPK pathway signaling, was defective for interaction with Bem4p, the pathway-specific adaptor for the fMAPK pathway. Corresponding residues in Bem4p were identified that were required for interaction with Cdc42p and fMAPK pathway signaling. The polarity adaptor Bem1p also regulated the fMAPK pathway. Versions of Bem1p defective for recruitment of Ste20p to the plasma membrane, intramolecular interactions, and interaction with the GEF, Cdc24p, were defective for fMAPK pathway signaling. Bem1p also regulated effector pathways in different ways. In some pathways, multiple domains of the protein were required for its function, whereas in other pathways, a single domain or function was needed. Genetic suppression tests showed that Bem4p and Bem1p regulate the fMAPK pathway in an ordered sequence. Collectively, the study demonstrates unique and sequential functions for Rho GTPase adaptors in regulating MAPK pathways.
Collapse
Affiliation(s)
- Sukanya Basu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Beatriz González
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Boyang Li
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Garrett Kimble
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, VA 22904
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
46
|
Bonomelli B, Martegani E, Colombo S. Lack of SNF1 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2019; 523:130-134. [PMID: 31837801 DOI: 10.1016/j.bbrc.2019.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 11/26/2022]
Abstract
In previous papers we showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type yeast cells growing exponentially on glucose, while an aberrant accumulation of activated Ras in mitochondria correlated to mitochondrial dysfunction, accumulation of ROS and regulated cell death. Here we show that also in a strain lacking Snf1, the homolog of the AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae, activated Ras proteins accumulate mainly in these organelles, suggesting an antiapoptotic role for this protein, beside its well-known function in glucose repression. Indeed, in this paper we show that Snf1 protects against apoptosis in Saccharomyces cerevisiae. In particular, following treatment with acetic acid, a well-known inducer of apoptosis in this microorganism, snf1Δ cells show a significant reduction in cell survival and a higher level of ROS when compared with wild-type cells. More importantly, untreated snf1Δ cells show a higher percentage of apoptotic cells compared with wild-type cells, which further increases upon treatment with acetic acid. In order to determine whether the role of Snf1 in regulated cell death is dependent on its catalytic activity, we characterized the Snf1-S214E strain, expressing a catalytically inactive form of Snf1. Data on active Ras proteins localization, cell survival, level of ROS and percentage of apoptotic cells are congruent and suggest that the antiapoptotic role of Snf1 is independent on its kinase activity.
Collapse
Affiliation(s)
- Barbara Bonomelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy; SysBio Centre of Systems Biology, Piazza Della Scienza 2, 20126, Milan, Italy
| | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126, Milan, Italy; SysBio Centre of Systems Biology, Piazza Della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
47
|
Deciphering eukaryotic gene-regulatory logic with 100 million random promoters. Nat Biotechnol 2019; 38:56-65. [PMID: 31792407 PMCID: PMC6954276 DOI: 10.1038/s41587-019-0315-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
How transcription factors (TFs) interpret cis-regulatory DNA sequence to control gene expression remains unclear, largely because past studies using native and engineered sequences had insufficient scale. Here, we measure the expression output of >100 million synthetic yeast promoter sequences that are fully random. These sequences yield diverse, reproducible expression levels that can be explained by their chance inclusion of functional TF binding sites. We use machine learning to build interpretable models of transcriptional regulation that predict ~94% of the expression driven from independent test promoters and ~89% of the expression driven from native yeast promoter fragments. These models allow us to characterize each TF’s specificity, activity, and interactions with chromatin. TF activity depends on binding-site strand, position, DNA helical face and chromatin context. Notably, expression level is influenced by weak regulatory interactions, which confound designed-sequence studies. Our analyses show that massive-throughput assays of fully random DNA can provide the big data necessary to develop complex, predictive models of gene regulation. Gene expression levels in yeast are predicted using a massive dataset on promoters with random sequences.
Collapse
|
48
|
Prabhakar A, Vadaie N, Krzystek T, Cullen PJ. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include a Regulator of the Actin Cytoskeleton. Biochemistry 2019; 58:4842-4856. [PMID: 31710471 DOI: 10.1021/acs.biochem.9b00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein Msb2p. Eighteen proteins were identified that comprised functional categories of metabolism, actin filament capping and depolymerization, aerobic and anaerobic growth, chromatin organization and bud growth, sporulation, ribosome biogenesis, protein modification by iron-sulfur clusters, RNA catabolism, and DNA replication and DNA repair. A subunit of actin capping protein, Cap2p, interacted with the cytoplasmic domain of Msb2p. Cells lacking Cap2p showed altered localization of Msb2p and increased levels of shedding of Msb2p's N-terminal glycosylated domain. Consistent with its role in regulating the actin cytoskeleton, Cap2p was required for enhanced cell polarization during filamentous growth. Our study identifies proteins that connect a signaling mucin to diverse cellular processes and may provide insight into new aspects of mucin function.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Nadia Vadaie
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Thomas Krzystek
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| | - Paul J Cullen
- Department of Biological Sciences , State University of New York at Buffalo , Buffalo , New York 14260-1300 , United States
| |
Collapse
|
49
|
Joshua IM, Höfken T. Ste20 and Cla4 modulate the expression of the glycerol biosynthesis enzyme Gpd1 by a novel MAPK-independent pathway. Biochem Biophys Res Commun 2019; 517:611-616. [PMID: 31395335 DOI: 10.1016/j.bbrc.2019.07.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
Abstract
p21-activated kinases (PAKs) are important signalling molecules with a wide range of functions. In budding yeast, the main PAKs Ste20 and Cla4 regulate the response to hyperosmotic stress, which is an excellent model for the adaptation to changing environmental conditions. In this pathway, the only known function of Ste20 and Cla4 is the activation of a mitogen-activated protein kinase (MAPK) cascade through Ste11. This eventually leads to increased transcription of glycerol biosynthesis genes, the most important response to hyperosmotic shock. Here, we show that Ste20 and Cla4 not only stimulate transcription, they also bind to the glycerol biosynthesis enzymes Gpd1, Gpp1 and Gpp2. Protein levels of Gpd1, the enzyme that catalyzes the rate limiting step in glycerol synthesis, positively correlate with glucose availability. Using a chemical genetics approach, we find that simultaneous inactivation of STE20 and CLA4 reduces the glucose-induced increase of Gpd1 levels, whereas the deletion of either STE20 or CLA4 alone has no effect. This is also observed for the hyperosmotic stress-induced increase of Gpd1 levels. Importantly, under both conditions the deletion of STE11 has no effect on Gpd1 induction. These observations suggest that Ste20 and Cla4 not only have a role in the transcriptional regulation of GPD1 through Ste11. They also seem to modulate GPD1 expression at another level such as translation or protein degradation.
Collapse
Affiliation(s)
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, UK.
| |
Collapse
|
50
|
Mutlu N, Sheidy DT, Hsu A, Jeong HS, Wozniak KJ, Kumar A. A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in Saccharomyces cerevisiae. Genetics 2019; 213:705-720. [PMID: 31455721 PMCID: PMC6781900 DOI: 10.1534/genetics.119.302538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae undergoes a stress-responsive transition to a pseudohyphal growth form in which cells elongate and remain connected in multicellular filaments. Pseudohyphal growth is regulated through conserved signaling networks that control cell growth and the response to glucose or nitrogen limitation in metazoans. These networks are incompletely understood, and our studies identify the TORC1- and PKA-regulated kinase Ksp1p as a key stress-responsive signaling effector in the yeast pseudohyphal growth response. The kinase-defective ksp1-K47D allele results in decreased pseudohyphal morphology at the cellular and colony level, indicating that Ksp1p kinase signaling is required for pseudohyphal filamentation. To determine the functional consequences of Ksp1p signaling, we implemented transcriptional profiling and quantitative phosphoproteomic analysis of ksp1-K47D on a global scale. Ksp1p kinase signaling maintains wild-type transcript levels of many pathways for amino acid synthesis and metabolism, relevant for the regulation of translation under conditions of nutrient stress. Proteins in stress-responsive ribonucleoprotein granules are regulated post-translationally by Ksp1p, and the Ksp1p-dependent phosphorylation sites S176 in eIF4G/Tif4631p and S436 in Pbp1p are required for wild-type levels of pseudohyphal growth and Protein Kinase A pathway activity. Pbp1p and Tif4631p localize in stress granules, and the ksp1 null mutant shows elevated abundance of Pbp1p puncta relative to wild-type. Collectively, the Ksp1p kinase signaling network integrates polarized pseudohyphal morphogenesis and translational regulation through the stress-responsive transcriptional control of pathways for amino acid metabolism and post-translational modification of translation factors affecting stress granule abundance.
Collapse
Affiliation(s)
- Nebibe Mutlu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel T Sheidy
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Han Seol Jeong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Program in Molecular and Cellular Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|