1
|
Rahangdale R, Ghormode P, Tender T, Balireddy S, Birangal S, Kishore R, Mohammad FS, Pasupuleti M, Chandrashekar H R. Anti-HSV activity of nectin-1-derived peptides targeting HSV gD: an in-silico and in-vitro approach. J Biomol Struct Dyn 2024:1-14. [PMID: 38720617 DOI: 10.1080/07391102.2024.2349525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/24/2024] [Indexed: 05/22/2024]
Abstract
Herpes simplex virus (HSV) infections affect a wide range of the global population. The emergence of resistance to the existing anti-HSV therapy highlights the necessity for an innovative strategy. The interaction of HSV gD with its main host receptor nectin-1 is a potential target for new antiviral drugs. The aim of this study was to develop a peptide derived from nectin-1 targeting HSV gD using the in-silico method and evaluate them for anti-HSV activity. Residues 59-133 of the Nectin-1 V-domain constitute the interaction interface with HSV gD. Bioinformatic tools viz., PEP-FOLD3, ClusPro 2.0, HawkDock and Desmond were used to model the peptide and confirm its binding specificity with HSV gD protein. The peptides with potential interactions were custom synthesized and anti-HSV activity was evaluated in vitro against HSV-1 and HSV-2 by CPE inhibition assay. Five peptide sequences were identified as exhibiting good interaction with HSV-gD proteins. Among them, peptide N1 (residues 76-90) offered maximum protection against HSV-1 (66.57%) and HSV-2 (71.12%) infections. Modification of the identified peptide through peptidomimetic approaches may further enhance the activity and stability of the identified peptide.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Parnavi Ghormode
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raj Kishore
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Mukesh Pasupuleti
- Microbiology Division, Council of Scientific and Industrial Research, Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghu Chandrashekar H
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Spear PG. Opportunities, Technology, and the Joy of Discovery. Annu Rev Virol 2022; 9:1-17. [PMID: 35363539 DOI: 10.1146/annurev-virology-100520-012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My grandparents were immigrants. My paternal grandfather was illiterate. Yet my parents were able to complete college and to become teachers. I had a conventional upbringing in a small town in Florida, graduating from high school in 1960. I was fortunate enough to graduate cum laude from Florida State University and to earn other credentials leading to faculty positions at outstanding institutions of higher education: the University of Chicago and Northwestern University. At a time when women were rarely the leaders of research groups, I was able to establish a well-funded research program and to make contributions to our understanding of viral entry into cells. My best research was done after I became confident enough to seek productive interactions with collaborators. I am grateful for the collaborators and collaborations that moved our field forward and for my trainees who have gone on to successes in many different careers. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
4
|
Marino A, Pergolizzi S, Cimino F, Lauriano ER, Speciale A, D'Angelo V, Sicurella M, Argnani R, Manservigi R, Marconi P. Role of Herpes Simplex Envelope Glycoprotein B and Toll-Like Receptor 2 in Ocular Inflammation: An ex vivo Organotypic Rabbit Corneal Model. Viruses 2019; 11:v11090819. [PMID: 31487910 PMCID: PMC6783931 DOI: 10.3390/v11090819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
It has been recently reported, using in vitro studies, that the herpes simplex virus 1 (HSV-1) encoded envelope glycoprotein B (gB1) interacts with cell surface toll-like receptor 2 (TLR2) and induces the secretion of interleukin-8 (IL8), a representative marker of inflammatory cytokine activation. The purpose of this study is to investigate the role of gB1 in activating host inflammatory responses by using a secreted form of gB1 (gB1s) and an ex vivo organotypic rabbit corneal model. Abraded corneas exposed to gB1s alone or to the recombinant protein mixed with anti gB polyclonal antibody were cultured in an air-liquid interface. The corneas exposed to gB1s show the appearance of mydriasis and high levels of TLR2 and IL-8 mRNAs transcripts were detected in the superficial layer of corneal epithelial cells. Histological stain and immunohistochemical analyses revealed morphological changes in the epithelium of the treated corneas and variations in expression and localization of TLR2. Collectively these findings provide new insight into the pathogenesis of HSV-1 ocular infection by demonstrating the leading role of gB in activating an inflammatory response and in the appearance of mydriasis, a sign of HSV-1 anterior uveitis.
Collapse
Affiliation(s)
- Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Mariaconcetta Sicurella
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, Via Fossato di Mortara 64/A, 44121 Ferrara, Italy
| | - Rafaela Argnani
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Roberto Manservigi
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences (DipSCF), University of Ferrara, Via Fossato di Mortara 64/A, 44121 Ferrara, Italy.
| |
Collapse
|
5
|
Abstract
ABSTRACT Enveloped viruses encode proteins that can induce cell fusion to allow spread of infection without exposure to immune surveillance. In this review, we discuss cell fusion events caused by neurotropic α-herpesviruses. Syncytia (large, multinucleated cells) are clinically indicative of α herpesvirus infections, and peripheral neuropathies are clinical hallmarks. We examine the viral and cellular factors required for cell fusion, as well as mutations which confer a more aggressive ‘hypersyncytial’ phenotype. Finally, we consider the causes of fusion events in infected neurons, and the implications for neuronal dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Anthony E Ambrosini
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
The amino terminus of herpes simplex virus type 1 glycoprotein K (gK) modulates gB-mediated virus-induced cell fusion and virion egress. J Virol 2009; 83:12301-13. [PMID: 19793812 DOI: 10.1128/jvi.01329-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKDelta31-47, gKDelta31-68, and gKDelta31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKDelta31-47 and gKDelta31-117 exhibited a gK-null (DeltagK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKDelta31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKDelta31-47 and gKDelta31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBDelta28syn) caused extensive virus-induced cell fusion. However, the gBDelta28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKDelta31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKDelta31-68, DeltagK, or UL20-null virus. The gKa peptide complemented the gKDelta31-47 and gKDelta31-68 mutant viruses for infectious-virus production and for gKDelta31-68/gBDelta28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.
Collapse
|
7
|
Phosphorylation of the U(L)31 protein of herpes simplex virus 1 by the U(S)3-encoded kinase regulates localization of the nuclear envelopment complex and egress of nucleocapsids. J Virol 2009; 83:5181-91. [PMID: 19279109 DOI: 10.1128/jvi.00090-09] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the U(L)31 and U(L)34 gene products. While it is clear that the viral kinase encoded by the U(S)3 gene regulates the localization of pU(L)31/pU(L)34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic. Here, we have determined the following. (i) The N terminus of pU(L)31 is indispensable for the protein's normal function and contains up to six serines that are phosphorylated by the U(S)3 kinase during infection. (ii) Phosphorylation at these six serines was not essential for a productive infection but was required for optimal viral growth kinetics. (iii) In the presence of active U(S)3 kinase, changing the serines to alanine caused the pU(L)31/pU(L)34 complex to aggregate at the nuclear rim and caused some virions to accumulate aberrantly in herniations of the nuclear membrane, much as in cells infected with a U(S)3 kinase-dead mutant. (iv) The replacement of the six serines of pU(L)31 with glutamic acid largely restored the smooth distribution of pU(L)34/pU(L)31 at the nuclear membrane and precluded the accumulation of virions in herniations whether or not U(S)3 kinase was active but also precluded the optimal primary envelopment of nucleocapsids. These observations indicate that the phosphorylation of pU(L)31 by pU(S)3 represents an important regulatory event in the virion egress pathway that can account for much of pU(S)3's role in nuclear egress. The data also suggest that the dynamics of pU(L)31 phosphorylation modulate both the primary envelopment and the subsequent fusion of the nascent virion envelope with the outer nuclear membrane.
Collapse
|
8
|
Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol 2009; 83:3891-903. [PMID: 19193805 DOI: 10.1128/jvi.01251-08] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB) homologs are conserved throughout the family Herpesviridae and appear to serve essential, universal functions, as well as specific functions unique to a particular herpesvirus. Genetic analysis is a powerful tool to analyze protein function, and while it has been possible to generate virus mutants, complementation of essential virus knockouts has been problematic. Human cytomegalovirus (HCMV) gB (UL55) plays an essential role in the replication cycle of the virus. To define the function(s) of gB in HCMV infection, the BAC system was used to generate a recombinant virus in which the UL55 gene was replaced with galK (pAD/CreDeltaUL55). UL55 deletions in the viral genome have been made before, demonstrating that UL55 is an essential gene. However, without being able to successfully complement the genetic defect, a phenotypic analysis of the mutant virus was impossible. We generated fibroblasts expressing HCMV gB that complement pAD/CreDeltaUL55 and produce infectious virions lacking the UL55 gene but containing wild-type gB on the virion surface (DeltaUL55-gB HCMV). This is the first successful complementation of an HCMV mutant with a glycoprotein deleted. To characterize DeltaUL55 infection in the absence of gB, noncomplementing cells were infected with DeltaUL55-gB virus. All stages of gene expression were detected, and significant amounts of DNase-resistant viral DNA genomes, representing whole intact virions, were released into the infected cell supernatant. Gradient purification of these virions revealed they lacked gB but contained other viral structural proteins. The gB-null virions were able to attach to the cell surface similarly to wild-type gB-containing virions but were defective in virus entry and cell-to-cell spread. Glycoprotein B-null virions do, however, contain infectious DNA, as IE gene expression can be detected in fibroblasts following treatment of attached gB-null virions with a membrane fusion agent, polyethylene glycol. Taken together, our results indicate that gB is required for virus entry and cell-to-cell spread of the virus. However, HCMV gB is not absolutely required for virus attachment or assembly and egress from infected cells.
Collapse
|
9
|
Israyelyan A, Chouljenko VN, Baghian A, David AT, Kearney MT, Kousoulas KG. Herpes simplex virus type-1(HSV-1) oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice. Virol J 2008; 5:68. [PMID: 18518998 PMCID: PMC2453120 DOI: 10.1186/1743-422x-5-68] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/02/2008] [Indexed: 12/17/2022] Open
Abstract
Background The NV1020 oncolytic herpes simplex virus type-1 has shown significant promise for the treatment of many different types of tumors in experimental animal models and human trials. Previously, we described the construction and use of the NV1020-like virus OncSyn to treat human breast tumors implanted in nude mice. The syncytial mutation gKsyn1 (Ala-to-Val at position 40) was introduced into the OncSyn viral genome cloned into a bacterial artificial chromosome using double-red mutagenesis in E. coli to produce the OncdSyn virus carrying syncytial mutations in both gB(syn3) and gK(syn1). Results The OncdSyn virus caused extensive virus-induced cell fusion in cell culture. The oncolytic potential of the OncSyn and OncdSyn viruses was tested in the highly metastatic syngeneic mouse model system, which utilizes 4T1 murine mammary cancer cells implanted within the interscapular region of Balb/c mice. Mice were given three consecutive intratumor injections of OncSyn, OncdSyn, or phosphate buffered saline four days apart. Both OncSyn and OncdSyn virus injections resulted in significant reduction of tumor sizes (p < 0.05) compared to control tumors. Virus treated mice but not controls showed a marked reduction of metastatic foci in lungs and internal organs. Mouse weights were not significantly impacted by any treatment during the course of the entire study (p = 0.296). Conclusion These results show that the attenuated, but highly fusogenic OncSyn and OncdSyn viruses can effectively reduce primary and metastatic breast tumors in immuncompetent mice. The available bac-cloned OncSyn and OncdSyn viral genomes can be rapidly modified to express a number of different anti-tumor and immunomodulatory genes that can further enhance their anti-tumor potency.
Collapse
Affiliation(s)
- Anna Israyelyan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F. Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 2007; 81:13889-903. [PMID: 17913800 PMCID: PMC2168835 DOI: 10.1128/jvi.01231-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.
Collapse
|
11
|
Bundesen LQ. Biography of Patricia G. Spear. Proc Natl Acad Sci U S A 2004; 101:12411-3. [PMID: 15314223 PMCID: PMC515076 DOI: 10.1073/pnas.0405440101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Domingo C, Gadea I, Pardeiro M, Castilla C, Fernández S, Fernández-Clua MA, De la Cruz Troca JJ, Punzón C, Soriano F, Fresno M, Tabarés E. Immunological properties of a DNA plasmid encoding a chimeric protein of herpes simplex virus type 2 glycoprotein B and glycoprotein D. Vaccine 2003; 21:3565-74. [PMID: 12922084 DOI: 10.1016/s0264-410x(03)00423-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A DNA plasmid containing a chimeric sequence encoding both herpes simplex virus type 2 (HSV-2) glycoprotein B (gB) and glycoprotein D (gD) external domains (pcgDB) was used to immunize BALB/c mice against genital HSV-2 infection. To determine the efficacy of this vaccine, groups of mice immunized with the pcgDB plasmid were compared with animals immunized with plasmids corresponding to the individual proteins (pcgBt or pcgDt), administered separately or in combination (pcgBt + pcgDt). We studied the response of the different mouse groups to viral challenge by analyzing clinical disease (vaginitis), serum antibody levels, as well as lymphoproliferative responses and cytokine production by spleen cells. Increased IFN-gamma levels correlated with prolonged survival in mice immunized with the plasmid pcgDB, relative to mice immunized with plasmids coding for the individual proteins alone or in combination. Our results show that immunization with the plasmid encoding the chimeric protein is advantageous over separate proteins. These findings may have important implications for the development of multivalent DNA vaccines against HSV and other complex pathogens.
Collapse
Affiliation(s)
- C Domingo
- Departamento de Medicina Preventiva y Salud Pública (Microbiología), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Herpes simplex virus (HSV) is a neurotropic DNA virus with many favorable properties as a gene delivery vector. HSV is highly infectious, so HSV vectors are efficient vehicles for the delivery of exogenous genetic material to cells. Viral replication is readily disrupted by null mutations in immediate early genes that in vitro can be complemented in trans, enabling straightforward production of high-titre pure preparations of non-pathogenic vector. The genome is large (152 Kb) and many of the viral genes are dispensable for replication in vitro, allowing their replacement with large or multiple transgenes. Latent infection with wild-type virus results in episomal viral persistence in sensory neuronal nuclei for the duration of the host lifetime. Transduction with replication-defective vectors causes a latent-like infection in both neural and non-neural tissue; the vectors are non-pathogenic, unable to reactivate and persist long-term. The latency active promoter complex can be exploited in vector design to achieve long-term stable transgene expression in the nervous system. HSV vectors transduce a broad range of tissues because of the wide expression pattern of the cellular receptors recognized by the virus. Increasing understanding of the processes involved in cellular entry has allowed preliminary steps to be taken towards targeting the tropism of HSV vectors. Using replication-defective HSV vectors, highly encouraging results have emerged from recent pre-clinical studies on models of neurological disease, including glioma, peripheral neuropathy, chronic pain and neurodegeneration. Consequently, HSV vectors encoding appropriate transgenes to tackle these pathogenic processes are poised to enter clinical trials.
Collapse
Affiliation(s)
- Edward A Burton
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
14
|
Abstract
Herpes simplex virus (HSV) is an encapsulated DNA virus, with many favourable properties for use as a gene transfer vector. For gene therapy applications, it may be desirable to restrict transgene expression to pre-defined subsets of cells. One potential method for achieving targeted transgene expression using the HSV vector system might involve dictating the cell types to which the vector will transfer the therapeutic transgene of interest. HSV delivers its genetic payload to cells directly through the plasmalemma; the mechanisms are complex and involve multiple viral and cell surface determinants. We have investigated several ways in which each component of the cell entry cascade may be manipulated in order to restrict viral DNA and transgene delivery to particular cellular populations. Our results indicate that targeted transduction may be a viable approach to achieving our goal of targeted HSV-mediated transgene expression.
Collapse
Affiliation(s)
- E A Burton
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
15
|
Foster TP, Melancon JM, Kousoulas KG. An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. Virology 2001; 287:18-29. [PMID: 11504538 DOI: 10.1006/viro.2001.1004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies from our laboratory indicated that a 28-amino-acid carboxyl-terminal truncation of gB caused extensive virus-induced cell fusion (Baghian et al., 1993, J Virol 67, 2396-2401). We tested the ability of additional truncations and mutations within gB to cause cell fusion in the recently established virus-free cell fusion assay (Turner et al., 1998, J. Virol. 72, 873-875). Deletion of the carboxyl-terminal 28 amino acids of gB (gBDelta28), which removed part of the predicted alpha-helical structure H17b, caused extensive cell fusion. A gB truncation specified by gBDelta36, which removed the entire H17b domain, caused as much cell fusion as the gBDelta28 truncation. Similarly, gB(A874P) containing a substitution of an Ala with Pro within H17b caused cell fusion. Heparin, a gB-specific inhibitor of virus-induced cell fusion, inhibited both wild-type gB and gB(syn3)-mediated cell fusion. In contrast, fusion of cells transfected with gB(Delta28), gB(Delta36), or gB(A874P) was resistant to heparin inhibition of cell fusion. We concluded the following: (1) The predicted alpha-helical structure of H17b within the carboxyl terminus of gB is involved in both virus-induced and virus-free cell fusion. (2) Heparin is a specific inhibitor of gB-mediated fusion in both systems. (3) Resistance to heparin inhibition of gB-mediated cell fusion is associated with the predicted alpha-helical structure H17b within the carboxyl terminus of gB.
Collapse
Affiliation(s)
- T P Foster
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
16
|
Bultmann H, Busse JS, Brandt CR. Modified FGF4 signal peptide inhibits entry of herpes simplex virus type 1. J Virol 2001; 75:2634-45. [PMID: 11222686 PMCID: PMC115887 DOI: 10.1128/jvi.75.6.2634-2645.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry of herpes simplex virus type 1 (HSV-1) into host cells occurs through fusion of the viral envelope with the plasma membrane and involves complex and poorly understood interactions between several viral and cellular proteins. One strategy for dissecting the function of this fusion machine is through the use of specific inhibitors. We identified a peptide with antiviral activity that blocks HSV-1 infection at the entry stage and during cell-to-cell spreading. This peptide (called EB for "entry blocker") consists of the FGF4 signal sequence with an RRKK tetramer at the amino terminus to improve solubility. The activity of EB depends exclusively but not canonically on the signal sequence. Inhibition of virus entry (hrR3) and plaque formation (KOS) strongly depend on virus concentrations and serum addition, with 50% inhibitory concentrations typically ranging from 1 to 10 microM. Blocking preadsorbed virus requires higher EB concentrations. Cytotoxic effects (trypan blue exclusion) are first noted at 50 microM EB in serum-free medium and at > or = 200 microM in the presence of serum. EB does not affect gC-dependent mechanisms of virus attachment and does not block virus attachment at 4 degrees C. Instead, EB directly interacts with virions and inactivates them irreversibly without, however, disrupting their physical integrity as judged by electron microscopy. At subvirucidal concentrations, EB changes the adhesive properties of virions, causing aggregation at high virus concentrations. This peptide may be a useful tool for studying viral entry mechanisms.
Collapse
Affiliation(s)
- H Bultmann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA
| | | | | |
Collapse
|
17
|
Pertel PE, Fridberg A, Parish ML, Spear PG. Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 2001; 279:313-24. [PMID: 11145912 DOI: 10.1006/viro.2000.0713] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize cellular factors required for herpes simplex virus type 1 (HSV-1)-induced cell fusion, we used an efficient and quantitative assay relying on expression of HSV-1 glycoproteins in transfected cells. We showed the following: (1) Cell fusion depended not only on expression of four viral glycoproteins (gB, gD, and gH-gL), as previously shown, but also on expression of cell surface entry receptors specific for gD. (2) Cell fusion required expression of all four glycoproteins in the same cell. (3) Heparan sulfate was not required for cell fusion. (4) Coexpression of receptor with the four glycoproteins in the same cell reduced fusion activity, indicating that interaction of gD and receptor can limit polykaryocyte formation. Overall, the viral and cellular determinants of HSV-1-induced cell fusion are similar to those for viral entry, except that HSV-1 entry is significantly enhanced by binding of virus to cell surface heparan sulfate.
Collapse
Affiliation(s)
- P E Pertel
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois, 60611, USA
| | | | | | | |
Collapse
|
18
|
Rauch DA, Rodriguez N, Roller RJ. Mutations in herpes simplex virus glycoprotein D distinguish entry of free virus from cell-cell spread. J Virol 2000; 74:11437-46. [PMID: 11090139 PMCID: PMC112422 DOI: 10.1128/jvi.74.24.11437-11446.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) is an essential component of the entry apparatus that is responsible for viral penetration and subsequent cell-cell spread. To test the hypothesis that gD may serve distinguishable functions in entry of free virus and cell-cell spread, mutants were selected for growth on U(S)11cl19.3 cells, which are resistant to both processes due to the lack of a functional gD receptor, and then tested for their ability to enter as free virus and to spread from cell to cell. Unlike their wild-type parent, HSV-1(F), the variants that emerged from this selection, which were named SP mutants, are all capable of forming macroscopic plaques on the resistant cells. This ability is caused by a marked increase in cell-cell spread without a concomitant increase in efficiency of entry of free virus. gD substitutions that arose within these mutants are sufficient to mediate cell-cell spread in U(S)11cl19.3 cells but are insufficient to overcome the restriction to entry of free virions. These results suggest that mutations in gD (i) are sufficient but not necessary to overcome the block to cell-cell spread exhibited by U(S)11cl19.3 cells and (ii) are insufficient to mediate entry of free virus in the same cells.
Collapse
Affiliation(s)
- D A Rauch
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
19
|
Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4528-36. [PMID: 11035093 DOI: 10.4049/jimmunol.165.8.4528] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The envelope surface glycoprotein C (gC) of HSV-1 interferes with the complement cascade by binding C3 and activation products C3b, iC3b, and C3c, and by blocking the interaction of C5 and properdin with C3b. Wild-type HSV-1 is resistant to Ab-independent complement neutralization; however, HSV-1 mutant virus lacking gC is highly susceptible to complement resulting in > or =100-fold reduction in virus titer. We evaluated the mechanisms by which complement inhibits HSV-1 gC null virus to better understand how gC protects against complement-mediated neutralization. C8-depleted serum prepared from an HSV-1 and -2 Ab-negative donor neutralized gC null virus comparable to complement-intact serum, indicating that C8 and terminal lytic activity are not required. In contrast, C5-depleted serum from the same donor failed to neutralize gC null virus, supporting a requirement for C5. EDTA-treated serum did not neutralize gC null virus, indicating that complement activation is required. Factor D-depleted and C6-depleted sera neutralized virus, suggesting that the alternative complement pathway and complement components beyond C5 are not required. Complement did not aggregate virus or block attachment to cells. However, complement inhibited infection before early viral gene expression, indicating that complement affects one or more of the following steps in virus replication: virus entry, uncoating, DNA transport to the nucleus, or immediate early gene expression. Therefore, in the absence of gC, HSV-1 is readily inhibited by complement by a C5-dependent mechanism that does not require viral lysis, aggregation, or blocking virus attachment.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/physiology
- Chlorocebus aethiops
- Complement C5/physiology
- Complement C8/physiology
- Complement Pathway, Alternative/immunology
- Disaccharides/immunology
- Gene Expression Regulation, Viral/immunology
- Genes, Immediate-Early/immunology
- HeLa Cells/immunology
- HeLa Cells/metabolism
- HeLa Cells/virology
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/ultrastructure
- Humans
- Neutralization Tests
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/immunology
- Vero Cells/immunology
- Vero Cells/metabolism
- Vero Cells/virology
- Viral Envelope Proteins/deficiency
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- H M Friedman
- Department of Medicine, Infectious Diseases Division and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
20
|
Pertel PE, Spear PG, Longnecker R. Human herpesvirus-8 glycoprotein B interacts with Epstein-Barr virus (EBV) glycoprotein 110 but fails to complement the infectivity of EBV mutants. Virology 1998; 251:402-13. [PMID: 9837804 DOI: 10.1006/viro.1998.9412] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize human herpesvirus 8 (HHV-8) gB, the open reading frame was PCR amplified from the HHV-8-infected cell line BCBL-1 and cloned into an expression vector. To facilitate detection of expressed HHV-8 gB, the cytoplasmic tail of the glycoprotein was tagged with the influenza hemagglutinin (HA) epitope. Expression of tagged HHV-8 gB (gB-HA), as well as the untagged form, was readily detected in CHO-K1 cells and several lymphoblastoid cell lines (LCLs). HHV-8 gB-HA was sensitive to endoglycosidase H treatment, and immunofluorescence revealed that HHV-8 gB-HA was detectable in the perinuclear region of CHO-K1 cells. These observations suggest that HHV-8 gB is not processed in the Golgi and localizes to the endoplasmic reticulum or nuclear membrane. Because both HHV-8 and EBV are gamma-herpesviruses, the ability of HHV-8 gB to interact with and functionally complement EBV gp110 was examined. HHV-8 gB-HA and EBV gp110 co-immunoprecipitated, indicating formation of hetero-oligomers. However, HHV-8 gB-HA and HHV-8 gB failed to restore the infectivity of gp110-negative EBV mutants. These findings indicate that although HHV-8 gB and EBV gp110 have similar patterns of intracellular localization and can interact, there is not sufficient functional homology to allow efficient complementation.
Collapse
Affiliation(s)
- P E Pertel
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois, 60611, USA.
| | | | | |
Collapse
|
21
|
Valsamakis A, Schneider H, Auwaerter PG, Kaneshima H, Billeter MA, Griffin DE. Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo. J Virol 1998; 72:7754-61. [PMID: 9733811 PMCID: PMC110084 DOI: 10.1128/jvi.72.10.7754-7761.1998] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Accepted: 06/11/1998] [Indexed: 11/20/2022] Open
Abstract
An understanding of the determinants of measles virus (MV) virulence has been hampered by the lack of an experimental model of infection. We have previously demonstrated that virulence phenotypes in human infections are faithfully reproduced by infection of human thymus/liver (thy/liv) implants engrafted into SCID mice, where the virus grows primarily in stromal cells but induces thymocyte apoptosis (P. G. Auwaerter et al., J. Virol. 70:3734-3740, 1996). To begin to elucidate the roles of the C protein, V protein, and the 5' untranslated region of the F gene (F 5'UTR) in MV infection in vivo, the replication of strains bearing mutations of these genes was compared to that of the parent sequence-tagged Edmonston strain (EdTag). Growth curves show that mutants fall into two phenotypic classes. One class of mutants demonstrated kinetics of growth similar to that of EdTag, with decreased peak titers. The second class of mutants manifested peak titers similar to that of EdTag but had different replication kinetics. Abrogation of V expression led to delayed and markedly prolonged replication. Additionally, thymocyte survival was prolonged and implant architecture was preserved throughout the course of infection. In contrast, massive bystander thymocyte death occurred after infection with EdTag and all other mutants. A mutant which overexpressed V in Vero cells (V+) had the opposite phenotype of the A mutant not expressing V (V-). V+ grew more rapidly than EdTag with 100-fold-greater levels of virus production 3 days after infection. These results suggest that C, V, and the F 5'UTR are accessory factors required for efficient virus replication in vivo. In addition, thymocyte survival after V- infection suggests this protein may play multiple roles in pathogenesis of MV infection of thymus. Since these recombinant mutant viruses grew identically to the parent virus in Vero cells, the data show that thy/liv implants are an excellent model for investigating the determinants of MV virulence.
Collapse
Affiliation(s)
- A Valsamakis
- Molecular Microbiology and Immunology, Johns Hopkins School of Hygiene and Public Health, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
22
|
Terry-Allison T, Montgomery RI, Whitbeck JC, Xu R, Cohen GH, Eisenberg RJ, Spear PG. HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J Virol 1998; 72:5802-10. [PMID: 9621040 PMCID: PMC110382 DOI: 10.1128/jvi.72.7.5802-5810.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine whether a cell surface protein that can serve as coreceptor for herpes simplex virus type 1 (HSV-1) entry, herpesvirus entry mediator (previously designated HVEM but renamed HveA), also mediates HSV-1-induced cell-cell fusion. We found that transfection of DNA from KOS-804, a previously described HSV-1 syncytial (Syn) strain whose Syn mutation was mapped to an amino acid substitution in gK, induced numerous large syncytia on HveA-expressing Chinese hamster ovary cells (CHO-HVEM12) but not on control cells (CHO-C8). Antibodies specific for gD as well as for HveA were effective inhibitors of KOS-804-induced fusion, consistent with previously described direct interactions between gD and HveA. Since mutations in gD determine the ability of HSV-1 to utilize HveA for entry, we examined whether the form of virally expressed gD also influenced the ability of HveA to mediate fusion. We produced a recombinant virus carrying the KOS-804 Syn mutation and the KOS-Rid1 gD mutation, which significantly reduces viral entry via HveA, and designated it KOS-SR1. KOS-SR1 DNA had a markedly reduced ability to induce syncytia on CHO-HVEM12 cells and a somewhat enhanced ability to induce syncytia on CHO-C8 cells. These results support previous findings concerning the relative abilities of KOS and KOS-Rid1 to infect CHO-HVEM12 and CHO-C8 cells. Thus, HveA mediates cell-cell fusion as well as viral entry and both activities of HveA are contingent upon the form of gD expressed by the virus.
Collapse
Affiliation(s)
- T Terry-Allison
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Laquerre S, Argnani R, Anderson DB, Zucchini S, Manservigi R, Glorioso JC. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72:6119-30. [PMID: 9621076 PMCID: PMC110418 DOI: 10.1128/jvi.72.7.6119-6130.1998] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/1998] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) mutants defective for envelope glycoprotein C (gC) and gB are highly impaired in the ability to attach to cell surface heparan sulfate (HS) moieties of proteoglycans, the initial virus receptor. Here we report studies aimed at defining the HS binding element of HSV-1 (strain KOS) gB and determining whether this structure is functionally independent of gB's role in extracellular virus penetration or intercellular virus spread. A mutant form of gB deleted for a putative HS binding lysine-rich (pK) sequence (residues 68 to 76) was transiently expressed in Vero cells and shown to be processed normally, leading to exposure on the cell surface. Solubilized gBpK- also had substantially lower affinity for heparin-acrylic beads than did wild-type gB, confirming that the HS binding domain had been inactivated. The gBpK- gene was used to rescue a KOS gB null mutant virus to produce the replication-competent mutant KgBpK-. Compared with wild-type virus, KgBpK- showed reduced binding to mouse L cells (ca. 20%), while a gC null mutant virus in which the gC coding sequence was replaced by the lacZ gene (KCZ) was substantially more impaired (ca. 65%-reduced binding), indicating that the contribution of gC to HS binding was greater than that of gB. The effect of combining both mutations into a single virus (KgBpK-gC-) was additive (ca. 80%-reduced binding to HS) and displayed a binding activity similar to that observed for KOS virus attachment to sog9 cells, a glycosaminoglycan-deficient L-cell line. Cell-adsorbed individual and double HS mutant viruses exhibited a lower rate of virus entry following attachment, suggesting that HS binding plays a role in the process of virus penetration. Moreover, the KgBpK- mutant virus produced small plaques on Vero cells in the presence of neutralizing antibody where plaque formation depended on cell-to-cell virus spread. These studies permitted the following conclusions: (i) the pK sequence is not essential for gB processing or function in virus infection, (ii) the lysine-rich sequence of gB is responsible for HS binding, and (iii) binding to HS is cooperatively linked to the process of efficient virus entry and lateral spread but is not absolutely required for virus infectivity.
Collapse
Affiliation(s)
- S Laquerre
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
24
|
Samaniego LA, Neiderhiser L, DeLuca NA. Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 1998; 72:3307-20. [PMID: 9525658 PMCID: PMC109808 DOI: 10.1128/jvi.72.4.3307-3320.1998] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 01/07/1998] [Indexed: 02/06/2023] Open
Abstract
The immediate-early (IE) proteins of herpes simplex virus (HSV) function on input genomes and affect many aspects of host cell metabolism to ensure the efficient expression and regulation of the remainder of the genome and, subsequently, the production of progeny virions. Due to the many and varied effects of IE proteins on host cell metabolism, their expression is not conducive to normal cell function and viability. This presents a major impediment to the use of HSV as a vector system. In this study, we describe a series of ICP4 mutants that are defective in different subsets of the remaining IE genes. One mutant, d109, does not express any of the IE proteins and carries a green fluorescent protein (GFP) transgene under the control of the human cytomegalovirus IE promoter (HCMVIEp). d109 was nontoxic to Vero and human embryonic lung (HEL) cells at all multiplicities of infection tested and was capable of establishing persistent infections in both of these cell types. Paradoxically, the genetic manipulations that were required to eliminate toxicity and allow the genome to persist in cells for long periods of time also dramatically lowered the level of transgene expression. Efficient expression of the HCMVIEp-GFP transgene in the absence of ICP4 was dependent on the ICP0 protein. In d109-infected cells, the level of transgene expression was very low in most cells but abundant in a small subpopulation of cells. However, expression of the transgene could be induced in cells containing quiescent d109 genomes weeks after the initial infection, demonstrating the functionality of the persisting genomes.
Collapse
Affiliation(s)
- L A Samaniego
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
25
|
Ward PL, Avitabile E, Campadelli-Fiume G, Roizman B. Conservation of the architecture of the Golgi apparatus related to a differential organization of microtubules in polykaryocytes induced by syn- mutants of herpes simplex virus 1. Virology 1998; 241:189-99. [PMID: 9499794 DOI: 10.1006/viro.1997.8972] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection of Vero and HEp-2 but not of 143TK- cells with herpes simplex virus 1 results in fragmentation and dispersal of the Golgi apparatus. Concurrently, in all three infected cell lines the microtubular network is disrupted, suggesting that the disruption of microtubules is essential but not sufficient to induce the fragmentation of the Golgi apparatus. We now report the following: (i) In polykaryocytes formed in Vero cells infected with HSV-1 syn- mutant viruses, intact Golgi stacks were readily detected by electron microscopy. These aggregated in the center of large polykaryocytes. (ii) The distribution of viral glycoprotein D, examined in both fixed and nonfixed cells, appeared to match the distribution of the Golgi stacks, suggesting that the aggregated Golgi stacks funnel viral glycoproteins and viral particles to a limited region of the plasma membrane of the polykaryocytes rather than directing exocytic flow in a more dispersed fashion as seen in syn+ virus-infected cells exhibiting fragmented and dispersed Golgi. (iii) In most polykaryocytes, the microtubules formed parallel bundles extending along the axis of recruitment of new cells. (iv) Fragmentation of the microtubules at the periphery of the cell near the plasma membrane was observed in untreated or cycloheximide-treated cells 2 h after infection with syn- virus HSV-1(MP) or syn+ HSV-1(mP) but not in mock-infected cells. These observations suggest that peripheral depolymerization is initiated at the time of infection and that a factor which determines the syn- or syn+ phenotype is whether the microtubular network regenerates concomitant with cell fusion or reorganizes to form a collapsed network surrounding nuclei of syn+ infected cells.
Collapse
Affiliation(s)
- P L Ward
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
26
|
Pertel PE, Spear PG. Partial resistance to gD-mediated interference conferred by mutations affecting herpes simplex virus type 1 gC and gK. J Virol 1997; 71:8024-8. [PMID: 9311899 PMCID: PMC192166 DOI: 10.1128/jvi.71.10.8024-8028.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cells expressing herpes simplex virus (HSV) gD can be resistant to HSV entry as a result of gD-mediated interference. HSV strains differ in sensitivity to this interference, which blocks viral penetration but not binding. Previous studies have shown that mutations or variations in virion-associated gD can confer resistance to gD-mediated interference. Here we show that HSV-1 mutants selected for enhanced ability to bind and penetrate in the presence of inhibitory concentrations of heparin were partially resistant to gD-mediated interference. The resistance was largely due to the presence of two mutations: one in gC (the major heparin-binding glycoprotein) resulting in the absence of gC expression and the other in gK resulting in a syncytial phenotype. The results imply that heparin selected for mutants with altered postbinding requirements for entry. Resistance to gD-mediated interference conferred by mutations affecting gC and gK has not been previously described.
Collapse
Affiliation(s)
- P E Pertel
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
27
|
Jayachandra S, Baghian A, Kousoulas KG. Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production in actively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space. J Virol 1997; 71:5012-24. [PMID: 9188566 PMCID: PMC191734 DOI: 10.1128/jvi.71.7.5012-5024.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterized the glycoprotein K (gK)-null herpes simplex virus type 1 [HSV-1] (KOS) delta gK and compared it to the gK-null virus HSV-1 F-gKbeta (L. Hutchinson et al., J. Virol. 69:5401-5413, 1995). delta gK and F-gKbeta mutant viruses produced small plaques on Vero cell monolayers at 48 h postinfection. F-gKbeta caused extensive fusion of 143TK cells that was sensitive to melittin, a specific inhibitor of gK-induced cell fusion, while delta gK virus did not fuse 143TK cells. A recombinant plasmid containing the truncated gK gene specified by F-gKbeta failed to rescue the ICP27-null virus KOS (d27-1), while a plasmid with the delta gK deletion rescued the d27-1 virus efficiently. delta gK virus yield was approximately 100,000-fold lower in stationary cells than in actively replicating Vero cells. The plaquing efficiencies of delta gK and F-gKbeta virus stocks on VK302 cells were similar, while the plaquing efficiency of F-gKbeta virus stocks on Vero cells was reduced nearly 10,000-fold in comparison to that of delta gK virus. Mutant delta gK and F-gKbeta infectious virions accumulated within Vero and HEp-2 cells but failed to translocate to extracellular spaces. delta gK capsids accumulated in the nuclei of Vero but not HEp-2 cells. Enveloped delta gK virions were visualized in the cytoplasms of both Vero and HEp-2 cells, and viral capsids were found in the cytoplasm of HEp-2 cells within vesicles. Glycoproteins B, C, D, and H were expressed on the surface of delta gK-infected Vero cells in amounts similar to those for KOS-infected Vero cells. These results indicate that gK is involved in nucleocapsid envelopment, and more importantly in the translocation of infectious virions from the cytoplasm to the extracellular spaces, and that actively replicating cells can partially compensate for the envelopment but not for the cellular egress deficiency of the delta gK virus. Comparison of delta gK and F-gKbeta viruses suggests that the inefficient viral replication and plaquing efficiency of F-gKbeta virus in Vero cells and its syncytial phenotype in 143TK- cells are most likely due to expression of a truncated gK.
Collapse
Affiliation(s)
- S Jayachandra
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | |
Collapse
|
28
|
Samaniego LA, Wu N, DeLuca NA. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27. J Virol 1997; 71:4614-25. [PMID: 9151855 PMCID: PMC191683 DOI: 10.1128/jvi.71.6.4614-4625.1997] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ICP4, ICP0, and ICP27 are the immediate-early (IE) regulatory proteins of herpes simplex virus that have the greatest effect on viral gene expression and growth. Comparative analysis of viral mutants defective in various subsets of these IE genes should help elucidate how these proteins affect cellular and viral processes. This study focuses on the mutant d97, which is defective for the genes encoding ICP4, ICP0, and ICP27 and expresses the bacterial beta-galactosidase (beta-gal) gene from the ICP0 promoter. Together with the d92 virus (ICP4- ICP27-) and the ICP0-complementing cell line L7, d97 provided a unique opportunity to evaluate ICP0 function in the absence of the regulatory activities specified by ICP4 and ICP27. The pattern of protein synthesis in d97-infected cells was unique relative to other IE gene mutants in that it was similar to that seen in the absence of prior viral protein synthesis, possibly approximating the effect of cellular factors and virion components alone. Inactivation of ICP0 in the absence of ICP4 produced a significant decrease in the levels of the early mRNAs ICP6 and thymidine kinase (tk). There was also a marginal reduction in the levels of the IE ICP22 mRNA, and this was most notable at low multiplicity of infection (MOI). In d97-infected L7 cells, the levels of the viral mRNAs were mostly restored to those observed in infections with d92. Nuclear runoff transcription analysis demonstrated that the presence of ICP0 resulted in an increase in the transcription rates of the analyzed genes. The transcription rates of the early genes were dramatically reduced in the absence of ICP0. At low MOI, the transcription rates of ICP6 and tk were comparable to the rate of transcription of a cellular gene. Relevant to the potential use of d97 as a transfer vector, it was also determined that the absence of ICP0 reduced the cellular toxicity of the virus compared to that of d92. The beta-gal transgene expressed from an IE promoter was detected for up to 14 days postinfection; however, the level of beta-gal expression declined dramatically after 1 day postinfection. In the presence of ICP0, the level of expression of beta-gal was increased; however the infected monolayer was destroyed by 3 days postinfection. Therefore, deletion of ICP0 in the absence of ICP4 and ICP27 reduces toxicity and lowers the level of expression of genes from the viral genome.
Collapse
Affiliation(s)
- L A Samaniego
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
29
|
Baghian A, Jaynes J, Enright F, Kousoulas KG. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 1997; 18:177-83. [PMID: 9149288 DOI: 10.1016/s0196-9781(96)00290-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of hecate, a 23-amino acid synthetic peptide analogue of melittin, on HSV-1-induced cell fusion and virus multiplication was investigated. Hecate completely inhibited cell fusion induced by HSV-1 syncytial (syn) mutants HSV-1 HFEM (tsB5) and HSV-1 mp (MP) at a concentration of 5.0 microM. Metabolic labeling experiments indicated that hecate did not adversely affect cellular growth and protein synthesis. The synthesis of virus-specified glycoproteins B, C, D, and H was reduced in the presence of hecate; however, the transport of these glycoproteins to the surface of infected cells was not affected. Production of infectious virions for wild-type and syn mutants tsB5 and MP was reduced in the presence of hecate. The effect of hecate on virus titer was dependent on the multiplicity of infection. Virus titers were reduced 2-28-fold at an M.O.I. of 0.1, 3-6-fold at an M.O.I. of 0.5, and 0-2.5-fold at an M.O.I. of 2.5. Direct treatment of semipurified virions with hecate reduced titers by approximately 4-fold for KOS, 2-fold for tsB5, and over 30-fold for MP.
Collapse
Affiliation(s)
- A Baghian
- Department of Veterinary Microbiology, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|
30
|
Lin XH, Ali MA, Openshaw H, Cantin EM. Deletion of the carboxy-terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B does not affect oligomerization, heparin-binding activity, or its ability to protect against HSV challenge. Arch Virol 1996; 141:1153-65. [PMID: 8712932 DOI: 10.1007/bf01718618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A recombinant vaccinia virus designated VgBt which expresses a truncated secreted herpes simplex virus gB (gBt) was constructed and compared to V11gB, a vaccinia recombinant previously studied which expresses gB exclusively on the surface of infected cells. Indirect immunofluorescence assay (IFA) revealed that gBt was strongly associated with the surface of infected cells despite being released slowly into the cell culture medium. Both gB and gBt existed as oligomers, and both membrane bound and secreted forms of gBt exhibited heparin-binding activity. In protection studies VgBt and V11gB conferred equivalent protection against both homologous (HSV-1) and heterologous (HSV-2) challenge with HSV.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Disease Models, Animal
- Female
- Heparin/metabolism
- Herpes Simplex/immunology
- Herpes Simplex/prevention & control
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Sequence Deletion
- Structure-Activity Relationship
- Vaccination
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Viral Vaccines/metabolism
Collapse
Affiliation(s)
- X H Lin
- Department of Neurology, City of Hope National Medical Center, Deuarte, California, USA
| | | | | | | |
Collapse
|
31
|
Samaniego LA, Webb AL, DeLuca NA. Functional interactions between herpes simplex virus immediate-early proteins during infection: gene expression as a consequence of ICP27 and different domains of ICP4. J Virol 1995; 69:5705-15. [PMID: 7637016 PMCID: PMC189430 DOI: 10.1128/jvi.69.9.5705-5715.1995] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two of the five immediate-early gene products, ICP4 and ICP27, expressed by herpes simplex virus type 1 have profound effects on viral gene expression and are absolutely essential for virus replication. Functional interactions between ICP4 and ICP27 may contribute to establishing the program of viral gene expression that ensues during lytic infection. To evaluate this possibility, viral mutants simultaneously deleted for ICP27 and defined functional domains of ICP4 were constructed. These mutant viruses allowed a comparison of gene expression as a function of different domains of ICP4 in the presence and absence of ICP27. Gene expression in the absence of both ICP4 and ICP27 was also examined. The results of this study demonstrate a clear involvement for ICP27 in the induction of early genes, in addition to its known role in enhancing late gene expression during viral infection. In the absence of both ICP4 and ICP27, viral early gene expression, as measured by the accumulation of thymidine kinase and ICP6 messages was dramatically reduced relative to the amounts of these messages seen in the absence of only ICP4. Therefore, elevated levels of early gene expression as a consequence of ICP27 occurred in the absence of any ICP4 activity. Evidence is also presented regarding the modulation of the ICP4 repression function by ICP27. When synthesized in the absence of ICP27, a mutant ICP4 protein was impaired in its ability to repress transcription from the L/ST promoter in the context of viral infection and in vitro. This defect correlated with the loss of the ability of this mutant protein to bind to its recognition sequence when produced in infected cells in the absence of ICP27. These observations indicate that ICP27 can regulate the activity of at least one domain of the ICP4 protein as well as contribute to elevated early gene expression independently of ICP4.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cell Nucleus/metabolism
- Chlorocebus aethiops
- DNA, Viral/analysis
- DNA, Viral/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression
- Genome, Viral
- HeLa Cells
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/metabolism
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Mutagenesis
- Promoter Regions, Genetic
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- Repressor Proteins/metabolism
- Thymidine Kinase/metabolism
- Transcription, Genetic
- Transfection
- Vero Cells
- Viral Proteins/analysis
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- L A Samaniego
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
32
|
Hutchinson L, Roop-Beauchamp C, Johnson DC. Herpes simplex virus glycoprotein K is known to influence fusion of infected cells, yet is not on the cell surface. J Virol 1995; 69:4556-63. [PMID: 7769723 PMCID: PMC189205 DOI: 10.1128/jvi.69.7.4556-4563.1995] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Syncytial mutants of herpes simplex virus (HSV) cause extensive fusion of cultured cells, whereas wild-type HSV primarily causes cell rounding and aggregation. A large fraction of syncytial viruses contain mutations in the UL53 gene, which encodes glycoprotein K (gK). Previously, we demonstrated that wild-type and syncytial forms of gK are expressed at similar levels and possess identical electrophoretic mobilities. Using immunofluorescence, we show that gK is not transported to the surfaces of cells infected with either wild-type or syncytial HSV. Instead, gK accumulates in the perinuclear and nuclear membranes of cells. This finding is in contrast to the behavior of all other HSV glycoproteins described to date, which reach the cell surface. When gK was expressed in the absence of other HSV proteins, using a recombinant adenovirus vector, a similar perinuclear and nuclear pattern was observed. In addition, gK remained sensitive to endoglycosidase H, consistent with the hypothesis that gK does not reach the Golgi apparatus and is retained in the endoplasmic reticulum and nuclear envelope. Therefore, although gK mutations promote fusion between the surface membranes of HSV-infected cells, the glycoprotein does not reach the plasma membrane and, thus, must influence fusion indirectly.
Collapse
Affiliation(s)
- L Hutchinson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
33
|
Luisi-DeLuca C. Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 1995; 177:566-72. [PMID: 7836288 PMCID: PMC176629 DOI: 10.1128/jb.177.3.566-572.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recO gene product is required for DNA repair and some types of homologous recombination in wild-type Escherichia coli cells. RecO protein has been previously purified and shown to bind to single- and double-stranded DNA and to promote the renaturation of complementary single-stranded DNA molecules. In this study, purified RecO protein was shown to catalyze the assimilation of single-stranded DNA into homologous superhelical double-stranded DNA, an activity also associated with RecA protein. The RecO protein-promoted strand assimilation reaction requires Mg2+ and is ATP independent. Because of the biochemical similarities between RecO and RecA proteins, the ability of RecO protein to substitute for RecA protein in DNA repair in vivo was also assessed in this study. The results show that overexpression of RecO protein partially suppressed the UV repair deficiency of a recA null mutant and support the hypothesis that RecO and RecA proteins are functionally similar with respect to strand assimilation and the ability to enhance UV survival. These results suggest that RecO and RecA proteins may have common functional properties.
Collapse
Affiliation(s)
- C Luisi-DeLuca
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261
| |
Collapse
|
34
|
Dolter KE, Ramaswamy R, Holland TC. Syncytial mutations in the herpes simplex virus type 1 gK (UL53) gene occur in two distinct domains. J Virol 1994; 68:8277-81. [PMID: 7966620 PMCID: PMC237295 DOI: 10.1128/jvi.68.12.8277-8281.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Syncytial (syn) mutants of herpes simplex virus cause cell fusion. Many syn mutations map to the syn1 locus, which has been identified with the gK (UL53) gene. In this work, the gK genes of eight syn mutants derived from the KOS strain were sequenced to identify residues and, possibly, domains important for the fusion activity of mutant gK. DNA sequencing showed that six mutants (syn30, syn31, syn32, syn102, syn103, and syn105) had single missense mutations in the gK gene. Two of these, syn31 and syn32, had identical mutations that caused the introduction of a potential site for N-linked glycosylation. syn31 gK was analyzed by in vitro translation and found to utilize the novel glycosylation site. Two other mutants, syn8 and syn33, had three mutations each, resulting in three amino acid substitutions in syn8 and two substitutions in syn33. Of the 10 gK syn mutant sequences known, 8 have mutations in the N-terminal domain of gK, suggesting that this domain, which is likely to be an ectodomain, is important for the function of the protein. The other two mutants, syn30 and syn103, have mutations near the C terminus of gK.
Collapse
Affiliation(s)
- K E Dolter
- Department of Immunology and Microbiology, Wayne State University Medical School, Detroit, Michigan 48201
| | | | | |
Collapse
|
35
|
Shieh MT, Spear PG. Herpesvirus-induced cell fusion that is dependent on cell surface heparan sulfate or soluble heparin. J Virol 1994; 68:1224-8. [PMID: 8289356 PMCID: PMC236566 DOI: 10.1128/jvi.68.2.1224-1228.1994] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The entry of enveloped viruses into animal cells and the cell-to-cell spread of infection via cell fusion require the membrane-fusing activity of viral glycoproteins. This activity can be dependent on variable cell factors or triggered by environmental factors. Here we show that cell fusion induced by herpes simplex virus glycoproteins is dependent on the presence of cell surface glycosaminoglycans, principally heparan sulfate, or on the addition of heparin to the medium. The role of the glycosaminoglycan is probably to alter the conformation of a viral heparin-binding glycoprotein required for the fusion.
Collapse
Affiliation(s)
- M T Shieh
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
36
|
Rasile L, Ghosh K, Raviprakash K, Ghosh HP. Effects of deletions in the carboxy-terminal hydrophobic region of herpes simplex virus glycoprotein gB on intracellular transport and membrane anchoring. J Virol 1993; 67:4856-66. [PMID: 8392620 PMCID: PMC237873 DOI: 10.1128/jvi.67.8.4856-4866.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The gB glycoprotein of herpes simplex virus type 1 is involved in viral entry and fusion and contains a predicted membrane-anchoring sequence of 69 hydrophobic amino acids, which can span the membrane three times, near the carboxy terminus. To define the membrane-anchoring sequence and the role of this hydrophobic stretch, we have constructed deletion mutants of gB-1, lacking one, two, or three predicted membrane-spanning segments within the 69 amino acids. Expression of the wild-type and mutant glycoproteins in COS-1 cells show that mutant glycoproteins lacking segment 3 (amino acids 774 to 795 of the gB-1 protein) were secreted from the cells. Protease digestion and alkaline extraction of microsomes containing labeled mutant proteins further showed that segment 3 was sufficient for stable membrane anchoring of the glycoproteins, indicating that this segment may specify the transmembrane domain of the gB glycoprotein. Also, the mutant glycoproteins containing segment 3 were localized in the nuclear envelop, which is the site of virus budding. Deletion of any of the hydrophobic segments, however, affected the intracellular transport and processing of the mutant glycoproteins. The mutant glycoproteins, although localized in the nuclear envelope, failed to complement the gB-null virus (K082). These results suggest that the carboxy-terminal hydrophobic region contains essential structural determinants of the functional gB glycoprotein.
Collapse
Affiliation(s)
- L Rasile
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Gage PJ, Levine M, Glorioso JC. Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. J Virol 1993; 67:2191-201. [PMID: 8383236 PMCID: PMC240337 DOI: 10.1128/jvi.67.4.2191-2201.1993] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex virus type 1 glycoprotein B (gB) is essential for virus entry, an event involving fusion of the virus envelope with the cell surface membrane, and virus-induced cell-cell fusion, resulting in polykaryocyte, or syncytium, formation. The experiments described in this report employed a random mutagenesis strategy to develop a more complete genetic map of mutations resulting in the syn mutant phenotype. The results indicate that syn mutations occur within two essential and highly conserved hydrophilic, alpha-helical regions of the gB cytoplasmic domain. Region I is immediately proximal to the transmembrane domain and includes residues R796 to E816/817. Region II is localized centrally in the cytoplasmic domain and includes residues A855 and R858. Positively charged residues were particularly affected in both regions, suggesting that charge interactions may be required to suppress the syn mutant phenotype. No syn mutations were identified within the transmembrane domain. A virus containing a rate of entry (roe) mutation at residue A851, either within or immediately proximal to syn region II, was isolated. Since roe mutations have also been discovered in the external domain of gB, it appears likely that the external and cytoplasmic domains cooperate in virus penetration. Moreover, the observation that both roe and syn mutations occur in the cytoplasmic domain further suggests that gB functions in an analogous manner in both membrane fusion events. It might be predicted from these observations that membrane fusion involves transduction of a fusion signal along the gB molecule through the transmembrane domain. Communication between the external and cytoplasmic domain may thus be required for gB-mediated membrane fusion events.
Collapse
Affiliation(s)
- P J Gage
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0618
| | | | | |
Collapse
|
38
|
Baghian A, Huang L, Newman S, Jayachandra S, Kousoulas KG. Truncation of the carboxy-terminal 28 amino acids of glycoprotein B specified by herpes simplex virus type 1 mutant amb1511-7 causes extensive cell fusion. J Virol 1993; 67:2396-401. [PMID: 8383250 PMCID: PMC240410 DOI: 10.1128/jvi.67.4.2396-2401.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three amber mutations were introduced proximal to the syn3 locus of the herpes simplex virus type 1 glycoprotein B (gB) gene specifying gB derivatives lacking the carboxy-terminal 28, 49, or 64 amino acids. A complementation system that utilized gBs expressed in COS cells to complement gB-null virus K delta T was established. The 49- or 64-amino-acid-truncated gBs failed to complement gB-null virus K delta T, while the 28-amino-acid-truncated gB complemented K delta T efficiently. Mutant herpes simplex virus type 1 KOS (amb1511-7) specifying the 28-amino-acid-truncated gB fused Vero cells extensively.
Collapse
Affiliation(s)
- A Baghian
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803-8416
| | | | | | | | | |
Collapse
|
39
|
Hayashi K, Hayashi T, Morita N, Kojima I. An extract fromSpirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phytother Res 1993. [DOI: 10.1002/ptr.2650070118] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Abstract
Vaccinia virus infection induces expression of a protein which can catalyze joint molecule formation between a single-stranded circular DNA and a homologous linear duplex. The kinetics of appearance of the enzyme parallels that of vaccinia virus DNA polymerase and suggests it is an early viral gene product. Extracts were prepared from vaccinia virus-infected HeLa cells, and the strand exchange assay was used to follow purification of this activity through five chromatographic steps. The most highly purified fraction contained three major polypeptides of 110 +/- 10, 52 +/- 5, and 32 +/- 3 kDa. The purified protein requires Mg2+ for activity, and this requirement cannot be satisfied by Mn2+ or Ca2+. One end of the linear duplex substrate must share homology with the single-stranded circle, although this homology requirement is not very high, as 10% base substitutions had no effect on the overall efficiency of pairing. As with many other eukaryotic strand exchange proteins, there was no requirement for ATP, and ATP analogs were not inhibitors. Electron microscopy was used to show that the joint molecules formed in these reactions were composed of a partially duplex circle of DNA bearing a displaced single-strand and a duplex linear tail. The recovery of these structures shows that the enzyme catalyzes true strand exchange. There is also a unique polarity to the strand exchange reaction. The enzyme pairs the 3' end of the duplex minus strand with the plus-stranded homolog, thus extending hybrid DNA in a 3'-to-5' direction with respect to the minus strand. Which viral gene (if any) encodes the enzyme is not yet known, but analysis of temperature-sensitive mutants shows that activity does not require the D5R gene product. Curiously, v-SEP appears to copurify with vaccinia virus DNA polymerase, although the activities can be partially resolved on phosphocellulose columns.
Collapse
Affiliation(s)
- W Zhang
- Department of Molecular Biology & Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
41
|
Hall SD, Kane MF, Kolodner RD. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J Bacteriol 1993; 175:277-87. [PMID: 8416902 PMCID: PMC196123 DOI: 10.1128/jb.175.1.277-287.1993] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recombination of plasmid DNAs and recombination of bacteriophage lambda red mutants in recB recC sbcA Escherichia coli mutants, in which the recE region is expressed, do not require recA. The recE gene is known to encode exonuclease VIII (exoVIII), which is an ATP-independent exonuclease involved in the RecE pathway of recombination. A 33,000-molecular-weight (MW) protein was observed to be coexpressed with both exoVIII and a truncated version of exoVIII, pRac3 exo, when they were overproduced under the control of strong promoters. We have purified this 33,000-MW protein (p33) and demonstrated by protein sequence analysis that it is encoded by the same coding sequence that encodes the C-terminal 33,000-MW portion of exoVIII. p33 is expressed independently of exoVIII but is probably translated from the same mRNA. p33 was found to bind to single-stranded DNA and also to promote the renaturation of complementary single-stranded DNA. It appears that p33 is functionally analogous to the bacteriophage lambda beta protein, which may explain why RecE pathway recombination does not require recA.
Collapse
Affiliation(s)
- S D Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
42
|
Pederson NE, Person S, Homa FL. Analysis of the gB promoter of herpes simplex virus type 1: high-level expression requires both an 89-base-pair promoter fragment and a nontranslated leader sequence. J Virol 1992; 66:6226-32. [PMID: 1326669 PMCID: PMC283678 DOI: 10.1128/jvi.66.10.6226-6232.1992] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the cis-acting sequences involved in regulation of a herpes simplex virus gamma 1 gene, deletion analyses of the glycoprotein B (gB) gene promoter were performed. In transfection assays with gB-chloramphenicol acetyltransferase plasmids, high-level constitutive expression from the gB promoter was found with an 89-bp sequence (-69 to +20). Additional sequences in the 5'-transcribed noncoding leader region (+20 to +136) were required for full stimulation by herpes simplex virus infection. Plasmids with progressive deletions of the gB leader sequence demonstrated that chloramphenicol acetyltransferase expression in infected cells was proportional to the length of the leader region retained. In recombinant viruses containing a gB-gC gene fusion, a similar 83-bp (-60 to +23) region of the gB gene was found to promote accurately initiated gC mRNA from the viral genome with the same kinetics as the wild-type gB gene. Although the kinetics of expression remained the same, RNA abundance was greater with a 298-bp (-260 to +38) promoter than with the 83-bp promoter.
Collapse
Affiliation(s)
- N E Pederson
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
43
|
Gage PJ, Sauer B, Levine M, Glorioso JC. A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J Virol 1992; 66:5509-15. [PMID: 1323709 PMCID: PMC289109 DOI: 10.1128/jvi.66.9.5509-5515.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This report describes a novel method for complementation studies of defective herpes simplex virus (HSV) genes. Viral test gene and nonviral reporter gene cassettes were rapidly integrated into the HSV genome in a site-specific and reversible manner by using the P1 phage-based Cre-lox recombination system. Shuttle plasmids contained a functional loxP recombination site, an expressible form of the bacterial lacZ gene, and a copy of the wild-type glycoprotein B (gB) gene or double mutant gB allele containing both a temperature-sensitive (ts) mutation and a syncytium (syn)-forming mutation. A recipient viral genome, K delta T::lox1, was constructed from the HSV type 1 (syn) gB-deficient mutant virus, K delta T, by marker transfer of the loxP recombination site into the viral thymidine kinase locus. Shuttle plasmids of up to 12.9 kb in length were recombined with high efficiency (11 to 20%) into the K delta T::lox1 genome in cell-free, Cre-mediated recombination reactions. Expression of a functional wild-type or double mutant gB polypeptide complemented the nonfunctional polypeptide expressed from the deleted, normal gB locus and allowed production of either wild-type or Syn- plaques on Vero cells. The latter recombinant virus was also ts for growth. The ability to express viral genes from plasmids which can be shuttled into and out of the HSV genome in cell-free recombination reactions makes this a powerful method for performing genetic studies of the biologic properties of viral gene products.
Collapse
Affiliation(s)
- P J Gage
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | |
Collapse
|
44
|
Niikura M, Matsuura Y, Endoh D, Onuma M, Mikami T. Expression of the Marek's disease virus (MDV) homolog of glycoprotein B of herpes simplex virus by a recombinant baculovirus and its identification as the B antigen (gp100, gp60, gp49) of MDV. J Virol 1992; 66:2631-8. [PMID: 1313890 PMCID: PMC241016 DOI: 10.1128/jvi.66.5.2631-2638.1992] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A gene encoding a homolog of glycoprotein B of herpes simplex virus (gB homolog) has been identified on the Marek's disease virus (MDV) genome (L. J. N. Ross, M. Sanderson, S. D. Scott, M. M. Binns, T. Doel, and B. Milne, J. Gen. Virol. 70:1789-1804, 1989); however, the molecular and immunological characteristics of the gene product(s) are still not clear. In the present study, the gB homolog of MDV was expressed in insect cells by a recombinant baculovirus, and it was characterized to determine its molecular and antigenic properties. The expressed recombinant protein had three molecular sizes (88 to 110, 58, and 49 kDa) and was recognized by antisera from chickens inoculated with each of the three serotypes of MDV. By immunofluorescence analysis, it was shown that the protein was expressed in the cytoplasm and on the surface of the recombinant baculovirus-infected cells. The gB homolog of MDV was processed similarly to pseudorabies virus and varicella-zoster virus with respect to cleavage and the intramolecular disulfide bond between the cleaved products. Interestingly, the expressed protein reacted with monoclonal antibody M51, specific to the B antigen (gp100, gp60, gp49) of MDV, although the locations of the gene encoding the B antigen and of the gene encoding the gB homolog were reported to be different. Moreover, competitive experiments revealed that anti-gB homolog serum and monoclonal antibody M51 recognized the same molecules. From these results, the gB homolog and the B antigen of MDV seem to be the same glycoprotein.
Collapse
Affiliation(s)
- M Niikura
- Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Kopp A, Mettenleiter TC. Stable rescue of a glycoprotein gII deletion mutant of pseudorabies virus by glycoprotein gI of bovine herpesvirus 1. J Virol 1992; 66:2754-62. [PMID: 1313900 PMCID: PMC241031 DOI: 10.1128/jvi.66.5.2754-2762.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glycoproteins homologous to glycoprotein B (gB) of herpes simplex virus constitute the most highly conserved group of herpesvirus glycoproteins. This strong conservation of amino acid sequences might be indicative of a common functional role. Indeed, gB homologs have been implicated in the processes of viral entry and virus-mediated cell-cell fusion. Recently, we showed that pseudorabies virus (PrV) lacking the essential gB-homologous glycoprotein gII could be propagated on a cell line expressing the gB homolog of bovine herpesvirus 1, gI(BHV-1), leading to a phenotypic complementation of the gII defect (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65:621-631, 1991). However, this pseudotypic virus could still replicate only on complementing cell lines, thereby limiting experimental approaches to analyze the effects of the gB exchange in detail. We describe here the construction and isolation of a PrV recombinant, 9112C2, that lacks gII(PrV) but instead stably carries and expresses the gene encoding gI(BHV-1). The recombinant is able to replicate on noncomplementing cells with growth kinetics and final titers similar to those of its gII-positive wild-type PrV parent. Neutralization tests and immunoprecipitation analyses demonstrated incorporation of gI(BHV-1) into 9112C2 virions with concomitant absence of gII(PrV). Analysis of in vitro host ranges of wild-type PrV, BHV-1, and recombinant 9112C2 showed that in cells of pig, rabbit, canine, monkey, or human origin, the plating efficiency of 9112C2 was similar to that of its PrV parent. Exchange of gII(PrV) for gI(BHV-1) in recombinant 9112C2 or by phenotypic complementation of gII- PrV propagated on gI(BHV-1)-expressing cell lines resulted in penetration kinetics intermediate between those of wild-type PrV and BHV-1. In conclusion, we report the first isolation of a viral recombinant in which a lethal glycoprotein mutation has been rescued by a homologous glycoprotein of a different herpesvirus. Our data show that in gII- PrV, gI(BHV-1) in vitro fully complements the lethal defect associated with lack of gII(PrV). These results conclusively demonstrate that gI(BHV-1) in a PrV background can execute all essential functions normally provided by gII(PrV). They also indicate that the origin of gB-homologous glycoproteins influences the penetration kinetics of herpesviruses.
Collapse
Affiliation(s)
- A Kopp
- Federal Research Center for Virus Diseases of Animals, Tübingen, Germany
| | | |
Collapse
|
46
|
Cai W, Schaffer PA. Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 1992; 66:2904-15. [PMID: 1313909 PMCID: PMC241049 DOI: 10.1128/jvi.66.5.2904-2915.1992] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The herpes simplex virus type 1 protein, ICP0, can activate expression of all kinetic classes of viral promoters in transient expression assays. To examine the role of ICP0 in the regulation of viral gene expression during productive infection, we characterized the wild-type virus, an ICP0 null mutant (7134), and several ICP0 nonsense mutant viruses with regard to virus replication and protein synthesis in Vero cells. Relative to wild-type virus, 7134 was severely deficient in viral growth and protein synthesis at low multiplicities of infection but exhibited a nearly wild-type phenotype at high multiplicities. The phenotypes of the ICP0 nonsense mutants were intermediate between those of the wild-type virus and 7134 in that the more ICP0-coding sequence expressed by a given nonsense mutant, the more wild type-like was its phenotype. The location of the ICP0 domain responsible for transactivation during productive infection was confirmed to be within the N-terminal portion of the protein, as previously shown in transient expression assays. Immunoprecipitation and immunofluorescence tests were used to detect low-level expression of selected immediate-early (IE), early (E), and late (L) proteins by mutant and wild-type viruses following low-multiplicity infection. The 7134 deletion mutant and several nonsense mutants expressed markedly reduced levels of E and L proteins but wild-type levels of the IE protein, ICP4. Because the latency-associated transcripts (LATs) are specified by the strand opposite that which encodes ICP0, the ICP0 deletion and nonsense mutants are by definition ICP0-LAT double mutants. The ability of a LAT- ICP0+ mutant to replicate as efficiently as wild-type virus at low multiplicities and the ability of ICP0-expressing 0-28 cells to complement the defects of the mutants in E and L protein synthesis indicates that the phenotypes of the mutants are caused by mutations in ICP0 and not the LATs. Thus, we conclude that ICP0 up-regulates E and L but not necessarily IE gene expression during productive infection. The activation of IE gene expression by ICP0 during productive infection is likely overshadowed by the activity of the virion-associated protein, VP16. This hypothesis was tested by transfection of Vero cells with infectious mutant and wild-type viral DNAs. In such tests, no VP16 is present at early times posttransfection. Significantly fewer cells transfected with infectious 7134 DNA expressed ICP4 than cells transfected with KOS DNA. This reduction was fully reversed by cotransfection with an ICP0-expressing plasmid.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W Cai
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | |
Collapse
|
47
|
Hutchinson L, Browne H, Wargent V, Davis-Poynter N, Primorac S, Goldsmith K, Minson AC, Johnson DC. A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 1992; 66:2240-50. [PMID: 1312629 PMCID: PMC289017 DOI: 10.1128/jvi.66.4.2240-2250.1992] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A glycoprotein encoded by the UL1 gene of herpes simplex virus type 1 (HSV-1) was detected in infected cells with antipeptide sera. The UL1 gene has previously been implicated in virus-induced cell fusion (S. Little and P. A. Schaffer, Virology 112:686-697, 1981). Two protein species, a 30-kDa precursor form and a 40-kDa mature form of the glycoprotein, both of which were modified with N-linked oligosaccharides, were observed. This novel glycoprotein is the 10th HSV-1 glycoprotein to be described and was named glycoprotein L (gL). A complex was formed between gL and gH, a glycoprotein known to be essential for entry of HSV-1 into cells and for virus-induced cell fusion. Previously, it had been reported that gH expressed in the absence of other viral proteins was antigenically abnormal, not processed, and not expressed at the cell surface (U.A. Gompels and A. C. Minson, J. Gen. Virol. 63:4744-4755, 1989; A. J. Forrester, V. Sullivan, A. Simmons, B. A. Blacklaws, G. L. Smith, A. A. Nash, and A. C. Minson, J. Gen. Virol. 72:369-375, 1991). However, gH coexpressed with gL by using vaccinia virus recombinants was antigenically normal, processed normally, and transported to the cell surface. Similarly, gL was dependent on gH for proper posttranslational processing and cell surface expression. These results suggest that it is a hetero-oligomer of gH and gL which is incorporated into virions and transported to the cell surface and which acts during entry of virus into cells.
Collapse
Affiliation(s)
- L Hutchinson
- Molecular Virology and Immunology Program, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Baghian A, Dietrich MA, Kousoulas KG. Cell fusion caused by herpes simplex virus-1 (HSV-1) strains tsB5 and MP is inhibited at pH 6.7 and pH 7.0. Arch Virol 1992; 122:119-31. [PMID: 1309636 DOI: 10.1007/bf01321122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We investigated the effect of different pH conditions on Vero cell cultures infected with herpes simplex virus-1 (HSV-1) wild-type strain KOS, and syncytial mutants HSV-1 HFEM (tsB5) and HSV-1 mp (MP). Cell fusion was inhibited when infected cells were continuously incubated with culture media adjusted to pH 6.7 or pH 7.0. Inhibition of cell fusion was rapidly reversible when infected cell cultures were returned to pH 7.5. The rate of synthesis and cell-surface expression of virus-specified glycoproteins gB, gC, gD, and gH were not affected during continuous incubation at pH 7.0, but they were reduced at pH 6.7 in comparison to pH 7.5. At later hours p.i. however, these glycoproteins continued to accumulate at all tested pH levels. Accumulation of infectious virions was substantially reduced for MP, KOS, and tsB5 at pH 6.7. At pH 7.0, KOS and tsB5 titers were greatly reduced but MP titers were not affected.
Collapse
Affiliation(s)
- A Baghian
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | |
Collapse
|
49
|
Highlander SL, Goins WF, Person S, Holland TC, Levine M, Glorioso JC. Oligomer formation of the gB glycoprotein of herpes simplex virus type 1. J Virol 1991; 65:4275-83. [PMID: 1649330 PMCID: PMC248865 DOI: 10.1128/jvi.65.8.4275-4283.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oligomer formation of the gB glycoprotein of herpes simplex virus type 1 was studied by sedimentation analysis of radioactively labeled infected cell and virion lysates. Fractions from sucrose gradients were precipitated with a pool of gB-specific monoclonal antibodies and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pulse-labeled gB from infected cell was synthesized as monomers and converted to oligomers posttranslationally. The oligomers from infected cells and from virions sedimented as dimers, and there was no evidence of higher-molecular-weight forms. To identify amino acid sequences of gB that contribute to oligomer formation, pairs of mutant plasmids were transfected into Vero cells and superinfected with a gB-null mutant virus to stimulate plasmid-specified gene expression. Radioactively labeled lysates were precipitated with antibodies and examined by SDS-PAGE. Polypeptides from cotransfections were precipitated with an antibody that recognized amino acid sequences present in only one of the two polypeptides. A coprecipitated polypeptide lacking the antibody target epitope was presumed to contain the sequences necessary for oligomer formation. Using this technique, two noncontiguous sites for oligomer formation were detected. An upstream site was localized between residues 93 and 282, and a downstream site was localized between residues 596 and 711. Oligomer formation resulted from molecular interactions between two upstream sites, between two downstream sites, and between an upstream and a downstream site. A schematic diagram of a gB oligomer is presented that is consistent with these data.
Collapse
Affiliation(s)
- S L Highlander
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
50
|
Cai W, Schaffer PA. A cellular function can enhance gene expression and plating efficiency of a mutant defective in the gene for ICP0, a transactivating protein of herpes simplex virus type 1. J Virol 1991; 65:4078-90. [PMID: 1649316 PMCID: PMC248840 DOI: 10.1128/jvi.65.8.4078-4090.1991] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ICP0 transactivates herpes simplex virus type 1 genes of all classes as well as a number of heterologous viral and cellular genes, yet it is not essential for virus replication in vitro or in vivo. Stocks of ICP0 deletion mutants, however, exhibit significantly lower plating efficiencies on standard 24-h-old Vero cell monolayers than do stocks of wild-type virus. In an attempt to determine whether the growth status of cells in the monolayer affects the ability of ICP0 mutants to initiate plaque formation, the plating efficiencies and abilities of an ICP0 null mutant (7134) and of wild-type virus (KOS) to express selected viral proteins were determined on Vero cell monolayers whose growth had been arrested either by contact inhibition-trypsinization or by isoleucine deprivation and had then been released from growth arrest. The proportion of cells cycling synchronously after release from growth arrest was assessed by flow cytometry. The results of these studies indicate that the plating efficiency of 7134 was greatest on Vero cell monolayers 8 h after release from growth arrest induced by either treatment. Monolayers of both types released from growth arrest at other times supported 7134 plaque formation less efficiently. In contrast, the plating efficiency of KOS was nearly equal on monolayers at all times after release from growth arrest. Notably, both KOS and 7134 were equally efficient in entering cells and inducing expression of the immediate-early protein ICP4 in either 8- or 24-h monolayers. Relative to KOS, however, 7134 was significantly impaired in the expression of selected early and late genes in cells at 24 h postrelease. When the plating efficiencies of 7134 and KOS were examined in 0-28 cells (Vero cells that are stably transformed with the ICP0 gene) whose growth had been arrested and then released, no differences in the plating efficiencies of the two viruses as a function of growth status were noted. These findings suggest that a cellular function expressed maximally in cells 8 h after release from growth arrest can substitute operationally for ICP0 to enhance plaque formation and viral gene expression by 7134. They further suggest that one role of ICP0 in viral infection is to facilitate virus replication in cells that do not express this function.
Collapse
Affiliation(s)
- W Cai
- Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|