1
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
2
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
3
|
Cooke PS, Mesa AM, Sirohi VK, Levin ER. Role of nuclear and membrane estrogen signaling pathways in the male and female reproductive tract. Differentiation 2020; 118:24-33. [PMID: 33339644 DOI: 10.1016/j.diff.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Estrogen signaling through the main estrogen receptor, estrogen receptor 1 (ESR1; also known as ERα), is essential for normal female and male reproductive function. Historically, studies of estrogen action have focused on the classical genomic pathway. Although this is clearly the major pathway for steroid hormone actions, these hormones also signal through rapid non-classical effects involving cell membrane actions. Reports of rapid effects of estrogens extend for more than half a century, but recent results have expanded understanding of the identity, structure, function and overall importance of membrane receptors in estrogen responses. Key findings in this field were the immunohistochemical detection of ESR1 in cell membranes and demonstration that a portion of newly synthesized ESR1 is routed to the membrane by palmitoylation. These receptors in the membrane can then signal through protein kinases and other mechanisms following ligand binding to alter cell function. Another crucial advance in the field was development of transgenic mice expressing normal amounts of functional nuclear ESR1 (nESR1) but lacking membrane ESR1 (mESR1). Both male and female transgenic mice lacking mESR1 were infertile as adults, and both sexes had extensive reproductive abnormalities. Transgenic mice lacking mESR1 were highly protected from deleterious effects of neonatal estrogen administration, and estrogen effects on the histone methyltransferase Enhancer of Zeste homolog 2 that are mediated through mESR1 could have significant effects on epigenetic imprinting. In summary, signaling through mESR1 is essential for normal male and female reproductive function and fertility, and is a critical enabler of normal estrogen responses in vivo. Although the precise role of mESR1 in estrogen responses remains to be established, future research in this area should clarify its mechanism of action and lead to a better understanding of how mESR1 signaling works with classical genomic signaling through nESR1 to promote full estrogenic responses.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Vijay K Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA; Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
4
|
Hussain A, Gilloteaux J. The human testes: Estrogen and ageing outlooks. TRANSLATIONAL RESEARCH IN ANATOMY 2020. [DOI: 10.1016/j.tria.2020.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Eraso Y. Oestrogen receptors and breast cancer: are we prepared to move forward? A critical review. BIOSOCIETIES 2019. [DOI: 10.1057/s41292-019-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Rosenfeld CS, Cooke PS. Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. J Steroid Biochem Mol Biol 2019; 187:106-117. [PMID: 30465854 PMCID: PMC6370520 DOI: 10.1016/j.jsbmb.2018.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Estrogen binding to estrogen receptors (ESR) triggers signaling cascades within cells. Historically, a major emphasis has been characterizing estrogen-induced genomic actions resulting from binding to nuclear estrogen receptor 1 (nESR1). However, recent evidence indicates the first receptors estrogens encounter as they enter a cell, membrane ESR1 (mESR1), also play crucial roles. Membrane and nuclear ESR are derived from the same transcripts but the former are directed to the membrane via palmitoylation. Binding and activation of mESR1 leads to rapid fluctuations in cAMP and Ca+2 and stimulation of protein kinase pathways. Endocrine disrupting chemicals (EDC) that mimic 17β-estradiol can signal through mESR1 and elicit non-genomic effects. Most current EDC studies have focused on genomic actions via nESR1. However, increasing number of studies have begun to examine potential EDC effects mediated through mESR1, and some EDC might have higher potency for signaling through mESR1 than nESR1. The notion that such chemicals might also affect mESR1 signaling via palmitoylation and depalmitoylation pathways has also begun to gain currency. Recent development of transgenic mice that lack either mESR1 or nESR1, while retaining functional ESR1 in the other compartment, will allow more precise in vivo approaches to determine EDC effects through nESR1 and/or mESR1. It is increasingly becoming apparent in this quickly evolving field that EDC directly affect mESR and estrogen signaling, but such chemicals can also affect proportion of ESR reaching the membrane. Future EDC studies should be designed to consider the full range of effects through mESR alone and in combination with nESR.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, 65211, USA.
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Busonero C, Leone S, Bartoloni S, Acconcia F. Strategies to degrade estrogen receptor α in primary and ESR1 mutant-expressing metastatic breast cancer. Mol Cell Endocrinol 2019; 480:107-121. [PMID: 30389467 DOI: 10.1016/j.mce.2018.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
With the advent of omic technologies, our understanding of the molecular mechanisms underlying estrogen receptor α (ERα)-expressing breast cancer (BC) progression has grown exponentially. Nevertheless, the most widely used therapy for inhibiting this disease is endocrine therapy (ET) (i.e., aromatase inhibitors, tamoxifen - Tam, faslodex/fulvestrant - FUL). However, in a considerable number of cases, prolonged patient treatment with ET generates the development of resistant tumor cells and, consequently, tumor relapse, which manifests as metastatic disease that is extremely difficult to manage, especially because such metastatic BCs (MBCs) often express ERα mutations (e.g., Y537S, D538G) that confer pronounced growth advantages to tumor cells. Interestingly, ET continues to be the therapy of choice for this neoplasia, which underscores the need to identify novel drugs that could work in primary and MBCs. In this study, we review the approaches that have been undertaken to discover these new anti-ERα compounds, especially considering those focused on evaluating ERα degradation. A literature analysis demonstrated that current strategies for discovering new anti-BC drugs are focusing on the identification either of novel ERα inhibitors, of compounds that inhibit ERα-related pathways or of drugs that influence ERα-unrelated cellular pathways. Several lines of evidence suggest that all of these molecules alter the ERα content and block the proliferation of both primary and MBCs. In turn, we propose to rationalize all these discoveries into the definition of e.m.eral.d.s (i.e., selective modulators of ERα levels and degradation) as a novel supercategory of anti-ERα drugs that function both as modulators of ERα levels and inhibitors of BC cell proliferation.
Collapse
Affiliation(s)
- Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
9
|
Ma T, Lu C, Guo Y, Zhang C, Du X. Human U3 protein 14a plays an anti-apoptotic role in cancer cells. Biol Chem 2017; 398:1247-1257. [PMID: 28672776 DOI: 10.1515/hsz-2017-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023]
Abstract
Human U three protein 14a (hUTP14a) binds p53 and promotes p53 degradation. Here, we report that hUTP14a plays an anti-apoptotic role in tumor cells through a p53-independent pathway. Knockdown of hUTP14a activated the intrinsic pathway of apoptosis and sensitized tumor cells to chemotherapeutic drug-induced apoptosis. In addition, the protein level of hUTP14a decreased upon chemotherapeutic drug- or irradiation-induced apoptosis. Importantly, the decrease of hUTP14a during induced apoptosis was not blocked by pan-caspase inhibitor z-VAD-FMK, indicating that the down-regulation of hUTP14a is an upstream event in apoptosis. Furthermore, ectopically expressed hUTP14a protected tumor cells from chemotherapeutic drug-induced apoptosis. In summary, our data showed that hUTP14a protected tumor cells from chemotherapeutic drug-induced apoptosis and thus might possess a potential as a target for anti-tumor therapy.
Collapse
|
10
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Mélissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Romain Solinhac
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Gilles Flouriot
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Aurélie Fabre
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Drougard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Shyamala Rajan
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Muriel Laine
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alain Milon
- CNRS and Université de Toulouse, IPBS, Toulouse, France
| | | | - Daniel Henrion
- INSERM U1083, CNRS UMR 6214, Université d'Angers, Angers, France
| | - Marine Adlanmerini
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Marie-Cécile Valéra
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Gompel
- APHP, Unité de Gynécologie Endocrinienne, Université Paris Descartes, Paris, France
| | - Céline Gerard
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Christel Péqueux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Mélanie Mestdagt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | | | - Claude Knauf
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - François Ferriere
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Philippe Valet
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Geoffrey L Greene
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
11
|
Koonce CJ, Frye CA. Progesterone facilitates exploration, affective and social behaviors among wildtype, but not 5α-reductase Type 1 mutant, mice. Behav Brain Res 2013; 253:232-9. [PMID: 23886595 DOI: 10.1016/j.bbr.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
Progesterone (P4) facilitates exploration, anxiety and social behaviors in estrogen (E2)-primed mice. Some of these effects may be due to actions of its 5α-reduced metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP). In order to address the role of P4 and its metabolite, 3α,5α-THP, a mouse model was utilized. We hypothesized that if P4's metabolism to 3α,5α-THP is essential to facilitate exploratory, anti-anxiety and social behaviors of mice, then wildtype, but not 5α-reductase knockout (5α-RKO), mice will have greater expression of these behaviors. Experiment 1: Mice were ovariectomized (ovx), E2-primed and administered P4 (0, 125, 250, or 500μg) subcutaneously and then tested 4h later in a battery of tasks: open field, elevated plus maze, and social interaction. Experiment 2: Ovx, E2-primed mice were administered P4 (4mg/kg), 3α,5α-THP (4mg/kg), medroxyprogesterone acetate (MPA, which does not convert to 3α,5α-THP; 4mg/kg), or vehicle subcutaneously and tested 4h later. There was a dose-dependent effect of P4 to wildtype, but not 5α-RKO, mice. Neither wildtype, nor 5α-RKO, mice had increased exploration, anti-anxiety or pro-social behavior with MPA administration. Progesterone only exerted effects on anti-anxiety behavior, and increased 3α,5α-THP in the prefrontal cortex and hippocampus, when administered to wildtype mice. 3α,5α-THP to both WT and 5α-RKO mice increased exploration, anti-anxiety and social interaction and 3α,5α-THP levels in the hippocampus and prefrontal cortex. Thus, metabolism of P4 by the 5α-reductase enzyme may be essential for enhancement of these behaviors.
Collapse
Affiliation(s)
- Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
12
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Acconcia F, Marino M. The Effects of 17β-estradiol in Cancer are Mediated by Estrogen Receptor Signaling at the Plasma Membrane. Front Physiol 2011; 2:30. [PMID: 21747767 PMCID: PMC3129035 DOI: 10.3389/fphys.2011.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/17/2011] [Indexed: 12/16/2022] Open
Abstract
Two different isoforms of the estrogen receptors (i.e., ERα and ERβ) mediate pleiotropic 17β-estradiol (E2)-induced cellular effects. The ERs are principally localized in the nucleus where they act by globally modifying the expression of the E2-target genes. The premise that E2 effects are exclusively mediated through the nuclear localized ERs has been rendered obsolete by research over the last 15 years demonstrating that ERα and ERβ proteins are also localized at the plasma membranes and in other extra-nuclear organelles. The E2 modulation of cancer cell proliferation represents a good example of the impact of membrane-initiated signals on E2 effects. In fact, E2 via ERα elicits rapid signals driving cancer cells to proliferation (e.g., in breast cancer cells), while E2-induced ERβ rapid signaling inhibits proliferation (e.g., in colon cancer cells). In this review we provide with an overview of the complex system of E2-induced signal transduction pathways, their impact on E2-induced cancer cell proliferation, and the participation of E2-induced membrane-initiated signals in tumor environment.
Collapse
Affiliation(s)
- Filippo Acconcia
- Cell Physiology Laboratory, Department of Biology, University Roma Tre Rome, Italy
| | | |
Collapse
|
14
|
Abstract
The three members of the p160 family of steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) steer the functional output of numerous genetic programs and serve as pleiotropic rheostats for diverse physiological processes. Since their discovery ∼15 years ago, the extraordinary sum of examination of SRC function has shaped the foundation of our knowledge for the now 350+ coregulators that have been identified to date. In this perspective, we retrace our steps into the field of coregulators and provide a summary of selected seminal work that helped define the SRCs as masters of systems biology.
Collapse
Affiliation(s)
- Brian York
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W. O'Malley
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
15
|
|
16
|
Chaudhuri G. Nuclear receptors and female reproduction: a tale of 3 scientists, Jensen, Gustafsson, and O'Malley. Reprod Sci 2008; 15:110-20. [PMID: 18276948 DOI: 10.1177/1933719108314516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Work on the estrogen receptor and glucocorticoid receptor laid the foundation for the discovery of a family of receptors known as the nuclear receptors. Discovery of these receptors has expanded our understanding of many hormonal and nonhormonal substances, which act through the nuclear receptors. These receptors are actually ligand-binding intracellular transcription factors, which induce nuclear expression of specific mRNAs, leading to synthesis of specific proteins with biological activity. This review for the benefit of gynecologists and reproductive physiologists focuses on the work of 3 scientists who were pioneers in the work on the estrogen, glucocorticoid, and progesterone receptors, which has had a major impact on our understanding of reproductive physiology and on the field of nuclear receptors.
Collapse
Affiliation(s)
- Gautam Chaudhuri
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|
18
|
Marino M, Ascenzi P. Do steroid hormones function via multiple signaling pathways? IUBMB Life 2005; 57:825-7. [PMID: 16393786 DOI: 10.1080/15216540500415628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Italy.
| | | |
Collapse
|
19
|
Abstract
The O'Malley laboratory first showed that estrogen and progesterone act in the nucleus to stimulate synthesis of specific mRNAs (ovalbumin and avidin), coding for their respective inducible proteins. The overall molecular pathway of steroid-receptor-DNA-mRNA-protein-function was then established and provided a coherent foundation for future studies of the impact of estrogen and progesterone receptors on endocrine tissue development, adult function, and in pathologies such as cancer. The lab group went on to: biochemically demonstrate ligand-induced conformational activation of progesterone and estrogen receptors, discover the concept of ligand-independent activation of steroid receptors, discover key steroid receptor coactivator intermediary coactivators for receptor function, and define the role of coactivators/corepressors in selective receptor modulator drug action and in cell homeostasis. This body of work advanced our molecular understanding of the critical role of steroid hormones in normal and abnormal physiology and also generated a base of scientific knowledge that served to further modern hormonal therapy and disease management.
Collapse
Affiliation(s)
- Bert W O'Malley
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
20
|
Abstract
The Jensen Symposium was held at the University of Cincinnati in December 2003 to honor the pioneering contributions of Dr. Elwood Jensen to the field of nuclear hormone action. Those in attendance were treated to an outstanding scientific program that served as an update of recent progress and illustrated the breadth of activity in the nuclear receptor field. Here we highlight recent findings presented at the Symposium that provide new insights into the mechanisms of nuclear receptor action and the diverse roles of members of the nuclear receptor superfamily in development and homeostasis.
Collapse
Affiliation(s)
- Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
21
|
Abstract
The nuclear receptor (NR) superfamily of transcription factors regulates gene expression in response to endocrine signaling, and recruitment of coregulators affords these receptors considerable functional flexibility. We will place historical aspects of NR research in context with current opinions on their mechanism of signal transduction, and we will speculate upon future trends in the field.
Collapse
Affiliation(s)
- Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
22
|
Turner RT, Bell NH, Gay CV. Evidence that estrogen binding sites are present in bone cells and mediate medullary bone formation in Japanese quail. Poult Sci 1993; 72:728-40. [PMID: 8479958 DOI: 10.3382/ps.0720728] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Studies were carried out in Japanese quail to characterize the binding of estrogen to bone cells and to determine whether induction of medullary bone by estrogen is mediated by estrogen receptors. First, attempts were made to identify specific, high affinity nuclear binding sites for estrogen with a nuclear exchange assay in oviduct and femora from laying female quail and in liver, kidney, and femora from adult male quail treated with estradiol valerate (2 mg per bird). High-affinity nuclear estrogen binding sites were detected in each of the tissues except femora. Second, estrogen binding sites in femora from male quail were localized by radioautography after treatment with 100 microCi of [3H]-17 beta-estradiol ([3H]-E). Estrogen binding sites were present at 1 and 3 h after administration of [3H]-E, and binding of the radiolabeled hormone was prevented by the simultaneous administration of an excess of radioinert estrogen. Third, estradiol valerate (.4 mg) was given as a bolus to adult male Japanese quail. Five days later, the quail had hypercalcemia due to accumulation of phosvitin in serum, had an extensive network of medullary bone at the femur midshaft, and had reduced cortical bone area. The nonsteroidal, anti-estrogen tamoxifen (2 mg/day) prevented estrogen-induced hypercalcemia, medullary bone formation, and reduction of cortical bone area. Fourth, the estrogen target cells in femora from adult male quail that were induced to differentiate to osteoblasts by estrogen treatment were located by [3H]-proline radioautography as early as 12 h following administration of the hormone. These results are interpreted as evidence that induction of medullary bone is a process mediated by estrogen receptor.
Collapse
Affiliation(s)
- R T Turner
- Department of Orthopedics and Biochemistry, Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
23
|
Soto AM, Sonnenschein C. Control of growth of estrogen-sensitive cells: role for alpha-fetoprotein. Proc Natl Acad Sci U S A 1980; 77:2084-7. [PMID: 6154944 PMCID: PMC348656 DOI: 10.1073/pnas.77.4.2084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The role played by alpha-fetoprotein (AFP) during the perinatal period in rats has not yet been ascertained despite earlier suggestions that this plasma protein affected the multiplication, in an "in animal-in culture" system of tumor cells that are stimulated by estrogen (E) for growth. To test this inference developed from our previous work, AFP was purified by reverse affinity chromatography to homogeneity by electrophoretic and immunochemical criteria. Purified AFP was added at different concentrations to horse serum-supplemented medium which by itself is able to allow maximal exponential growth of a rat pituitary tumor cloned cell line C29RAP. These cells carry estrophilins and their growth is stimulated by E in animals but not in culture. At 3 mg/ml in culture media, AFP prevented growth of C29RAP cells; the effect was dose dependent. F4C1, a rat pituitary cloned cell line that carries estrophilins but shows autonomous behavior when injected into male and female Fisher rats, was not affected in cultured by comparable concentrations of AFP in the culture media. The effect of AFP on the growth of E-sensitive cells in culture was not reversed by E administration. We conclude from these experiments that (i) AFP is a specific inhibitor of the cell multiplication of cells that are E-sensitive for growth (as defined in this presentation), (ii) estrophilins seem not to play a significant role in this inhibition, and (iii) E appears not to be a growth-promoting hormone per se.
Collapse
|
24
|
O'Malley BW, Roop DR, Lai EC, Nordstrom JL, Catterall JF, Swaneck GE, Colbert DA, Tsai MJ, Dugaiczyk A, Woo SL. The ovalbumin gene: organization, structure, transcription, and regulation. RECENT PROGRESS IN HORMONE RESEARCH 1979; 35:1-46. [PMID: 229523 DOI: 10.1016/b978-0-12-571135-7.50005-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Sutherland R, Horgen P. Effects of the steroid sex hormone, antheridiol, on the initiation of RNA synthesis in the simple eukaryote, Achlya ambisexualis. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)38314-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Schwartz RJ, Chang C, Schrader WT, O'Malley BW. Effect of progesterone receptors on transcription. Ann N Y Acad Sci 1977; 286:147-60. [PMID: 363019 DOI: 10.1111/j.1749-6632.1977.tb29413.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
|
28
|
Schwartz RJ, Kuhn RW, Buller RE, Schrader WT, O'Malley BW. Progesterone-binding components of chick oviduct. In vitro effects of purified hormone-receptor complexes on the initiation of RNA synthesis in chromatin. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33143-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
|
30
|
Monahan JJ, Harris SE, O'Malley BW. Effect of estrogen on gene expression in the chick oviduct. Effect of estrogen on the sequence and population complexity of chick oviduct poly(A)-containing RNA. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33406-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Hirose M, Tsai MJ, O'Malley BW. Effect of estrogen on gene expression in the chick oviduct. Kinetics of initiation of in vitro transcription on chromatin. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33811-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
|
33
|
Tsai SY, Tsai MJ, Schwartz R, Kalimi M, Clark JH, O'Malley BW. Effects of estrogen on gene expression in chick oviduct: nuclear receptor levels and initiation of transcription. Proc Natl Acad Sci U S A 1975; 72:4228-32. [PMID: 172899 PMCID: PMC388693 DOI: 10.1073/pnas.72.11.4228] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Estrogen (diethylstilbesterol) was administered in vivo to chicks for various time periods. Chromatin was then prepared from oviduct nuclei and assayed for its capacity to support initiation of RNA chain synthesis in vitro in the presence of saturating levels of Escherichia coli RNA polymerase (RNA nucleotidyltransferase; nucleosidetriphosphate:RNA nucleotidyltransferase; EC 2.7.7.6). These same nuclei were also assayed by a [3H]estradiol exchange assay for their endogenous receptor content. The number of available initiation sites for RNA synthesis on chromatin was shown to correlate with the endogenous levels of nuclear estrogen receptor. A decrease in the nuclear concentration of estrogen receptor molecules and the concentration of initiation sites for RNA synthesis occurred during withdrawal of estrogen from previously stimulated chicks. Both parameters declined with a similar half-life. When estrogen was readministered to withdrawn chicks, the number of initiation sites increased 2-fold as early as 30 min and approached a maximal level (3-fold) by 1 hr. During the same period of restimulation with estrogen, the number of estrogen receptor molecules bound to nuclei increased to a maximum at 20 min and then declined at 1 hr to a steady-state level 2-fold higher than the withdrawn chicks. Simultaneous measurements of RNA chain length and RNA chain propagation rate demonstrated that parameters remained relatively constant throughout estrogen withdrawal as well as secondary stimulation. The temporal correlation between changes in the levels of nuclear-bound estrogen receptor and the number of RNA chain initiation sites on chromatin prepared from these same nuclei strongly suggested that the hormone receptor complexes act on chromatin to mediate these changes in genetic transcriptional activity.
Collapse
|
34
|
Effects of estrogen on gene expression in the chick oviduct. IV. Initiation of RNA synthesis on DNA and chromatin. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41292-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Schwartz RJ, Tsai MJ, Tsai SY, O'Malley BW. Effect of estrogen on gene expression in the chick oviduct. V. Changes in the number of RNA polymerase binding and initiation sites in chromatin. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41293-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
O'Malley BW, Means AR, Socher SH, Spelsberg TC, Chytil F, Comstock JP, Mitchell WM. Hormonal control of oviduct growth and differentiation. THE ... SYMPOSIUM. SOCIETY FOR DEVELOPMENTAL BIOLOGY. SYMPOSIUM 1974; 30:53-77. [PMID: 4276099 DOI: 10.1016/b978-0-12-612973-1.50009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Chan L, Means AR, O'Malley BW. Rates of induction of specific translatable messenger RNAs for ovalbumin and avidin by steroid hormones. Proc Natl Acad Sci U S A 1973; 70:1870-4. [PMID: 4515943 PMCID: PMC433615 DOI: 10.1073/pnas.70.6.1870] [Citation(s) in RCA: 122] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the chick oviduct, injections of estrogen and progesterone induce synthesis of the specific proteins ovalbumin and avidin, respectively. We have studied the rate of induction of the specific messenger RNA molecules for these proteins after a single injection of estrogen or progesterone. The mRNAs were extracted, partially purified, and quantified in vitro in a heterologous protein-synthesizing system. Single injections of estrogen in chicks previously withdrawn from all steroid hormones for 2 weeks led to rapid increases in ovalbumin mRNA with 3 hr, which coincided with increases in the rate of ovalbumin synthesis. Maximal ovalbumin mRNA activity occurred by 18-20 hr. The half-life of the mRNA was estimated to be 8-10 hr and corresponded to the half-life for cessation of intracellular ovalbumin synthesis after a single injection of an estrogen. Similarly, after an injection of progesterone into chicks first treated with estrogen, appearance of avidin mRNA preceded demonstrable accumulation of this specific protein in oviduct cells. The mRNA for avidin was first apparent at 6 hr, and reached maximal concentrations between 18 and 24 hr after injection. These data confirm that both estrogen and progesterone act on oviduct to induce rapid accumulation of specific mRNAs before and coincident with the appearance of the cell-specific induced proteins. The overall results of these experiments are compatible with the hypothesis that the production of mRNA is a rate-limiting step in the steroid hormone-mediated induction of protein synthesis.
Collapse
|
38
|
Cox RF, Haines ME, Carey NH. Modification of the template capacity of chick-oviduct chromatin for form-B RNA polymerase by estradiol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 32:513-24. [PMID: 4734971 DOI: 10.1111/j.1432-1033.1973.tb02636.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
|
40
|
Comstock JP, Rosenfeld GC, O'Malley BW, Means AR. Estrogen-induced changes in translation, and specific messenger RNA levels during oviduct differentiation. Proc Natl Acad Sci U S A 1972; 69:2377-80. [PMID: 4506757 PMCID: PMC426944 DOI: 10.1073/pnas.69.9.2377] [Citation(s) in RCA: 49] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Estrogen-induced morphologic differentiation of chick oviduct is accompanied by increases in the total endogenous mRNA activity of oviduct polysomes. Concomitant increases are also noted in ribosome translational capacity and activity of peptide chain initiation factors. Once the differentiation process nears completion (about 7 days of estrogen administration), total ribosomebound mRNA activity decreases, but the translational machinery remains very active. In addition, estrogen induces the accumulation of ovalbumin mRNA before ovalbumin is demonstrable in the oviduct. The data suggest that the rate-limiting event in the hormonal induction of cell-specific proteins, such as ovalbumin, is the synthesis and intracellular accumulation of specific mRNA for such proteins.
Collapse
|
41
|
Clemens LE, Kleinsmith LJ. Specific binding of the oestradiol-receptor complex to DNA. NATURE: NEW BIOLOGY 1972; 237:204-6. [PMID: 4556379 DOI: 10.1038/newbio237204a0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Means AR, Comstock JP, Rosenfeld GC, O'Malley BW. Ovalbumin messenger RNA of chick oviduct: partial characterization, estrogen dependence, and translation in vitro. Proc Natl Acad Sci U S A 1972; 69:1146-50. [PMID: 4504328 PMCID: PMC426650 DOI: 10.1073/pnas.69.5.1146] [Citation(s) in RCA: 123] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A rapidly-labeled RNA fraction can be isolated from hen oviduct polysomes that has characteristics of the messenger RNA (mRNA) for the cell-specific protein, ovalbumin. This RNA, which sediments in the 8-17S region of sucrose gradients, possesses properties suggestive of the presence of a polyadenylic acid sequence and can be translated with fidelity in a cell-free protein synthesizing system derived from rabbit reticulocytes. The identity of the protein product as ovalbumin is confirmed by three methods, and translation of ovalbumin mRNA is shown to be dependent both on amount of exogenous mRNA and incubation time. Both rate and extent of ovalbumin synthesis is enhanced by the addition of a protein extract from ribosomes that contains peptide chain initiation factors. Finally, the presence of this specific mRNA is shown to be estrogen-dependent: it is induced by estrogen administration to immature chicks, disappears upon cessation of estrogen treatment, and can be reinduced by a single injection of estrogen to chicks that have been pretreated with estrogen and then withdrawn from the hormone.
Collapse
|
43
|
|
44
|
Von Hungen K. Competitive hybridization with brain RNA fails to confirm new RNA induced by learning. Nature 1971; 229:114-5. [PMID: 4923092 DOI: 10.1038/229114b0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
Abstract
Injection of estrogens (17beta-estradiol or diethylstilbestrol) into immature chicks results in a marked (30- to 50-fold) increase in the ornithine decarboxylase activity of oviductal homogenates within a 4-hour period. Similar stimulations were obtained when estrogen was injected into hypophysectomized or castrated rats and the uterus was examined for decarboxylase activity. An elevation of decarboxylase activity was obtained in vitro when oviducts from immature chicks were incubated in the presence of estrogen. These data indicate a direct action of estrogen on oviduct tissue to promote a rapid increase in the activity of a specific enzyme and represent the first example of a completely in vitro enzyme response to estrogen.
Collapse
|
46
|
|
47
|
Sato G, Augusti-Tocco G, Posner M. Hormone-secreting and hormone-responsive cell cultures. RECENT PROGRESS IN HORMONE RESEARCH 1970; 26:539-46. [PMID: 4319352 DOI: 10.1016/b978-0-12-571126-5.50017-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Oka T, Schimke RT. Interaction of estrogen and progesterone in chick oviduct development. I. Antagonistic effect of progesterone on estrogen-induced proliferation and differentiation of tubular gland cells. J Cell Biol 1969; 41:816-31. [PMID: 5814004 PMCID: PMC2107830 DOI: 10.1083/jcb.41.3.816] [Citation(s) in RCA: 160] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Daily administration of estrogen to immature female chicks results in marked oviduct growth and appearance of characteristic tubular gland cells which contain lysozyme. Although a rapid increase in total DNA and RNA content begins within 24 hr, cell specific protein, lysozyme, is first detectable after 3 days of estrogen. Progesterone administered concomitantly with estrogen antagonizes the estrogen-induced tissue growth as well as appearance of tubular gland cells and their specific products, lysozyme and ovalbumin. When the initiation of progesterone administration is delayed for progressively longer periods (days) during estrogen treatment, proportionally greater growth occurs with more lysozyme and tubular gland cells after 5 days of total treatment. Progesterone does not inhibit the estrogen-stimulated increase in uptake of alpha-aminoisobutyric acid and water by oviduct occurring within 24 hr or the estrogen-induced increase in total lipid, phospholipid, and phosphoprotein content of serum. The above results of progesterone antagonism can best be explained by the hypothesis that progesterone inhibits the initial proliferation of cells which become tubular gland cells but does not antagonize the subsequent cytodifferentiation leading to the synthesis of lysozyme and ovalbumin once such cell proliferation has occurred.
Collapse
|
49
|
O'Malley BW. Hormonal regulation of nucleic acid and protein synthesis. TRANSACTIONS OF THE NEW YORK ACADEMY OF SCIENCES 1969; 31:478-503. [PMID: 4307379 DOI: 10.1111/j.2164-0947.1969.tb02930.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
O'Malley BW, McGuire WL, Kohler PO, Korenman SG. Studies on the mechanism of steroid hormone regulation of synthesis of specific proteins. RECENT PROGRESS IN HORMONE RESEARCH 1969; 25:105-60. [PMID: 4902947 DOI: 10.1016/b978-0-12-571125-8.50006-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|