1
|
Ree BJ, Satoh Y, Isono T, Satoh T. Highly Ordered Nanoscale Film Morphologies of Block Copolymers Governed by Nonlinear Topologies. ACS Macro Lett 2021; 10:811-818. [PMID: 35549184 DOI: 10.1021/acsmacrolett.1c00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among many properties of cyclic block copolymers, the notable domain spacing (d-spacing) reduction offers nonlinear topology as an effective tool for developing block copolymers for nanolithography. However, the current consensus regarding the topology-morphology correlation is ambiguous and in need of more studies. Here we present the morphological investigation on nanoscale films of cyclic and tadpole-shaped poly(n-decyl glycidyl ether-block-2-(2-(2-methoxyethoxy)ethoxy)ethyl glycidyl ether)s and their linear counterpart via synchrotron grazing-incidence X-ray scattering. All copolymers form phase-separated nanostructures, in which only the nonlinear copolymers form highly ordered and unidirectional nanostructures. Additionally, d-spacings of cyclic and tadpole-shaped block copolymers are 49.3-53.7% and 25.0-32.5% shorter than that of their linear counterpart, respectively, exhibiting greater or comparable d-spacing reductions against the experimentally and theoretically achieved values from the literature. Overall, this study demonstrates that cyclic and tadpole topologies can be utilized in developing materials with miniaturized dimensions, high structural ordering, and unidirectional orientation for various nanotechnology applications.
Collapse
Affiliation(s)
- Brian J. Ree
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yusuke Satoh
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
2
|
Li J, Mohammed-Elsabagh M, Paczkowski F, Li Y. Circular Nucleic Acids: Discovery, Functions and Applications. Chembiochem 2020; 21:1547-1566. [PMID: 32176816 DOI: 10.1002/cbic.202000003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.
Collapse
Affiliation(s)
- Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Mostafa Mohammed-Elsabagh
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Freeman Paczkowski
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
3
|
Evidence Falsifying the Double Helix Model. Symmetry (Basel) 2019. [DOI: 10.3390/sym11121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Through more than 40 years of reading, thinking, searching, and experimentation, we have found that the double helix model carries some defects or incorrect information. Evidence gleaned from the literature clearly indicates that the two strands of DNA are coiled ambidextrously, rather than plectonemically. It is likely that the linking number of native chromosomal Escherichia coli (E. coli) DNA is less than 960. Presently, a clear voice is necessary to break the ice formed from decades of misleading media, questionable textbooks, and expediency. For the sake of science, we are responsible and willing to share our hard-earned knowledge, experience, and knack with the public. A promising research plan is provided for the additional falsification of the right-handed double helix model. It would be a precision hit at the Achilles’ heel of the double helix model. An appropriate conceptual shift will hopefully lead to new knowledge on the secondary structure of DNA and improve understanding of its biological functions.
Collapse
|
4
|
Scherrer K. Primary transcripts: From the discovery of RNA processing to current concepts of gene expression - Review. Exp Cell Res 2018; 373:1-33. [PMID: 30266658 DOI: 10.1016/j.yexcr.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
The main purpose of this review is to recall for investigators - and in particular students -, some of the early data and concepts in molecular genetics and biology that are rarely cited in the current literature and are thus invariably overlooked. There is a growing tendency among editors and reviewers to consider that only data produced in the last 10-20 years or so are pertinent. However this is not the case. In exact science, sound data and lucid interpretation never become obsolete, and even if forgotten, will resurface sooner or later. In the field of gene expression, covered in the present review, recent post-genomic data have indeed confirmed many of the earlier results and concepts developed in the mid-seventies, well before the start of the recombinant DNA revolution. Human brains and even the most powerful computers, have difficulty in handling and making sense of the overwhelming flow of data generated by recent high-throughput technologies. This was easier when low throughput, more integrative methods based on biochemistry and microscopy dominated biological research. Nowadays, the need for organising concepts is ever more important, otherwise the mass of available data can generate only "building ruins" - the bricks without an architect. Concepts such as pervasive transcription of genomes, large genomic domains, full domain transcripts (FDTs) up to 100 kb long, the prevalence of post-transcriptional events in regulating eukaryotic gene expression, and the 3D-genome architecture, were all developed and discussed before 1990, and are only now coming back into vogue. Thus, to review the impact of earlier concepts on later developments in the field, I will confront former and current data and ideas, including a discussion of old and new methods. Whenever useful, I shall first briefly report post-genomic developments before addressing former results and interpretations. Equally important, some of the terms often used sloppily in scientific discussions will be clearly defined. As a basis for the ensuing discussion, some of the issues and facts related to eukaryotic gene expression will first be introduced. In chapter 2 the evolution in perception of biology over the last 60 years and the impact of the recombinant DNA revolution will be considered. Then, in chapter 3 data and theory concerning the genome, gene expression and genetics will be reviewed. The experimental and theoretical definition of the gene will be discussed before considering the 3 different types of genetic information - the "Triad" - and the importance of post-transcriptional regulation of gene expression in the light of the recent finding that 90% of genomic DNA seems to be transcribed. Some previous attempts to provide a conceptual framework for these observations will be recalled, in particular the "Cascade Regulation Hypothesis" (CRH) developed in 1967-85, and the "Gene and Genon" concept proposed in 2007. A knowledge of the size of primary transcripts is of prime importance, both for experimental and theoretical reasons, since these molecules represent the primary units of the "RNA genome" on which most of the post-transcriptional regulation of gene expression occurs. In chapter 4, I will first discuss some current post-genomic topics before summarising the discovery of the high Mr-RNA transcripts, and the investigation of their processing spanning the last 50 years. Since even today, a consensus concerning the real form of primary transcripts in eukaryotic cells has not yet been reached, I will refer to the viral and specialized cellular models which helped early on to understand the mechanisms of RNA processing and differential splicing which operate in cells and tissues. As a well-studied example of expression and regulation of a specific cellular gene in relation to differentiation and pathology, I will discuss the early and recent work on expression of the globin genes in nucleated avian erythroblasts. An important concept is that the primary transcript not only embodies protein-coding information and regulation of its expression, but also the 3D-structure of the genomic DNA from which it was derived. The wealth of recent post-genomic data published in this field emphasises the importance of a fundamental principle of genome organisation and expression that has been overlooked for years even though it was already discussed in the 1970-80ties. These issues are addressed in chapter 5 which focuses on the involvement of the nuclear matrix and nuclear architecture in DNA and RNA biology. This section will make reference to the Unified Matrix Hypothesis (UMH), which was the first molecular model of the 3D organisation of DNA and RNA. The chapter on the "RNA-genome and peripheral memories" discusses experimental data on the ribonucleoprotein complexes containing pre-mRNA (pre-mRNPs) and mRNA (mRNPs) which are organised in nuclear and cytoplasmic spaces respectively. Finally, "Outlook " will enumerate currently unresolved questions in the field, and will propose some ideas that may encourage further investigation, and comprehension of available experimental data still in need of interpretation. In chapter 8, some propositions and paradigms basic to the authors own analysis are discussed. "In conclusion" the raison d'être of this review is recalled and positioned within the overall framework of scientific endeavour.
Collapse
Affiliation(s)
- Klaus Scherrer
- Institute Jacques Monod, CNRS, University Paris Diderot, Paris, France.
| |
Collapse
|
5
|
Abstract
Supercoiling is a fundamental property of DNA, generated by polymerases and other DNA-binding proteins as a consequence of separating/bending the DNA double helix. DNA supercoiling plays a key role in gene expression and genome organization, but has proved difficult to study in eukaryotes because of the large, complex and chromatinized genomes. Key approaches to study DNA supercoiling in eukaryotes are (1) centrifugation-based or electrophoresis-based techniques in which supercoiled plasmids extracted from eukaryotic cells form a compacted writhed structure that migrates at a rate proportional to the level of DNA supercoiling; (2) in vivo approaches based on the preferential intercalation of psoralen molecules into under-wound DNA. Here, we outline the principles behind these techniques and discuss key discoveries, which have confirmed the presence and functional potential of unconstrained DNA supercoiling in eukaryotic genomes.
Collapse
|
6
|
Azim MAR, Iliopoulos CS, Rahman MS, Samiruzzaman M. A Simple, Fast, Filter-Based Algorithm for Approximate Circular Pattern Matching. IEEE Trans Nanobioscience 2016; 15:93-100. [PMID: 26992174 DOI: 10.1109/tnb.2016.2542062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper deals with the approximate version of the circular pattern matching (ACPM) problem, which appears as an interesting problem in many biological contexts. The circular pattern matching problem consists in finding all occurrences of the rotations of a pattern P of length m in a text T of length n. In ACPM, we consider occurrences with k -mismatches under the Hamming distance model. In this paper, we present a simple and fast filter-based algorithm to solve the ACPM problem. We compare our algorithm with the state of the art algorithms and the results are found to be excellent. In particular, our algorithm runs almost twice as fast than the state of the art. Much of the efficiency of our algorithm can be attributed to its filters that are effective but extremely simple and lightweight.
Collapse
|
7
|
SimpLiFiCPM: A Simple and Lightweight Filter-Based Algorithm for Circular Pattern Matching. Int J Genomics 2015; 2015:259320. [PMID: 26557649 PMCID: PMC4628665 DOI: 10.1155/2015/259320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/21/2015] [Indexed: 11/17/2022] Open
Abstract
This paper deals with the circular pattern matching (CPM) problem, which
appears as an interesting problem in many biological contexts. CPM consists in finding all occurrences of the rotations of a pattern 𝒫 of length m in a text 𝒯 of length n. In this paper, we present SimpLiFiCPM (pronounced “Simplify CPM”), a simple and lightweight filter-based algorithm to solve the problem. We compare our algorithm with the state-of-the-art algorithms and the results are found to be excellent. Much of the speed of our algorithm comes from the fact that our filters are effective but extremely simple and
lightweight.
Collapse
|
8
|
Barton C, Iliopoulos CS, Pissis SP. Fast algorithms for approximate circular string matching. Algorithms Mol Biol 2014; 9:9. [PMID: 24656145 PMCID: PMC4234210 DOI: 10.1186/1748-7188-9-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/17/2014] [Indexed: 11/16/2022] Open
Abstract
Background Circular string matching is a problem which naturally arises in many biological contexts. It consists in finding all occurrences of the rotations of a pattern of length m in a text of length n. There exist optimal average-case algorithms for exact circular string matching. Approximate circular string matching is a rather undeveloped area. Results In this article, we present a suboptimal average-case algorithm for exact circular string matching requiring time O(n) . Based on our solution for the exact case, we present two fast average-case algorithms for approximate circular string matching with k-mismatches, under the Hamming distance model, requiring time O(n) for moderate values of k, that is k=O(m/logm) . We show how the same results can be easily obtained under the edit distance model. The presented algorithms are also implemented as library functions. Experimental results demonstrate that the functions provided in this library accelerate the computations by more than three orders of magnitude compared to a naïve approach. Conclusions We present two fast average-case algorithms for approximate circular string matching with k-mismatches; and show that they also perform very well in practice. The importance of our contribution is underlined by the fact that the provided functions may be seamlessly integrated into any biological pipeline. The source code of the library is freely available at http://www.inf.kcl.ac.uk/research/projects/asmf/.
Collapse
|
9
|
Schvartzman JB, Martínez-Robles ML, Hernández P, Krimer DB. Plasmid DNA topology assayed by two-dimensional agarose gel electrophoresis. Methods Mol Biol 2013; 1054:121-132. [PMID: 23913288 DOI: 10.1007/978-1-62703-565-1_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-dimensional (2D) agarose gel electrophoresis is nowadays one of the best methods available to analyze DNA molecules with different masses and shapes. The possibility to use nicking enzymes and intercalating agents to change the twist of DNA during only one or in both runs, improves the capacity of 2D gels to discern molecules that apparently may look alike. Here we present protocols where 2D gels are used to understand the structure of DNA molecules and its dynamics in living cells. This knowledge is essential to comprehend how DNA topology affects and is affected by all the essential functions that DNA is involved in: replication, transcription, repair and recombination.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cell and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Bárcena-Panero A, Echevarría JE, Romero-Gómez MP, Royuela E, Castellanos A, González I, Fedele G. Development and validation with clinical samples of internally controlled multiplex real-time PCR for diagnosis of BKV and JCV infection in associated pathologies. Comp Immunol Microbiol Infect Dis 2012; 35:173-9. [PMID: 22261266 DOI: 10.1016/j.cimid.2011.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/28/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022]
Abstract
This article describes the development and validation with clinical samples of an internally controlled multiplex quantitative real-time PCR (QRT-PCR) for human polyomaviruses BK (BKV) and JC (JCV). Blood and urine samples from renal transplant recipients with suspected nephropathy, and cerebrospinal fluid (CSF) specimens from AIDS, natalizumab-treated and HIV-negative patients with suspected progressive multifocal leukoencephalopathy, previously checked for BKV and JCV by conventional PCR, were tested by QRT-PCR. All samples positive by conventional PCR were confirmed by QRT-PCR. Four cases of JCV-associated neurological infection, including all those detected in natalizumab-treated patients, and one case of BKV-related neurological infection were only identified by QRT-PCR. BKV was quantified in the CSF of neurological patients for the first time. Analyses of the Quality Control for Molecular Diagnostics 2010 panel were "highly satisfactory" for BKV and "satisfactory" for JCV. The QRT-PCR is specific and reproducible. It improves the sensitivity of conventional PCR for the diagnosis of BKV and JCV infection in various diseases.
Collapse
Affiliation(s)
- Ana Bárcena-Panero
- Viral Isolation and Detection Laboratory, Microbiology Diagnostic Service, National Microbiology Centre, Carlos III Health Institute, Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Predicting Knot and Catenane Type of Products of Site-Specific Recombination on Twist Knot Substrates. J Mol Biol 2011; 411:350-67. [DOI: 10.1016/j.jmb.2011.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 11/19/2022]
|
13
|
The torsional state of DNA within the chromosome. Chromosoma 2011; 120:323-34. [PMID: 21567156 DOI: 10.1007/s00412-011-0324-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 12/14/2022]
Abstract
Virtually all processes of the genome biology affect or are affected by the torsional state of DNA. Torsional energy associated with an altered twist facilitates or hinders the melting of the double helix, its molecular interactions, and its spatial folding in the form of supercoils. Yet, understanding how the torsional state of DNA is modulated remains a challenging task due to the multiplicity of cellular factors involved in the generation, transmission, and dissipation of DNA twisting forces. Here, an overview of the implication of DNA topoisomerases, DNA revolving motors, and other DNA interactions that determine local levels of torsional stress in bacterial and eukaryotic chromosomes is provided. Particular emphasis is made on the experimental approaches being developed to assess the torsional state of intracellular DNA and its organization into topological domains.
Collapse
|
14
|
Borsali R, Benmouna M. Static and dynamic scattering from cyclic diblock copolymer chains in solution. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/masy.19940790115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Benková Z, Cifra P. Stiffening Transition in Semiflexible Cyclic Macromolecules. MACROMOL THEOR SIMUL 2010. [DOI: 10.1002/mats.201000047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Türler H. Interactions of Polyoma and Mouse DNAs III. Mechanism of Polyoma Pseudovirion Formation. J Virol 2010; 15:1158-67. [PMID: 16789151 PMCID: PMC354570 DOI: 10.1128/jvi.15.5.1158-1167.1975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In primary mouse kidney cell cultures infected with polyoma virus, the processes leading to virion and pseudovirion formation were studied. By photometric DNA quantitation, we followed the kinetics of mouse and polyoma DNA synthesis and the formation of low-molecular-weight fragmented mouse DNA (mouse f-DNA). Virus was harvested at different times and analyzed for its proportion of pseudovirions. The following correlations between the intracellular events and the production of virions and pseudovirions were found. (i) Syntheses of cellular and viral DNA were closely linked, both in time and in rates of synthesis. (ii) An increase of mouse f-DNA could only be detected several hours after the onset of mouse and polyoma DNA replication; its formation coincided in time with the appearance of progeny virus. (iii) The proportion of pseudovirions was not dependent on the amount of mouse f-DNA formed, but seemed to be inversely related to the amount of viral DNA synthesized. This was borne out by experiments in which DNA synthesis was partially inhibited by mitomycin C or after a synchronized onset of DNA replication. Under these conditions, virus preparations with a two- to threefold increased proportion of pseudovirions were obtained as compared with those from uninhibited cultures. Virus isolated from the remaining monolayer always had a higher proportion of pseudovirions than virus isolated at the same time from the supernatant medium only; also, the proportion of pseudovirions increased slightly with time after infection. Thus, according to the experimental conditions used, polyoma virus preparations with a low (10 to 20%) or a high (60 to 80%) proportion of pseudovirions can be obtained.
Collapse
Affiliation(s)
- H Türler
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
|
18
|
Bohn M, Heermann DW, Lourenço O, Cordeiro C. On the Influence of Topological Catenation and Bonding Constraints on Ring Polymers. Macromolecules 2010. [DOI: 10.1021/ma902623u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Manfred Bohn
- Institute of Theoretical Physics, University of Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
| | - Dieter W. Heermann
- Institute of Theoretical Physics, University of Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany
| | - Odilon Lourenço
- Instituto de Fisica, Universidade Federal Fluminense, 24.210.340-Niteroi-RJ, Brazil
| | - Claudette Cordeiro
- Instituto de Fisica, Universidade Federal Fluminense, 24.210.340-Niteroi-RJ, Brazil
| |
Collapse
|
19
|
Abstract
I was born in China and would have remained there but for the tumultuous events that led many of my generation to the United States for graduate studies. Norman Davidson introduced me to DNA when I became a postdoctoral fellow in his group at the California Institute of Technology in 1964, and a fortuitous conversation there ignited my interest in DNA ring formation, which later led me to study different topological forms of DNA rings-catenanes, knots, and supercoils. In 1968, a chance observation led me to identify a new enzyme capable of converting one DNA ring form to another, an enzyme now known as a DNA topoisomerase. My interest in DNA rings and DNA topoisomerases continued throughout my years at the University of California, Berkeley, and Harvard. The fascinating ability of the topoisomerases in passing DNA strands or double helices through one another and their importance in cellular processes have kept me and many others excited in their studies.
Collapse
Affiliation(s)
- James C Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Chen B, Jerger K, Fréchet JMJ, Szoka FC. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J Control Release 2009; 140:203-9. [PMID: 19465070 DOI: 10.1016/j.jconrel.2009.05.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 11/28/2022]
Abstract
Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.
Collapse
Affiliation(s)
- Bo Chen
- Department of Bioengineering Therapeutic Sciences and Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0912, United States
| | | | | | | |
Collapse
|
21
|
Fanning E, Zhao K. SV40 DNA replication: from the A gene to a nanomachine. Virology 2008; 384:352-9. [PMID: 19101707 DOI: 10.1016/j.virol.2008.11.038] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/18/2008] [Indexed: 12/23/2022]
Abstract
Duplication of the simian virus 40 (SV40) genome is the best understood eukaryotic DNA replication process to date. Like most prokaryotic genomes, the SV40 genome is a circular duplex DNA organized in a single replicon. This small viral genome, its association with host histones in nucleosomes, and its dependence on the host cell milieu for replication factors and precursors led to its adoption as a simple and powerful model. The steps in replication, the viral initiator, the host proteins, and their mechanisms of action were initially defined using a cell-free SV40 replication reaction. Although our understanding of the vastly more complex host replication fork is advancing, no eukaryotic replisome has yet been reconstituted and the SV40 paradigm remains a point of reference. This article reviews some of the milestones in the development of this paradigm and speculates on its potential utility to address unsolved questions in eukaryotic genome maintenance.
Collapse
Affiliation(s)
- Ellen Fanning
- Department of Biological Sciences, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235-1634, USA.
| | | |
Collapse
|
22
|
Small DNA tumour viruses and their contributions to our understanding of transcription control. Virology 2008; 384:369-74. [PMID: 19068262 DOI: 10.1016/j.virol.2008.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/22/2022]
Abstract
The study of small DNA tumour viruses like SV40 and polyoma was one of the major entry points for the study of eukaryotes. It opened fields like gene structure, transcription or replication control, chromatin structure and cell transformation. This review outlines the breakthroughs that occurred at the end of the 1970s and during the 1980s in our understanding of gene structure and the basic processes involved in control of gene expression starting with DNA tumour viruses and reaching their cellular hosts. These developments were made possible by concomitant advances in the isolation of restriction enzymes, developing DNA sequencing protocols, DNA cloning, DNA transfections, in vitro transcription systems and isolation of sequence specific DNA binding protein among others. The conceptual and methodological advances that resulted from the studies of small DNA tumour viruses opened the era for the study of host genomes far more complex, culminating with the establishment of the sequence and a functional map of the human genome.
Collapse
|
23
|
Le Pecq JB. Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. METHODS OF BIOCHEMICAL ANALYSIS 2006; 20:41-86. [PMID: 4947800 DOI: 10.1002/9780470110393.ch2] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Robertson RM, Laib S, Smith DE. Diffusion of isolated DNA molecules: dependence on length and topology. Proc Natl Acad Sci U S A 2006; 103:7310-4. [PMID: 16648255 PMCID: PMC1450111 DOI: 10.1073/pnas.0601903103] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.
Collapse
Affiliation(s)
- Rae M. Robertson
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
| | - Stephan Laib
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
| | - Douglas E. Smith
- Department of Physics, University of California at San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Abstract
We review the history of DNA mechanics and its analysis. We evaluate several methods to analyze the structures of superhelical DNA molecules, each predicated on the assumption that DNA can be modeled with reasonable accuracy as an extended, linearly elastic polymer. Three main approaches are considered: mechanical equilibrium methods, which seek to compute minimum energy conformations of topologically constrained molecules; statistical mechanical methods, which seek to compute the Boltzmann distribution of equilibrium conformations that arise in a finite temperature environment; and dynamic methods, which seek to compute deterministic trajectories of the helix axis by solving equations of motion. When these methods include forces of self-contact, which prevent strand passage and preserve the topological constraint, each predicts plectonemically interwound structures. On the other hand, the extent to which these mechanical methods reliably predict energetic and thermodynamic properties of superhelical molecules is limited, in part because of their inability to account explicitly for interactions involving solvent. Monte Carlo methods predict the entropy associated with supercoiling to be negative, in conflict with a body of experimental evidence that finds it is large and positive, as would be the case if superhelical deformations significantly disrupt the ordering of ambient solvent molecules. This suggests that the large-scale conformational properties predicted by elastomechanical models are not the only ones determining the energetics and thermodynamics of supercoiling. Moreover, because all such models that preserve the topological constraint correctly predict plectonemic interwinding, despite these and other limitations, this constraint evidently dominates energetic and thermodynamic factors in determining supercoil geometry. Therefore, agreement between predicted structures and structures obtained experimentally, for example, by electron microscopy, does not in itself provide evidence for the correctness or completeness of any given model of DNA mechanics.
Collapse
Affiliation(s)
- Craig J Benham
- UC Davis Genome Center, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
26
|
Laghi L, Randolph AE, Malesci A, Boland CR. Constraints imposed by supercoiling on in vitro amplification of polyomavirus DNA. J Gen Virol 2004; 85:3383-3388. [PMID: 15483255 DOI: 10.1099/vir.0.80039-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous attempts to identify oncogenic polyomaviruses in human cancers have yielded conflicting results, even with the application of PCR technology. Here, it was considered whether the topological features of the polyomavirus genome interfere with efficient PCR amplification. Plasmid and SV40 DNAs were used as a model system for comparing the amplification efficiency of supercoiled, circular relaxed and linear templates. It was found that detection of circular templates required 10 times more molecules than detection of identical but linear templates. Supercoiling hindered the in vitro amplification of SV40 circles by a factor of 10, and erratic amplification of supercoiled SV40 occurred with subpicogram amounts of template. Accordingly, topoisomerase I treatment of DNA improved the PCR detection of supercoiled SV40, significantly decreasing the number of false-negative samples. Previously described, yet controversial, polyomavirus presence in human tissues should be reconsidered and topoisomerase I-sensitive polyomavirus amplification might help to detect polyomavirus genomes in mammalian tissues.
Collapse
Affiliation(s)
- Luigi Laghi
- Gastroenterology Unit and Research Laboratory, Istituto Clinico Humanitas, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Ann E Randolph
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Alberto Malesci
- Department of Internal Medicine, University of Milan, Italy
- Gastroenterology Unit and Research Laboratory, Istituto Clinico Humanitas, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - C Richard Boland
- Division of Gastroenterology, Baylor University Medical Center, Dallas, USA
| |
Collapse
|
27
|
Jang SS, Çağin T, Goddard WA. Effect of cyclic chain architecture on properties of dilute solutions of polyethylene from molecular dynamics simulations. J Chem Phys 2003. [DOI: 10.1063/1.1580802] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
|
29
|
Lee HC, Lee H, Lee W, Chang T, Roovers J. Fractionation of Cyclic Polystyrene from Linear Precursor by HPLC at the Chromatographic Critical Condition. Macromolecules 2000. [DOI: 10.1021/ma000807b] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hee Cheong Lee
- Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hyunjung Lee
- Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Wonmok Lee
- Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Taihyun Chang
- Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Jacques Roovers
- Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario K1A 0R9, Canada
| |
Collapse
|
30
|
Abstract
Sequence-specific conformational strains (SSCS) of biopolymers that carry free energy and genetic information have been called conformons, a term coined independently by two groups over two and a half decades ago [Green, D.E., Ji, S., 1972. The electromechanochemical model of mitochondrial structure and function. In: Schultz, J., Cameron, B.F. (Eds.), Molecular Basis of Electron Transport. Academic Press, New York, pp. 1-44; Volkenstein, M.V., 1972. The Conformon. J. Theor. Biol. 34, 193-195]. Conformons provide the molecular mechanisms necessary and sufficient to account for all biological processes in the living cell on the molecular level in principle--including the origin of life, enzymic catalysis, control of gene expression, oxidative phosphorylation, active transport, and muscle contraction. A clear example of SSCS is provided by SIDD (strain-induced duplex destabilization) in DNA recently reported by Benham [Benham, C.J., 1996a. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425-434; Benham, C.J., 1996b. Computation of DNA structural variability--a new predictor of DNA regulatory regions. CABIOS 12(5), 375-381]. Experimental as well as theoretical evidence indicates that conformons in proteins carry 8-16 kcal/mol of free energy and 40-200 bits of information, while those in DNA contain 500-2500 kcal/mol of free energy and 200-600 bits of information. The similarities and differences between conformons and solitons have been analyzed on the basis of the generalized Franck-Condon principle [Ji, S., 1974a. A general theory of ATP synthesis and utilization. Ann. N.Y. Acad. Sci. 227, 211-226; Ji, S., 1974b. Energy and negentropy in enzymic catalysis. Ann. N.Y. Acad. Sci. 227, 419-437]. To illustrate a practical application, the conformon theory was applied to the molecular-clamp model of DNA gyrase proposed by Berger and Wang [Berger, J.M., Wang, J.C., 1996. Recent developments in DNA topoisomerases II structure and mechanism. Curr. Opin. Struct. Biol. 6(1), 84-90], leading to the proposal of an eight-step molecular mechanism for the action of the enzyme. Finally, a set of experimentally testable predictions has been formulated on the basis of the conformon theory.
Collapse
Affiliation(s)
- S Ji
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08855, USA.
| |
Collapse
|
31
|
Laghi L, Randolph AE, Chauhan DP, Marra G, Major EO, Neel JV, Boland CR. JC virus DNA is present in the mucosa of the human colon and in colorectal cancers. Proc Natl Acad Sci U S A 1999; 96:7484-9. [PMID: 10377441 PMCID: PMC22112 DOI: 10.1073/pnas.96.13.7484] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
JC virus (JCV) is a polyoma virus that commonly infects humans. We have found T antigen DNA sequences of JCV in the mucosa of normal human colons, colorectal cancers, colorectal cancer xenografts raised in nude mice, and in the human colon cancer cell line SW480. A larger number of viral copies is present in cancer cells than in non-neoplastic colon cells, and sequence microheterogeneity occurs within individual colonic mucosal specimens. The improved yield of detection after treatment with topoisomerase I suggests that the viral DNA is negatively supercoiled in the human tissues. These results indicate that JCV DNA can be found in colonic tissues, which raises the possibility that this virus may play a role in the chromosomal instability observed in colorectal carcinogenesis.
Collapse
Affiliation(s)
- L Laghi
- Department of Medicine and Cancer Center, University of California, San Diego, 4028 Basic Science Building, 9500 Gilman Drive, La Jolla, CA, 92093-0688, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The experimental study of viral carcinogenesis has made considerable advances in the last few years. On the basis of recently discovered facts, many aspects of this interesting process can now be understood. I intend to discuss some of the newly acquired facts, in part discovered in our laboratory, in relation to the mechanisms of viral carcinogenesis. There are two types of cancer-producing viruses: those containing
DNA
and those containing
RNA
. We shall consider here only those that contain
DNA
, of which there are three main groups: (1) polyoma virus and simian virus 40 (SV 40); (2) papilloma viruses of rabbit, man, bovine and dog; (3) adenoviruses, of the types 7, 12, and 18.
Collapse
|
33
|
|
34
|
GREEN M, PINA M. BIOCHEMICAL STUDIES ON ADENOVIRUS MULTIPLICATION, VI. PROPERTIES OF HIGHLY PURIFIED TUMORIGENIC HUMAN ADENOVIRUSES AND THEIR DNA. Proc Natl Acad Sci U S A 1996; 51:1251-9. [PMID: 14215651 PMCID: PMC300245 DOI: 10.1073/pnas.51.6.1251] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
HAYASHI M, HAYASHI MN, SPIEGELMAN S. DNA CIRCULARITY AND THE MECHANISM OF STRAND SELECTION IN THE GENERATION OF GENETIC MESSAGES. Proc Natl Acad Sci U S A 1996; 51:351-9. [PMID: 14124333 PMCID: PMC300072 DOI: 10.1073/pnas.51.2.351] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Abstract
Particles of complete polyoma virus are produced in competent Bacillus subtilis incubated with DNA isolated from purified, conventionally grown polyoma virus. The virus grown in B. subtilis is biologically identical to polyoma virus produced by animal cells. Quantitative parameters of the system have been established, and fluctuation tests indicate that viral replication occurs within the infected bacteria.
Collapse
|
37
|
Abstract
Infectious DNA from the tumor-inducing polyoma virus and pneumococcal-transforming DNA can be recovered from the blood of mice in biologically active form after intraperitoneal injection. Polyoma DNA appeared to undergo less inactivation than did transforming DNA. In light of these observations, the metastatic spread of cancer may possibly be favored by circulation of tumorigenic DNA in the blood stream.
Collapse
|
38
|
|
39
|
CRAWFORD L, DULBECCO R, FRIED M, MONTAGNIER L, STOKER M. CELL TRANSFORMATION BY DIFFERENT FORMS OF POLYOMA VIRUS DNA. Proc Natl Acad Sci U S A 1996; 52:148-52. [PMID: 14192651 PMCID: PMC300587 DOI: 10.1073/pnas.52.1.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Burchard W, Michel E, Trappe V. Conformational Properties of Multiply Twisted Ring Systems and Daisy-Like Structures. Macromolecules 1996. [DOI: 10.1021/ma9603286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. Burchard
- Institute of Macromolecular Chemistry, University of Freiburg, D-79104 Freiburg, Germany
| | - E. Michel
- Institute of Macromolecular Chemistry, University of Freiburg, D-79104 Freiburg, Germany
| | - V. Trappe
- Institute of Macromolecular Chemistry, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
41
|
Affiliation(s)
- A J Levine
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, New Jersey 08540
| |
Collapse
|
42
|
Wang JC. DNA topoisomerases as targets of therapeutics: an overview. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:1-19. [PMID: 7826853 DOI: 10.1016/s1054-3589(08)60537-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J C Wang
- Department of Cellular and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
43
|
Molecular biological characteristics of the antibacterial action of 4-quinolone-3-carboxylic acid derivatives (review). Pharm Chem J 1993. [DOI: 10.1007/bf00819959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Dietrich-Buchecker CO, Sauvage JP. Interlocked and Knotted Rings in Biology and Chemistry. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-3-642-76241-3_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
45
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
46
|
Abstract
A DNA structure is defined as paranemic if the participating strands can be separated without mutual rotation of the opposite strands. The experimental methods employed to detect paranemic, unwound, DNA regions is described, including probing by single-strand specific nucleases (SNN), conformation-specific chemical probes, topoisomer analysis, NMR, and other physical methods. The available evidence for the following paranemic structures is surveyed: single-stranded DNA, slippage structures, cruciforms, alternating B-Z regions, triplexes (H-DNA), paranemic duplexes and RNA, protein-stabilized paranemic DNA. The problem of DNA unwinding during gene copying processes is analyzed; the possibility that extended paranemic DNA regions are transiently formed during replication, transcription, and recombination is considered, and the evidence supporting the participation of paranemic DNA forms in genes committed to or undergoing copying processes is summarized.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes/ultrastructure
- DNA/drug effects
- DNA/metabolism
- DNA/ultrastructure
- DNA Helicases/metabolism
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Single-Stranded/drug effects
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA, Superhelical/drug effects
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Endonucleases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- Nucleic Acid Denaturation
- Plasmids
- Transcription, Genetic
Collapse
Affiliation(s)
- G Yagil
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Slesarev AI. Positive supercoiling catalysed in vitro by ATP-dependent topoisomerase from Desulfurococcus amylolyticus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 173:395-9. [PMID: 2834207 DOI: 10.1111/j.1432-1033.1988.tb14012.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A topoisomerase capable of introducing positive supercoils into closed-circular DNA has been isolated from the extremely thermophilic anaerobic archaebacterium Desulfurococcus amylolyticus. This polypeptide has an Mr of 135,000, as determined by electrophoresis under denaturing conditions. The enzyme is active in the temperature range from 65 degrees C to 100 degrees C and catalyzes positive supercoiling both in negatively supercoiled DNA and in relaxed DNA. These reactions require the presence of ATP. The enzyme's action on a single topoisomer has shown the linking number to increase by an integral number upon the relaxation of negative supercoils and the introduction of positive ones. This means that the reverse gyrase from D. amylolyticus is a type I topoisomerase. The presence of an extended AT sequence within the closed-circular DNA enhances the activity of the Desulfurococcus topoisomerase. Even though the enzyme is isolated from a strictly anaerobic bacterium, it is fully active in the presence of oxygen.
Collapse
Affiliation(s)
- A I Slesarev
- Institute of Molecular Genetics, USSR Academy of Sciences, Moscow
| |
Collapse
|
48
|
Boublǐková P, Vojtísková M, Paleek E. Determination of Submicrogram Quantities of Circular Duplex DNA in Plasmid Samples By Adsorptive Stripping Voltammetry. ANAL LETT 1987. [DOI: 10.1080/00032718708064565] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
|
50
|
|