1
|
Hu Y, Zhang W, Chen Z, Wu X, Xue S, Mao Y, Yi P, Wei J, Qian D, Wang X, Zhang P, Long H. Hypophysectomy, pituitary neuroadenolysis and pituitary radiosurgery for the treatment of refractory cancer pain: a historical review and mechanism investigation. Front Neurol 2025; 15:1529944. [PMID: 39866517 PMCID: PMC11757116 DOI: 10.3389/fneur.2024.1529944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Refractory cancer pain affects 10-20% of patients with advanced malignancies and is not adequately controlled by opioids. The intrathecal therapy is an effective interventional procedure for referral, but the implanted infusion pumps are costly and the refilling requires technical expertise. Hypophysectomy, in its three stages-surgical, chemical, and radiosurgical-has emerged as an alternative for managing this pain. However, the underlying mechanism remains elusive, with existing hypotheses unable to comprehensively account for both the initial and long-term analgesic effects. This literature review explores the historical evolution, clinical outcomes, and hypothesized mechanisms of hypophysectomy for pain relief. Surgical hypophysectomy initially demonstrated an 85.5% success rate but carried significant risks like diabetes insipidus and hypopituitarism. Chemical hypophysectomy reduced invasiveness, achieving 75.1% pain relief with fewer complications. Modern pituitary radiosurgery has improved safety while maintaining high efficacy (initial relief: 95.9%, long-term: 73.5%). The mechanisms underlying pain relief remain unclear but include tumor regression, increased β-endorphins, neuroendocrine modulation, and hypothalamic involvement. A new hypothesis suggests that radiosurgery induces hormone redistribution (e.g., oxytocin, vasopressin) through hypothalamic-pituitary modulation, contributing to both immediate and long-term analgesia. Despite its potential, unresolved issues such as optimal radiation dose, pain assessment standardization, and precise mechanisms limit widespread adoption. This review underscores the need for larger, homogenous studies to validate the safety and efficacy of hypophysectomy in treating refractory cancer pain. These findings offer a promising avenue for improving palliative care in oncology.
Collapse
Affiliation(s)
- Yuchen Hu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Wanghao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zijian Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peiyao Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiezuo Wei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dadi Qian
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingqin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Benko AL, Wright AD, Sunyer T, Kovacs WJ, Olsen NJ. Pituitary neuropeptides and B lymphocyte function. Scand J Immunol 2021; 94:e13041. [PMID: 33817820 DOI: 10.1111/sji.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 11/28/2022]
Abstract
This review discusses the accumulated evidence that pro-opiomelanocortin (POMC) gene products as well as other pituitary neuropeptides derived from related genes (Proenkephalin, PENK; Prodynorphin, PDYN, and Pronociceptin, PNOC) can exert direct effects on B lymphocytes to modulate their functions. We also review the available data on receptor systems that might be involved in the transmission of such hormonal signals to B cells.
Collapse
Affiliation(s)
- Ann L Benko
- Division of Rheumatology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | | | | | - William J Kovacs
- Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Nancy J Olsen
- Division of Rheumatology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
3
|
de Oliveira Costa B, Franco OL. Cryptic Host Defense Peptides: Multifaceted Activity and Prospects for Medicinal Chemistry. Curr Top Med Chem 2021; 20:1274-1290. [PMID: 32209042 DOI: 10.2174/1568026620666200325112425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Host defense peptides (HDPs) comprise a heterogeneous group of evolutionarily conserved and biologically active small molecules that are produced by different organisms. HDPs are widely researched because they often have multiple biological activities, for example antimicrobial, immunomodulatory and anticancer activity. In this context, in this review we focus on cryptic HDPs, molecules derived specifically from proteolytic processing of endogenous precursor proteins. Here, we explore the biological activity of such molecules and we further discuss the development of optimized sequences based on these natural cryptic HDPs. In addition, we present clinical-phase studies of cryptic HDPs (natural or optimized), and point out the possible applicability of these molecules in medicinal chemistry.
Collapse
Affiliation(s)
- Bruna de Oliveira Costa
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio Luiz Franco
- S-inova Biotech, Graduate Program in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, MS, Brazil.,Department of Genomic Sciences and Biotechnology, Center for Analysis of Proteomics and Biochemistry, Catholic University of Brasília, Brasília, DF, Brazil.,Department of Molecular Pathology, Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
4
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
5
|
Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci 2020; 40:12-21. [PMID: 31896560 DOI: 10.1523/jneurosci.0733-19.2019] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Collapse
|
6
|
Okano T, Sato K, Shirai R, Seki T, Shibata K, Yamashita T, Koide A, Tezuka H, Mori Y, Hirano T, Watanabe T. β-Endorphin Mediates the Development and Instability of Atherosclerotic Plaques. Int J Endocrinol 2020; 2020:4139093. [PMID: 32308678 PMCID: PMC7142353 DOI: 10.1155/2020/4139093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
β-Endorphin, an endogenous opioid peptide, and its μ-opioid receptor are expressed in brain, liver, and peripheral tissues. β-Endorphin induces endothelial dysfunction and is related to insulin resistance. We clarified the effects of β-endorphin on atherosclerosis. We assessed the effects of β-endorphin on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), foam cell formation, and the inflammatory phenotype in THP-1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro. We also assessed the effects of β-endorphin on aortic lesions in Apoe -/- mice in vivo. The μ-opioid receptor (OPRM1) was expressed in THP-1 monocytes, macrophages, HASMCs, HUVECs, and human aortic endothelial cells. β-Endorphin significantly increased THP-1 monocyte adhesion to HUVECs and induced upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin via nuclear factor-κB (NF-κB) and p38 phosphorylation in HUVECs. β-Endorphin significantly increased HUVEC proliferation and enhanced oxidized low-density lipoprotein-induced foam cell formation in macrophages. β-Endorphin also significantly shifted the macrophage phenotype to proinflammatory M1 rather than anti-inflammatory M2 via NF-κB phosphorylation during monocyte-macrophage differentiation and increased migration and apoptosis in association with c-jun-N-terminal kinase, p38, and NF-κB phosphorylation in HASMCs. Chronic β-endorphin infusion into Apoe -/- mice significantly aggravated the development of aortic atherosclerotic lesions, with an increase in vascular inflammation and the intraplaque macrophage/smooth muscle cell ratio, an index of plaque instability. Our study provides the first evidence that β-endorphin contributes to the acceleration of the progression and instability of atheromatous plaques. Thus, μ-opioid receptor antagonists may be useful for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Taisuke Okano
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomomi Seki
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Koichiro Shibata
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomoyuki Yamashita
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ayaka Koide
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hitomi Tezuka
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan
| |
Collapse
|
7
|
Littlejohn BP, Price DM, Neuendorff DA, Carroll JA, Vann RC, Riggs PK, Riley DG, Long CR, Randel RD, Welsh TH. Influence of prenatal transportation stress-induced differential DNA methylation on the physiological control of behavior and stress response in suckling Brahman bull calves. J Anim Sci 2020; 98:skz368. [PMID: 31807776 PMCID: PMC6986441 DOI: 10.1093/jas/skz368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The objective of this experiment was to examine potential differential methylation of DNA as a mechanism for altered behavioral and stress responses in prenatally stressed (PNS) compared with nonprenatally stressed (Control) young bull calves. Mature Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation (Transported group) or maintained as nontransported Controls (n = 48). From the offspring born to Transported and Control cows, a subset of 28-d-old intact bulls (n = 7 PNS; n = 7 Control) were evaluated for methylation of DNA of behavior and stress response-associated genes. Methylation of DNA from white blood cells was assessed via reduced representation bisulfite sequencing methods. Because increased methylation of DNA within gene promoter regions has been associated with decreased transcriptional activity of the corresponding gene, differentially methylated (P ≤ 0.05) CG sites (cytosine followed by a guanine nucleotide) located within promoter regions (n = 1,205) were used to predict (using Ingenuity Pathway Analysis software) alterations to canonical pathways in PNS compared with Control bull calves. Among differentially methylated genes (P ≤ 0.05) related to behavior and the stress response were OPRK1, OPRM1, PENK, POMC, NR3C2, TH, DRD1, DRD5, COMT, HTR6, HTR5A, GABRA4, GABRQ, and GAD2. Among altered (P < 0.05) signaling pathways related to behavior and the stress response were Opioid Signaling, Corticotropin-Releasing Hormone Signaling, Dopamine Receptor Signaling, Dopamine-DARPP32 Feedback in cAMP Signaling, Serotonin Receptor Signaling, and GABA Receptor Signaling. Alterations to behavior and stress response-related genes and canonical pathways supported previously observed elevations in temperament score and serum cortisol through weaning in the larger population of PNS calves from which bulls in this study were derived. Differential methylation of DNA and predicted alterations to behavior and stress response-related pathways in PNS compared with Control bull calves suggest epigenetic programming of behavior and the stress response in utero.
Collapse
Affiliation(s)
- Brittni P Littlejohn
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Deborah M Price
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | | | - Rhonda C Vann
- Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Raymond, MS
| | - Penny K Riggs
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - David G Riley
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | - Charles R Long
- Texas A&M AgriLife Research & Extension Center, Overton, TX
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| | | | - Thomas H Welsh
- Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX
| |
Collapse
|
8
|
Dothel G, Chang L, Shih W, Barbaro MR, Cremon C, Stanghellini V, De Ponti F, Mayer EA, Barbara G, Sternini C. µ-opioid receptor, β-endorphin, and cannabinoid receptor-2 are increased in the colonic mucosa of irritable bowel syndrome patients. Neurogastroenterol Motil 2019; 31:e13688. [PMID: 31336406 PMCID: PMC6791736 DOI: 10.1111/nmo.13688] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The gut immune, cannabinoid, and opioid systems constitute an integrated network contributing to visceral sensation and pain modulation. We aimed to assess the expression of the µ-opioid receptor (MOR), its ligand β-endorphin (β-END), and cannabinoid receptor-2 (CB2 ) in patients with irritable bowel syndrome (IBS) and asymptomatic controls (AC) and their correlation with sex and symptom perception. METHODS Mucosal biopsies were obtained from the left colon of 31 IBS patients (45% women) with predominant constipation (IBS-C, 9) or diarrhea (IBS-D, 10) or with mixed bowel habits (IBS-M, 12) and 32 AC (44% women) and processed for qRT-PCR, Western blotting, and immunohistochemistry. KEY RESULTS µ-opioid receptor and CB2 mRNA and protein expression and β-END protein levels were increased in patients with IBS compared to AC (all Ps=0.021). A significant sex by IBS interaction was found in relation to CB2 mRNA expression (P = .003) with women showing a markedly higher expression to men (P = .035). In contrast, in AC, men had higher expression than women (P = .033). β-END, MOR, and CB2 immunoreactivities (IR) were localized to CD4+T cells including EMR-1+ eosinophils and CD31+ T cells but not to mast cells. CONCLUSIONS The increased expression of MOR, β-END, and CB2 in the mucosa of IBS patients, where they are localized to immune cells, suggests that opioid and cannabinoid systems play an immune-related compensatory role in visceral pain in IBS patients. Further work is necessary to support this hypothesis.
Collapse
Affiliation(s)
- G Dothel
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - L Chang
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, University of California Los Angeles, USA
| | - W Shih
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, USA
| | - MR Barbaro
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - C Cremon
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - V Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - F De Ponti
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - EA Mayer
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, USA
| | - G Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - C Sternini
- CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, USA
| |
Collapse
|
9
|
Chaskiel L, Bristow AD, Bluthé RM, Dantzer R, Blomqvist A, Konsman JP. Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain Behav Immun 2019; 81:560-573. [PMID: 31310797 DOI: 10.1016/j.bbi.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022] Open
Abstract
A reduction in food intake is commonly observed after bacterial infection, a phenomenon that can be reproduced by peripheral administration of Gram-negative bacterial lipopolysaccharide (LPS) or interleukin-1beta (IL-1β), a pro-inflammatory cytokine released by LPS-activated macrophages. The arcuate nucleus of the hypothalamus (ARH) plays a major role in food intake regulation and expresses IL-1 type 1 receptor (IL-1R1) mRNA. In the present work, we tested the hypothesis that IL-1R1 expressing cells in the ARH mediate IL-1β and/or LPS-induced hypophagia in the rat. To do so, we developed an IL-1β-saporin conjugate, which eliminated IL-R1-expressing neurons in the hippocampus, and micro-injected it into the ARH prior to systemic IL-1β and LPS administration. ARH IL-1β-saporin injection resulted in loss of neuropeptide Y-containing cells and attenuated hypophagia and weight loss after intraperitoneal IL-1β, but not LPS, administration. In conclusion, the present study shows that ARH NPY-containing neurons express functional IL-1R1s that mediate peripheral IL-1β-, but not LPS-, induced hypophagia. Our present and previous findings indicate that the reduction of food intake after IL-1β and LPS are mediated by different neural pathways.
Collapse
Affiliation(s)
- Léa Chaskiel
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Adrian D Bristow
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Rose-Marie Bluthé
- Psychoneuroimmunology, Nutrition and Genetics, UMR CNRS 5226-INRA 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Robert Dantzer
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Jan Pieter Konsman
- UMR CNRS 5287 Aquitaine Institute for Integrative and Cognitive Neuroscience, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
10
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
11
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
12
|
Dirk BS, End C, Pawlak EN, Van Nynatten LR, Jacob RA, Heit B, Dikeakos JD. PACS-1 and adaptor protein-1 mediate ACTH trafficking to the regulated secretory pathway. Biochem Biophys Res Commun 2018; 507:519-525. [PMID: 30458990 DOI: 10.1016/j.bbrc.2018.11.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
The regulated secretory pathway is a specialized form of protein secretion found in endocrine and neuroendocrine cell types. Pro-opiomelanocortin (POMC) is a pro-hormone that utilizes this pathway to be trafficked to dense core secretory granules (DCSGs). Within this organelle, POMC is processed to multiple bioactive hormones that play key roles in cellular physiology. However, the complete set of cellular membrane trafficking proteins that mediate the correct sorting of POMC to DCSGs remain unknown. Here, we report the roles of the phosphofurin acidic cluster sorting protein - 1 (PACS-1) and the clathrin adaptor protein 1 (AP-1) in the targeting of POMC to DCSGs. Upon knockdown of PACS-1 and AP-1, POMC is readily secreted into the extracellular milieu and fails to be targeted to DCSGs.
Collapse
Affiliation(s)
- Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Christopher End
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
13
|
Miller WL. The Hypothalamic-Pituitary-Adrenal Axis: A Brief History. Horm Res Paediatr 2018; 89:212-223. [PMID: 29719288 DOI: 10.1159/000487755] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is central to homeostasis, stress responses, energy metabolism, and neuropsychiatric function. The history of this complex system involves discovery of the relevant glands (adrenal, pituitary, hypothalamus), hormones (cortisol, corticotropin, corticotropin-releasing hormone), and the receptors for these hormones. The adrenal and pituitary were identified by classical anatomists, but most of this history has taken place rather recently, and has involved complex chemistry, biochemistry, genetics, and clinical investigation. The integration of the HPA axis with modern neurology and psychiatry has cemented the role of endocrinology in contemporary studies of behavior.
Collapse
|
14
|
Deshpande N, Moricca G, Saullo F, Di Martino L, Kwa G. Some Aspects of Pituitary Function after Neuroadenolysis in Patients with Metastatic Cancer. TUMORI JOURNAL 2018; 67:355-9. [PMID: 6274071 DOI: 10.1177/030089168106700413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of neuroadenolysis on plasma titres of β-endorphin, β-lipotropin, ACTH, TSH and prolactin have been investigated in five patients with metastatic cancer who responded to the treatment and have been in remission for more than four years and in five others who were undergoing the treatment for the first time for pain due to cancer metastases. β-endorphin, β-lipotropin and ACTH titres were within the normal ranges of values in both categories of patients but post-neuroadenolysis titres of these peptides were higher than those before the treatment. The ability to secrete TSH and prolactin and to respond to thyroid stimulating hormone releasing hormone (TRH) remains intact following the treatment. However, whereas basal TSH titres and response to TRH was lower in the majority of patients, no such effect was observed on prolactin secretion. Plasma titres of prolactin and TSH were below the sensitivity of the method in the five patients who are in remission for more than four years. These preliminary findings suggest that neuroadenolysis probably affects some mechanism(s) associated with the control of β-endorphin, β-lipotropin and ACTH synthesis.
Collapse
|
15
|
Blom JMC, Ottaviani E. Immune-Neuroendocrine Interactions: Evolution, Ecology, and Susceptibility to Illness. Med Sci Monit Basic Res 2017; 23:362-367. [PMID: 29142191 PMCID: PMC5701458 DOI: 10.12659/msmbr.907637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The integration between immune and neuroendocrine systems is crucial for maintaining homeostasis from invertebrates to humans. In the first, the phagocytic cell, i.e., the immunocyte, is the main actor, while in the latter, the principle player is the lymphocyte. Immunocytes are characterized by the presence of pro-opiomelanocortin (POMC) peptides, CRH, and other molecules that display a significant similarity to their mammalian counterparts regarding their functions, as both are mainly involved in fundamental functions such as immune (chemotaxis, phagocytosis, cytotoxicity, etc.) and neuroendocrine (stress) responses. Furthermore, the immune-neuroendocrine system provides vital answers to ecological and immunological demands in terms of economy and efficiency. Finally, susceptibility to disease emerges as the result of a continuous dynamic interaction between the world within and the world outside. New fields such as ecological immunology study the susceptibility to pathogens in an evolutionary perspective while the field of neuro-endocrine-immunology studies the susceptibility from a more immediate perspective.
Collapse
Affiliation(s)
- Johanna M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology University of Modena and Reggio Emilia, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Romanov RA, Alpár A, Hökfelt T, Harkany T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J Endocrinol 2017; 232:R161-R172. [PMID: 28057867 DOI: 10.1530/joe-16-0256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as 'stress neurons'. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish 'stress neurons' of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.
Collapse
Affiliation(s)
- Roman A Romanov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alán Alpár
- MTA-SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologyHungarian Academy of Sciences, Budapest, Hungary
- Department of AnatomySemmelweis University, Budapest, Hungary
| | - Tomas Hökfelt
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of NeuroscienceKarolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Cawley NX, Li Z, Loh YP. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J Mol Endocrinol 2016; 56:T77-97. [PMID: 26880796 PMCID: PMC4899099 DOI: 10.1530/jme-15-0323] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
Pro-opiomelanocortin (POMC) is a prohormone that encodes multiple smaller peptide hormones within its structure. These peptide hormones can be generated by cleavage of POMC at basic residue cleavage sites by prohormone-converting enzymes in the regulated secretory pathway (RSP) of POMC-synthesizing endocrine cells and neurons. The peptides are stored inside the cells in dense-core secretory granules until released in a stimulus-dependent manner. The complexity of the regulation of the biosynthesis, trafficking, and secretion of POMC and its peptides reflects an impressive level of control over many factors involved in the ultimate role of POMC-expressing cells, that is, to produce a range of different biologically active peptide hormones ready for action when signaled by the body. From the discovery of POMC as the precursor to adrenocorticotropic hormone (ACTH) and β-lipotropin in the late 1970s to our current knowledge, the understanding of POMC physiology remains a monumental body of work that has provided insight into many aspects of molecular endocrinology. In this article, we describe the intracellular trafficking of POMC in endocrine cells, its sorting into dense-core secretory granules and transport of these granules to the RSP. Additionally, we review the enzymes involved in the maturation of POMC to its various peptides and the mechanisms involved in the differential processing of POMC in different cell types. Finally, we highlight studies pertaining to the regulation of ACTH secretion in the anterior and intermediate pituitary and POMC neurons of the hypothalamus.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaojin Li
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Y Peng Loh
- Section on Cellular NeurobiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Chrétien M, Mbikay M. 60 YEARS OF POMC: From the prohormone theory to pro-opiomelanocortin and to proprotein convertases (PCSK1 to PCSK9). J Mol Endocrinol 2016; 56:T49-62. [PMID: 26762158 DOI: 10.1530/jme-15-0261] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Pro-opiomelanocortin (POMC), is a polyprotein expressed in the pituitary and the brain where it is proteolytically processed into peptide hormones and neuropeptides with distinct biological activities. It is the prototype of multipotent prohormones. The prohormone theory was first suggested in 1967 when Chrétien and Li discovered γ-lipotropin and observed that (i) it was part of β-lipotropin (β-LPH), a larger polypeptide characterized 2 years earlier and (ii) its C-terminus was β-melanocyte-stimulating hormone (β-MSH). This discovery led them to propose that the lipotropins might be related biosynthetically to the biologically active β-MSH in a precursor to end product relationship. The theory was widely confirmed in subsequent years. As we celebrate the 50th anniversary of the sequencing of β-LPH, we reflect over the lessons learned from the sequencing of those proteins; we explain their extension to the larger POMC precursor; we examine how the theory of precursor endoproteolysis they inspired became relevant for vast fields in biology; and how it led, after a long and arduous search, to the novel proteolytic enzymes called proprotein convertases. This family of nine enzymes plays multifaceted functions in growth, development, metabolism, endocrine, and brain functions. Their genetics has provided many insights into health and disease. Their therapeutic targeting is foreseeable in the near future. Thus, what started five decades ago as a theory based on POMC fragments, has opened up novel and productive avenues of biological and medical research, including, for our own current interest, a highly intriguing hypocholesterolemic Gln152His PCSK9 mutation in French-Canadian families.
Collapse
Affiliation(s)
- Michel Chrétien
- Laboratory of Functional EndoproteolysisClinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Majambu Mbikay
- Laboratory of Functional EndoproteolysisClinical Research Institute of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Bicknell AB. 60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth. J Mol Endocrinol 2016; 56:T39-48. [PMID: 26759392 DOI: 10.1530/jme-15-0269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered.
Collapse
Affiliation(s)
- Andrew B Bicknell
- School of Biological SciencesUniversity of Reading, Whiteknights, Reading, UK
| |
Collapse
|
20
|
Smyth DG. 60 YEARS OF POMC: Lipotropin and beta-endorphin: a perspective. J Mol Endocrinol 2016; 56:T13-25. [PMID: 26903509 DOI: 10.1530/jme-16-0033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 11/08/2022]
Abstract
Many important fields of research had a humble origin. In the distant past, A J P Martin's discovery that amino acids could be separated by paper chromatography and Moore and Stein's use of columns for quantitative amino acid analysis provided the first steps towards the determination of structure in complex biologically active molecules. They opened the door to reveal the essential relationship that exists between structure and function. In molecular endocrinology, for example, striking advances have been made by chemists with their expertise in the identification of structure working with biologists who contributed valuable knowledge and experience. Advantage was gained from the convergence of different background, and it is notable that the whole is greater than the sum. In the determination of structure, it may be recalled that four of the world's great pioneers (Archibald Martin, Rodney Porter, Fred Sanger and Vincent du Vigneaud) were acknowledged for their fundamental contributions when individually they were awarded the Nobel Prize. They foresaw that the identification of structure would prove of outstanding importance in the future. Indeed, study of the structures of β-endorphin and enkephalin and the different forms of opiate activity they engender has led to a transformation in our understanding of chemical transmission in the brain.
Collapse
Affiliation(s)
- D G Smyth
- Department of EndocrinologyWilliam Harvey Research Institute, London, UK
| |
Collapse
|
21
|
Malagoli D, Mandrioli M, Tascedda F, Ottaviani E. Circulating phagocytes: the ancient and conserved interface between immune and neuroendocrine function. Biol Rev Camb Philos Soc 2015; 92:369-377. [PMID: 26548761 DOI: 10.1111/brv.12234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Immune and neuroendocrine functions display significant overlap in highly divergent and evolutionarily distant models such as molluscs, crustaceans, insects and mammals. Fundamental players in this crosstalk are professional phagocytes: macrophages in vertebrates and immunocytes in invertebrates. Although they have different developmental origins, macrophages and immunocytes possess comparable functions and differentiate under the control of evolutionarily conserved transcription factors. Macrophages and immunocytes share their pools of receptors, signalling molecules and pathways with neural cells and the neuro-endocrine system. In crustaceans, adult transdifferentiation of circulating haemocytes into neural cells has been documented recently. In light of developmental, molecular and functional evidence, we propose that the immune-neuroendocrine role of circulating phagocytes pre-dates the split of protostomian and deuterostomian superphyla and has been conserved during the evolution of the main groups of metazoans.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| |
Collapse
|
22
|
|
23
|
Moon HR, Won CH, Chang SE, Lee MW, Choi JH, Moon KC. Generalised hyperpigmentation caused by ectopic adrenocorticotropic hormone syndrome with recurrent thymic neuroendocrine carcinoma. Australas J Dermatol 2014; 56:131-3. [PMID: 25123488 DOI: 10.1111/ajd.12195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Abstract
Ectopic adrenocorticotropic hormone (ACTH) syndrome is a rare cause of generalised hyperpigmentation. The clinical features are due to the excessive ectopic secretion of adenocorticotropin by diverse neuroendocrine or non-endocrine tumours. Here, we describe a rare case of ectopic ACTH syndrome developing from recurring thymic neuroendocrine carcinoma, which first presented as generalised hyperpigmentation.
Collapse
Affiliation(s)
- Hye-Rim Moon
- Department of Dermatology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Smith CJA, Bensing S, Maltby VE, Zhang M, Scott RJ, Smith R, Kämpe O, Hökfelt T, Crock PA. Intermediate lobe immunoreactivity in a patient with suspected lymphocytic hypophysitis. Pituitary 2014; 17:22-9. [PMID: 23329361 DOI: 10.1007/s11102-013-0461-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphocytic hypophysitis is an organ-specific autoimmune disease characterised by destruction of pituitary hormone-secreting cells due to attack by self-reactive T lymphocytes. The spectrum of pituitary autoantibodies characterised by indirect immunofluorescence (IF) in these patients has not been substantially defined. The purpose of this study was to determine the spectrum of pituitary autoantibodies in 16 lymphocytic hypophysitis patients. Pituitary sections were prepared from guinea pigs and sera from 16 lymphocytic hypophysitis patients (13 biopsy proven and 3 suspected cases) and 13 healthy controls were evaluated for immunoreactivity to the pituitary tissue by immunofluorescence. A single patient was found to have high titre pituitary autoantibodies against guinea pig pituitary tissue. Immunoreactivity was directed against cells of the intermediate lobe. We present the case report of the patient who is a 24 year old woman that presented with headaches, polyuria and polydipsia. A uniformly enlarged pituitary mass was visible on MRI and a diagnosis of suspected lymphocytic hypophysitis was made. Based on our IF study, we postulate this patient has an autoimmune process directed towards the major cell type in the intermediate lobe, the melanotroph. Pre-adsorption with peptides representing adrenocorticotropic hormone, α-melanocyte stimulating hormone or β-endorphin did not affect the IF signal suggesting our patient's pituitary autoantibodies may target some other product of Proopiomelanocortin (POMC) processing, such as corticotrophin-like intermediate peptide or γ-lipoprotein. Alternatively, the autoantibodies may target a peptide completely unrelated to POMC processing.
Collapse
Affiliation(s)
- Casey Jo Anne Smith
- Department of Paediatric Endocrinology and Diabetes, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nie Y, Ferrini MG, Liu Y, Anghel A, Paez Espinosa EV, Stuart RC, Lutfy K, Nillni EA, Friedman TC. Morphine treatment selectively regulates expression of rat pituitary POMC and the prohormone convertases PC1/3 and PC2. Peptides 2013; 47:99-109. [PMID: 23891651 PMCID: PMC3787842 DOI: 10.1016/j.peptides.2013.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.
Collapse
Affiliation(s)
- Ying Nie
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Monica G. Ferrini
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Adrian Anghel
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Enma V. Paez Espinosa
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
| | - Ronald C. Stuart
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | - Kabirullah Lutfy
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Eduardo A. Nillni
- Division of Endocrinology, Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island 02903, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Department of Medicine, Charles R. Drew University of Medicine & Science-UCLA School of Medicine, Los Angeles, CA 90059, USA
- Division of Endocrinology, Department of Medicine, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
26
|
Kolomin T, Shadrina M, Slominsky P, Limborska S, Myasoedov N. A New Generation of Drugs: Synthetic Peptides Based on Natural Regulatory Peptides. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/nm.2013.44035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
|
28
|
Chrétien M. My road to Damascus: how I converted to the prohormone theory and the proprotein convertases. Biochem Cell Biol 2012. [PMID: 23194189 DOI: 10.1139/o2012-031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
My desire as a young endocrinologist to improve my clinical skills through a better knowledge of hormone chemistry led me to serendipitous discoveries and unexpected horizons. The first discovery, published in 1967, revealed that peptide hormones are derived from endoproteolytic cleavages of larger precursor polypeptides. It was the foundation of the prohormone theory. Initially thought to apply to a few hormones, the theory rapidly extended to many proteins, including neuropeptides, neurotrophins, growth and transcription factors, receptors, extracellular matrix proteins, bacterial toxins, and viral glycoproteins. Its endoproteolytic activation mechanism has become a fundamental cellular process, affecting many biological functions. It implied the existence of specific endoproteolytic enzymes. These proprotein convertases were discovered in 1990. They have been shown to play a wide range of important roles in health and disease. They have opened up novel therapeutic avenues. Inactivation of PCSK9 to reduce plasma cholesterol is currently the most promising. To make this good thing even better, I recently discovered in a French Canadian family a potent PCSK9 (Gln152His) mutation that significantly lowers plasma cholesterol and should confer cardiovascular longevity. The discovery helped me to complete the loop: "From the bedside to the bench and back to the bedside."
Collapse
Affiliation(s)
- Michel Chrétien
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
29
|
Samir P, Link AJ. Analyzing the cryptome: uncovering secret sequences. AAPS JOURNAL 2011; 13:152-8. [PMID: 21327597 DOI: 10.1208/s12248-011-9252-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 12/23/2010] [Indexed: 12/21/2022]
Abstract
The mammalian cryptome consists of bioactive peptides generated by the proteolysis of precursor proteins. It is speculated that the cryptide repertoire increases the complexity of the proteome by an order of magnitude. Cryptides have been found to function in a wide range of processes including neuronal signaling, antigen presentation, and the inflammatory response. Due to their potential as therapeutic agents, there has been an increasing interest in studying cryptides. In this review, we discuss different approaches for discovering these hidden peptides and how proteomic tools can be utilized to aid in their identification and characterization.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | |
Collapse
|
30
|
Galvão TFG, Matos KC, Brum PC, Negrão CE, Luz PLD, Chagas ACP. Cardioprotection conferred by exercise training is blunted by blockade of the opioid system. Clinics (Sao Paulo) 2011; 66:151-7. [PMID: 21437452 PMCID: PMC3044560 DOI: 10.1590/s1807-59322011000100026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/27/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES To investigate the effect of opioid receptor blockade on the myocardial protection conferred by chronic exercise and to compare exercise training with different strategies of myocardial protection (opioid infusion and brief periods of ischemia-reperfusion) preceding irreversible left anterior descending coronary ligation. INTRODUCTION The acute cardioprotective effects of exercise training are at least partly mediated through opioid receptor-dependent mechanisms in ischemia-reperfusion models. METHODS Male Wistar rats (n = 76) were randomly assigned to 7 groups: (1) control; (2) exercise training; (3) morphine; (4) intermittent ischemia-reperfusion (three alternating periods of left anterior descending coronary occlusion and reperfusion); (5) exercise training+morphine; (6) naloxone (a non-selective opioid receptor blocker) plus morphine; (7) naloxone before each exercise-training session. Myocardial infarction was established in all groups by left anterior descending coronary ligation. Exercise training was performed on a treadmill for 60 minutes, 5 times/week, for 12 weeks, at 60% peak oxygen (peak VO₂). Infarct size was histologically evaluated. RESULTS Exercise training significantly increased exercise capacity and ΔVO2 (VO₂ peak - VO₂ rest) (p < 0.01 vs. sedentary groups). Compared with control, all treatment groups except morphine plus naloxone and exercise training plus naloxone showed a smaller infarcted area (p < 0.05). No additional decrease in infarct size occurred in the exercise training plus morphine group. No difference in myocardial capillary density (p = 0.88) was observed in any group. CONCLUSIONS Exercise training, morphine, exercise training plus morphine and ischemia-reperfusion groups had a smaller infarcted area than the control group. The effect of chronic exercise training in decreasing infarct size seems to occur, at least in part, through the opioid receptor stimulus and not by increasing myocardial perfusion.
Collapse
Affiliation(s)
- Tatiana F G Galvão
- Heart Institute, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
|
33
|
Changes in adaptability following perinatal morphine exposure in juvenile and adult rats. Eur J Pharmacol 2010; 654:166-72. [PMID: 21147096 DOI: 10.1016/j.ejphar.2010.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
The problem of drug abuse among pregnant women causes a major concern. The aim of the present study was to examine the adaptive consequences of long term maternal morphine exposure in offspring at different postnatal ages, and to see the possibility of compensation, as well. Pregnant rats were treated daily with morphine from the day of mating (on the first two days 5mg/kgs.c. than 10mg/kg) until weaning. Male offspring of dams treated with physiological saline served as control. Behavior in the elevated plus maze (EPM; anxiety) and forced swimming test (FST; depression) as well as adrenocorticotropin and corticosterone hormone levels were measured at postpartum days 23-25 and at adult age. There was only a tendency of spending less time in the open arms of the EPM in morphine treated rats at both ages, thus, the supposed anxiogenic impact of perinatal exposure with morphine needs more focused examination. In response to 5min FST morphine exposed animals spent considerable longer time with floating and shorter time with climbing at both ages which is an expressing sign of depression-like behavior. Perinatal morphine exposure induced a hypoactivity of the stress axis (adrenocorticotropin and corticosterone elevations) to strong stimulus (FST). Our results show that perinatal morphine exposure induces long term depression-like changes. At the same time the reactivity to the stress is failed. These findings on rodents presume that the progenies of morphine users could have lifelong problems in adaptive capability and might be prone to develop psychiatric disorders.
Collapse
|
34
|
Bijl WAAJ, van Nispen JW, Greven HM. Synthesis and melanotropic activity of γ-melanotropin. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19811000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
|
40
|
|
41
|
|
42
|
Abstract
AbstractA model of fear and pain is presented in which the two are assumed to activate totally different classes of behavior. Fear, produced by stimuli that are associated with painful events, results in defensive behavior and the inhibition of pain and pain-related behaviors. On the other hand, pain, produced by injurious stimulation, motivates recuperative behaviors that promote healing. In this model injurious stimulation, on the one hand, and the expectation of injurious stimulation, on the other hand, activate entirely different motivational systems which serve entirely different functions. The fear motivation system activates defensive behavior, such as freezing and flight from a frightening situation, and its function is to defend the animal against natural dangers, such as predation. A further effect of fear motivation is to organize the perception of environmental events so as to facilitate the perception of danger and safety. The pain motivation system activates recuperative behaviors, including resting and body-care responses, and its function is to promote the animal's recovery from injury. Pain motivation also selectively facilitates the perception of nociceptive stimulation. Since the two kinds of motivation serve different and competitive functions, it might be expected that they would interact through some kind of mutual inhibition. Recent research is described which indicates that this is the case. The most important connection is the inhibition of pain by fear; fear has the top priority. This inhibition appears to be mediated by an endogenous analgesic mechanism involving the endorphins. The model assumes that fear triggers the endorphin mechanism, thereby inhibiting pain motivation and recuperative behaviors that might compete with effective defensive behavior.
Collapse
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
Vuong C, Van Uum SHM, O'Dell LE, Lutfy K, Friedman TC. The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Rev 2010; 31:98-132. [PMID: 19903933 PMCID: PMC2852206 DOI: 10.1210/er.2009-0009] [Citation(s) in RCA: 355] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 10/02/2009] [Indexed: 02/07/2023]
Abstract
Opioid abuse has increased in the last decade, primarily as a result of increased access to prescription opioids. Physicians are also increasingly administering opioid analgesics for noncancer chronic pain. Thus, knowledge of the long-term consequences of opioid use/abuse has important implications for fully evaluating the clinical usefulness of opioid medications. Many studies have examined the effect of opioids on the endocrine system; however, a systematic review of the endocrine actions of opioids in both humans and animals has, to our knowledge, not been published since 1984. Thus, we reviewed the literature on the effect of opioids on the endocrine system. We included both acute and chronic effects of opioids, with the majority of the studies done on the acute effects although chronic effects are more physiologically relevant. In humans and laboratory animals, opioids generally increase GH and prolactin and decrease LH, testosterone, estradiol, and oxytocin. In humans, opioids increase TSH, whereas in rodents, TSH is decreased. In both rodents and humans, the reports of effects of opioids on arginine vasopressin and ACTH are conflicting. Opioids act preferentially at different receptor sites leading to stimulatory or inhibitory effects on hormone release. Increasing opioid abuse primarily leads to hypogonadism but may also affect the secretion of other pituitary hormones. The potential consequences of hypogonadism include decreased libido and erectile dysfunction in men, oligomenorrhea or amenorrhea in women, and bone loss or infertility in both sexes. Opioids may increase or decrease food intake, depending on the type of opioid and the duration of action. Additionally, opioids may act through the sympathetic nervous system to cause hyperglycemia and impaired insulin secretion. In this review, recent information regarding endocrine disorders among opioid abusers is presented.
Collapse
Affiliation(s)
- Cassidy Vuong
- Division of Endocrinology, Charles Drew University of Medicine & Sciences, 1731 East 120th Street, Los Angeles, California 90059, USA
| | | | | | | | | |
Collapse
|
50
|
Síndrome de Nelson: una causa infrecuente de hiperpigmentación cutánea generalizada. ACTAS DERMO-SIFILIOGRAFICAS 2010. [DOI: 10.1016/j.ad.2009.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|