1
|
Li Y, Lorenz CD, Holland GP. Aspartic Acid Binding on Hydroxyapatite Nanoparticles with Varying Morphologies Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22824-22834. [PMID: 39431416 DOI: 10.1021/acs.langmuir.4c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hydroxyapatite (HAP) exhibits a highly oriented hierarchical structure in biological hard tissues. The formation and selective crystalline orientation of HAP is a process that involves functional biomineralization proteins abundant in acidic residues. To obtain insights into the process of HAP mineralization and acidic residue binding, synthesized HAP with specific lattice planes including (001), (100), and (011) are structurally characterized following the adsorption of aspartic acid (Asp). The adsorption affinity of Asp on HAP surfaces is evaluated quantitatively and demonstrates a high dependency on the HAP morphological form. Among the synthesized HAP nanoparticles (NPs), Asp exhibits the strongest adsorption affinity to short HAP nanorods, which are composed of (100) and (011) lattice planes, followed by nanosheets with a preferential expression of the (001) facet, to which Asp displays a similar but slightly lower binding affinity. HAP nanowires, with the (100) lattice plane preferentially developed, show significantly lower affinity to Asp and evidence of multilayer adsorption compared to the previous two types of HAP NPs. A combination of solid-state NMR (SSNMR) techniques including 13C and 15N CP-MAS, relaxation measurements and 13C-31P Rotational Echo DOuble Resonance (REDOR) is utilized to characterize the molecular structure and dynamics of Asp-HAP bionano interfaces with 13C- and 15N-enriched Asp. REDOR is used to determine 13C-31P internuclear distances, providing insight into the Asp binding geometry where stronger 13C-31P dipolar couplings correlate with binding affinity determined from Langmuir isotherms. The carboxyl sites are identified as the primary binding groups, facilitated by their interaction with surface calcium sites. The Asp chelation conformations revealed by SSNMR are further refined with molecular dynamics (MD) simulation where specific models strongly agree between the SSNMR and MD models for the various surfaces.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-1030, United States
| | - Christian D Lorenz
- Department of Engineering, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, California 92182-1030, United States
| |
Collapse
|
2
|
Deymier AC, Deymier PA. Open-system force-elongation relationship of collagen in chemo-mechanical equilibrium with water. J Mech Behav Biomed Mater 2024; 152:106464. [PMID: 38367533 DOI: 10.1016/j.jmbbm.2024.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
A significant deformation mechanism of collagen at low loads is molecular uncoiling and rearrangement. Although the effect of hydration and cross-linking has been investigated at larger loads when collagen undergoes molecular sliding, their effects on collagen molecular reorganization remain unclear. Here we develop two thermodynamic models that use the notion of open-system elasticity to elucidate the effect of swelling due to water uptake during deformation of collagen networks under low and high cross-linking conditions. With low crosslinking, entropic contributions dominate resulting in rejection of solvent from the polymer network leading to reduced collagen stiffness with increased loads. Contrarily, high cross-linking inhibits initial coiling and structural kinking and the mechanical behavior is dominated by elastic energy. In this configuration, the solvent content depends on the sign of the applied load resulting in a non-linear open-system stress-strain relationship. The models provide insight on the parameters that impact the stress-strain relationships of hydrated collagen and can inform the way collagenous matrices are treated both in medical and laboratory settings.
Collapse
Affiliation(s)
- A C Deymier
- Department of Biomedical Engineering, UConn Health, Farmington, CT, USA.
| | - P A Deymier
- Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
4
|
Suhail A, Banerjee A, Rajesh R. Dissipation and recovery in collagen fibrils under cyclic loading: A molecular dynamics study. Phys Rev E 2024; 109:024411. [PMID: 38491641 DOI: 10.1103/physreve.109.024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
The hysteretic behavior exhibited by collagen fibrils, when subjected to cyclic loading, is known to result in both dissipation as well as accumulation of residual strain. On subsequent relaxation, partial recovery has also been reported. Cross-links have been considered to play a key role in overall mechanical properties. Here, we modify an existing coarse-grained molecular dynamics model for collagen fibril with initially cross-linked collagen molecules, which is known to reproduce the response to uniaxial strain, by incorporating reformation of cross-links to allow for possible recovery of the fibril. Using molecular dynamics simulations, we show that our model successfully replicates the key features observed in experimental data, including the movement of hysteresis loops, the time evolution of residual strains and energy dissipation, as well as the recovery observed during relaxation. We also show that the characteristic cycle number, describing the approach toward steady state, has a value similar to that in experiments. We also emphasize the vital role of the degree of cross-linking on the key features of the macroscopic response to cyclic loading.
Collapse
Affiliation(s)
- Amir Suhail
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Waldmann B, Hassler MFT, Müllner ARM, Puchegger S, Peterlik H. Strain and Strain Recovery of Human Hair from the Nano- to the Macroscale. Life (Basel) 2023; 13:2246. [PMID: 38137847 PMCID: PMC10744986 DOI: 10.3390/life13122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, in operandi SAXS experiments were conducted on samples of human hair with a varying degree of strain (2% within the elastic region and 10% beyond). Four different features in the SAXS patterns were evaluated: The intermediate filament distance perpendicular to and the distance from the meridional arc in the load direction, as well as the distances of the lipid bilayer peak in and perpendicular to the load direction. From the literature, one concludes that polar lipids in the cuticle are the origin of the lipid peak in the SAXS pattern, and this study shows that the observed strain in the lipids is much lower than in the intermediate filaments. We support these findings with SEM micrographs, which show that the scales in the cuticle deform much less than the cortex. The observed deformation of the intermediate filaments is very high, about 70% of the macrostrain, and the ratio of the transverse strain to the longitudinal strain at the nanoscale gives a Poisson ratio of νnano = 0.44, which is typical for soft matter. This work also finds that by varying the time period between two strain cycles, the typical strain recovery time is about 1000 min, i.e., one day. After this period, the structure is nearly identical to the initial structure, which suggests an interpretation that this is the typical time for the self-healing of hair after mechanical treatment.
Collapse
Affiliation(s)
- Brigitte Waldmann
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (B.W.); (M.F.T.H.); (A.R.M.M.); (S.P.)
| | - Martin F. T. Hassler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (B.W.); (M.F.T.H.); (A.R.M.M.); (S.P.)
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Alexander R. M. Müllner
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (B.W.); (M.F.T.H.); (A.R.M.M.); (S.P.)
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Stephan Puchegger
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (B.W.); (M.F.T.H.); (A.R.M.M.); (S.P.)
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (B.W.); (M.F.T.H.); (A.R.M.M.); (S.P.)
| |
Collapse
|
6
|
Khattignavong E, Neshatian M, Vaez M, Guillermin A, Tauer JT, Odlyha M, Mittal N, Komarova SV, Zahouani H, Bozec L. Development of a facile method to compute collagen network pathological anisotropy using AFM imaging. Sci Rep 2023; 13:20173. [PMID: 37978303 PMCID: PMC10656449 DOI: 10.1038/s41598-023-47350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Type I collagen, a fundamental extracellular matrix (ECM) component, is pivotal in maintaining tissue integrity and strength. It is also the most prevalent fibrous biopolymer within the ECM, ubiquitous in mammalian organisms. This structural protein provides essential mechanical stability and resilience to various tissues, including tendons, ligaments, skin, bone, and dentin. Collagen has been structurally investigated for several decades, and variation to its ultrastructure by histology has been associated with several pathological conditions. The current study addresses a critical challenge in the field of collagen research by providing a novel method for studying collagen fibril morphology at the nanoscale. It offers a computational approach to quantifying collagen properties, enabling a deeper understanding of how collagen type I can be affected by pathological conditions. The application of Fast Fourier Transform (FFT) coupled with Atomic Force Microscope (AFM) imaging distinguishes not only healthy and diseased skin but also holds potential for automated diagnosis of connective tissue disorders (CTDs), contributing to both clinical diagnostics and fundamental research in this area. Here we studied the changes in the structural parameters of collagen fibrils in Ehlers Danlos Syndrome (EDS). We have used skin extracted from genetically mutant mice that exhibit EDS phenotype as our model system (Col1a1Jrt/+ mice). The collagen fibrils were analyzed by AFM based descriptive-structural parameters, coupled with a 2D Fast Fourier Transform(2D-FFT) approach that automated the analysis of AFM images. In addition, each sample was characterized based on its FFT and power spectral density. Our qualitative data showed morphological differences in collagen fibril clarity (clearness of the collagen fibril edge with their neighbouring fibri), D-banding, orientation, and linearity. We have also demonstrated that FFT could be a new tool for distinguishing healthy from tissues with CTDs by measuring the disorganization of fibrils in the matrix. We have also employed FFT to reveal the orientations of the collagen fibrils, providing clinically relevant phenotypic information on their organization and anisotropy. The result of this study can be used to develop a new automated tool for better diagnosis of CTDs.
Collapse
Affiliation(s)
- Emilie Khattignavong
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Mina Vaez
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Amaury Guillermin
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Josephine T Tauer
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Marianne Odlyha
- School of Biological Science, Birkbeck College, University of London, London, UK
| | - Nimish Mittal
- Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Hassan Zahouani
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
7
|
Malissa A, Cappa F, Schreiner M, Marchetti-Deschmann M. Spectral Features Differentiate Aging-Induced Changes in Parchment-A Combined Approach of UV/VIS, µ-ATR/FTIR and µ-Raman Spectroscopy with Multivariate Data Analysis. Molecules 2023; 28:4584. [PMID: 37375138 DOI: 10.3390/molecules28124584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295-3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week. UV/VIS spectroscopy detected changes in the sample surface appearance, showing browning after light-aging and increased brightness after SO2-aging. Band deconvolution of ATR/FTIR and Raman spectra and factor analysis of mixed data (FAMD) revealed characteristic changes of the main parchment components. Spectral features for degradation-induced structural changes of collagen and lipids turned out to be different for the employed aging parameters. All aging conditions induced denaturation (of different degrees) indicated by changes in the secondary structure of collagen. Light treatment resulted in the most pronounced changes for collagen fibrils in addition to backbone cleavage and side chain oxidations. Additional increased disorder for lipids was observed. Despite shorter exposure times, SO2-aging led to a weakening of protein structures induced by transitions of stabilizing disulfide bonds and side chain oxidations.
Collapse
Affiliation(s)
- Antonia Malissa
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Federica Cappa
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Manfred Schreiner
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | | |
Collapse
|
8
|
Yang F, Das D, Karunakaran K, Genin GM, Thomopoulos S, Chasiotis I. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomater 2023; 163:63-77. [PMID: 35259515 PMCID: PMC9441475 DOI: 10.1016/j.actbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
The viscoelastic mechanical behavior of collagenous tissues has been studied extensively at the macroscale, yet a thorough quantitative understanding of the time-dependent mechanics of the basic building blocks of tissues, the collagen fibrils, is still missing. In order to address this knowledge gap, stress relaxation and creep tests at various stress (5-35 MPa) and strain (5-20%) levels were performed with individual collagen fibrils (average diameter of fully hydrated fibrils: 253 ± 21 nm) in phosphate buffered saline (PBS). The experimental results showed that the time-dependent mechanical behavior of fully hydrated individual collagen fibrils reconstituted from Type I calf skin collagen, is described by strain-dependent stress relaxation and stress-dependent creep functions in both the heel-toe and the linear regimes of deformation in monotonic stress-strain curves. The adaptive quasilinear viscoelastic (QLV) model, originally developed to capture the nonlinear viscoelastic response of collagenous tissues, provided a very good description of the nonlinear stress relaxation and creep behavior of the collagen fibrils. On the other hand, the nonlinear superposition (NSP) model fitted well the creep but not the stress relaxation data. The time constants and rates extracted from the adaptive QLV and the NSP models, respectively, pointed to a faster rate for stress relaxation than creep. This nonlinear viscoelastic behavior of individual collagen fibrils agrees with prior studies of macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. STATEMENT OF SIGNIFICANCE: Pure stress relaxation and creep experiments were conducted for the first time with fully hydrated individual collagen fibrils. It is shown that collagen nanofibrils have a nonlinear time-dependent behavior which agrees with prior studies on macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. This new insight into the non-linear viscoelastic behavior of the building blocks of mammalian collagenous tissues may serve as the foundation for improved macroscale tissue models that capture the mechanical behavior across length scales.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathiresan Karunakaran
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guy M Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Orthopedic Surgery, Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Huang S, Strange A, Maeva A, Siddiqui S, Bastien P, Aguayo S, Vaez M, Montagu-Pollock H, Ghibaudo M, Potter A, Pageon H, Bozec L. Quantitative nanohistology of aging dermal collagen. FRONTIERS IN AGING 2023; 4:1178566. [PMID: 37323537 PMCID: PMC10266548 DOI: 10.3389/fragi.2023.1178566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
The skin is the largest organ in the body and is essential for protecting us from environmental stressors such as UV radiation, pollution, and pathogens. As we age, our skin undergoes complex changes that can affect its function, appearance, and health. These changes result from intrinsic (chronological) and extrinsic (environmental) factors that can cause damage to the skin's cells and extracellular matrix. As higher-resolution microscopical techniques, such as Atomic Force Microscopy (AFM), are being deployed to support histology, it is possible to explore the biophysical properties of the dermal scaffold's constituents, such as the collagen network. In this study, we demonstrate the use of our AFM-based quantitative nanohistology, performed directly on unfixed cryosections of 30 donors (female, Caucasian), to differentiate between dermal collagen from different age groups and anatomical sites. The initial 420 (10 × 10 μm2) Atomic Force Microscopy images were segmented into 42,000 (1 × 1 μm2) images before being classified according to four pre-defined empirical collagen structural biomarkers to quantify the structural heterogeneity of the dermal collagen. These markers include interfibrillar gap formation, undefined collagen structure, and registered or unregistered dense collagen fibrillar network with evident D-banding. The structural analysis was also complemented by extensive nanoindentation (∼1,000 curves) performed on individual fibrils from each section, yielding 30,000 indentation curves for this study. Principal Component Analysis was used to reduce the complexity of high-dimensional datasets. The % prevalence of the empirical collagen structural biomarkers between the papillary and reticular dermis for each section proves determinant in differentiating between the donors as a function of their age or the anatomical site (cheek or breast). A case of abnormal biological aging validated our markers and nanohistology approach. This case also highlighted the difference between chronological and biological aging regarding dermal collagen phenotyping. However, quantifying the impact of chronic and pathological conditions on the structure and function of collagen at the sub-micron level remains challenging and lengthy. By employing tools such as the Atomic Force Microscope as presented here, it is possible to start evaluating the complexity of the dermal matrix at the nanoscale and start identifying relevant collagen morphology which could be used toward histopathology standards.
Collapse
Affiliation(s)
- Sophia Huang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Adam Strange
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Anna Maeva
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Samera Siddiqui
- Eastman Dental Institute, University College London, London, United Kingdom
| | | | - Sebastian Aguayo
- Faculty of Medicine, School of Dentistry, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Schools of Engineering, Medicine, and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de, Santiago, Chile
| | - Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | | | - Anne Potter
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Herve Pageon
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
10
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model. Bioengineering (Basel) 2023; 10:bioengineering10050558. [PMID: 37237628 DOI: 10.3390/bioengineering10050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone tissue is mainly composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). In this work, we developed a 3D random walk model to investigate the influence of bone nanostructure on water diffusion. We computed 1000 random walk trajectories of water molecules within the MCF geometric model. An important parameter to analyse transport behaviour in porous media is tortuosity, computed as the ratio between the effective path length and the straight-line distance between initial and final points. The diffusion coefficient is determined from the linear fit of the mean squared displacement of water molecules as a function of time. To achieve more insight into the diffusion phenomenon within MCF, we estimated the tortuosity and diffusivity at different quotes in the longitudinal direction of the model. Tortuosity is characterized by increasing values in the longitudinal direction. As expected, the diffusion coefficient decreases as tortuosity increases. Diffusivity outcomes confirm the findings achieved by experimental investigations. The computational model provides insights into the relation between the MCF structure and mass transport behaviour that may contribute to the improvement of bone-mimicking scaffolds.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 43/B, 07100 Sassari, Italy
| | - Andrea Marinozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| |
Collapse
|
11
|
Tavakol M, Vaughan TJ. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils. J R Soc Interface 2023; 20:20220803. [PMID: 36695019 PMCID: PMC9874270 DOI: 10.1098/rsif.2022.0803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/16/2022] [Indexed: 01/26/2023] Open
Abstract
Mineralized collagen fibrils (MCFs) comprise collagen molecules and hydroxyapatite (HAp) crystals and are considered universal building blocks of bone tissue, across different bone types and species. In this study, we developed a coarse-grained molecular dynamics (CGMD) framework to investigate the role of mineral arrangement on the load-deformation behaviour of MCFs. Despite the common belief that the collagen molecules are responsible for flexibility and HAp minerals are responsible for stiffness, our results showed that the mineral phase was responsible for limiting collagen sliding in the large deformation regime, which helped the collagen molecules themselves undergo high tensile loading, providing a substantial contribution to the ultimate tensile strength of MCFs. This study also highlights different roles for the mineralized and non-mineralized protofibrils within the MCF, with the mineralized groups being primarily responsible for load carrying due to the presence of the mineral phase, while the non-mineralized groups are responsible for crack deflection. These results provide novel insight into the load-deformation behaviour of MCFs and highlight the intricate role that both collagen and mineral components have in dictating higher scale bone biomechanics.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
12
|
Silva Barreto I, Pierantoni M, Hammerman M, Törnquist E, Le Cann S, Diaz A, Engqvist J, Liebi M, Eliasson P, Isaksson H. Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons. Matrix Biol 2023; 115:32-47. [PMID: 36435426 DOI: 10.1016/j.matbio.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.
Collapse
Affiliation(s)
| | - Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Lund, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sophie Le Cann
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, Créteil F-94010, France
| | - Ana Diaz
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Jonas Engqvist
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Marianne Liebi
- Paul Scherrer Institut, Villigen PSI, Switzerland; Department of Physics, Chalmers University, Gothenburg, Sweden; Center of X-ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St.Gallen, Switzerland
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Roth J, Hoop CL, Williams JK, Hayes R, Baum J. Probing the effect of glycosaminoglycan depletion on integrin interactions with collagen I fibrils in the native extracellular matrix environment. Protein Sci 2023; 32:e4508. [PMID: 36369695 PMCID: PMC9793976 DOI: 10.1002/pro.4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022]
Abstract
Fibrillar collagen-integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril-integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Cody L. Hoop
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jonathan K. Williams
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Drug Product DevelopmentBristol Myers SquibbNew BrunswickNew JerseyUSA
| | - Robert Hayes
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jean Baum
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
14
|
Verma N, Sharma P, Jayabal H, Dingari NN, Gupta R, Rai B. Multiscale modeling of skin mechanical Behavior: Effect of dehydrating agent on Collagen's mechanical properties. J Biomech 2022; 145:111361. [PMID: 36347117 DOI: 10.1016/j.jbiomech.2022.111361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The dermis, second layer of human skin, is mainly responsible for mechanical response of the skin. The unique viscoelastic nature of this layer arises from the characteristic hierarchical structure of collagen at various length scales. The effect of topical formulation on skin's mechanical properties of great importance for several personal-care applications. Understanding the transport of an active ingredient across skin layer and its effects on the structure of collagen assembly is crucial for successful design of these applications. In this study, we report a multiscale modelling framework mimicking the skin's mechanical behavior. The framework captures the details from the nanoscale (tropocollagen) to microscale (fibers). At first, atomistic molecular dynamics simulations (MDS) of tropocollagen (TC) molecules of various lengths (∼100 nm) were performed to obtain the molecular modulus of TC. The stress-strain response data obtained from these simulations, were utilized in macroscopic models of fibrils and fibers. The modulus obtained from the mentioned framework was in good agreement with earlier reported experimental data. Further, we have utilized this framework to show the effect of dehydrating agent on skin's mechanical response. The hydration effect is utilized in many anti-ageing strategies to improve the overall mechanical property of skin. We showed that on incorporation of hydrating agent, the collagen structure changes significantly at molecular scale which effects the overall response of the skin at macroscopic scale. The reported multiscale framework can further be explored to gain insights into interlinked properties of collagen at much larger scales without extensive molecular simulations and detailed experiments.
Collapse
Affiliation(s)
- Nitu Verma
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| | - Paramveer Sharma
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| | | | | | - Rakesh Gupta
- Physical Sciences Research Area, TCS Research, Pune 411013, India.
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| |
Collapse
|
15
|
Suhail A, Banerjee A, Rajesh R. Kinetic model description of dissipation and recovery in collagen fibrils under cyclic loading. Phys Rev E 2022; 106:044407. [PMID: 36397482 DOI: 10.1103/physreve.106.044407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Collagen fibrils, when subjected to cyclic loading, are known to exhibit hysteretic behavior with energy dissipation that is partially recovered on relaxation. In this paper, we develop a kinetic model for a collagen fibril incorporating presence of hidden loops and stochastic fragmentation as well as reformation of sacrificial bonds. We show that the model reproduces well the characteristic features of reported experimental data on cyclic response of collagen fibrils, such as moving hysteresis loops, time evolution of residual strains and energy dissipation, recovery on relaxation, etc. We show that the approach to the steady state is controlled by a characteristic cycle number for both residual strain as well as energy dissipation and is in good agreement with reported existing experimental data.
Collapse
Affiliation(s)
- Amir Suhail
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
16
|
Chai Y, Zhou Y, Tagaya M. Rubbing-Assisted Approach for Fabricating Oriented Nanobiomaterials. MICROMACHINES 2022; 13:1358. [PMID: 36014280 PMCID: PMC9414502 DOI: 10.3390/mi13081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The highly-oriented structures in biological tissues play an important role in determining the functions of the tissues. In order to artificially fabricate oriented nanostructures similar to biological tissues, it is necessary to understand the oriented mechanism and invent the techniques for controlling the oriented structure of nanobiomaterials. In this review, the oriented structures in biological tissues were reviewed and the techniques for producing highly-oriented nanobiomaterials by imitating the oriented organic/inorganic nanocomposite mechanism of the biological tissues were summarized. In particular, we introduce a fabrication technology for the highly-oriented structure of nanobiomaterials on the surface of a rubbed polyimide film that has physicochemical anisotropy in order to further form the highly-oriented organic/inorganic nanocomposite structures based on interface interaction. This is an effective technology to fabricate one-directional nanobiomaterials by a biomimetic process, indicating the potential for wide application in the biomedical field.
Collapse
Affiliation(s)
- Yadong Chai
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
- Research Fellow of the Japan Society for the Promotion of Science (DC), 5-3-1 Koji-machi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Yanni Zhou
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Japan
| |
Collapse
|
17
|
Puszkarska AM, Frenkel D, Colwell LJ, Duer MJ. Using sequence data to predict the self-assembly of supramolecular collagen structures. Biophys J 2022; 121:3023-3033. [PMID: 35859421 PMCID: PMC9463645 DOI: 10.1016/j.bpj.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022] Open
Abstract
Collagen fibrils are the major constituents of the extracellular matrix, which provides structural support to vertebrate connective tissues. It is widely assumed that the superstructure of collagen fibrils is encoded in the primary sequences of the molecular building blocks. However, the interplay between large-scale architecture and small-scale molecular interactions makes the ab initio prediction of collagen structure challenging. Here, we propose a model that allows us to predict the periodic structure of collagen fibers and the axial offset between the molecules, purely on the basis of simple predictive rules for the interaction between amino acid residues. With our model, we identify the sequence-dependent collagen fiber geometries with the lowest free energy and validate the predicted geometries against the available experimental data. We propose a procedure for searching for optimal staggering distances. Finally, we build a classification algorithm and use it to scan 11 data sets of vertebrate fibrillar collagens, and predict the periodicity of the resulting assemblies. We analyzed the experimentally observed variance of the optimal stagger distances across species, and find that these distances, and the resulting fibrillar phenotypes, are evolutionary well preserved. Moreover, we observed that the energy minimum at the optimal stagger distance is broad in all cases, suggesting a further evolutionary adaptation designed to improve the assembly kinetics. Our periodicity predictions are not only in good agreement with the experimental data on collagen molecular staggering for all collagen types analyzed, but also for synthetic peptides. We argue that, with our model, it becomes possible to design tailor-made, periodic collagen structures, thereby enabling the design of novel biomimetic materials based on collagen-mimetic trimers.
Collapse
Affiliation(s)
- Anna M Puszkarska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daan Frenkel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lucy J Colwell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Google Research, Mountain View, California
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
18
|
Zhang Y, Zhang W, Snow T, Ju Y, Liu Y, Smith AJ, Prabakar S. Minimising Chemical Crosslinking for Stabilising Collagen in Acellular Bovine Pericardium: Mechanistic Insights via Structural Characterisations. Acta Biomater 2022; 152:113-123. [DOI: 10.1016/j.actbio.2022.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
|
19
|
Fontenele FF, Bouklas N. Understanding the inelastic response of collagen fibrils: A viscoelastic-plastic constitutive model. Acta Biomater 2022; 163:78-90. [PMID: 35835288 DOI: 10.1016/j.actbio.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Collagen fibrils, which are the lowest level fibrillar unit of organization of collagen, are thus of primary interest towards understanding the mechanical behavior of load-bearing soft tissues. The deformation of collagen fibrils shows unique mechanical features; namely, their high energy dissipation is even superior compared to most engineering materials. Additionally, there are indications that cyclic loading can further improve the toughness of collagen fibrils. Recent experiments from Liu at al. (2018) focused on the response of type I collagen fibrils to uniaxial cyclic loading, revealing some interesting results regarding their rate-dependent and inelastic response. In this work, we aim to develop a model that allows interpreting the complex nonlinear and inelastic response of collagen fibrils under cyclic loading. We propose a constitutive model that accounts for viscoelastic deformations through a decoupled strain-energy density function (into an elastic and a viscous parts), and for plastic deformations through plastic evolution laws. The stress-stretch response results obtained using this constitutive law showed good agreement with experimental data over complex loading paths. Ultimately we use the model to gain more insights on how cyclic loading and rate effects control the interplay between viscoelastic and plastic deformation in collagen fibrils, and to extrapolate the results from experimental data, analyzing how complex cyclic load influences energy dissipation and deformation mechanisms. STATEMENT OF SIGNIFICANCE: In this work, we develop a viscoelastic-plastic constitutive model for collagen fibrils with the aim of analyzing the effects of inelasticity and energy dissipation in this material, and more specifically the competition between viscoelasticity and plasticity in the context of cyclic loading and overload. Experimental and theoretical approaches so far have not fully clarified the interplay between viscous and plastic deformations during cyclic loading of collagen fibrils. Here, we aim to interpret the complex nonlinear response of collagen fibrils and, ultimately, suggest predictive capabilities that can inform tissue-level response and injury. To validate our model, we compare our results against the stress-stretch data obtained from experiments of cyclic loaded single fibrils performed by Liu et al. (2018).
Collapse
Affiliation(s)
- Fernanda F Fontenele
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, NY 14853, USA.
| |
Collapse
|
20
|
Darvish DM. Collagen fibril formation in vitro: From origin to opportunities. Mater Today Bio 2022; 15:100322. [PMID: 35757034 PMCID: PMC9218154 DOI: 10.1016/j.mtbio.2022.100322] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sometimes, to move forward, it is necessary to look back. Collagen type I is one of the most commonly used biomaterials in tissue engineering and regenerative medicine. There are a variety of collagen scaffolds and biomedical products based on collagen have been made, and the development of new ones is still ongoing. Materials, where collagen is in the fibrillar form, have some advantages: they have superior mechanical properties, higher degradation time and, what is most important, mimic the structure of the native extracellular matrix. There are some standard protocols for the formation of collagen fibrils in vitro, but if we look more carefully at those methods, we can see some controversies. For example, why is the formation of collagen gel commonly carried out at 37 °C, when it was well investigated that the temperature higher than 35 °C results in a formation of not well-ordered fibrils? Biomimetic collagen materials can be obtained both using culture medium or neutralizing solution, but it requires a deep understanding of all of the crucial points. One of this point is collagen extraction method, since not every method retains the ability of collagen to reconstitute native banded fibrils. Collagen polymorphism is also often overlooked in spite of the appearance of different polymorphic forms during fibril formation is possible, especially when collagen blends are utilized. In this review, we will not only pay attention to these issues, but we will overview the most prominent works related to the formation of collagen fibrils in vitro starting from the first approaches and moving to the up-to-date recipes.
Collapse
Affiliation(s)
- Diana M Darvish
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prospekt, 4, Saint-Petersburg, 194064, Russia
| |
Collapse
|
21
|
Bose S, Li S, Mele E, Silberschmidt VV. Exploring the Mechanical Properties and Performance of Type-I Collagen at Various Length Scales: A Progress Report. MATERIALS 2022; 15:ma15082753. [PMID: 35454443 PMCID: PMC9025246 DOI: 10.3390/ma15082753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
Abstract
Collagen is the basic protein of animal tissues and has a complex hierarchical structure. It plays a crucial role in maintaining the mechanical and structural stability of biological tissues. Over the years, it has become a material of interest in the biomedical industries thanks to its excellent biocompatibility and biodegradability and low antigenicity. Despite its significance, the mechanical properties and performance of pure collagen have been never reviewed. In this work, the emphasis is on the mechanics of collagen at different hierarchical levels and its long-term mechanical performance. In addition, the effect of hydration, important for various applications, was considered throughout the study because of its dramatic influence on the mechanics of collagen. Furthermore, the discrepancies in reports of the mechanical properties of collagenous tissues (basically composed of 20-30% collagen fibres) and those of pure collagen are discussed.
Collapse
Affiliation(s)
- Shirsha Bose
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Correspondence: (E.M.); (V.V.S.)
| | - Vadim V. Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK; (S.B.); (S.L.)
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, 614990 Perm, Russia
- Correspondence: (E.M.); (V.V.S.)
| |
Collapse
|
22
|
Micheletti C, Hurley A, Gourrier A, Palmquist A, Tang T, Shah FA, Grandfield K. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces. Acta Biomater 2022; 142:1-13. [PMID: 35202855 DOI: 10.1016/j.actbio.2022.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
Much debate still revolves around bone architecture, especially at the nano- and microscale. Bone is a remarkable material where high strength and toughness coexist thanks to an optimized composition of mineral and protein and their hierarchical organization across several distinct length scales. At the nanoscale, mineralized collagen fibrils act as building block units. Despite their key role in biological and mechanical functions, the mechanisms of collagen mineralization and the precise arrangement of the organic and inorganic constituents in the fibrils remains not fully elucidated. Advances in three-dimensional (3D) characterization of mineralized bone tissue by focused ion beam-scanning electron microscopy (FIB-SEM) revealed mineral-rich regions geometrically approximated as prolate ellipsoids, much larger than single collagen fibrils. These structures have yet to become prominently recognized, studied, or adopted into biomechanical models of bone. However, they closely resemble the circular to elliptical features previously identified by scanning transmission electron microscopy (STEM) in two-dimensions (2D). Herein, we review the presence of mineral ellipsoids in bone as observed with electron-based imaging techniques in both 2D and 3D with particular focus on different species, anatomical locations, and in proximity to natural and synthetic biomaterial interfaces. This review reveals that mineral ellipsoids are a ubiquitous structure in all the bones and bone-implant interfaces analyzed. This largely overlooked hierarchical level is expected to bring different perspectives to our understanding of bone mineralization and mechanical properties, in turn shedding light on structure-function relationships in bone. STATEMENT OF SIGNIFICANCE: In bone, the hierarchical organization of organic (mainly collagen type I) and inorganic (calcium-phosphate mineral) components across several length scales contributes to a unique combination of strength and toughness. However, aspects related to the collagen-mineral organization and to mineralization mechanisms remain unclear. Here, we review the presence of mineral prolate ellipsoids across a variety of species, anatomical locations, and interfaces, both natural and with synthetic biomaterials. These mineral ellipsoids represent a largely unstudied feature in the organization of bone at the mesoscale, i.e., at a level connecting nano- and microscale. Thorough understanding of their origin, development, and structure can provide valuable insights into bone architecture and mineralization, assisting the treatment of bone diseases and the design of bio-inspired materials.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Ariana Hurley
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Integrated Biomedical Engineering and Health Sciences, McMaster University, Hamilton L8S 4L7, ON, Canada
| | | | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Tengteng Tang
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada.
| |
Collapse
|
23
|
Bhattacharya S, Dubey DK. Impact of Variations in Water Concentration on the Nanomechanical Behavior of Type I Collagen Microfibrils in Annulus Fibrosus. J Biomech Eng 2022; 144:1120715. [PMID: 34820681 DOI: 10.1115/1.4052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/08/2022]
Abstract
Radial variation in water concentration from outer to inner lamellae is one of the characteristic features of annulus fibrosus (AF). In addition, water concentration changes are also associated with intervertebral disc (IVD) degeneration. Such changes alter the chemo-mechanical interactions among the biomolecular constituents at molecular level, affecting the load-bearing nature of IVD. This study investigates mechanistic impacts of water concentration on the collagen type I microfibrils in AF using molecular dynamics simulations. Results show, in axial tension, that increase in water concentration (WC) from 0% to 50% increases the elastic modulus from 2.7 GPa to 3.9 GPa. This is attributed to combination of shift in deformation from backbone straightening to combined backbone stretching- intermolecular sliding and subsequent strengthening of tropocollagen-water (TC-water-TC) interfaces through water bridges and intermolecular electrostatic attractions. Further increase in WC to 75% reduces the modulus to 1.8 GPa due to shift in deformation to polypeptide straightening and weakening of TC-water-TC interface due to reduced electrostatic attraction and increase in the number of water molecules in a water bridge. During axial compression, increase in WC to 50% results in increase in modulus from 0.8 GPa to 4.5 GPa. This is attributed to the combination of the development of hydrostatic pressure and strengthening of the TC-water-TC interface. Further increase in WC to 75% shifts load-bearing characteristic from collagen to water, resulting in a decrease in elastic modulus to 2.8 GPa. Such water-mediated alteration in load-bearing properties acts as foundations toward AF mechanics and provides insights toward understanding degeneration-mediated altered spinal stiffness.
Collapse
Affiliation(s)
- Shambo Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Devendra K Dubey
- Department of Mechanical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
24
|
Yi Y, Zhang Y, Mansel B, Wang YN, Prabakar S, Shi B. Effect of Dialdehyde Carboxymethyl Cellulose Cross-Linking on the Porous Structure of the Collagen Matrix. Biomacromolecules 2022; 23:1723-1732. [PMID: 35324168 DOI: 10.1021/acs.biomac.1c01641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porous structures are essential for some collagen-based biomaterials and can be regulated by crosslinkers. Herein, dialdehyde carboxymethyl cellulose (DCMC) crosslinkers with similar size but different aldehyde group contents were prepared through periodate oxidation of sodium carboxymethyl cellulose with varying degrees of substitution (DS). They can penetrate into the hierarchy of fibril and form inter-molecular and intra-fibril cross-linking within the collagen matrix due to their nanoscale sizes and reactive aldehyde groups. The collagen matrices possessed higher porosity, significantly greater proportion of large pores (Φ > 10 μm), and shorter D-periodicity after cross-linking, showing greater potential for biomedical applications. In addition, the crosslinked collagen matrices showed satisfactory biocompatibility and biodegradation. The decreased DS of carboxymethyl cellulose, which led to the increased aldehyde content of corresponding DCMC, brought about an enhanced cross-linking degree, porosity, and proportion of large pores of the crosslinked collagen matrix. DCMC dosage of 6% was sufficient for cross-linking and pore formation. Excess DCMC would physically deposit in the matrix and decrease the porosity instead. Therefore, the desired pore properties of the collagen matrix could be obtained by regulating the structure of DCMC and thereby achieving the required functions of the biomaterial.
Collapse
Affiliation(s)
- Yudan Yi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Zhang
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Bradley Mansel
- National Synchrotron Radiation Research Centre (NSRRC), Hsinchu 30076 Taiwan, China
| | - Ya-Nan Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.,College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
25
|
Yang F, Das D, Chasiotis I. Strain rate induced toughening of individual collagen fibrils. APPLIED PHYSICS LETTERS 2022; 120:114101. [PMID: 35355883 PMCID: PMC8934191 DOI: 10.1063/5.0084054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The nonlinear mechanical behavior of individual nanoscale collagen fibrils is governed by molecular stretching and sliding that result in a viscous response, which is still not fully understood. Toward this goal, the in vitro mechanical behavior of individual reconstituted mammalian collagen fibrils was quantified in a broad range of strain-rates, spanning roughly six orders of magnitude, from 10-4 to 35 s-1. It is shown that the nonlinear mechanical response is strain rate sensitive with the tangent modulus in the linear deformation regime increasing monotonically from 214 ± 8 to 358 ± 11 MPa. More pronounced is the effect of the strain rate on the ultimate tensile strength that is found to increase monotonically by a factor of four, from 42 ± 6 to 160 ± 14 MPa. Importantly, fibril strengthening takes place without a reduction in ductility, which results in equivalently large increase in toughness with the increasing strain rate. This experimental strain rate dependent mechanical response is captured well by a structural constitutive model that incorporates the salient features of the collagen microstructure via a process of gradual recruitment of kinked tropocollagen molecules, thus giving rise to the initial "toe-heel" mechanical behavior, followed by molecular stretching and sustained intermolecular slip that is initiated at a strain rate dependent stress threshold. The model shows that the fraction of tropocollagen molecules undergoing straightening increases continuously during loading, whereas molecular sliding is initiated after a small fibril strain (1%-2%) and progressively increases with applied strain.
Collapse
|
26
|
Yang F, Das D, Chasiotis I. Microscale Creep and Stress Relaxation Experiments with Individual Collagen Fibrils. OPTICS AND LASERS IN ENGINEERING 2022; 150:106869. [PMID: 35027783 PMCID: PMC8752082 DOI: 10.1016/j.optlaseng.2021.106869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoscale macromolecular biological structures exhibit time-dependent behavior, yet a quantitative understanding of their time-dependent mechanical behavior remains elusive, largely due to experimental challenges in attaining sufficient spatial and temporal resolution and control of stress or strain in conditions that guarantee their molecular integrity. To address this gap, an experimental methodology was developed to conduct creep and stress relaxation experiments with individual mammalian collagen fibrils. An image-based edge detection method implemented with high magnification optical microscopy and combined with closed-loop proportional-integral-derivative (PID) control was implemented and calibrated to apply constant force or stretch ratio values to individual collagen fibrils via a Microelectromechanical Systems (MEMS) device. This experimental methodology allowed for real-time control of uniaxial tensile stress or strain with 27 nm displacement resolution. The overall experimental system was tuned to apply step inputs with rise times below 0.5 s, less than 2.5% overshoot, and steady-state error less than 0.5%. Three individual collagen fibrils with diameters 101-121 nm were subjected to creep and stress relaxation tests in the range 4-20% engineering strain, under partially hydrated conditions. The collagen fibrils demonstrated non-linear viscoelastic behavior that was described well by the adaptive quasi-linear viscoelastic model. The results of this study demonstrate for the first time that mammalian collagen fibrils, the building blocks of connective tissues, exhibit nonlinear viscoelastic behavior in their partially hydrated state.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Assessing Collagen D-Band Periodicity with Atomic Force Microscopy. MATERIALS 2022; 15:ma15041608. [PMID: 35208148 PMCID: PMC8877100 DOI: 10.3390/ma15041608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
The collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions. An accurate characterization of the surface and structure of collagen fibers, including D-band periodicity, on collagen-based tissues and/or (nano-)biomaterials can be achieved by Atomic Force Microscopy (AFM). AFM is a scanning probe microscope and is among the few techniques that can assess D-band periodicity. This review covers issues related to collagen and collagen D-band periodicity and the use of AFM for studying them. Through a systematic search in databases (PubMed and Scopus) relevant articles were identified. The study of these articles demonstrated that AFM can offer novel information concerning D-band periodicity. This study highlights the importance of studying collagen D-band periodicity and proves that AFM is a powerful tool for investigating a number of different properties related to collagen D-band periodicity.
Collapse
|
28
|
Siadat SM, Silverman AA, Susilo ME, Paten JA, DiMarzio CA, Ruberti JW. Development of Fluorescently Labeled, Functional Type I Collagen Molecules. Macromol Biosci 2021; 22:e2100144. [PMID: 34856056 DOI: 10.1002/mabi.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/22/2021] [Indexed: 11/11/2022]
Abstract
While de novo collagen fibril formation is well-studied, there are few investigations into the growth and remodeling of extant fibrils, where molecular collagen incorporation into and erosion from the fibril surface must delicately balance during fibril growth and remodeling. Observing molecule/fibril interactions is difficult, requiring the tracking of molecular dynamics while, at the same time, minimizing the effect of the observation on fibril structure and assembly. To address the observation-interference problem, exogenous collagen molecules are tagged with small fluorophores and the fibrillogenesis kinetics of labeled collagen molecules as well as the structure and network morphology of assembled fibrils are examined. While excessive labeling significantly disturbs fibrillogenesis kinetics and network morphology of assembled fibrils, adding less than ≈1.2 labels per collagen molecule preserves these characteristics. Applications of the functional, labeled collagen probe are demonstrated in both cellular and acellular systems. The functional, labeled collagen associates strongly with native fibrils and when added to an in vitro model of corneal stromal development at low concentration, the labeled collagen is incorporated into a fine extracellular matrix (ECM) network associated with the cells within 24 h.
Collapse
Affiliation(s)
| | | | - Monica E Susilo
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey A Paten
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02134, USA
| | - Charles A DiMarzio
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
29
|
Lee BEJ, Langelier B, Grandfield K. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography. Adv Biol (Weinh) 2021; 5:e2100657. [PMID: 34296817 DOI: 10.1002/adbi.202100657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Indexed: 11/11/2022]
Abstract
Bone is a functional material comprised of mainly two phases: an organic collagenous phase and an inorganic mineral phase. Collagen-mineral arrangement has implications for bone function, aging, and disease. However, theories on collagen-mineral arrangement have been confined to studies with low spatial and/or compositional resolution resulting in an extensive debate over the location of mineral with respect to collagen. Herein, a strategy is developed to extract a single mineralized collagen fibril from bone and analyze its composition and structure atom-by-atom with 3D sub-nanometer accuracy and compositional clarity using atom probe tomography (APT). It is shown for the first time a method to probe fibril-level mineralization and collagen-mineral arrangement from an in vivo system with both the spatial and compositional precision required to comment on nanoscale collagen-mineral arrangement. APT of leporine bone shows distinct and helical collagen fibrils with mineralized deposits both encapsulating and incorporated into the collagenous structures. This study demonstrates a novel fibril-level detection method that can be used to probe the composition of bone and contribute new insights to the structure and organization of mineralized materials such as bones and teeth.
Collapse
Affiliation(s)
- Bryan E J Lee
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| | - Brian Langelier
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, L8S 4L8, Canada
| | - Kathryn Grandfield
- School of Biomedical Engineering, McMaster University, Hamilton, L8S 4L8, Canada.,Department of Materials Science and Engineering, McMaster University, Hamilton, L8S 4L8, Canada
| |
Collapse
|
30
|
Ahn T, Gidley DW, Thornton AW, Wong-Foy AG, Orr BG, Kozloff KM, Banaszak Holl MM. Hierarchical Nature of Nanoscale Porosity in Bone Revealed by Positron Annihilation Lifetime Spectroscopy. ACS NANO 2021; 15:4321-4334. [PMID: 33619964 PMCID: PMC8176962 DOI: 10.1021/acsnano.0c07478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone is a hierarchical material primarily composed of collagen, water, and mineral that is organized into discrete molecular, nano-, micro-, and macroscale structural components. In contrast to the structural knowledge of the collagen and mineral domains, the nanoscale porosity of bone is poorly understood. In this study, we introduce a well-established pore characterization technique, positron annihilation lifetime spectroscopy (PALS), to probe the nanoscale size and distribution of each component domain by analyzing pore sizes inherent to hydrated bone together with pores generated by successive removal of water and then organic matrix (including collagen and noncollagenous proteins) from samples of cortical bovine femur. Combining the PALS results with simulated pore size distribution (PSD) results from collagen molecule and microfibril structure, we identify pores with diameter of 0.6 nm that suggest porosity within the collagen molecule regardless of the presence of mineral and water. We find that water occupies three larger domain size regions with nominal mean diameters of 1.1, 1.9, and 4.0 nm-spaces that are hypothesized to associate with intercollagen molecular spaces, terminal segments (d-spacing) within collagen microfibrils, and interface spacing between collagen and mineral structure, respectively. Subsequent removal of the organic matrix determines a structural pore size of 5-6 nm for deproteinized bone-suggesting the average spacing between mineral lamella. An independent method to deduce the average mineral spacing from specific surface area (SSA) measurements of the deproteinized sample is presented and compared with the PALS results. Together, the combined PALS and SSA results set a range on the mean mineral lamella thickness of 4-8 nm.
Collapse
|
31
|
Pei Y, Jordan KE, Xiang N, Parker RN, Mu X, Zhang L, Feng Z, Chen Y, Li C, Guo C, Tang K, Kaplan DL. Liquid-Exfoliated Mesostructured Collagen from the Bovine Achilles Tendon as Building Blocks of Collagen Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3186-3198. [PMID: 33398989 DOI: 10.1021/acsami.0c20330] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesoscaled assemblies are organized in native collagen tissues to achieve remarkable and diverse performance and functions. In this work, a facile, low-cost, and controllable liquid exfoliation method was applied to directly extract these collagen mesostructures from bovine Achilles tendons using a sodium hydroxide (NaOH)/urea aqueous system with freeze-thaw cycles and sonication. A series of collagen fibrils with diameters of 26-230 nm were harvested using this process, and in situ observations under polarizing microscopy (POM) and using molecular dynamics simulations revealed the influence of the NaOH/urea system on the tendon collagen. FTIR and XRD results confirmed that these collagen fibrils preserved typical structural characteristics of type I collagen. These isolated collagen fibrils were then utilized as building blocks to fabricate free-standing collagen membranes, which exhibited good stability in solvents and outstanding mechanical properties and transparency, with potential for utility in optical and electronic sensors. Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Luan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhibin Feng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310012, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
32
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
33
|
Zhang Y, Mehta M, Mansel BW, Ng HW, Liu Y, Holmes G, Le Ru EC, Prabakar S. Anion-regulated binding selectivity of Cr(III) in collagen. Biopolymers 2020; 111:e23406. [PMID: 33135776 DOI: 10.1002/bip.23406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022]
Abstract
We present a mechanism for the selectivity of covalent/electrostatic binding of the Cr(III) ion to collagen, mediated by the kosmotropicity of the anions. Although a change in the long-range ordered structure of collagen is observed after covalent binding (Cr(III)-OOC) in the presence of SO4 2- at pH 4.5, the νsym (COO- ) band remains intense, suggesting a relatively lower propensity for the Cr(III) to bind covalently instead of electrostatically through Cr(H2 O)6 3+ . Replacing SO4 2- with Cl- reduces the kosmotropic effect which further favors the electrostatic binding of Cr(III) to collagen. Our findings allow a greater understanding of mechanism-specific metal binding in the collagen molecule. We also report for the first time, surface-enhanced Raman spectroscopy to analyze binding mechanisms in collagen, suggesting a novel way to study chemical modifications in collagen-based biomaterials.
Collapse
Affiliation(s)
- Yi Zhang
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Megha Mehta
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand
| | - Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu City, Taiwan
| | - Hon Wei Ng
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand
| | - Yang Liu
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand
| | - Geoff Holmes
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, Palmerston North, New Zealand
| |
Collapse
|
34
|
Tidu A, Schanne-Klein MC, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Exp Eye Res 2020; 200:108256. [PMID: 32971095 DOI: 10.1016/j.exer.2020.108256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/15/2023]
Abstract
Bio-engineering technologies are currently used to produce biomimetic artificial corneas that should present structural, chemical, optical, and biomechanical properties close to the native tissue. These properties are mainly supported by the corneal stroma which accounts for 90% of corneal thickness and is mainly made of collagen type I. The stromal collagen fibrils are arranged in lamellae that have a plywood-like organization. The fibril diameter is between 25 and 35 nm and the interfibrillar space about 57 nm. The number of lamellae in the central stroma is estimated to be 300. In the anterior part, their size is 10-40 μm. They appear to be larger in the posterior part of the stroma with a size of 60-120 μm. Their thicknesses also vary from 0.2 to 2.5 μm. During development, the acellular corneal stroma, which features a complex pattern of organization, serves as a scaffold for mesenchymal cells that invade and further produce the cellular stroma. Several pathways including Bmp4, Wnt/β-catenin, Notch, retinoic acid, and TGF-β, in addition to EFTFs including the mastering gene Pax-6, are involved in corneal development. Besides, retinoic acid and TGF- β seem to have a crucial role in the neural crest cell migration in the stroma. Several technologies can be used to produce artificial stroma. Taking advantage of the liquid-crystal properties of acid-soluble collagen, it is possible to produce transparent stroma-like matrices with native-like collagen I fibrils and plywood-like organization, where epithelial cells can adhere and proliferate. Other approaches include the use of recombinant collagen, cross-linkers, vitrification, plastically compressed collagen or magnetically aligned collagen, providing interesting optical and mechanical properties. These technologies can be classified according to collagen type and origin, presence of telopeptides and native-like fibrils, structure, and transparency. Collagen matrices feature transparency >80% for the appropriate 500-μm thickness. Non-collagenous matrices made of biopolymers including gelatin, silk, or fish scale have been developed which feature interesting properties but are less biomimetic. These bioengineered matrices still need to be colonized by stromal cells to fully reproduce the native stroma.
Collapse
Affiliation(s)
- Aurélien Tidu
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France
| | - Marie-Claire Schanne-Klein
- Laboratory for Optics and Biosciences, LOB, Ecole Polytechnique, CNRS, Inserm, Université Paris-Saclay, 91128, Palaiseau, France
| | - Vincent M Borderie
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Centre Hospitalier, National d'Ophtalmologie des 15-20, 75571, Paris, France; Groupe de Recherche Clinique 32, Sorbonne Université, Paris, France.
| |
Collapse
|
35
|
Cauble MA, Mancini NS, Kalinowski J, Lykotrafitis G, Moss IL. Atomic force microscopy imaging for nanoscale and microscale assessments of extracellular matrix in intervertebral disc and degeneration. JOR Spine 2020; 3:e1125. [PMID: 33015582 PMCID: PMC7524250 DOI: 10.1002/jsp2.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a condition that is often associated with debilitating back pain. There are no disease-modifying treatments available to halt the progression of this ubiquitous disorder. This is partly due to a lack of understanding of extracellular matrix (ECM) changes that occur at the micro- and nanometer size scales as the disease progresses. Over the past decade, atomic force microscopy (AFM) has been utilized as a tool to investigate the impact of disease on nanoscale structure of ECM in bone, skin, tendon, and dentin. We have expanded this methodology to include the IVD and report the first quantitative analysis of ECM structure at submicron size scales in a murine model for progressive IVD degeneration. Collagen D-spacing, a metric of nanoscale structure at the fibril level, was observed as a distribution of values with an overall average value of 62.5 ± 2.5 nm. In degenerative discs, the fibril D-spacing distribution shifted towards higher values in both the annulus fibrosus and nucleus pulposus (NP) (P < .05). A novel microstructural feature, collagen toroids, defined by a topographical pit enclosed by fibril-forming matrix was observed in the NP. With degeneration, these microstructures became more numerous and the morphology was altered from circular (aspect ratio 1.0 ± 0.1) to oval (aspect ratio 1.5 ± 0.4), P < .005. These analyses provide ECM structural details of the IVD at size scales that have historically been missing in studies of disc degeneration. Knowledge gained from these insights may aid the development of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Meagan A Cauble
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Nickolas S Mancini
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Judith Kalinowski
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - George Lykotrafitis
- Department of Mechanical Engineering University of Connecticut Storrs Connecticut USA
| | - Isaac L Moss
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| |
Collapse
|
36
|
Zhang Y, Buchanan J, Naffa R, Mansel B, Maidment C, Holmes G, Prabakar S. In situ structural studies during denaturation of natural and synthetically crosslinked collagen using synchrotron SAXS. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1376-1381. [PMID: 32876615 DOI: 10.1107/s1600577520009479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Collagen is an important biomacromolecule, making up the majority of the extracellular matrix in animal tissues. Naturally occurring crosslinks in collagen stabilize its intermolecular structure in vivo, whereas chemical treatments for introducing synthetic crosslinks are often carried out ex vivo to improve the physical properties or heat stability of the collagen fibres for applications in biomaterials or leather production. Effective protection of intrinsic natural crosslinks as well as allowing them to contribute to collagen stability together with synthetic crosslinks can reduce the need for chemical treatments. However, the contribution of these natural crosslinks to the heat stability of collagen fibres, especially in the presence of synthetic crosslinks, is as yet unknown. Using synchrotron small-angle X-ray scattering, the in situ role of natural and synthetic crosslinks on the stabilization of the intermolecular structure of collagen in skins was studied. The results showed that, although natural crosslinks affected the denaturation temperature of collagen, they were largely weakened when crosslinked using chromium sulfate. The development of synergistic crosslinking chemistries could help retain the intrinsic chemical and physical properties of collagen-based biological materials.
Collapse
Affiliation(s)
- Yi Zhang
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| | - Jenna Buchanan
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| | - Rafea Naffa
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| | - Bradley Mansel
- Chemical Engineering Building, National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, Hsinchu City 300, Taiwan
| | - Catherine Maidment
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| | - Geoff Holmes
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, PO Box 8094, Palmerston North 4446, New Zealand
| |
Collapse
|
37
|
Bose S, Li S, Mele E, Silberschmidt VV. Dry vs. wet: Properties and performance of collagen films. Part I. Mechanical behaviour and strain-rate effect. J Mech Behav Biomed Mater 2020; 111:103983. [PMID: 32805542 DOI: 10.1016/j.jmbbm.2020.103983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Collagen forms one-third of the body proteome and has emerged as an important biomaterial for tissue engineering and wound healing. Collagen films are used in tissue regeneration, wound treatment, dural substitute etc. as well as in flexible electronics. Thus, the mechanical behaviour of collagen should be studied under different environmental conditions and strain rates relevant for potential applications. This study's aim is to assess the mechanical behaviour of collagen films under different environmental conditions (hydration, submersion and physiological temperature (37 °C)) and strain rates. The combination of all three environment factors (hydration, submersion and physiological temperature (37 °C)) resulted in a drop of tensile strength of the collagen film by some 90% compared to that of dry samples, while the strain at failure increased to about 145%. For the first time, collagen films were subjected to different strain rates ranging from quasi-static (0.0001 s-1) to intermediate (0.001 s-1, 0.01 s-1) to dynamic (0.1 s-1, 1 s-1) conditions, with the strain-rate-sensitivity exponent (m) reported. It was found that collagen exhibited a strain-rate-sensitive hardening behaviour with increasing strain rate. The exponent m ranged from 0.02-0.2, with a tendency to approach zero at intermediate strain rate (0.01 s-1), indicating that collagen may be strain-rate insensitive in this regime. From the identification of hyperelastic parameter of collagen film, it was found that the Ogden Model provides realistic results for future simulations.
Collapse
Affiliation(s)
- Shirsha Bose
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Simin Li
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough, Leicestershire, LE113TU, UK
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
38
|
Milazzo M, Jung GS, Danti S, Buehler MJ. Mechanics of Mineralized Collagen Fibrils upon Transient Loads. ACS NANO 2020; 14:8307-8316. [PMID: 32603087 DOI: 10.1021/acsnano.0c02180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales, highlighting material features across hierarchical structures. Here we present a study that aims to understand the mechanical properties of mineralized collagen fibrils upon tensile/compressive transient loads, investigating how the kinetic energy propagates and it is dissipated at the molecular scale, thus filling a gap of knowledge in this area. These specific features are the mechanisms that nature has developed to passively dissipate stress and prevent structural failures. In addition to the mechanical properties of the mineralized fibrils, we observe distinct nanomechanical behaviors for the two regions (i.e., overlap and gap) of the D-period to highlight the effect of the mineralization. We notice decreasing trends for both wave speeds and Young's moduli over input velocity with a marked strengthening effect in the gap region due to the accumulation of the hydroxyapatite. In contrast, the dissipative behavior is not affected by either loading conditions or the mineral percentage, showing a stronger damping effect upon faster inputs compatible to the bone behavior at the macroscale. Our results offer insights into the dissipative behavior of mineralized collagen composites to design and characterize bioinspired composites for replacement devices (e.g., prostheses for sound transmission or conduction) or optimized structures able to bear transient loads, for example, impact, fatigue, in structural applications.
Collapse
Affiliation(s)
- Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Su periore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 2, 56122 Pisa, Italy
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Grünewald TA, Liebi M, Wittig NK, Johannes A, Sikjaer T, Rejnmark L, Gao Z, Rosenthal M, Guizar-Sicairos M, Birkedal H, Burghammer M. Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. SCIENCE ADVANCES 2020; 6:eaba4171. [PMID: 32582855 PMCID: PMC7292642 DOI: 10.1126/sciadv.aba4171] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Bone is built from collagen fibrils and biomineral nanoparticles. In humans, they are organized in lamellar twisting patterns on the microscale. It has been a central tenet that the biomineral nanoparticles are co-aligned with the bone nanostructure. Here, we reconstruct the three-dimensional orientation in human lamellar bone of both the nanoscale features and the biomineral crystal lattice from small-angle x-ray scattering and wide-angle x-ray scattering, respectively. While most of the investigated regions show well-aligned nanostructure and crystal structure, consistent with current bone models, we report a localized difference in orientation distribution between the nanostructure and the biomineral crystals in specific bands. Our results show a robust and systematic, but localized, variation in the alignment of the two signals, which can be interpreted as either an additional mineral fraction in bone, a preferentially aligned extrafibrillar fraction, or the result of transverse stacking of mineral particles over several fibrils.
Collapse
Affiliation(s)
- Tilman A. Grünewald
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Marianne Liebi
- Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Nina K. Wittig
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
| | - Andreas Johannes
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Tanja Sikjaer
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Zirui Gao
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin Rosenthal
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | | | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus, Denmark
- Corresponding author. (H.B.); (M.B.)
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
- Corresponding author. (H.B.); (M.B.)
| |
Collapse
|
40
|
Milazzo M, Jung GS, Danti S, Buehler MJ. Wave Propagation and Energy Dissipation in Collagen Molecules. ACS Biomater Sci Eng 2020; 6:1367-1374. [PMID: 33455394 DOI: 10.1021/acsbiomaterials.9b01742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, and cartilage, among others), accounting for 25-35% of the whole-body protein content and conferring mechanical stability. This protein is also a fundamental building block of bone because of its excellent mechanical properties together with carbonated hydroxyapatite minerals. Although the mechanical resilience and viscoelasticity have been studied both in vitro and in vivo from the molecular to tissue level, wave propagation properties and energy dissipation have not yet been deeply explored, in spite of being crucial to understanding the vibration dynamics of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up atomistic modeling approach, here we study a collagen peptide under two distinct impulsive displacement loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step toward understanding the mechanical behavior of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bioinspired materials to replace specific native tissues such as the tympanic membrane.
Collapse
Affiliation(s)
- Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy.,Department of Civil and Industrial Engineering, University of Pisa, Pisa 56126, Italy
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Buchanan JK, Zhang Y, Holmes G, Covington AD, Prabakar S. Role of X‐ray Scattering Techniques in Understanding the Collagen Structure of Leather. ChemistrySelect 2019. [DOI: 10.1002/slct.201902908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jenna K. Buchanan
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094 Palmerston North 4472 New Zealand
| | - Yi Zhang
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094 Palmerston North 4472 New Zealand
| | - Geoff Holmes
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094 Palmerston North 4472 New Zealand
| | - Anthony D. Covington
- Institute for Creative Leather TechnologiesThe University of NorthamptonUniversity Drive Northampton NN1 5PH United Kingdom
| | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094 Palmerston North 4472 New Zealand
| |
Collapse
|
42
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
43
|
Chen EA, Lin YS. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118458. [DOI: 10.1016/j.bbamcr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
44
|
Peacock CJ, Kreplak L. Nanomechanical mapping of single collagen fibrils under tension. NANOSCALE 2019; 11:14417-14425. [PMID: 31334733 DOI: 10.1039/c9nr02644d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the most fundamental level, collagen fibrils are rope-like structures assembled from triple-helical collagen molecules. One key structural characteristic of the fibril is the 67 nm D-band pattern arising from the quarter-stagger packing of the molecules. Our current understanding of the structural changes induced by tensile loading of collagen fibrils comes mostly from atomistic molecular dynamics simulations and tissue level experiments. Tensile testing of individual fibrils is an upcoming field of investigation, and thus far structural analysis has always taken place after the fibrils have been ruptured or strained and subsequently dried. There is therefore a gap in understanding how the structure of collagen fibrils transforms under tension, and how this reorganization affects the functionality of collagen fibrils within tissues. In this study, atomic force microscopy based nanomechanical mapping is introduced to image hydrated collagen fibrils absorbed to an elastic substrate. Upon stretching the substrate between 5 and 30%, we observe a radial stiffening consistent with the fibrils being under tension. This is associated with an increase in D-band length. In addition the indentation modulus contrast associated with the D-band pattern increases linearly with D-band strain. These results provide direct confirmation of, and new information on the axially inhomogeneous structural response of collagen fibrils to applied tension as previously proposed on the basis of X-ray scattering experiments on stretched tissues. Furthermore our approach opens the road for studying the structural impacts of tension on cell-matrix interactions at the molecular level.
Collapse
Affiliation(s)
- Chris J Peacock
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
45
|
Charvolin J, Sadoc JF. Type-I collagen fibrils: From growth morphology to local order. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:49. [PMID: 31011856 DOI: 10.1140/epje/i2019-11812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The length of type-I collagen fibrils in solution increases through the development and progress of pointed tips appearing successively at the two ends of an axis-symmetric shaft with constant diameter. Those tips, respectively fine ([Formula: see text]) or coarse ([Formula: see text]) have opposite molecular orientations. The [Formula: see text]-pointed tips, the first to appear, are particularly remarkable as they all show, on most of their length, a common parabolic profile which stays constant during the growth. Assuming that the latter occurs by lateral accretion of individual molecules in staggered configuration, we propose to give account of this prominent morphological feature along a purely geometrical argument, the profile of a tip being linked to the shape of the trajectories followed all along the accretion process. Among several possible trajectories, Fermat spirals lead to a parabolic profile in perfect agreement with the one observed for [Formula: see text]-pointed tips. This is to be put in relation with the presence of such spirals in phyllotactic patterns which ensure the best packing efficiency in cases of axis-symmetry, which is indeed that of dense collagen fibrils. Moreover, those patterns are structured by concentric circles of dislocations, constitutive of the structure itself, whose behaviour might contribute to the mechanical properties of the fibrils.
Collapse
Affiliation(s)
- Jean Charvolin
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France.
| |
Collapse
|
46
|
Orgel JPRO, Madhurapantula RS. A structural prospective for collagen receptors such as DDR and their binding of the collagen fibril. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118478. [PMID: 31004686 DOI: 10.1016/j.bbamcr.2019.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
The structure of the collagen fibril surface directly effects and possibly assists the management of collagen receptor interactions. An important class of collagen receptors, the receptor tyrosine kinases of the Discoidin Domain Receptor family (DDR1 and DDR2), are differentially activated by specific collagen types and play important roles in cell adhesion, migration, proliferation, and matrix remodeling. This review discusses their structure and function as it pertains directly to the fibrillar collagen structure with which they interact far more readily than they do with isolated molecular collagen. This prospective provides further insight into the mechanisms of activation and rational cellular control of this important class of receptors while also providing a comparison of DDR-collagen interactions with other receptors such as integrin and GPVI. When improperly regulated, DDR activation can lead to abnormal cellular proliferation activities such as in cancer. Hence how and when the DDRs associate with the major basis of mammalian tissue infrastructure, fibrillar collagen, should be of keen interest.
Collapse
Affiliation(s)
- Joseph P R O Orgel
- Departments of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| | - Rama S Madhurapantula
- Departments of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
47
|
A guide to high-efficiency chromium (III)-collagen cross-linking: Synchrotron SAXS and DSC study. Int J Biol Macromol 2019; 126:123-129. [DOI: 10.1016/j.ijbiomac.2018.12.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022]
|
48
|
Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. SCANNING 2019; 2019:8452851. [PMID: 31214274 PMCID: PMC6535871 DOI: 10.1155/2019/8452851] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 05/16/2023]
Abstract
Atomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization. The capacity of AFM to image and interact with surfaces, under physiologically relevant conditions, is of great importance for realistic and accurate medical and pharmaceutical applications. The aim of this paper is to review recent trends of the use of AFM on biological materials related to health and sickness. First, we present AFM components and its different imaging modes and we continue with combined imaging and coupled AFM systems. Then, we discuss the use of AFM to nanocharacterize collagen, the major fibrous protein of the human body, which has been correlated with many pathological conditions. In the next section, AFM nanolevel surface characterization as a tool to detect possible pathological conditions such as osteoarthritis and cancer is presented. Finally, we demonstrate the use of AFM for studying other pathological conditions, such as Alzheimer's disease and human immunodeficiency virus (HIV), through the investigation of amyloid fibrils and viruses, respectively. Consequently, AFM stands out as the ideal research instrument for exploring the detection of pathological conditions even at very early stages, making it very attractive in the area of bio- and nanomedicine.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2238, Cyprus
| | - Stylianos-Vasileios Kontomaris
- Mobile Radio Communications Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
- Athens Metropolitan College, Sorou 74, Marousi 15125, Greece
| | - Colin Grant
- Hitachi High-Technologies Europe, Techspace One, Keckwick Lane, Warrington WA4 4AB, UK
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
| |
Collapse
|
49
|
Saini K, Discher D, Kumar N. Static and time-dependent mechanical response of organic matrix of bone. J Mech Behav Biomed Mater 2018; 91:315-325. [PMID: 30639980 DOI: 10.1016/j.jmbbm.2018.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Bone derives its mechanical strength from the complex arrangement of collagen fibrils (type-I primarily) reinforced with hydroxy-apatite (HAp) mineral crystals in extra- and intra-fibrillar compartments. This study demonstrates a novel approach to obtain organic matrix of bone through its demineralization as well as mechanically characterize it at small length scales using static and dynamic indentation techniques. Sample surface preparation protocol used in the present work maintained the surface integrity of demineralized bone samples which resulted sample surface of roughness (RMS) magnitude of approximately 14 nm (averaged over 1 × 1 μm2 area duly verified by atomic force microscope (AFM)). Elemental composition analysis via energy dispersive X-ray spectroscopy (EDX) (for probed depth upto 2 μm) confirmed the complete removal of HAp mineral from bone samples during their demineralization using EDTA leaving collagen molecule assemblies unaffected as represented by Second Harmonic Generation (SHG) imaging. The modulus magnitudes of organic matrix obtained using from quasistatic as well as dynamic indentations (at constant frequency of 30 Hz) as ∼2.6 GPa and 4.5 GPa respectively, demonstrated the influence of loading rate on the estimated mechanical properties. For indentation depth to surface roughness ratio greater than ∼5:1, interestingly, measured material properties of organic matrix were found to depend on increasing magnitude of indentation depth of up to ∼500 nm value which probed from few collagen fibrils to next level of hierarchy i.e. collagen fibers. These findings are very useful to accurately determine the elastic and visco-elastic response of organic matrices of mineralized tissues for various applications including tissue engineering, bio-mimetics, etc.
Collapse
Affiliation(s)
- Karanvir Saini
- Chemical and Bio-molecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Dennis Discher
- Chemical and Bio-molecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
50
|
Zhu J, Hoop CL, Case DA, Baum J. Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. Sci Rep 2018; 8:16646. [PMID: 30413772 PMCID: PMC6226522 DOI: 10.1038/s41598-018-34616-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Collagen fibril interactions with cells and macromolecules in the extracellular matrix drive numerous cellular functions. Binding motifs for dozens of collagen-binding proteins have been determined on fully exposed collagen triple helical monomers. However, when the monomers are assembled into the functional collagen fibril, many binding motifs become inaccessible, and yet critical cellular processes occur. Here, we have developed an early stage atomic model of the smallest repeating unit of the type I collagen fibril at the fibril surface that provides a novel framework to address questions about these functionally necessary yet seemingly obstructed interactions. We use an integrative approach by combining molecular dynamics (MD) simulations with atomic force microscopy (AFM) experiments and show that reconstruction of the collagen monomers within the complex fibril play a critical role in collagen interactions. In particular, the fibril surface shows three major conformational changes, which allow cryptic binding sites, including an integrin motif involved in platelet aggregation, to be exposed. The observed dynamics and reconstruction of the fibril surface promote its role as a “smart fibril” to keep certain binding sites cryptic, and to allow accessibility of recognition domains when appropriate.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|