1
|
Gencheva R, Coppo L, Arnér ESJ, Ren X. Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfite. Free Radic Biol Med 2025; 233:317-329. [PMID: 40180024 DOI: 10.1016/j.freeradbiomed.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The combination of ascorbate (vitamin C) and menadione sodium bisulfite (MSB, vitamin K3), here called VC/VK3 (also named Apatone®, or M/A), has shown selective cytotoxicity in cancer cells and is under clinical investigation as a cancer therapy. However, the mechanisms of VC/VK3-induced cell death are not fully understood. In this in vitro study using human glioblastoma and non-transformed glial cell lines, we found that VC/VK3 caused higher toxicity in cancer cells in an H2O2- and iron-dependent manner, suggesting that ferroptosis may play a role in the cell death process. Furthermore, selenium supplementation significantly protected cancer cells from VC/VK3 treatment concomitantly with enhanced expression levels and enzymatic activity of antioxidant selenoproteins, including thioredoxin reductases (TXNRDs) and glutathione reductases (GPXs). We also found that VC/VK3 competes for electrons with thioredoxin (TXN), impairing peroxiredoxin 1 (PRDX1) in cells. Finally, chemically inhibiting TXNRDs or the glutathione-dependent antioxidant systems exaggerated the toxicity of VC/VK3. Overall, this study elucidated parts of the cell death mechanisms of VC/VK3 and identified combination strategies to overcome selenium-mediated resistance, advancing the translational potential of this prooxidant treatment.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; IC-MedTech Corporation, Las Vegas, NV, USA.
| |
Collapse
|
2
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Simon SD. Experimentation Without Randomised Controls. J Oral Rehabil 2025. [PMID: 40183208 DOI: 10.1111/joor.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND In an experimental study, researchers often have the ability to assign different treatments. This is often done with randomisation. There are many settings; however, where it is not desirable to use randomisation. It is unclear how to best design an experimental study without randomisation while still providing persuasive evidence. OBJECTIVES The aim of this study was to outline several approaches, broadly classified as quasiexperimental studies, where researchers can use methodologically sound alternatives to randomisation. RESULTS The interrupted time series, phased inventions, withdrawal design, waiting list control group, stepped wedge design and regression discontinuity all represent approaches where careful nonrandom allocation to treatment groups can produce high-quality research findings. CONCLUSION Quasiexperimental studies can produce rigorous research findings. The allocation to treatment groups and the times of evaluation need to be carefully designed. Proper use of these quasiexperimental approaches can enhance research options in settings where the research team has control of allocation but finds randomisation to be problematic.
Collapse
Affiliation(s)
- Stephen D Simon
- Department of Biomedical and Health Informatics, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
4
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2025; 27:1366-1382. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
5
|
Bennett LL. Effects of Pharmacological Dose of Vitamin C on MDA-MB-231 Cells. Biomedicines 2025; 13:640. [PMID: 40149617 PMCID: PMC11940700 DOI: 10.3390/biomedicines13030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: In 2022, approximately 2.3 million women were diagnosed with breast cancer worldwide, resulting in 670,000 deaths, which accounted for 6.9% of all cancer-related deaths. In the United States, 1 in 8 women will be diagnosed with breast cancer during their lifetime. It was estimated that 2024 would identify about 310,720 women and 2800 men diagnosed with invasive breast cancer. The future global burden of breast cancer is projected to rise to over 3 million new cases and 1 million deaths by 2040. Approximately 20% of breast cancer diagnoses are triple-negative breast cancer (TNBC), a type of cancer that lacks receptors for estrogen (ER-negative), progesterone (PR-negative), and human epidermal growth factor receptor 2 (HER2/neu-negative). Consequently, TNBC does not respond to hormonal or targeted therapies, making it challenging to treat due to its rapid growth, metastasis, and high recurrence rate within the first three years of therapy. Alternative chemotherapies are needed to address this problem. A pharmacological dose of vitamin C (high-dose VC) has been identified as a potential treatment for some cancer cells. The present study aimed to evaluate whether VC has a therapeutic effect on TNBC, using MDA-MB-231 cells as the model. Additionally, VC's effects were trialed on other cancer cells such as MCF7 and on non-cancerous kidney HEK 293 and lung CCL205 cells. Methods: The MTT assay, Hoechst 33342 staining, nuclear-ID red/green staining, Rhodamine 123 staining, and Western blot analysis were employed to test the hypothesis that a pharmacological dose of VC can kill TNBC cells. Results: The upregulation of Apaf-1 and caspases -7, -8, and -9, the inhibition of matrix metalloproteinases (MMP-2 and MMP-9), a reduction in cell cycle protein expression, and the enhancement of tumor suppressor proteins such as p53 and p21 indicate that a pharmacological dose of VC has promising anti-cancer properties in the treatment of breast cancers. Conclusions: Pharmacological dose of VC exerts significant anti-cancer effects in MDA-MB-231 cells by promoting apoptosis, inhibiting metastasis, disrupting cell cycle progression, and enhancing tumor suppressor activity.
Collapse
|
6
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Alberts A, Moldoveanu ET, Niculescu AG, Grumezescu AM. Vitamin C: A Comprehensive Review of Its Role in Health, Disease Prevention, and Therapeutic Potential. Molecules 2025; 30:748. [PMID: 39942850 PMCID: PMC11820684 DOI: 10.3390/molecules30030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Since Albert Szent-Györgyi discovered it and it became used in treating scurvy, vitamin C has attracted interest in many studies due to its unique properties. It is an important cofactor in the synthesis of collagen and hormones, and it is involved in immunity, iron absorption, and processes requiring antioxidants. Thus, this review aims to emphasize the importance and usefulness of vitamin C in improving quality of life and preventing various diseases (e.g., chronic diseases, cardiovascular diseases, cancer) but also for its use in treatments against infections, neurodegenerative diseases, and cancer. Although the studies presented provide essential information about the properties of VIC and its beneficial effect on health, some studies contradict these theories. In this respect, further studies on larger samples and over a longer period are needed to demonstrate the therapeutic potential of this nutrient. However, VIC remains a necessary vitamin that should be consumed daily to maintain optimal health and prevent deficiencies that can lead to scurvy and its associated complications.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena-Theodora Moldoveanu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
8
|
Kim HS, Kwon SH, Choi OK, Lim T. High-dose ascorbic acid synergizes with anti-PD1 therapy in non-small cell lung cancer in vitro and in vivo models. Front Immunol 2025; 15:1512605. [PMID: 39896806 PMCID: PMC11783322 DOI: 10.3389/fimmu.2024.1512605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Immune checkpoint inhibitors(ICIs) targeting programmed cell death protein 1 (PD1) confer significant survival benefits to patients with non-small cell lung cancer (NSCLC). However, there remains a substantial unmet need to identify therapeutic approaches to overcome resistance and provide benefits to these patients. High-dose ascorbic acid (AA) acts synergistically with many standard anticancer treatments. However, little is known about the effect of high-dose AA on improving the efficacy of anti-PD1 inhibitors in NSCLC. This study aimed to elucidate the effects of high-dose AA on anti-PD1 immunotherapy in NSCLC. Methods The combined effects of high-dose AA and anti-PD1 were investigated using a coculture model of H460 cells and CD8+ T cells and an LLC1 lung cancer syngeneic mouse model. To investigate the molecular mechanism, tumor tissues from mice were analyzed by comprehensive proteomic profiling using nano-LC-ESI-MS/MS. Results Pretreatment with a high dose of AA led to enhanced the sensitivity to the cytotoxicity of CD8+ T cells derived from healthy donor for H460 cells. Additionally, the combination of anti-PD1 and high-dose AA significantly increased CD8+ T cell cytotoxicity in H460 cells. The combination of anti-PD1 and high-dose AA showed dramatic antitumor effects in a syngeneic mouse model of lung cancer by significantly reducing tumor growth and increasing CD8+ T cell-dependent cytotoxicity and macrophage activity. Comprehensive protein analysis confirmed that high-dose AA in anti-PD1-treated tumor tissues enhanced the antitumor effects by regulating various immune-related mechanisms, including the B cell and T cell receptor signaling pathways, Fc gamma R-mediated phagocytosis, and natural killer (NK) cell-mediated cytotoxicity. Discussion Our results suggest that high-dose AA may be a promising adjuvant to potentiate the efficacy of anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Hak Su Kim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Seung-hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Ok Kyung Choi
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Taekyu Lim
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
9
|
Bodeker KL, Smith BJ, Berg DJ, Chandrasekharan C, Sharif S, Fei N, Vollstedt S, Brown H, Chandler M, Lorack A, McMichael S, Wulfekuhle J, Wagner BA, Buettner GR, Allen BG, Caster JM, Dion B, Kamgar M, Buatti JM, Cullen JJ. A randomized trial of pharmacological ascorbate, gemcitabine, and nab-paclitaxel for metastatic pancreatic cancer. Redox Biol 2024; 77:103375. [PMID: 39369582 PMCID: PMC11491967 DOI: 10.1016/j.redox.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Patients with metastatic pancreatic ductal adenocarcinoma (PDAC) have poor 5-year survival. Pharmacological ascorbate (P-AscH-, high dose, intravenous, vitamin C) has shown promise as an adjunct to chemotherapy. We hypothesized adding P-AscH- to gemcitabine and nab-paclitaxel would increase survival in patients with metastatic PDAC. METHODS Patients diagnosed with stage IV pancreatic cancer randomized 1:1 to gemcitabine and nab-paclitaxel only (SOC, control) or to SOC with concomitant P-AscH-, 75 g three times weekly (ASC, investigational). The primary outcome was overall survival with secondary objectives of determining progression-free survival and adverse event incidence. Quality of life and patient reported outcomes for common oncologic symptoms were captured as an exploratory objective. Thirty-six participants were randomized; of this 34 received their assigned study treatment. All analyses were based on data frozen on December 11, 2023. RESULTS Intravenous P-AscH- increased serum ascorbate levels from micromolar to millimolar levels. P-AscH- added to the gemcitabine + nab-paclitaxel (ASC) increased overall survival to 16 months compared to 8.3 months with gemcitabine + nab-paclitaxel (SOC) (HR = 0.46; 90 % CI 0.23, 0.92; p = 0.030). Median progression free survival was 6.2 (ASC) vs. 3.9 months (SOC) (HR = 0.43; 90 % CI 0.20, 0.92; p = 0.029). Adding P-AscH- did not negatively impact quality of life or increase the frequency or severity of adverse events. CONCLUSIONS P-AscH- infusions of 75 g three times weekly in patients with metastatic pancreatic cancer prolongs overall and progression free survival without detriment to quality of life or added toxicity (ClinicalTrials.gov number NCT02905578).
Collapse
Affiliation(s)
- Kellie L Bodeker
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Daniel J Berg
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Chandrikha Chandrasekharan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Saima Sharif
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Naomi Fei
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Sandy Vollstedt
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Heather Brown
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Meghan Chandler
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Amanda Lorack
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Stacy McMichael
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jared Wulfekuhle
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Joseph M Caster
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Barbara Dion
- Medical College of Wisconsin Division of Hematology and Oncology, Milwaukee, WI, USA
| | - Mandana Kamgar
- Medical College of Wisconsin Division of Hematology and Oncology, Milwaukee, WI, USA
| | - John M Buatti
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Wang P, Chen LL, Xiong Y, Ye D. Metabolite regulation of epigenetics in cancer. Cell Rep 2024; 43:114815. [PMID: 39368084 DOI: 10.1016/j.celrep.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
The catalytic activity of most epigenetic enzymes requires a metabolite produced by central carbon metabolism as a cofactor or (co-)substrate. The concentrations of these metabolites undergo dynamic changes in response to nutrient levels and environmental conditions, reprogramming metabolic processes and epigenetic landscapes. Abnormal accumulations of epigenetic modulatory metabolites resulting from mutations in metabolic enzymes contribute to tumorigenesis. In this review, we first present the concept that metabolite regulation of gene expression represents an evolutionarily conserved mechanism from prokaryotes to eukaryotes. We then review how individual metabolites affect epigenetic enzymes and cancer development. Lastly, we discuss the advancement of and opportunity for therapeutic targeting of metabolite-epigenetic regulation in cancer therapy.
Collapse
Affiliation(s)
- Pu Wang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Cullgen, Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Kian W, Remilah AA, Shatat C, Spector M, Roisman LC, Ryvo L. Case report: The efficacy of adding high doses of intravenous vitamin C to the combination therapy of atezolizumab and bevacizumab in unresectable HCC. Front Med (Lausanne) 2024; 11:1461127. [PMID: 39421875 PMCID: PMC11483342 DOI: 10.3389/fmed.2024.1461127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Vitamin C (L-ascorbic acid) plays a vital role in human physiology, serving as both an antioxidant and a cofactor in enzymatic reactions. High-dose intravenous Vitamin C can achieve significantly elevated plasma concentrations, potentially enhancing its anticancer effects. This case study explores the synergistic impact of high-dose intravenous vitamin C in combination with bevacizumab and atezolizumab in the treatment of a patient with unresectable hepatocellular carcinoma (HCC). Case presentation A 68-year-old male was diagnosed with unresectable HCC, presenting with elevated liver enzymes and an alpha-fetoprotein (AFP) level of 2018 ng/mL. Initial treatment with atezolizumab and Bevacizumab commenced in February 2022. Although imaging indicated stable disease, AFP levels decreased modestly to 1,526 ng/mL, while liver function tests remained elevated, accompanied by further clinical deterioration and weight loss. Subsequently, intravenous vitamin C (30 grams) was introduced into the treatment regimen. This addition led to a rapid and significant reduction in AFP levels, normalization of liver function tests, and marked improvement in clinical symptoms. The patient continued on this combined regimen of vitamin c, atezolizumab, and bevacizumab. Four months later, CT scans revealed significant tumor shrinkage and necrosis. As of 30 months post-diagnosis, the patient remains on the regimen with normal liver function and an AFP level of 1.8 ng/mL, maintaining normal activities and stable weight. Conclusion To our knowledge, this is the first reported case of combining high-dose intravenous vitamin C with Bevacizumab and atezolizumab, which proved to be safe and resulted in significant clinical and radiological improvements in unresectable hepatocellular carcinoma (HCC). Further studies are recommended to explore the potential of this combination therapy.
Collapse
Affiliation(s)
- Waleed Kian
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Areen A. Remilah
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Celine Shatat
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Maria Spector
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Laila C. Roisman
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Larisa Ryvo
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| |
Collapse
|
12
|
Robert J. [The myth of longevity, from dream to unreality]. Bull Cancer 2024; 111:802-811. [PMID: 38851993 DOI: 10.1016/j.bulcan.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Jacques Robert
- Inserm unité 1312, université de Bordeaux, Bordeaux, France.
| |
Collapse
|
13
|
Cenigaonandia‐Campillo A, Garcia‐Bautista A, Rio‐Vilariño A, Cebrian A, del Puerto L, Pellicer JA, Gabaldón JA, Pérez‐Sánchez H, Carmena‐Bargueño M, Meroño C, Traba J, Fernandez‐Aceñero MJ, Baños‐Herraiz N, Mozas‐Vivar L, Núñez‐Delicado E, Garcia‐Foncillas J, Aguilera Ó. Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest. Mol Oncol 2024; 18:2212-2233. [PMID: 38425123 PMCID: PMC11467799 DOI: 10.1002/1878-0261.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), metabolic rewiring and resistance to standard therapy are closely associated. PDAC cells show enormous requirements for glucose-derived citrate, the first rate-limiting metabolite in the synthesis of new lipids. Both the expression and activity of citrate synthase (CS) are extraordinarily upregulated in PDAC. However, no previous relationship between gemcitabine response and citrate metabolism has been documented in pancreatic cancer. Here, we report for the first time that pharmacological doses of vitamin C are capable of exerting an inhibitory action on the activity of CS, reducing glucose-derived citrate levels. Moreover, ascorbate targets citrate metabolism towards the de novo lipogenesis pathway, impairing fatty acid synthase (FASN) and ATP citrate lyase (ACLY) expression. Lowered citrate availability was found to be directly associated with diminished proliferation and, remarkably, enhanced gemcitabine response. Moreover, the deregulated citrate-derived lipogenic pathway correlated with a remarkable decrease in extracellular pH through inhibition of lactate dehydrogenase (LDH) and overall reduced glycolytic metabolism. Modulation of citric acid metabolism in highly chemoresistant pancreatic adenocarcinoma, through molecules such as vitamin C, could be considered as a future clinical option to improve patient response to standard chemotherapy regimens.
Collapse
Affiliation(s)
| | - Ana Garcia‐Bautista
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Anxo Rio‐Vilariño
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Arancha Cebrian
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Laura del Puerto
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Horacio Pérez‐Sánchez
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Miguel Carmena‐Bargueño
- Bioinformatics and High‐Performance Computing Research Group (BIO‐HPC), Computer Engineering DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Carolina Meroño
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | - Javier Traba
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones CientíficasUniversidad Autónoma de Madrid (CSIC‐UAM)Spain
- Instituto Universitario de Biología Molecular‐UAM (IUBM‐UAM), Departamento de Biología MolecularUniversidad Autónoma de MadridSpain
| | | | | | - Lorena Mozas‐Vivar
- Preclinical programe START Madrid‐FJD Hospital fundación Jiménez DíazSpain
| | - Estrella Núñez‐Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences DepartmentUniversidad Católica de Murcia (UCAM)Spain
| | - Jesús Garcia‐Foncillas
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
| | - Óscar Aguilera
- Translational Oncology Division, Oncohealth InstituteIIS‐Fundación Jimenez Diaz‐UAM (Madrid)Spain
- Universidad Católica de Murcia (UCAM)Spain
| |
Collapse
|
14
|
Conti V, Polcaro G, De Bellis E, Donnarumma D, De Rosa F, Stefanelli B, Corbi G, Sabbatino F, Filippelli A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J Pers Med 2024; 14:685. [PMID: 39063939 PMCID: PMC11278393 DOI: 10.3390/jpm14070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Health Products (NHPs) have long been considered a valuable therapeutic approach for the prevention and treatment of various diseases, including cancer. However, research on this topic has led to inconclusive and often controversial results. This review aims to provide a comprehensive update of the effects and mechanisms related to the use of NHPs, to describe the results of randomized clinical trials (RCTs) on their effects in cancer patients, and to critically discuss factors influencing clinical outcomes. RCTs available in the literature, even those studying the same NHP, are very heterogeneous in terms of indications, doses, route and timing of administration, and outcomes evaluated. Silymarin, ginsenoside, and vitamin E appear to be useful in attenuating adverse events related to radiotherapy or chemotherapy, and curcumin and lycopene might provide some benefit in patients with prostate cancer. Most RCTs have not clarified whether NHP supplementation provides any real benefit, while harmful effects have been shown in some cases. Overall, the available data suggest that although there is some evidence to support the benefits of NHPs in the management of cancer patients, further clinical trials with the same design are needed before their introduction into clinical practice can be considered.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| | - Giovanna Polcaro
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Emanuela De Bellis
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Danilo Donnarumma
- PhD School “Clinical and Translational Oncology (CTO)”, Scuola Superiore Meridionale, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Federica De Rosa
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
| | - Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Francesco Sabbatino
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Oncology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy; (V.C.); (G.P.); (F.D.R.); (B.S.); (F.S.); (A.F.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
15
|
Qu J, Lu S, Wang B, Wang S, Yang Z, Tang H, He J, Zhao Y, Wang X, Liu X, Rao B. Network pharmacology and molecular docking technology for exploring the effect and mechanism of high-dose vitamin c on ferroptosis of tumor cells: A review. Medicine (Baltimore) 2024; 103:e38189. [PMID: 38758839 PMCID: PMC11098213 DOI: 10.1097/md.0000000000038189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/18/2024] [Indexed: 05/19/2024] Open
Abstract
To investigate the mechanism by which high-dose vitamin C (HVC) promotes ferroptosis in tumor cells via network pharmacology, vitamin C-related and ferroptosis-related targets were obtained from the PharmMapper and GeneCards databases, respectively, and their common targets were compared using the Venn diagram. Common targets were imported into the STRING database for protein-protein interaction analysis, and core targets were defined. Core targets were enriched for Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways using the R language packages. A map of the core target-based interaction network and a map of the mechanism by which HVC regulates ferroptosis were constructed. A total of 238 vitamin C-related and 721 ferroptosis-related targets were identified, of which 21 targets were common to both. Furthermore, ALDOA, AHCY, LDHB, HSPA8, LGALS3, and GSTP1 were identified as core targets. GO enrichment analysis suggested that the main biological processes included the extrinsic apoptotic signaling pathway and pyruvate metabolic process. KEGG enrichment analysis suggested that HVC regulates ferroptosis mainly through the amino acid and carbohydrate metabolic pathways. The targets were validated by molecular docking. In conclusion, HVC may promote ferroptosis in tumor cells by regulating metabolic pathways, and there is a synergistic effect between HVC and type I ferroptosis inducers. Glycolysis-dependent tumors may be beneficial for HVC therapy. Our study provides a reference for further clinical studies on HVC antitumor therapy.
Collapse
Affiliation(s)
- Jinxiu Qu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shuai Lu
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Bing Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Shiwan Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Huazhen Tang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Jia He
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Yuan Zhao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiaozhu Liu
- Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| |
Collapse
|
16
|
Talib WH, Ahmed Jum’AH DA, Attallah ZS, Jallad MS, Al Kury LT, Hadi RW, Mahmod AI. Role of vitamins A, C, D, E in cancer prevention and therapy: therapeutic potentials and mechanisms of action. Front Nutr 2024; 10:1281879. [PMID: 38274206 PMCID: PMC10808607 DOI: 10.3389/fnut.2023.1281879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | | | - Zeena Shamil Attallah
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Mohanned Sami Jallad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Rawan Wamidh Hadi
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| |
Collapse
|
17
|
Zhou X, Wang Z, Yuan K. The effect of diet and nutrition on T cell function in cancer. Int J Cancer 2023; 153:1954-1966. [PMID: 37504380 DOI: 10.1002/ijc.34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Cancer can be considered one of the most threatening diseases to human health, and immunotherapy, especially T-cell immunotherapy, is the most promising treatment for cancers. Diet therapy is widely concerned in cancer because of its safety and fewer side effects. Many studies have shown that both the function of T cells and the progression of cancer can be affected by nutrients in the diet. In fact, it is challenging for T cells to infiltrate and eliminate cancer cells in tumor microenvironment, because of the harsh metabolic condition. The intake of different nutrients has a great influence on the proliferation, activation, differentiation and exhaustion of T cells. In this review, we summarize the effects of typical amino acids, lipids, carbohydrates and other nutritional factors on T cell functions and provide future perspectives for dietary treatment of cancer based on modifications of T cell functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Codini M, Fiorani F, Mandarano M, Cataldi S, Arcuri C, Mirarchi A, Ceccarini MR, Beccari T, Kobayashi T, Tomishige N, Sidoni A, Albi E. Sphingomyelin Metabolism Modifies Luminal A Breast Cancer Cell Line under a High Dose of Vitamin C. Int J Mol Sci 2023; 24:17263. [PMID: 38139092 PMCID: PMC10743617 DOI: 10.3390/ijms242417263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Federico Fiorani
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Cataldo Arcuri
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Alessandra Mirarchi
- Section of Anatomy, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (C.A.); (A.M.)
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Nario Tomishige
- UMR 7021 CNRS, Faculté de Pharmacie, Universitè de Strasbourg, 67401 Illkirch, France; (T.K.); (N.T.)
- Cellular Informatics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy; (M.M.); (A.S.)
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (F.F.); (S.C.); (M.R.C.); (T.B.)
| |
Collapse
|
19
|
Prasad KN. Discovery of Alpha-Tocopheryl Succinate as a Cancer Treatment Agent Led to the Development of Methods to Potentially Improve the Efficacy of Cancer Therapy. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:776-782. [PMID: 36735863 DOI: 10.1080/27697061.2023.2175389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The discovery of alpha-tocopheryl succinate (alpha-TS) as a cancer therapeutic agent markedly stimulated research with or without tumor therapeutic agents on cancer cells and normal cells. Results showed that alpha-TS treatment induced apoptosis in cancer cells and enhanced the apoptotic effects of tumor therapeutic agents on tumor cells in a synergistic manner without affecting the growth of normal cells. Liposomal alpha-TS was more effective than alpha-TS. Some tumors are difficult to treat with chemotherapeutic agents while some become resistant of such treatment. Using a nanotechnology technique, it was demonstrated that alpha-TS conjugated with a chemotherapeutic agent enhanced the levels of apoptosis and restored the sensitivity of tumor cells to that chemotherapeutic agent. The mechanisms of action of alpha-TS alone or in combination with therapeutic agents include the following: (a) inhibition of the expression of oncogenes C-myc and H-ras; (b) alterations in the levels of expression of numerous genes; (c) activation of caspases; (d) inhibition of angiogenesis; (e) destabilization of mitochondria and lysosomes; (f) inhibition of production of production of prostaglandin E2 (PGE2) and PGE2-mediated pro-inflammatory responses; (g) reduction of survivin signaling pathway; and (h) reduction of CD47 expression on the tumor cell surface causing enhancement of phagocytic activity of macrophages leading to engulfment of tumor cells. Despite impressive results in cell culture and in animal models, no studies with alpha-TS alone or in combination with cancer therapeutic agents in human cancer resistant to these therapies have been performed.
Collapse
|
20
|
Navid S, Saadatian Z, Talebi A. Assessment of developmental rate of mouse embryos yielded from in vitro fertilization of the oocyte with treatment of melatonin and vitamin C simultaneously. BMC Womens Health 2023; 23:525. [PMID: 37794412 PMCID: PMC10552323 DOI: 10.1186/s12905-023-02673-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In recent decades, in vitro fertilization (IVF) has been widely used as a method of assisted reproductive technology (ART) to improve fertility in individuals. To be more successful in this laboratory method, we used the presence of two common types of antioxidants (melatonin and vitamin C) simultaneously and exclusively in IVF medium. METHODS The cumulus-oocyte complexes (COCs) were obtained from Gonadotropin-releasing hormone (GnRH) and Human Chorionic Gonadotropin (HMG) -stimulated mice. Subsequently, metaphase II (MII) oocytes were fertilized in vitro. In the experiment, the IVF medium was randomly divided into two equal groups: The control group did not receive any antioxidants. In the treatment group, 100 µM melatonin and 5 mM vitamin C were added to the IVF medium. Finally, oocytes and putative embryos transferred into developmental medium and cultured 120 h after IVF to the blastocyst stage. After and before IVF, oocytes and putative embryos were stained with dichlorodihydrofluorescein diacetate (DCFDA) and the H2O2 level was measured with an inverted fluorescence microscope using ImageJ software. At the end of the fifth day after IVF, the expression of Bax and B cell lymphoma 2 (Bcl2) was evaluated using real-time PCR. RESULTS The levels of reactive oxygen species (ROS) in oocytes and putative embryos observed in the treatment group demonstrated a significant reduce compared to the control group (p ≤ 0.01. (.Furthermore, the number of embryos in the blastocycte stage(P < 0.05), the expression level of the Bcl2 (P < 0.05) gene, the Bax unlike gene, significantly increased compared with the control group. CONCLUSION We conclude that the presence of melatonin and vitamin C antioxidants simultaneously and exclusively in the IVF medium leads to a reduction in ROS and ,as a result, improves the growth of the embryo up to the blastocyst stage.
Collapse
Affiliation(s)
- Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Sexual Health and Fertility Research Center , Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
21
|
Sanookpan K, Chantaravisoot N, Kalpongnukul N, Chuenjit C, Wattanathamsan O, Shoaib S, Chanvorachote P, Buranasudja V. Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage. Antioxidants (Basel) 2023; 12:1775. [PMID: 37760080 PMCID: PMC10525775 DOI: 10.3390/antiox12091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH-; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH- on NSCLC and elucidate its underlying mechanisms. P-AscH- treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH- in NSCLC therapy. Treatments with P-AscH- increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH- on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH-. The data from this current research advance our understanding of P-AscH- in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Nabsolute Co., Ltd., Bangkok 10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchapon Chuenjit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (N.C.); (C.C.)
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Sara Shoaib
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Visarut Buranasudja
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (O.W.); (S.S.); (P.C.)
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
23
|
Farasati Far B, Behnoush AH, Ghondaghsaz E, Habibi MA, Khalaji A. The interplay between vitamin C and thyroid. Endocrinol Diabetes Metab 2023; 6:e432. [PMID: 37246589 PMCID: PMC10335618 DOI: 10.1002/edm2.432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023] Open
Abstract
INTRODUCTION Vitamin C (ascorbic acid) is a water-soluble vitamin, that plays a key role in the prevention and treatment of scurvy. As vitamin C is an antioxidant and thyroid function may be affected and may affect vitamin C levels, for the first time, we aimed to provide a detailed review of all human studies evaluating the different roles of vitamin C in the thyroid gland. Thyroid cancers, goitre, Graves' disease and other causes of hyperthyroidism and hypothyroidism were the conditions discussed in this study. Furthermore, vitamin C addition to other medications such as levothyroxine was also reviewed. METHODS In this study, we reviewed the relevant literature regarding the association between vitamin C and thyroid diseases using original studies from PubMed, Scopus, Embase, and Web of Science. RESULTS In this review, we found anti-cancer effects for intravenous (IV) administration of vitamin C in addition to the beneficial effects of using it in combination with radiotherapy and chemotherapy. As autoimmune diseases affect some antioxidant markers, some studies reported a significant difference in blood vitamin C levels in patients with autoimmune thyroid diseases such as Graves' disease. Despite many studies evaluating the effects of IV administration of vitamin C in mentioned diseases, there is a lack of evidence for oral consumption of vitamin C. CONCLUSIONS To conclude, there is a lack of evidence, especially clinical trials, for the therapeutic effects of vitamin C on thyroid diseases; however, promising results were reported in some studies in the literature.
Collapse
Affiliation(s)
| | | | - Elina Ghondaghsaz
- Undergraduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mohammad Amin Habibi
- Gene, Cell & Tissue Research InstituteTehran University of Medical ScienceTehranIran
- Clinical Research Development CenterQom University of Medical SciencesQomIran
| | | |
Collapse
|
24
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
25
|
Fan D, Liu X, Shen Z, Wu P, Zhong L, Lin F. Cell signaling pathways based on vitamin C and their application in cancer therapy. Biomed Pharmacother 2023; 162:114695. [PMID: 37058822 DOI: 10.1016/j.biopha.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Vitamin C, a small organic molecule, is widely found in fruits and vegetables and is an essential nutrient in the human body. Vitamin C is closely associated with some human diseases such as cancer. Many studies have shown that high doses of vitamin C have anti-tumor ability and can target tumor cells in multiple targets. This review will describe vitamin C absorption and its function in cancer treatment. We will review the cellular signaling pathways associated with vitamin C against tumors depending on the different anti-cancer mechanisms. Based on this, we will further describe some applications of the use of vitamin C for cancer treatment in preclinical and clinical trials and the possible adverse events that can occur. Finally, this review also assesses the prospective advantages of vitamin C in oncology treatment and clinical applications.
Collapse
Affiliation(s)
- Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Faquan Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education,Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University.
| |
Collapse
|
26
|
Gordon N, Gallagher PT, Neupane NP, Mandigo AC, McCann JK, Dylgjeri E, Vasilevskaya I, McNair C, Paller CJ, Kelly WK, Knudsen KE, Shafi AA, Schiewer MJ. PARP inhibition and pharmacological ascorbate demonstrate synergy in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533944. [PMID: 36993449 PMCID: PMC10055378 DOI: 10.1101/2023.03.23.533944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.
Collapse
Affiliation(s)
- Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter T. Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Amy C. Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer K. McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Irina Vasilevskaya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Channing J. Paller
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ayesha A. Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20817, USA. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology/Physiology/Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Overcoming EGFR Resistance in Metastatic Colorectal Cancer Using Vitamin C: A Review. Biomedicines 2023; 11:biomedicines11030678. [PMID: 36979659 PMCID: PMC10045351 DOI: 10.3390/biomedicines11030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 02/26/2023] Open
Abstract
Targeted monoclonal antibody therapy against Epidermal Growth Factor Receptor (EGFR) is a leading treatment modality against metastatic colorectal cancer (mCRC). However, with the emergence of KRAS and BRAF mutations, resistance was inevitable. Cells harboring these mutations overexpress Glucose Transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which enables intracellular vitamin C transport, leading to reactive oxygen species generation and finally cell death. Therefore, high dose vitamin C is proposed to overcome this resistance. A comprehensive search strategy was adopted using Pubmed and MEDLINE databases (up to 11 August 2022). There are not enough randomized clinical trials to support its use in the clinical management of mCRC, except for a subgroup analysis from a phase III study. High dose vitamin C shows a promising role in overcoming EGFR resistance in mCRC with wild KRAS mutation with resistance to anti-epidermal growth factor inhibitors and in patients with KRAS and BRAF mutations.
Collapse
|
28
|
Qin S, Wang G, Chen L, Geng H, Zheng Y, Xia C, Wu S, Yao J, Deng L. Pharmacological vitamin C inhibits mTOR signaling and tumor growth by degrading Rictor and inducing HMOX1 expression. PLoS Genet 2023; 19:e1010629. [PMID: 36787291 PMCID: PMC9928125 DOI: 10.1371/journal.pgen.1010629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| |
Collapse
|
29
|
Wang X, Qian S, Wang S, Jia S, Zheng N, Yao Q, Gao J. Combination of Vitamin C and Lenvatinib potentiates antitumor effects in hepatocellular carcinoma cells in vitro. PeerJ 2023; 11:e14610. [PMID: 36718449 PMCID: PMC9884045 DOI: 10.7717/peerj.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/30/2022] [Indexed: 01/26/2023] Open
Abstract
Lenvatinib has become a first-line drug in the treatment of advanced hepatocellular carcinoma (HCC). Investigating its use in combination with other agents is of great significance to improve the sensitivity and durable response of Lenvatinib in advanced HCC patients. Vitamin C (L-ascorbic acid, ascorbate, VC) is an important natural antioxidant, which has been reported to show suppressive effects in cancer treatment. Here, we investigated the effect of the combination of VC and Lenvatinib in HCC cells in vitro. We found that treatment of VC alone significantly inhibited the proliferation, migration and invasion in HCC cells. Additionally, VC was strongly synergistic with Lenvatinib in inhibition of the proliferative, migratory and invasive capacities of HCC cells in vitro. In conclusion, our results demonstrate that the combination of VC and Lenvatinib has synergistic antitumor activities against HCC cells, providing a promising therapeutic strategy to improve the prognosis of HCC patients.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Songyi Qian
- Department of Cardiac Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Siyi Wang
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Sheng Jia
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Nishang Zheng
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Qing Yao
- Department of Nutrition, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian province, China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Burkard M, Niessner H, Leischner C, Piotrowsky A, Renner O, Marongiu L, Lauer UM, Busch C, Sinnberg T, Venturelli S. High-Dose Ascorbate in Combination with Anti-PD1 Checkpoint Inhibition as Treatment Option for Malignant Melanoma. Cells 2023; 12:254. [PMID: 36672190 PMCID: PMC9857291 DOI: 10.3390/cells12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Ascorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model. To investigate the effects of ascorbate on the B16F10 cell line in vitro, viability, cellular impedance, and ROS production were analyzed. In vivo, C57BL/6NCrl mice were subcutaneously injected into the right flank with B16F10 cells and tumor-bearing mice were treated intraperitoneally with ascorbate (3 g/kg bodyweight), immunotherapy (anti-programmed cell death protein 1 (PD1) antibody J43; 2 mg/kg bodyweight), or both treatments combined. The efficacy and toxicity were analyzed by measuring the respective tumor sizes and mouse weights accompanied by histological analysis of the protein levels of proliferating cell nuclear antigen (Pcna), glucose transporter 1 (Glut-1), and CD3. Treatment of B16F10 melanoma-carrying mice with high-dose ascorbate yielded plasma levels in the pharmacologically effective range, and ascorbate showed efficacy as a monotherapy and when combined with PD1 inhibition. Our data suggest the applicability of ascorbate as an additional therapeutic agent that can be safely combined with immunotherapy and has the potential to potentiate anti-PD1-based immune checkpoint blockades.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Christian Busch
- Dermatologie zum Delfin, Stadthausstraße 12, 8400 Winterthur, Switzerland
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| |
Collapse
|
31
|
Yu H, Song X, Yang F, Wang J, Sun M, Liu G, Ahmad N, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Jiang X, Fu P, Chen G, Li J, Zhuang J, Sun M. Combined effects of vitamin C and cold atmospheric plasma-conditioned media against glioblastoma via hydrogen peroxide. Free Radic Biol Med 2023; 194:1-11. [PMID: 36436726 DOI: 10.1016/j.freeradbiomed.2022.11.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most lethal intracranial malignant tumor, for which the five-year overall survival rate is approximately 5%. Here we explored the therapeutic combination of vitamin C and plasma-conditioned medium on glioblastoma cells in culture and as subcutaneous or intracranial xenografts in mice. The combination treatment reduced cell viability and proliferation while promoting apoptosis, and the effects were significantly stronger than with either treatment on its own. Similar results were obtained in the two xenograft models. Vitamin C appeared to upregulate aquaporin-3 and enhance the uptake of extracellular H2O2, while the combination treatment increased intracellular levels of reactive oxygen species including H2O2 and activated the JNK signaling pathway. The cytotoxic effects of the combination treatment were partially reversed by the specific JNK signaling inhibitor SP600125. Our results suggest that the combination of vitamin C and plasma-conditioned medium has therapeutic potential against glioblastoma, and they provide mechanistic insights that may help investigate this and other potential therapies in greater depth.
Collapse
Affiliation(s)
- Huidan Yu
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Xueyan Song
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Fan Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingjian Sun
- Measurement and Control Research Center Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Guangxin Liu
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingmei Li
- School of Life Sciences, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Jie Zhuang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| | - Minxuan Sun
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
32
|
The role of mitochondria in pharmacological ascorbate-induced toxicity. Sci Rep 2022; 12:22521. [PMID: 36581766 PMCID: PMC9800562 DOI: 10.1038/s41598-022-27185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.
Collapse
|
33
|
More than Just Antioxidants: Redox-Active Components and Mechanisms Shaping Redox Signalling Network. Antioxidants (Basel) 2022; 11:antiox11122403. [PMID: 36552611 PMCID: PMC9774234 DOI: 10.3390/antiox11122403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The concept of oxidative stress as a condition underlying a multitude of human diseases has led to immense interest in the search for antioxidant-based remedies. The simple and intuitive story of "the bad" reactive oxygen species (ROS) and "the good" antioxidants quickly (and unsurprisingly) lead to the commercial success of products tagged "beneficial to health" based solely on the presence of antioxidants. The commercial success of antioxidants by far preceded the research aimed at understanding the exact redox-related mechanisms that are in control of shaping the states of health and disease. This review describes the redox network formed by the interplay of ROS with cellular molecules and the resulting regulation of processes at the genomic and proteomic levels. Key players of this network are presented, both involved in redox signalling and control of cellular metabolism linked to most, if not all, physiological processes. In particular, this review focuses on the concept of reductive stress, which still remains less well-established compared to oxidative stress.
Collapse
|
34
|
Shen ZY, Chen YR, Wang MC, Chang SS. High-dose vitamin C-induced acute oxalate nephropathy in a renal transplant recipient: A case report and literature review. Asian J Surg 2022; 46:2223-2224. [PMID: 36473810 DOI: 10.1016/j.asjsur.2022.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
|
35
|
van Gorkom GNY, Boerenkamp LS, Gijsbers BLMG, van Ojik HH, Wodzig WKWH, Wieten L, Van Elssen CHMJ, Bos GMJ. No Effect of Vitamin C Administration on Neutrophil Recovery in Autologous Stem Cell Transplantation for Myeloma or Lymphoma: A Blinded, Randomized Placebo-Controlled Trial. Nutrients 2022; 14:nu14224784. [PMID: 36432471 PMCID: PMC9698268 DOI: 10.3390/nu14224784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C is an important micronutrient for various immune cells. It increases phagocytic cell function and is necessary for T and natural killer (NK) cell development. Patients in need of an autologous hematopoietic stem cell transplantation (HSCT) are often vitamin C-depleted. We therefore hypothesized that vitamin C supplementation could improve immune recovery in autologous HSCT patients. This blinded, placebo-controlled trial included 44 patients randomized to receive vitamin C or a placebo. The following outcome measures used were clinical and immunological parameters, among others: time to neutrophil recovery, serum, and intracellular vitamin C values. Twenty-one patients received vitamin C, and 23 received a placebo. The time to neutrophil recovery did not differ between the two groups at 11.2 days (p = 0.96). There were no differences in hospitalization time (19.7 vs. 19.1 days, p = 0.80), the incidence of neutropenic fever (57% vs. 78%, p = 0.20), or 3-month overall survival (90.5% vs. 100%, p = 0.13). Bacteremia seemed to occur less in the vitamin C group (10% vs. 35%, p = 0.07). Our study shows no benefit from vitamin C supplementation on neutrophil recovery and hospitalization, despite possible lower rates of bacteremia in the vitamin C group. Therefore, we do not advise vitamin C supplementation in this treatment group.
Collapse
Affiliation(s)
- Gwendolyn N. Y. van Gorkom
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: (G.N.Y.v.G.); (L.S.B.)
| | - Lara S. Boerenkamp
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: (G.N.Y.v.G.); (L.S.B.)
| | - Birgit L. M. G. Gijsbers
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Heidi H. van Ojik
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Will K. W. H. Wodzig
- Central Diagnostic Laboratory, Department of Clinical Chemistry, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Catharina H. M. J. Van Elssen
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Gerard M. J. Bos
- Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
36
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
37
|
Morante-Palacios O, Godoy-Tena G, Calafell-Segura J, Ciudad L, Martínez-Cáceres EM, Sardina JL, Ballestar E. Vitamin C enhances NF-κB-driven epigenomic reprogramming and boosts the immunogenic properties of dendritic cells. Nucleic Acids Res 2022; 50:10981-10994. [PMID: 36305821 PMCID: PMC9638940 DOI: 10.1093/nar/gkac941] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs’ immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFβ production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC’s ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies.
Collapse
Affiliation(s)
- Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916, Badalona, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol Hospital, LCMN, Germans Trias iPujol Research Institute (IGTP), 08916, Badalona, Barcelona, Spain
- Department of Cell Biology, Physiology, Immunology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Esteban Ballestar
- To whom correspondence should be addressed. Tel: +34 935572800; Fax: +34 934651472;
| |
Collapse
|
38
|
Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y, Han H. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. ACS NANO 2022; 16:17389-17401. [PMID: 36166666 DOI: 10.1021/acsnano.2c08446] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While checkpoint blockade immunotherapy as a promising clinical modality has revolutionized cancer treatment, it is of benefit to only a subset of patients because of the tumor immunosuppressive microenvironment. Herein, we report that the specified delivery of vitamin C at the tumor site by responsive lipid nanoparticles can efficiently induce oxidative toxicity and the polarization of M1 macrophages, promoting the infiltration of activating cytotoxic T lymphocytes in the tumor microenvironment for intensive immune checkpoint blocking therapy. Both in vitro and in vivo assays demonstrate successful vitamin C-induced polarization of M2 macrophages to M1 macrophages. In vivo transcriptome analysis also reveals the activation mechanism of vitamin C immunity. More importantly, the combination approach displays much better immune response and immune process within the tumor microenvironment than clinical programmed cell death ligand 1 (Anti-PD-L1) alone. This work provides a powerful therapeutic application of vitamin C to amplify Anti-PD-L1 immunotherapy in cancer treatment, which brings hope to patients with clinically insensitive immunity.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
39
|
Kim JH, Hwang S, Lee JH, Im SS, Son J. Vitamin C Suppresses Pancreatic Carcinogenesis through the Inhibition of Both Glucose Metabolism and Wnt Signaling. Int J Mol Sci 2022; 23:ijms232012249. [PMID: 36293106 PMCID: PMC9603812 DOI: 10.3390/ijms232012249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Cumulative studies have indicated that high-dose vitamin C has antitumor effects against a variety of cancers. However, the molecular mechanisms underlying these inhibitory effects against tumorigenesis and metastasis, particularly in relation to pancreatic cancer, are unclear. Here, we report that vitamin C at high concentrations impairs the growth and survival of pancreatic ductal adenocarcinoma (PDAC) cells by inhibiting glucose metabolism. Vitamin C was also found to trigger apoptosis in a caspase-independent manner. We further demonstrate that it suppresses the invasion and metastasis of PDAC cells by inhibiting the Wnt/β-catenin-mediated epithelial-mesenchymal transition (EMT). Taken together, our results suggest that vitamin C has therapeutic effects against pancreatic cancer.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sein Hwang
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Hye Lee
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Seul Im
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
40
|
Wang F, He MM, Xiao J, Zhang YQ, Yuan XL, Fang WJ, Zhang Y, Wang W, Hu XH, Ma ZG, Yao YC, Zhuang ZX, Zhou FX, Ying JE, Yuan Y, Zou QF, Guo ZQ, Wu XY, Jin Y, Mai ZJ, Wang ZQ, Qiu H, Guo Y, Shi SM, Chen SZ, Luo HY, Zhang DS, Wang FH, Li YH, Xu RH. A Randomized, Open-Label, Multicenter, Phase 3 Study of High-Dose Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX ± Bevacizumab in Unresectable Untreated Metastatic Colorectal Cancer (VITALITY Study). Clin Cancer Res 2022; 28:4232-4239. [PMID: 35929990 PMCID: PMC9527503 DOI: 10.1158/1078-0432.ccr-22-0655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare the efficacy and safety of high-dose vitamin C plus FOLFOX ± bevacizumab versus FOLFOX ± bevacizumab as first-line treatment in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Between 2017 and 2019, histologically confirmed patients with mCRC (n = 442) with normal glucose-6-phosphate dehydrogenase status and no prior treatment for metastatic disease were randomized (1:1) into a control (FOLFOX ± bevacizumab) and an experimental [high-dose vitamin C (1.5 g/kg/d, intravenously for 3 hours from D1 to D3) plus FOLFOX ± bevacizumab] group. Randomization was based on the primary tumor location and bevacizumab prescription. RESULTS The progression-free survival (PFS) of the experimental group was not superior to the control group [median PFS, 8.6 vs. 8.3 months; HR, 0.86; 95% confidence interval (CI), 0.70-1.05; P = 0.1]. The objective response rate (ORR) and overall survival (OS) of the experimental and control groups were similar (ORR, 44.3% vs. 42.1%; P = 0.9; median OS, 20.7 vs. 19.7 months; P = 0.7). Grade 3 or higher treatment-related adverse events occurred in 33.5% and 30.3% of patients in the experimental and control groups, respectively. In prespecified subgroup analyses, patients with RAS mutation had significantly longer PFS (median PFS, 9.2 vs. 7.8 months; HR, 0.67; 95% CI, 0.50-0.91; P = 0.01) with vitamin C added to chemotherapy than with chemotherapy only. CONCLUSIONS High-dose vitamin C plus chemotherapy failed to show superior PFS compared with chemotherapy in patients with mCRC as first-line treatment but may be beneficial in patients with mCRC harboring RAS mutation.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Jian Xiao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yan-Qiao Zhang
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Xiang-Lin Yuan
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei-Jia Fang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yan Zhang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Wang
- The First People's Hospital of Foshan, Foshan, P.R. China
| | - Xiao-Hua Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Gang Ma
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Yi-Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Xiang Zhuang
- The Second Affiliated Hospital of Soochow University, Soochow, P.R. China
| | - Fu-Xiang Zhou
- Zhongnan Hospital of Wuhan University, Hubei Clinical Cancer Study Center, Wuhan, P.R. China
| | - Jie-Er Ying
- Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Ying Yuan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qing-Feng Zou
- Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zeng-Qing Guo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Xiang-Yuan Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zong-Jiong Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hong Qiu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Si-Mei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Shuang-Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Dong-Sheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| |
Collapse
|
41
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
42
|
Maekawa T, Miyake T, Tani M, Uemoto S. Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment. Front Oncol 2022; 12:981547. [PMID: 36203466 PMCID: PMC9531273 DOI: 10.3389/fonc.2022.981547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbic acid has attracted substantial attention for its potential antitumor effects by acting as an antioxidant in vivo and as a cofactor in diverse enzymatic reactions. However, solid proof of its clinical efficacy against cancer and the mechanism behind its effect have not been established. Moreover, cancer forms cancer-specific microenvironments and interacts with various cells, such as cancer-associated fibroblasts (CAFs), to maintain cancer growth and progression; however, the effect of ascorbic acid on the cancer microenvironment is unclear. This review discusses the effects and mechanisms of ascorbic acid on cancer, including the role of ascorbic acid concentration. In addition, we present future perspectives on the effects of ascorbic acid on cancer cells and the CAF microenvironment. Ascorbic acid has a variety of effects, which contributes to the complexity of these effects. Oral administration of ascorbic acid results in low blood concentrations (<0.2 mM) and acts as a cofactor for antioxidant effects, collagen secretion, and HIFα degradation. In contrast, intravenous treatment achieves large blood concentrations (>1 mM) and has oxidative-promoting actions that exert anticancer effects via reactive oxygen species. Therefore, intravenous administration at high concentrations is required to achieve the desired effects on cancer cells during treatment. Partial data on the effect of ascorbic acid on fibroblasts indicate that it may also modulate collagen secretion in CAFs and impart tumor-suppressive effects. Thus, future studies should verify the effect of ascorbic acid on CAFs. The findings of this review can be used to guide further research and clinical trials.
Collapse
Affiliation(s)
- Takeru Maekawa
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Toru Miyake
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
- *Correspondence: Toru Miyake,
| | - Masaji Tani
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | | |
Collapse
|
43
|
Zaher A, Stephens LM, Miller AM, Hartwig SM, Stolwijk JM, Petronek MS, Zacharias ZR, Wadas TJ, Monga V, Cullen JJ, Furqan M, Houtman JCD, Varga SM, Spitz DR, Allen BG. Pharmacological ascorbate as a novel therapeutic strategy to enhance cancer immunotherapy. Front Immunol 2022; 13:989000. [PMID: 36072595 PMCID: PMC9444023 DOI: 10.3389/fimmu.2022.989000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Pharmacological ascorbate (i.e., intravenous infusions of vitamin C reaching ~ 20 mM in plasma) is under active investigation as an adjuvant to standard of care anti-cancer treatments due to its dual redox roles as an antioxidant in normal tissues and as a prooxidant in malignant tissues. Immune checkpoint inhibitors (ICIs) are highly promising therapies for many cancer patients but face several challenges including low response rates, primary or acquired resistance, and toxicity. Ascorbate modulates both innate and adaptive immune functions and plays a key role in maintaining the balance between pro and anti-inflammatory states. Furthermore, the success of pharmacological ascorbate as a radiosensitizer and a chemosensitizer in pre-clinical studies and early phase clinical trials suggests that it may also enhance the efficacy and expand the benefits of ICIs.
Collapse
Affiliation(s)
- Amira Zaher
- Cancer Biology Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Laura M. Stephens
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Ann M. Miller
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Stacey M. Hartwig
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Jeffrey M. Stolwijk
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Michael S. Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Zeb R. Zacharias
- Human Immunology Core & Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Thaddeus J. Wadas
- Department of Radiology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Varun Monga
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Joseph J. Cullen
- Department of Surgery, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Muhammad Furqan
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Jon C. D. Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Steven M. Varga
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bryan G. Allen,
| |
Collapse
|
44
|
O’Leary BR, Ruppenkamp EK, Steers GJ, Du J, Carroll RS, Wagner BA, Buettner GR, Cullen JJ. Pharmacological Ascorbate Enhances Chemotherapies in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:684-693. [PMID: 36099493 PMCID: PMC9547864 DOI: 10.1097/mpa.0000000000002086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Elena K. Ruppenkamp
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garett J. Steers
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Rory S. Carroll
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph J. Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
45
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
46
|
Di Tano M, Longo VD. Fasting and cancer: from yeast to mammals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:81-106. [PMID: 36283768 DOI: 10.1016/bs.ircmb.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fasting and fasting mimicking diets extend lifespan and healthspan in mouse models and decrease risk factors for cancer and other age-related pathologies in humans. Normal cells respond to fasting and the consequent decrease in nutrients by down-regulating proto-oncogene pathways to enter a stress-resistant mode, which protects them from different cancer therapies. In contrast, oncogene mutations and the constitutive activation of pathways including RAS, AKT, and PKA allow cancer cells to disobey fasting-dependent anti-growth signal. Importantly, in different tumor types, fasting potentiates the toxicity of various therapies by increasing reactive oxygen species and oxidative stress, which ultimately leads to DNA damage and cell death. This effect is not limited to chemotherapy, since periodic fasting/FMD cycles potentiate the effects of tyrosine kinase inhibitors, hormone therapy, radiotherapy, and pharmacological doses of vitamin C. In addition, the anticancer effects of fasting/FMD can also be tumor-independent and involve an immunotherapy-like activation of T cell-dependent attack of tumor cells. Supported by a range of pre-clinical studies, clinical trials are beginning to confirm the safety and efficacy of fasting/FMD cycles in improving the potential of different cancer therapies, while decreasing side effects to healthy cells and tissues.
Collapse
Affiliation(s)
- Maira Di Tano
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
47
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
48
|
Banella C, Catalano G, Travaglini S, Pelosi E, Ottone T, Zaza A, Guerrera G, Angelini DF, Niscola P, Divona M, Battistini L, Screnci M, Ammatuna E, Testa U, Nervi C, Voso MT, Noguera NI. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel) 2022; 14:cancers14102565. [PMID: 35626170 PMCID: PMC9139619 DOI: 10.3390/cancers14102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute Myeloid Leukemias (AMLs) are rapidly progressive clonal neoplastic diseases. The overall 5-year survival rate is very poor: less than 5% in older patients aged over 65 years old. Elderly AML patients are often “unfit” for intensive chemotherapy, further highlighting the need of highly effective, well-tolerated new treatment options for AMLs. Growing evidence indicates that AML blasts feature a highly diverse and flexible metabolism consistent with the aggressiveness of the disease. Based on these evidences, we targeted the metabolic peculiarity and plasticity of AML cells with an association of ascorbate, which causes oxidative stress and interferes with hexokinase activity, and buformin, which completely shuts down mitochondrial contributions in ATP production. The ascorbate–buformin combination could be an innovative therapeutic option for elderly AML patients that are resistant to therapy. Abstract In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias’ (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate–buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
Collapse
Affiliation(s)
- Cristina Banella
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Health Sciences, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Gianfranco Catalano
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Travaglini
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Tiziana Ottone
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Zaza
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Daniela Francesca Angelini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, University of Rome Tor Vergata, 00144 Rome, Italy;
| | | | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Roma, Italy;
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100 Latina, Italy;
| | - Maria Teresa Voso
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| | - Nelida Ines Noguera
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| |
Collapse
|
49
|
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11050971. [PMID: 35624835 PMCID: PMC9137675 DOI: 10.3390/antiox11050971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH−, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH− has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au’s effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH− and ionizing radiation in pancreatic cancer treatment. Combining P-AscH− and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.
Collapse
|
50
|
Hunyady J. The Result of Vitamin C Treatment of Patients with Cancer: Conditions Influencing the Effectiveness. Int J Mol Sci 2022; 23:ijms23084380. [PMID: 35457200 PMCID: PMC9030840 DOI: 10.3390/ijms23084380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a weak sugar acid structurally related to glucose. All known physiological and biochemical functions of AA are due to its action as an electron donor. Ascorbate readily undergoes pH-dependent autoxidation creating hydrogen peroxide (H2O2). In vitro evidence suggests that vitamin C functions at low concentrations as an antioxidant while high concentration is pro-oxidant. Thus, both characters of AA might be translated into clinical benefits. In vitro obtained results and murine experiments consequently prove the cytotoxic effect of AA on cancer cells, but current clinical evidence for high-dose intravenous (i.v.) vitamin C's therapeutic effect is ambiguous. The difference might be caused by the missing knowledge of AA's actions. In the literature, there are many publications regarding vitamin C and cancer. Review papers of systematic analysis of human interventional and observational studies assessing i.v. AA for cancer patients' use helps the overview of the extensive literature. Based on the results of four review articles and the Cancer Information Summary of the National Cancer Institute's results, we analyzed 20 publications related to high-dose intravenous vitamin C therapy (HAAT). The analyzed results indicate that HAAT might be a useful cancer-treating tool in certain circumstances. The AA's cytotoxic effect is hypoxia-induced factor dependent. It impacts only the anoxic cells, using the Warburg metabolism. It prevents tumor growth. Accordingly, discontinuation of treatment leads to repeated expansion of the tumor. We believe that the clinical use of HAAT in cancer treatment should be reassessed. The accumulation of more study results on HAAT is desperately needed.
Collapse
Affiliation(s)
- János Hunyady
- Department of Dermatology, Medical Faculty, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|