1
|
Abstract
The ex vivo organ culture of bone provides many of the advantages of both the whole organism and isolated cell strategies and can deliver valuable insight into the network of processes and activities that are fundamental to bone and cartilage biology. Through maintaining the bone and/or cartilage cells in their native environment, this model system provides the investigator with a powerful experimental protocol to address specific facets of skeletal growth and development. In this chapter, we outline the basic protocols and possible readouts of organ culture models to replicate; (a) linear bone growth (murine metatarsal culture model), (b) bone and cartilage metabolism (murine femoral head culture model), (c) bone response to mechanical stimulation (bovine trabecular core culture model), and (d) bone resorption and formation (murine calvaria culture model).
Collapse
|
2
|
Lajeunesse D, Massicotte F, Pelletier JP, Martel-Pelletier J. Subchondral bone sclerosis in osteoarthritis: not just an innocent bystander. Mod Rheumatol 2014; 13:7-14. [PMID: 24387110 DOI: 10.3109/s101650300001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Osteoarthritis (OA) is considered to be a complex illness in which the tissues of the joint play a significant role in the initiation and/or progression of the pathophysiology. We still do not completely understand what initiates the degradation and loss of cartilage. However, it has been suggested that increased catabolism due to elevated cytokines and growth factors in OA joints plays a significant role. Recent evidence suggests a key role for the subchondral bone tissue in the progression and/or initiation of OA. Indeed, the subchondral bone tissue produces a number of similar proinflammatory cytokines, and growth factors are involved in cartilage tissue remodeling. Interestingly, studies have shown the presence of clefts or channels in the tidemark that appears early in OA, indicating a possible way to traffic cytokines and growth factors from the subchondral compartment to the overlying cartilage. Therefore, it is possible that certain bone-derived products drive cartilage metabolism. Potential candidates include insulin-like growth factor-1 (IGF-1), transforming growth factor-β (TGF-β) interleukin 1β (IL-1β), and interleukin-6 (IL-6). Demonstrating that the subchondral bone plays a role in the initiation of OA would greatly contribute to furthering our knowledge of this pathology and provide new insights for therapeutic approaches.
Collapse
Affiliation(s)
- D Lajeunesse
- Unité de recherche en Arthrose, Centre Hospitalier de l'Université de Montréal, Hôpital Notre-Dame , 1560 rue Sherbrooke Est, Montréal, Québec H2L 4M1 , Canada
| | | | | | | |
Collapse
|
3
|
Non-viral delivery of inductive and suppressive genes to adipose-derived stem cells for osteogenic differentiation. Pharm Res 2011; 28:1328-37. [PMID: 21424160 DOI: 10.1007/s11095-011-0406-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/21/2011] [Indexed: 12/29/2022]
Abstract
PURPOSE To assess the effects of co-delivering osteoinductive DNA and/or small interfering RNA in directing the osteogenic differentiation of human adipose-derived stem cells (hADSCs) using a combinatorial, non-viral gene delivery approach. METHODS hADSCs were transfected using combinations of the following genes: BMP2, siGNAS and siNoggin using poly(β-amino esters) or lipid-like molecules. A total of 15 groups were evaluated by varying DNA doses, timing of treatment, and combinations of signals. All groups were cultured in osteogenic medium for up to 37 days, and outcomes were measured using gene expression, biochemical assays, and histology. RESULTS Biomaterials-mediated gene delivery led to a dose-dependent up-regulation of BMP2 and significant gene silencing of GNAS and Noggin in hADSCs. BMP2 alone slightly up-regulates osteogenic marker expression in hADSCs. In contrast, co-delivery of BMP2 and siGNAS or siNoggin significantly accelerates the hADSC differentiation towards osteogenic differentiation, with marked increase in bone marker expression and mineralization. CONCLUSIONS We report a combinatorial platform for identifying synergistic interactions among multiple genetic signals associated with osteogenic differentiation of hADSCs. Our results suggest that inductive or suppressive genetic switches interact in a complex manner, and highlight the promise of combinatorial approaches towards rapidly identifying optimal signals for promoting desired stem cell differentiation.
Collapse
|
4
|
Siddappa R, Mulder W, Steeghs I, van de Klundert C, Fernandes H, Liu J, Arends R, van Blitterswijk C, de Boer J. cAMP/PKA signaling inhibits osteogenic differentiation and bone formation in rodent models. Tissue Eng Part A 2009; 15:2135-43. [PMID: 19231969 DOI: 10.1089/ten.tea.2008.0512] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously demonstrated that cAMP-mediated protein kinase A (PKA) activation induces in vitro osteogenesis and in vivo bone formation by human mesenchymal stem cells (hMSCs). To analyze the species-specific response of this phenomenon and to translate our findings into a clinical trial, suitable animal models and cell lines are desirable. In this report, we assessed whether PKA plays a similar proosteogenic role played by two commonly used PKA activators-N6,2'-O-dibutyryl-cAMP (db-cAMP) and 8-bromo cAMP (8b-cAMP)-in a number of model systems. To this end, we treated MC3T3-E1 cells, mouse calvarial osteoblasts, mouse MSCs, and rat MSCs with cAMP. We demonstrate that cAMP inhibits osteogenesis in rodent cell types, evidenced by inhibition of osteogenic markers such as alkaline phosphatase (ALP), osteocalcin (BGLAP), and collagen type 1 (COL1A1). In support of this, ex vivo-cultured mouse calvaria exposed to db-cAMP showed a reduction in bone volume. Interestingly, cAMP even stimulated adipogenic differentiation in rat MSCs. Taken together, our data demonstrate that cAMP inhibits osteogenesis in vitro and bone formation ex vivo in rodent models in contrast to our earlier findings in hMSCs. The species discrepancy in response to various osteogenic signals is a critical need to be tested in clinically relevant models to translate the fundamental findings in lower species level to clinical applications.
Collapse
Affiliation(s)
- Ramakrishnaiah Siddappa
- Department of Tissue Regeneration, Institute for BioMedical Technology, University of Twente, Enschede , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Bertaux K, Broux O, Chauveau C, Hardouin P, Jeanfils J, Devedjian JC. Runx2 regulates the expression of GNAS on SaOs-2 cells. Bone 2006; 38:943-50. [PMID: 16442859 DOI: 10.1016/j.bone.2005.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 11/04/2005] [Accepted: 11/04/2005] [Indexed: 11/24/2022]
Abstract
Runx2 is a key regulator of osteoblast-specific gene expression and controls the expression of multiple target genes during osteoblast differentiation. Although some transcriptional targets for Runx2 are known, it is believed that the osteogenic action of Runx2 is mediated by additional target genes, and increasing studies are performed in order to identify such Runx2-responsive genes. To identify genes following the inhibition of Runx2 in osteoblastic cell line, SaOs-2 was stably transfected with a dominant negative mutant of Runx2 (Deltacbfa1) under the control of a strong promoter. Comparison of gene expression patterns by differential display on selected SaOs-2 clones allowed us to observe that GNAS mRNA which encodes for the Gsalpha protein is overexpressed (5 to 8 fold) in cells presenting high levels of Deltacbfa1. This overexpression was also observed at the protein level and seemed to be reflected by an increased basal cAMP level. Gel shift experiments performed in this study indicate that Runx2 is able to bind to the promoter of GNAS, suggesting a direct regulation at the transcriptional level. Well-described GNAS mutations like fibrous dysplasia or Albright hereditary osteodystrophy are linked to abnormality in osteoblast function, and numerous evidences showed that Gsalpha coupled adrenergic receptors increase the expression of osteotrophic factors and regulate bone mass. Regulation of Gsalpha protein by Runx2 seems to be of particular interest considering the increasing evidences on bone metabolism regulation by G proteins.
Collapse
Affiliation(s)
- Karine Bertaux
- LR2B-Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral Côte d'Opale, INSERM ERI002-EA2603, Quai Masset, Bassin Napoléon, 62327 BP 120 Boulogne-sur-mer Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Thomas T. Intermittent parathyroid hormone therapy to increase bone formation. Joint Bone Spine 2006; 73:262-9. [PMID: 16563840 DOI: 10.1016/j.jbspin.2005.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 11/26/2005] [Indexed: 12/11/2022]
Abstract
Clinical data suggested that parathyroid hormone (PTH) might be effective in improving bone mass in patients with osteoporosis, providing its resorptive effects, which are particularly marked at cortical sites, were kept under control. We reviewed the evidence that intermittent PTH therapy is a valid treatment option whose predominant effect is bone anabolism. In cell culture studies, PTH affected both bone formation and bone resorption, suggesting that the net result of PTH therapy may be either bone gain or bone loss depending on the dosage, mode of administration, bone site, and animal species. Histological studies established that intermittent PTH therapy was associated with an increase in trabecular bone and, importantly, with improvements in trabecular and cortical microarchitectural parameters that have not been reported with antiresorptive drugs. This anabolic effect of intermittent PTH therapy translates into increased biomechanical strength, despite the increase in endocortical porosity seen in humans and nonhuman primates. The biochemical response profile to intermittent PTH therapy in clinical trials indicated a phase of isolated anabolism followed by an overall increase in bone remodeling that predominantly affected bone formation, the result being a large increase in spinal bone mineral density as early as the first treatment year. Thus, intermittent PTH therapy exerts predominantly anabolic effects on bone.
Collapse
Affiliation(s)
- Thierry Thomas
- Inserm E0366, Service de Rhumatologie, CHU de Saint-Etienne, France.
| |
Collapse
|
8
|
Sowa H, Kaji H, Iu MF, Tsukamoto T, Sugimoto T, Chihara K. Parathyroid hormone-Smad3 axis exerts anti-apoptotic action and augments anabolic action of transforming growth factor beta in osteoblasts. J Biol Chem 2003; 278:52240-52. [PMID: 14517210 DOI: 10.1074/jbc.m302566200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although several studies indicated that parathyroid hormone (PTH) exerted anabolic action on bone, its precise mechanisms have been unknown. On the other hand, transforming growth factor beta (TGF-beta), abundantly stored in bone matrix, stimulates bone formation with a local injection in rodents. Although our previous study suggested that Smad3 is an important molecule for the stimulation of bone formation, no reports have been available about the effects of PTH on Smad3. In this present study, we examined the effects of PTH on Smad3 and the physiological significance in mouse osteoblastic cells. PTH promoted the expression of Smad3 mRNA within 10 min and the protein level in a dose-dependent manner in MC3T3-E1 and rat osteoblastic UMR-106 cells. Protein kinase A (PKA) activator as well as protein kinase C (PKC) activators increased Smad3 protein level, and both PKA and PKC inhibitors antagonized PTH-induced Smad3, indicating that PTH promotes the production of Smad3 through both PKA and PKC pathways. Next, we examined anti-apoptotic effects of PTH and Smad3 in these cells, employing trypan blue, transferase-mediated nick end labeling, and Hoechst staining. Pretreatment with PTH or overexpression of Smad3 decreased the number of apoptotic cells induced by dexamethasone and etoposide. Moreover, a dominant negative mutant, Smad3DeltaC, abrogated PTH-induced anti-apoptotic effects. On the other hand, PTH augmented TGF-beta-induced transcriptional activity. Furthermore, PTH enhanced TGF-beta-induced production of type I collagen, whereas it did not affect TGF-beta-reduced proliferation in MC3T3-E1 cells. These observations indicated that PTH amplified the anabolic effects of TGF-beta by accelerating the transcriptional activity of Smad3. In conclusion, we first demonstrated that PTH-Smad3 axis exerts anti-apoptotic effects in osteoblasts and reinforces the anabolic action by TGF-beta in osteoblasts. Hence, PTH-Smad3 axis might be involved in the bone anabolic action of PTH.
Collapse
Affiliation(s)
- Hideaki Sowa
- Division of Endocrinology/Metabolism, Neurology and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 2003; 15:628-33. [PMID: 12960492 DOI: 10.1097/00002281-200309000-00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW This review deals with new findings highlighting the concept of cross-talk between subchondral bone tissue and articular cartilage that may be crucial for the initiation and/or progression of osteoarthritis. In this review, new factors either produced by subchondral bone tissue or modifying osteoblast metabolism, yet implicated in osteoarthritis, are discussed. RECENT FINDINGS The development of cartilage degeneration is concomitant with subchondral bone thickness in osteoarthritis, whereas it is related to higher subchondral bone activity and dysregulation in the synthesis of bone proteins. As an immediate consequence, homotrimers of type 1 collagen are formed that could lead to undermineralization of this tissue. This dysregulation also leads to abnormal production of different factors by osteoblasts such as prostaglandins, leukotrienes, and growth factors. Because microcracks or neovascularization provide a link between the subchondral bone tissue and articular cartilage, these factors could contribute to the abnormal remodeling of osteoarthritic cartilage. SUMMARY These findings have an immediate implication for research because new tools need to be developed to study the subchondral bone-cartilage functional unit. Moreover, it could lead to a possible cure for osteoarthritis because this pathology should be considered both a bone and cartilage disease.
Collapse
Affiliation(s)
- Daniel Lajeunesse
- Unité de recherche en Arthrose, Centre Hospitalier d'Université de Montréal, Hôpital Notre-Dame, Québec, Canada.
| | | |
Collapse
|
10
|
Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 2002; 282:1-17. [PMID: 11814673 DOI: 10.1016/s0378-1119(01)00798-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.
Collapse
Affiliation(s)
- John T Swarthout
- Cell and Molecular Biology Program, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
11
|
Ouyang H, McCauley LK, Berry JE, D'Errico JA, Strayhorn CL, Somerman MJ. Response of immortalized murine cementoblasts/periodontal ligament cells to parathyroid hormone and parathyroid hormone-related protein in vitro. Arch Oral Biol 2000; 45:293-303. [PMID: 10708669 DOI: 10.1016/s0003-9969(99)00142-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cementum is an essential component of the periodontium, but the mechanisms involved in regulating the activity of this tissue are poorly understood. As one approach to better defining the cellular and molecular properties of cementum and the associated ligament, immortalized murine cell populations expressing gene markers associated with both cementoblasts (CM) and periodontal ligament cells (PDL), termed CM/PDL cells, were established. To further characterize these cells, their responsiveness to parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) was examined. CM/PDL cells were tested for the presence of steady state PTH-1 receptor mRNA using Northern blot analysis. In addition, the ability of PTH and PTHrP to stimulate cAMP production and c-fos mRNA expression in CM/PDL cells was determined, using a cAMP-binding assay and northern blot hybridization, respectively. Rat osteosarcoma cells (ROS 17/2.8) were used as a positive control and human periodontal ligament cells as a negative control. Northern blot analysis demonstrated that cells within the CM/PDL cell population expressed PTH-1 receptor mRNA. Both PTH (1-34) and PTHrP (1-34) increased cAMP and c-fos mRNA in CM/PDL cells. Furthermore, PTHrP treatment for either 24 or 48 h downregulated expression of transcripts for bone sialoprotein, osteocalcin and PTH-1 receptor by CM/PDL cells and abolished CM/PDL cell-mediated mineralization in vitro. These results indicate that cells within the CM/PDL population are targets for PTH and PTHrP action and that PTHrP may play an important part in regulating the biomineralization of cementum.
Collapse
Affiliation(s)
- H Ouyang
- Department of Periodontics/Prevention/Geriatrics, The University of Michigan, Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Bogdanovic Z, Huang YF, Dodig M, Clark SH, Lichtler AC, Kream BE. Parathyroid hormone inhibits collagen synthesis and the activity of rat col1a1 transgenes mainly by a cAMP-mediated pathway in mouse calvariae. J Cell Biochem 2000; 77:149-58. [PMID: 10679825 DOI: 10.1002/(sici)1097-4644(20000401)77:1<149::aid-jcb15>3.0.co;2-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the effect of parathyroid hormone and various signaling molecules on collagen synthesis and chloramphenicol acetyltransferase activity in cultured transgenic mouse calvariae carrying fusion genes of the rat Col1a1 promoter and the chloramphenicol acetyltransferase reporter. After 48 h of culture, parathyroid hormone, forskolin, dibutyryl cAMP, 8-bromo cAMP, and phorbol myristate acetate inhibited transgene activity, while the calcium ionophore ionomycin had no effect. Pretreatment of calvariae with the phosphodiesterase inhibitor isobutylmethylxanthine potentiated the inhibitory effect of 1 nM parathyroid hormone on transgene activity and collagen synthesis. Parathyroid hormone further inhibited transgene activity and collagen synthesis in the presence of phorbol myristate acetate. Parathyroid hormone inhibition of transgene activity and collagen synthesis was not affected by indomethacin or interleukin-6. After 48 h of culture, parathyroid hormone inhibited chloramphenicol acetyltransferase activity by 50-85% in cultured calvariae carrying transgenes having progressive 5' upstream deletions of promoter DNA down to -1683 bp. These data show that the inhibitory effect of parathyroid hormone on Col1a1 expression in mouse calvariae is mediated mainly by the cAMP signaling pathway. Prostaglandins and IL-6 are not local mediators of the parathyroid hormone response in this model. Finally, regions of the Col1a1 promoter downstream of -1683 bp are sufficient for parathyroid hormone inhibition of the Col1a1 promoter.
Collapse
Affiliation(s)
- Z Bogdanovic
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tintut Y, Parhami F, Le V, Karsenty G, Demer LL. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. Ubiquitin/proteasome-dependent regulation. J Biol Chem 1999; 274:28875-9. [PMID: 10506130 DOI: 10.1074/jbc.274.41.28875] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP pathway, a major intracellular pathway mediating parathyroid hormone signal, regulates osteoblastic function. Parathyroid hormone (through activation of protein kinase A) has also been shown to stimulate ubiquitin/proteasome activity in osteoblasts. Since the osteoblast-specific transcription factor Osf2/Cbfa1 is important for differentiation of osteoblastic cells, we examined the roles of the cAMP and ubiquitin/proteasome pathways in regulation of Cbfa1. In the osteoblastic cell line, MC3T3-E1, continuous treatment with cAMP elevating agents inhibited both osteoblastic differentiation based on alkaline phosphatase assay and DNA binding ability of Cbfa1 based on a gel retardation assay. Cbfa1 inhibition was paralleled by an inhibitory effect of forskolin on Cbfa1-regulated genes. Northern and Western blot analyses suggested that the inhibition of Cbfa1 by forskolin was mainly at the protein level. Pretreatment with proteasome inhibitors prior to forskolin treatment reversed the effect of forskolin. Furthermore, addition of proteasome inhibitors to forskolin-pretreated samples resulted in recovery of Cbfa1 protein levels and accumulation of polyubiquitinated forms of Cbfa1, indicating a role for the proteasome pathway in the degradation of Cbfa1. These results suggest that suppression of osteoblastic function by the cAMP pathway is through proteolytic degradation of Cbfa1 involving a ubiquitin/proteasome-dependent mechanism.
Collapse
Affiliation(s)
- Y Tintut
- Division of Cardiology, Department of Medicine, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
14
|
Negishi Y, Kajiyama N, Kawashima K, Fujishima T, Takayama H, Endo H, Kawaguchi R. Establishment of permanent cell lines exhibiting vitamin D-dependent expression of beta-galactosidase activity. Biochem Pharmacol 1999; 58:465-70. [PMID: 10424766 DOI: 10.1016/s0006-2952(99)00106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The active hormonal form of vitamin D3, 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), has been described as a principal mediator of skeletal homeostasis. Treatment of rat osteosarcoma (ROS)17/2.8, an osteoblast-like cell line, with 1alpha,25(OH)2D3 results in a ligand-dependent increase in transcription of the bone-specific osteocalcin gene. We isolated permanent cell lines that were established by transfecting ROS 17/2.8 cells with plasmids consisting of the human osteocalcin gene promoter containing the vitamin D responsive element linked to a bacterial beta-galactosidase gene. In one of many cell lines, especially in clone NK-31, 1alpha,25(OH)2D3 strongly stimulated beta-galactosidase activity. Reverse transcription-polymerase chain reaction analysis also showed endogenous osteocalcin gene expression and beta-galactosidase gene expression in clone NK-31 cells, which paralleled the increase in beta-galactosidase activity. Using a synthetic analogue of 1alpha,25(OH)2D3, 24,24-difluoro-1alpha,25-dihydroxyvitamin D3, we found that the levels of this activity and these gene expressions were nearly parallel to those of 1alpha,25(OH)2D3. 24R,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 at high doses (concentration: 10(-7) M) also induced beta-galactosidase activity in clone NK-31. These cell lines, harboring the plasmid-carrying beta-galactosidase gene under the control of the osteocalcin gene promoter, may contribute to studies on the regulation by 1alpha,25(OH)2D3 or to the development of synthetic analogues of 1alpha,25(OH)2D3.
Collapse
Affiliation(s)
- Y Negishi
- Center for Molecular Biology and Cytogenetics, SRL, Inc., Hino-shi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 1999; 104:399-407. [PMID: 10449432 PMCID: PMC408525 DOI: 10.1172/jci6629] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1999] [Accepted: 07/13/1999] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) bind to and activate the same PTH/PTHrP receptor. Deletion of either the PTHrP gene or the PTH/PTHrP receptor gene leads to acceleration of differentiation of growth plate chondrocytes. To explore further the functional relationships of PTHrP and the PTH/PTHrP receptor, bones of knockout mice were analyzed early in development, and the phenotypes of double-knockout mice were characterized. One early phenotype is shared by both knockouts. Normally, the first chondrocytes to become hypertrophic are located in the centers of long bones; this polarity is greatly diminished in both these knockouts. The PTH/PTHrP receptor-deficient (PTH/PTHrP-R(-/-)) mice exhibited 2 unique phenotypes not shared by the PTHrP(-/-) mice. During intramembranous bone formation in the shafts of long bones, only the PTH/PTHrP-R(-/-) bones exhibit a striking increase in osteoblast number and matrix accumulation. Furthermore, the PTH/PTHrP-R(-/-) mice showed a dramatic decrease in trabecular bone formation in the primary spongiosa and a delay in vascular invasion of the early cartilage model. In the double-homozygous knockout mice, the delay in vascular invasion did not occur. Thus, PTHrP must slow vascular invasion by a mechanism independent of the PTH/PTHrP receptor.
Collapse
Affiliation(s)
- B Lanske
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lanske B, Divieti P, Kovacs CS, Pirro A, Landis WJ, Krane SM, Bringhurst FR, Kronenberg HM. The parathyroid hormone (PTH)/PTH-related peptide receptor mediates actions of both ligands in murine bone. Endocrinology 1998; 139:5194-204. [PMID: 9832460 DOI: 10.1210/endo.139.12.6361] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH and PTH-related peptide (PTHrP) have been shown to bind to and activate the same PTH/PTHrP receptor. Recent studies have demonstrated, however, the presence of additional receptors specific for each ligand. We used the PTHrP and PTH/PTHrP receptor gene knock-out models to investigate whether this receptor mediates the actions of both ligands in bone. The similar phenotype of the PTHrP (-/-) and PTH/PTHrP receptor (-/-) animals in the growth plate of the tibia suggests that this receptor mediates the actions of PTHrP. Electron microscopic studies have confirmed the accelerated differentiation and disordered organization of chondrocytes, with the accumulation of large amounts of dispersed glycogen granules in the cytoplasm of proliferative and maturing cells of both genotypes. The contrasting growth plate mineralization patterns of the PTHrP (-/-) and PTH/PTHrP receptor (-/-) mice, however, suggest that the actions of PTHrP and the PTH/PTHrP receptor are not identical. Studies using calvariae from PTH/PTHrP receptor (-/-) embryos demonstrate that this receptor solely mediates the ability of PTH and PTHrP to stimulate adenylate cyclase in bone and to stimulate bone resorption. Furthermore, we show that osteoblasts of PTH/PTHrP receptor (-/-) animals, but not PTHrP (-/-) animals, have decreased levels of collagenase 3, osteopontin, and osteocalcin messenger RNAs. The PTH/PTHrP receptor, therefore, mediates distinct physiologic actions of both PTH and PTHrP.
Collapse
Affiliation(s)
- B Lanske
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Selvamurugan N, Chou WY, Pearman AT, Pulumati MR, Partridge NC. Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J Biol Chem 1998; 273:10647-57. [PMID: 9553127 DOI: 10.1074/jbc.273.17.10647] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone induces collagenase-3 gene transcription in rat osteoblastic cells. Here, we characterized the basal, parathyroid hormone regulatory regions of the rat collagenase-3 gene and the proteins involved in this regulation. The minimal parathyroid hormone-responsive region was observed to be between base pairs -38 and -148. Deleted and mutated constructs showed that the activator protein-1 and the runt domain binding sites are both required for basal expression and parathyroid hormone activation of this gene. The runt domain site is identical to an osteoblast-specific element-2 or acute myelogenous leukemia binding sequence in the mouse and rat osteocalcin genes, respectively. Overexpression of an acute myelogenous leukemia-1 repressor protein inhibited parathyroid hormone activation of the promoter, indicating a requirement of acute myelogenous leukemia-related factor(s) for this activity. Overexpression of c-Fos, c-Jun, osteoblast-specific factor-2, and core binding factor-beta increased the response to parathyroid hormone of the wild type (-148) promoter but not with mutation of either or both the activator protein-1 and runt domain binding sites. In summary, we conclude that there is a cooperative interaction of acute myelogenous leukemia/polyomavirus enhancer-binding protein-2-related factor(s) binding to the runt domain binding site with members of the activator protein-1 transcription factor family binding to the activator protein-1 site in the rat collagenase-3 gene in response to parathyroid hormone in osteoblastic cells.
Collapse
Affiliation(s)
- N Selvamurugan
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
18
|
White C, Gardiner E, Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep 1998; 25:45-61. [PMID: 9540066 DOI: 10.1023/a:1006820710966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies of gene expression in bone have adopted a number of molecular approaches that seek to determine those cis and trans-acting factors responsible for the development and physiological regulation of this unique tissue. The majority of studies have been performed in vitro, focussing on the expression of genes such as osteocalcin, bone sialoprotein and type I collagen which demonstrate restricted or altered expression patterns in osteoblasts. These studies have demonstrated a large number of cis and trans acting factors that modulate the tissue specific and vitamin D responsive expression of these genes. These include the response elements and regions mediating basal and vitamin D dependent transcription of these genes as well as some of the transcription factors that bind to these regions and the nucleosomal organisation of these genes within a nuclear framework. In vivo studies, including the introduction of transgenes into transgenic mice, extend these in vitro observations within a physiological context. However, in part due to limitations in each approach, these in vitro and in vivo studies are yet to accurately define all the necessary cis and trans-acting factors required for tissue specific and vitamin D responsive gene expression. Advances have been made in identifying many cis-acting regions within the flanking regions of these genes that are responsible for their restricted expression patterns, but a vector incorporating all the necessary cis-acting regions capable of directing gene expression independent of integration site has not yet been described. Similarly, trans-acting factors that determine the developmental destiny of osteoblast progenitors and the restricted expression of these genes remain elusive and, despite advances in the understanding of protein-DNA interactions at vitamin D response elements contained within these genes, further intermediary factors that interact with the transcriptional machinery to modulate vitamin D responsiveness need to be identified.
Collapse
Affiliation(s)
- C White
- Bone & Mineral Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | | | | |
Collapse
|
19
|
|
20
|
Amann K, Ritz E. Cardiac disease in chronic uremia: pathophysiology. ADVANCES IN RENAL REPLACEMENT THERAPY 1997; 4:212-24. [PMID: 9239426 DOI: 10.1016/s1073-4449(97)70030-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In chronic uremia, apart from frequent coronary lesions, further abnormalities of the heart recently reported include (1) left ventricular hypertrophy, not completely explained by hypertension, (2) interstitial myocardial fibrosis, for which parathyroid hormone is a permissive factor, (3) reduced myocardial perfusion reserve, secondary to functional and structural changes of intramyocardial arteries and to reduced capillary density, (4) abnormalities of myocardial metabolism, which act in concert with restriction of blood flow by microvascular abnormalities to reduce ischemic tolerance. Such metabolic abnormalities include diminished responsiveness to beta-adrenergic stimulation, abnormal control of intracellular calcium concentration, impaired maintenance of energy-rich nucleotide concentrations under conditions of ischemia, impaired insulin-mediated glucose uptake, and abnormalities of myocardial oxidative metabolism.
Collapse
Affiliation(s)
- K Amann
- Pathologisches Institut, Universität Heidelberg, Germany
| | | |
Collapse
|
21
|
Jono S, Nishizawa Y, Shioi A, Morii H. Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17:1135-42. [PMID: 9194765 DOI: 10.1161/01.atv.17.6.1135] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we investigated the role of parathyroid hormone-related peptide (PTHrP) in vascular calcification by using an in vitro calcification model. We demonstrated that the expression of PTHrP decreased in the progression of bovine vascular smooth muscle cell (BVSMC) calcification and that inhibition of calcification by etidronate (EHDP) and levamisole restored PTHrP secretion, suggesting that the expression of PTHrP is associated with calcification. PTHrP (1-34) and PTH (1-34) dose-dependently inhibited BVSMC calcification. Protein kinase A (PKA) and protein kinase C (PKC) inhibitors completely blocked the inhibitory effect of PTHrP, suggesting that both PKA and PKC may be involved in its signaling pathway. Moreover, PTHrP inhibited alkaline phosphatase (ALP) activity, implying that the impact on ALP may contribute to its action on calcification. Furthermore, the PTHrP antagonist, PTHrP (7-34), dose-dependently increased calcium deposition by BVSMC. Interestingly, PTHrP production by BVSMC dramatically increased in the presence of EHDP, and PTHrP (7-34) partially antagonized the inhibitory effect of EHDP on BVSMC calcification. These results suggest that PTHrP may regulate vascular calcification as an autocrine/paracrine factor.
Collapse
Affiliation(s)
- S Jono
- Second Department of Internal Medicine, Osaka City University Medical School, Japan
| | | | | | | |
Collapse
|
22
|
Kärkkäinen M, Lamberg-Allardt C. An acute intake of phosphate increases parathyroid hormone secretion and inhibits bone formation in young women. J Bone Miner Res 1996; 11:1905-12. [PMID: 8970892 DOI: 10.1002/jbmr.5650111211] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We studied the effects of a single oral phosphate (Pi) dose as well as those of three consecutive oral phosphate doses on calcium and bone metabolism. In the first part of the study (P1 study) 10 female volunteers were given orally 1500 mg of Pi in water, as a single dose, or plain water in randomized order at two different sessions. In the second part of the study (P3 study), 10 female volunteers were given orally 1500 mg of Pi, as three separate 500 mg doses in water, or plain water in randomized order. Calcium and bone metabolism was monitored for 24 h by measuring the concentrations of serum ionized calcium (S-iCa), urinary calcium, serum phosphate (S-P), urinary P, serum intact parathyroid hormone (PTH), serum carboxy-terminal propeptide of type I collagen (PICP), serum osteocalcin (BGP), serum carboxy-terminal telopeptide of type I collagen (ICTP), urine deoxypyridinoline (DPD) and bone-specific alkaline phosphatase activity (B-ALP). The S-P increased (p = 0.00005 and p = 0.0005, in the P1 and P3 studies, respectively), the S-iCa concentration declined significantly only in the P1 study (p = 0.0014), the urinary calcium excretion decreased (p = 0.02 and 0.013, in the P1 and P3 studies, respectively), and the PTH concentration rose (p = 0.0083 and p = 0.014, in the P1 and P3 studies, respectively) during the phosphate experiment as compared with the control session. Of the three markers of bone formation studied, PICP declined in the P1 study (p = 0.04), and B-ALP declined in both parts of the study (p = 0.027, p = 0.026, in the P1 and P3 studies, respectively) after phosphate administration, whereas there was no significant change in BGP in either of the studies. The markers of bone resorption, ICTP and DPD, were unaffected by the phosphate load in both studies. In conclusion, acute ingestion of phosphate leads to an increase in S-P, a decrease in S-iCa, and an increase in intact PTH secretion. Our results indicate that these events may lead to an acute inactivation of the early phases of bone formation. In this setting, there was no indication of enhanced bone resorption despite the increase in PTH secretion, which could be due to the combined effect of phosphate and PTH on bone resorption.
Collapse
Affiliation(s)
- M Kärkkäinen
- Department of Applied Chemistry and Microbiology, University of Helsinki, Finland
| | | |
Collapse
|
23
|
Dodig M, Kronenberg MS, Bedalov A, Kream BE, Gronowicz G, Clark SH, Mack K, Liu YH, Maxon R, Pan ZZ, Upholt WB, Rowe DW, Lichtler AC. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice. J Biol Chem 1996; 271:16422-9. [PMID: 8663211 DOI: 10.1074/jbc.271.27.16422] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.
Collapse
Affiliation(s)
- M Dodig
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut 06030, the Department
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.
Collapse
Affiliation(s)
- M V Hillsley
- Department of Chemical Engineering, Pennsylvania State University, University Park, USA
| | | |
Collapse
|
25
|
Bedalov A, Salvatori R, Dodig M, Kronenberg MS, Kapural B, Bogdanovic Z, Kream BE, Woody CO, Clark SH, Mack K. Regulation of COL1A1 expression in type I collagen producing tissues: identification of a 49 base pair region which is required for transgene expression in bone of transgenic mice. J Bone Miner Res 1995; 10:1443-51. [PMID: 8686499 DOI: 10.1002/jbmr.5650101004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous deletion studies using a series of COL1A1-CAT fusion genes have indicated that the 625 bp region of the COL1A1 upstream promoter between -2295 and -1670 bp is required for high levels of expression in bone, tendon, and skin of transgenic mice. To further define the important sequences within this region, a new series of deletion constructs extending to -1997, -1794, -1763, and -1719 bp has been analyzed in transgenic mice. Transgene activity, determined by measuring CAT activity in tissue extracts of 6- to 8-day-old transgenic mouse calvariae, remains high for all the new deletion constructs and drops to undetectable levels in calvariae containing the -1670 bp construct. These results indicate that the 49 bp region of the COL1A1 promoter between -1719 and -1670 bp is required for high COL1A1 expression in bone. Although deletion of the same region caused a substantial reduction of promoter activity in tail tendon, the construct extending to -1670 bp is still expressed in this tissue. However, further deletion of the promoter to -944 bp abolished activity in tendon. Gel mobility shift studies identified a protein in calvarial nuclear extracts that is not found in tendon nuclear extracts, which binds within this 49 bp region. Our study has delineated sequences in the COL1A1 promoter required for expression of the COL1A1 gene in high type I collagen-producing tissues, and suggests that different cis elements control expression of the COL1A1 gene in bone and tendon.
Collapse
Affiliation(s)
- A Bedalov
- Department of Pediatrics, University of Connecticut Health Center, Farmington 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chardin H, Acevedo AC, Septier D, Staub JF, Goldberg M. Effects of thyro-parathyroidectomy and parathyroidectomy upon dentinogenesis: Part I: Light microscopy. Connect Tissue Res 1995; 32:261-7. [PMID: 7554925 DOI: 10.3109/03008209509013732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to determine the differential effects of the thyroid hormones and the parathyroid hormone upon dentinogenesis in the rat incisor one control group (C) and four groups of surgically treated rats were studied: parathyroid autotransplanted (PTT), thyroidectomized (TX), parathyroidectomized (PTX), and thyro-parathyroidectomized group. One month after surgery the incisors were dissected and the tissues were prepared for light microscopy and morphometric measurements. This study revealed modifications in the TPTX rats as well as in the PTX rats: an enlargement of the predentin, alterations in the predentin appearance and the presence of mineralization defects. These results confirm that the effects observed are probably due to a PTH deficiency and/or hypocalcemia and suggest that their occurrence is associated with a determined stage of dentinogenesis in the rat.
Collapse
|
27
|
Pavlin D, Bedalov A, Kronenberg MS, Kream BE, Rowe DW, Smith CL, Pike JW, Lichtler AC. Analysis of regulatory regions in the COL1A1 gene responsible for 1,25-dihydroxyvitamin D3-mediated transcriptional repression in osteoblastic cells. J Cell Biochem 1994; 56:490-501. [PMID: 7890807 DOI: 10.1002/jcb.240560409] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of type I collagen in bone cells is inhibited by the calcium-regulating hormone 1,25-dihydroxyvitamin D3. Earlier work from our laboratories has indicated that vitamin D regulation is at the level of transcription, based on results from both nuclear run-off assays and functional promoter analysis of a hybrid gene consisting of a 3.6 kb COL1A1 promoter fragment fused to the chloramphenicol acetyltransferase reporter gene. In the present study, we investigated the molecular basis for vitamin D-mediated transcriptional repression of the COL1A1 gene and report the identification of a region within the COL1A1 upstream promoter (the HindIII-Pstl restriction fragment between nucleotides -2295 and -1670) which is necessary for 1,25-dihydroxyvitamin D3 responsiveness in osteoblastic cells. This hormone-mediated inhibitory effect on the marker gene parallels the inhibition of the endogenous collagen gene. A 41 bp fragment from this region (between nucleotides -2256 and -2216) contains a sequence which is very similar to vitamin D-responsive elements identified in the osteocalcin gene. Extracts from cultured cells which express a high level of vitamin D receptor contain a hormone:receptor complex that binds specifically to this 41 bp fragment, as demonstrated by bandshift analysis. However, deletion of this vitamin D receptor binding region from either a -3.5 kb or a -2.3 kb promoter fragment did not abolish vitamin D responsiveness. These results indicate that a vitamin D response element similar to that described for other vitamin D responsive genes (osteocalcin and osteopontin) does not alone mediate the repression of COL1A1 by 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- D Pavlin
- Department of Orthodontics, University of Texas Health Science Center, San Antonio 78284
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Partridge NC, Bloch SR, Pearman AT. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression. J Cell Biochem 1994; 55:321-7. [PMID: 7962163 DOI: 10.1002/jcb.240550308] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.
Collapse
Affiliation(s)
- N C Partridge
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, Missouri 63104
| | | | | |
Collapse
|
29
|
|
30
|
Sutherland MK, Rao LG, Wylie JN, Gupta A, Ly H, Sodek J, Murray TM. Carboxyl-terminal parathyroid hormone peptide (53-84) elevates alkaline phosphatase and osteocalcin mRNA levels in SaOS-2 cells. J Bone Miner Res 1994; 9:453-8. [PMID: 8030432 DOI: 10.1002/jbmr.5650090403] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous findings in our laboratory have shown that hPTH-(53-84) stimulates alkaline phosphatase activity in dexamethasone-treated ROS 17/2.8 cells. In the present study, we examined the effects of hPTH-(53-84) and hPTH-(1-34) on the expressions of alkaline phosphatase, osteocalcin, and collagen type I mRNA levels in the human osteosarcoma cell line SaOS-2. The effect of hPTH-(53-84) on alkaline phosphatase and osteocalcin message levels was dose dependent (ANOVA, p < 0.005 and p < 0.001, respectively), with significant stimulation observed at 10 nM. Treatment with 10 nM hPTH-(53-84) for 24 h resulted in significant 2- and 1.4-fold increases in mRNA levels for alkaline phosphatase and osteocalcin, respectively (p < 0.05), but had no effect on collagen type I expression. The increased alkaline phosphatase mRNA levels was associated with a 1.5-fold increase in enzyme activity (p < 0.05). In contrast, under similar incubation conditions, hPTH-(1-34) had no significant effects on alkaline phosphatase or osteocalcin mRNA levels. On the other hand, hPTH-(1-34) had dose-dependent stimulatory effects on collagen type I mRNA levels (ANOVA, p < 0.001), 10 nM hPTH-(1-34) stimulating collagen type I expression 1.6-fold (p < 0.05). The results indicate that carboxyl-terminal hPTH-(53-84) has direct and unique biologic effects in human osteoblast-like cells in culture.
Collapse
Affiliation(s)
- M K Sutherland
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Bogdanovic Z, Bedalov A, Krebsbach PH, Pavlin D, Woody CO, Clark SH, Thomas HF, Rowe DW, Kream BE, Lichtler AC. Upstream regulatory elements necessary for expression of the rat COL1A1 promoter in transgenic mice. J Bone Miner Res 1994; 9:285-92. [PMID: 8024654 DOI: 10.1002/jbmr.5650090218] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The activity of fusion genes containing fragments of the COL1A1 promoter was measured in tissues from 6- to 8-day-old transgenic mice. ColCAT3.6 contains approximately 3.6 kb (-3521 to 115 bp) of the rat COL1A1 gene, the chloramphenicol acetyltransferase (CAT) reporter gene, and the SV40 splice and polyadenylation sequences. ColCAT2.3 and ColCAT1.7 are deletion constructs that contain 2296 and 1667 bp of COL1A1 upstream from the RNA start site, respectively. For each transgene, up to six lines of mice were characterized. Both ColCAT3.6 and ColCAT2.3 had similar activity in bone and tooth; ColCAT1.7 was inactive. In transgenic calvariae, levels of transgene mRNA paralleled levels of CAT activity. In tendon, the activity of ColCAT2.3 was 3- to 4-fold lower than that of ColCAT3.6, and the activity ColCAT1.7 was 16-fold lower than that of ColCAT2.3. There was little activity of the ColCAT constructs in liver and brain. These data show that DNA sequences between -2.3 and -1.7 kb are required for COL1A1 promoter expression in bone and tooth; sequences that control expression in tendon are distributed between -3.5 and -1.7 kb of the promoter, with sequences downstream of -1.7 kb still capable of directing expression to this tissue. The cis elements that govern basal expression of COL1A1 in transgenic calvariae appear to be different from those required for optimal expression of the COL1A1 promoter in stably transfected osteoblastic cells.
Collapse
Affiliation(s)
- Z Bogdanovic
- Department of Medicine, University of Connecticut Health Center, Farmington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Regulation of the alpha 1(I) collagen promoter in vascular smooth muscle cells. Comparison with other alpha 1(I) collagen-producing cells in transgenic animals and cultured cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37630-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Bockman RS, Guidon PT, Pan LC, Salvatori R, Kawaguchi A. Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells. J Cell Biochem 1993; 52:396-403. [PMID: 8227174 DOI: 10.1002/jcb.240520404] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gallium is a Group IIIa transitional element with therapeutic efficacy in the treatment of metabolic bone disorders. Previously described antiresorptive effects of gallium on osteoclasts are not sufficient to account for the full range of effects of gallium on bone structure and metabolism. We have recently shown that gallium nitrate inhibits osteocalcin gene expression and the synthesis of osteocalcin protein, an osteoblast-specific bone matrix protein that is thought to serve as a signal to trigger osteoclastic resorption. Here we present evidence for an additional mechanism by which gallium may function to augment bone mass by altering matrix protein synthesis by osteoblastic and fibroblastic cells. Rat calvarial explants exposed to gallium nitrate for 48 h showed increased incorporation of 3H-proline into hydroxyproline and collagenase digestible protein. In addition, gallium treatment increased steady-state mRNA levels for fibronectin and type I procollagen chains in primary rat calvarial osteoblast-enriched cultures, the ROS 17/2.8 osteoblastic osteosarcoma line, and nontransformed human dermal fibroblasts. These findings suggest that the exposure of mesenchymally-derived cells to gallium results in an altered pattern of matrix protein synthesis that would favor increased bone formation.
Collapse
Affiliation(s)
- R S Bockman
- Hospital for Special Surgery, Cornell University Medical College, New York, New York 10021
| | | | | | | | | |
Collapse
|
34
|
Nimni BS, Bernick S, Paule W, Nimni ME. Changes in the ratio of non-calcified collagen to calcified collagen in human vertebrae with advancing age. Connect Tissue Res 1993; 29:133-40. [PMID: 8403894 DOI: 10.3109/03008209309014240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone loss associated with aging is associated primarily with a decline in bone formation. To try and further understand the nature of this process we have used a biochemical approach which relies on the fact that osteoid is susceptible to enzymatic degradation whereas calcified collagen is protected by the mineral phase against proteolytic digestion. Our findings show a statistically significant inverse relationship between osteoid and age (r = 0.70 female, r = 0.47 male). A closer relationship was observed when age was related to the ratio of osteoid to bone (r = 0.73 female, r = 0.56 male). In both cases, the observed linear decline begins at an early age and becomes marked with advancing age. Histologic observations illustrate these findings showing decreased osteoid and osteoblasts in the older vertebral specimens compared to the younger ones. Even though the mechanism for osteoid calcification seems to remain unimpaired, the decline of a calcifiable matrix in the presence of normal bone turnover could lead to bone loss.
Collapse
Affiliation(s)
- B S Nimni
- Department of Surgery, Childrens Hospital Los Angeles, CA
| | | | | | | |
Collapse
|
35
|
Brown EM. Kidney and Bone: Physiological and Pathophysiological Relationships. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Cheng SL, Fausto A, Jänne OA, Avioli LV. Regulation of ornithine decarboxylase by parathyroid hormone in osteoblastic cell systems. Calcif Tissue Int 1992; 51:370-5. [PMID: 1333875 DOI: 10.1007/bf00316882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parathyroid hormone (PTH) has been shown to induce osteoblastic activity via a complex signal transduction process which is mediated either by cAMP or cytosolic calcium ([Ca2+]i), or a combination thereof. One of the PTH functions in osteoblasts is the induction of ornithine decarboxylase (ODC) activity. We have analyzed the second messengers involved in this process. 8-Bromo cAMP, a cAMP derivative, enhanced ODC activity in UMR106-01 osteoblastic cell system. The calcium ionophore A23187 and the protein kinase stimulator phorbol-12-myristate 13-acetate did not alter ODC activity. ODC activity was increased by bPTH-(1-34), PGE1, and PGE2 which stimulated both cAMP and [Ca2+]i. In contrast, PTH-(2-34), propionyl bPTH-(2-34), bPTH-(3-34), bPTH-(7-34), and PGF2 alpha, which only enhanced [Ca2+]i but not cAMP, had no effect on ODC activity. Thus, the stimulation of ODC in UMR106 cells by PTH appeared to be mediated primarily via the cAMP signal transduction pathway, and the mere increase in intracellular calcium could not account for the stimulation of ODC activity. ODC mRNA level was found to be increased by PTH treatment. Therefore, translation of ODC may be stimulated by PTH. Moreover, PTH also stimulated ODC antizyme activity, suggesting that the ODC degradation rate was increased.
Collapse
Affiliation(s)
- S L Cheng
- Division of Bone and Mineral Metabolism and Endocrinology, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
37
|
Boje Rasmussen H, Teisner B, Gram J, Brixen K, Yde-Andersen E, Bollerslev J. Serum levels of fetal antigen 2 in hyperthyroidism and primary hyperparathyroidism. APMIS 1992; 100:894-900. [PMID: 1445696 DOI: 10.1111/j.1699-0463.1992.tb04016.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serum concentration of fetal antigen 2 (FA2) in patients with hyperthyroidism (n = 18) (median: 12.9 mAU/l; range: 3.2-22.4 mAU/l) was significantly (p < 0.002) higher than in age- and sex-matched healthy controls (median: 4.1 mAU FA2/l; range: 2.4-10.0 mAU FA2/l). Serum FA2 was positively correlated with thyroxine (T4) (Rs = 0.51; p < 0.05), triiodothyronine (T3) (Rs = 0.64; p < 0.01), bone-Gla protein (BGP) (Rs = 0.70; p < 0.01), total alkaline phosphatase (total-AP) (Rs = 0.62; p < 0.01), bone isoenzyme alkaline phosphatase (bone-AP) (Rs = 0.63; p < 0.01), N-terminal procollagen type III (PIIINP) (Rs = 0.65; p < 0.01) and urine OH-proline (OHP) (Rs = 0.79; p < 0.01). In patients with hyperparathyroidism the pretreatment levels of FA2 (n = 8) (median: 17.6 mAU/l; range: 5.2-35.0 mAU/l) were significantly (p < 0.001) higher than those of age- and sex-matched controls (median: 3.7 mAU FA2/l; range: 3.4-9.0 mAU/l). The pretreatment level of FA2 was positively correlated with the parathyroid hormone (PTH) (Rs = 0.80; p < 0.05). Following surgical treatment the serum concentrations of FA2, PTH, and BGP decreased compared to pretreatment levels and the fall in these three parameters revealed parallelism. These data indicate that serum FA2 can be used as a marker in the evaluation of metabolic bone diseases.
Collapse
|
38
|
Schmid C, Schläpfer I, Waldvogel M, Zapf J, Froesch ER. Prostaglandin E2 stimulates synthesis of insulin-like growth factor binding protein-3 in rat bone cells in vitro. J Bone Miner Res 1992; 7:1157-63. [PMID: 1280903 DOI: 10.1002/jbmr.5650071007] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prostaglandin E2 is produced by bone cells and increases cyclic AMP in these cells. Like PTH and dibutyryl cyclic AMP, PGE2 is a potent stimulator of IGF-I synthesis in cultured rat osteoblasts and inhibits DNA synthesis and type I procollagen gene expression. In addition, PGE2 inhibits the response of the cells toward IGF-I after 1 day but not after 4 days of incubation. Rat calvaria osteoblasts constitutively release IGFBPs into the culture medium, in particular IGFBP-2 and IGFBP-3. Like growth hormone, PGE2 stimulates the accumulation of IGFBP-3. PGE2 rapidly increases IGF-I and IGFBP-3 mRNA expression in calvaria cells, with a time course clearly different from that observed in response to growth hormone. Thus, PGE2 modifies not only the synthesis of IGF-I but also that of IGFBP-3 in skeletal tissue.
Collapse
Affiliation(s)
- C Schmid
- Department of Internal Medicine, University Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Majeska RJ, Minkowitz B, Bastian W, Einhorn TA. Effects of beta-adrenergic blockade in an osteoblast-like cell line. J Orthop Res 1992; 10:379-84. [PMID: 1349041 DOI: 10.1002/jor.1100100310] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The beta-adrenergic blocking agent propranolol was shown in previous studies to increase orthotopic bone formation in rats. To understand the cellular mechanisms underlying this observation, propranolol was tested for its effects on osteoblastic cells, which possess adenylate cyclase-coupled beta-adrenergic receptors. The ability of propranolol to modulate parathyroid hormone (PTH) and isoproterenol effects on adenylate cyclase activity and on alkaline phosphatase expression was studied in the osteoblast-like rat osteosarcoma cell line ROS 17/2.8. At concentrations between 0.1 and 10 microM, DL-propranolol specifically inhibited adenylate cyclase stimulation by the beta-adrenergic agonist isoproterenol, but did not alter either basal or PTH-stimulated activity. At these concentrations, propranolol also blunted the inhibition of alkaline phosphatase activity by isoproterenol but not PTH. Propranolol alone had minimal effects on ROS alkaline phosphatase activity at low concentrations (0.1-1 microM), but became inhibitory at high concentrations (10-100 microM). Thus, the direct effects of physiologically relevant propranolol concentrations on osteoblastic cells can be attributed principally to beta-adrenergic blockade. These findings further suggest that propranolol may enhance bone formation by preserving osteoblastic activity in the face of inhibition by beta-adrenergic agonists.
Collapse
Affiliation(s)
- R J Majeska
- Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029-6574
| | | | | | | |
Collapse
|
40
|
Pavlin D, Lichtler AC, Bedalov A, Kream BE, Harrison JR, Thomas HF, Gronowicz GA, Clark SH, Woody CO, Rowe DW. Differential utilization of regulatory domains within the alpha 1(I) collagen promoter in osseous and fibroblastic cells. J Cell Biol 1992; 116:227-36. [PMID: 1730746 PMCID: PMC2289260 DOI: 10.1083/jcb.116.1.227] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type I collagen is expressed in a variety of connective tissue cells and its transcriptional regulation is highly complex because of the influence of numerous developmental, environmental, and hormonal factors. To investigate the molecular basis for one aspect of this complex regulation, the expression of alpha 1(I) collagen (COL1A1) gene in osseous tissues, we fused a 3.6-kb DNA fragment between bases -3,521 and +115 of the rat COL1A1 promoter, and three deletion mutants, to the chloramphenicol acetyltransferase (CAT) marker gene. The expression of these ColCAT transgenes was measured in stably transfected osteoblastic cell lines ROS 17/2.8, Py-la, and MC3T3-E1 and three fibroblastic lines NIH-3T3, Rat-1, and EL2. Deletion of the distal 1.2-kb fragment of the full-length ColCAT 3.6 construct reduced the promoter activity 7- to 30-fold in the osteoblastic cell lines, twofold in EL2 and had no effect in NIH-3T3 and Rat-1 cells. To begin to assess the function of COL1A1 upstream regulatory elements in intact animals, we established transgenic mouse lines and examined the activity of the ColCAT3.6 construct in various tissues of newborn animals. The expression of this construct followed the expected distribution between the high and low collagen-producing tissues: high levels of CAT activity in calvarial bone, tooth, and tendon, a low level in skin, and no detectable activity in liver and brain. Furthermore, CAT activity in calvarial bone was three- to fourfold higher than that in the adjacent periosteal layer. Immunostaining for CAT protein in calvaria and developing tooth germ of ColCAT3.6 mice also confirmed the preferred expression of the transgene in differentiated osteoblasts and odontoblasts compared to fibroblast-like cells of periosteum and dental papilla. This study suggests that the 3.6-kb DNA fragment confers the strong expression of COL1A1 gene in high collagen producing tissues of intact animals and that the 5' flanking promoter sequence between -3,521 and -2,295 bp contains one or more stimulatory elements which are preferentially active in osteoblastic cells.
Collapse
Affiliation(s)
- D Pavlin
- Department of Pediatrics, University of Connecticut Health Center, Farmington 06032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hock JM, Gera I. Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res 1992; 7:65-72. [PMID: 1532281 DOI: 10.1002/jbmr.5650070110] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of resorption in the anabolic response of bone to parathyroid hormone (PTH) is not well understood. In contrast to the increase in bone mass induced by intermittent PTH in intact rats, continuous infusion of PTH into thyroparathyroidectomized (TPTX) rats failed to increase bone volume. The objective of this study were to determine if continuous infusions of low doses of PTH were anabolic in intact rats and if inhibition of resorption would enhance or block an anabolic action of PTH. Young male rats were treated with either continuous infusion or intermittent injections of hPTH-(1-34) for 12 days. In experiment 1, PTH, infused daily at 4 micrograms per 100 g, increased femur calcium and dry weight. Unlike infusion of 8 micrograms PTH, which did not alter bone mass, intermittent PTH at 8 micrograms was anabolic and increased bone mass by increasing trabecular thickness and number. Infusion of 16 micrograms induced hypercalcemia and death. In experiment 2, lower dose daily infusions of 0.25-4 micrograms PTH per 100 g did not increase bone mass. In experiment 3, in rats pretreated with dichloromethylene diphosphonate (Cl2MDP) to inhibit resorption and subsequently exhibiting decreased bone formation, PTH, irrespective of the method of administration, reversed the inhibitory effects of Cl2MDP on bone formation. Thus, intermittent and continuous PTH increase bone formation independently of effects on bone resorption, but only intermittent PTH increases bone mass consistently.
Collapse
Affiliation(s)
- J M Hock
- School of Dental Medicine, Tufts University, Boston
| | | |
Collapse
|
42
|
Benz DJ, Haussler MR, Komm BS. Estrogen binding and estrogenic responses in normal human osteoblast-like cells. J Bone Miner Res 1991; 6:531-41. [PMID: 1887816 DOI: 10.1002/jbmr.5650060603] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A finite human cell line was established from trabecular bone explants obtained from a 48-year-old woman. These cells, designated BG688, were characterized as osteoblast-like in phenotype using the following independent criteria: (1) the presence of histochemically detectable alkaline phosphatase (AP) activity; (2) response to the calciotropic hormone 1,25-(OH)2D3 as assessed by increased AP activity; (3) synthesis and secretion of the osteoblast-specific marker bone gla protein; and (4) expression of alpha 1(I)-procollagen and alpha 1(III)-procollagen mRNAs in a pattern similar to that of other osteoblast-like cell lines. In addition to these classic osteoblast markers, BG688 cells also possess approximately 2400 high-affinity (Kd = 0.45 nM) 17 beta-estradiol (E2) binding sites per cell. The binding of E2 to these sites is specific, and of the steroid hormone agonists tested, E2 and diethylstilbestrol elicited the greatest amount of competition with radiolabeled E2. BG688 cells were also shown to respond to a physiologic concentration (10 nM) of E2. In vitro translation products of poly(A)+ RNA obtained from control and hormone-treated cells revealed a pleiotropic influence of E2 on the relative abundance of several mRNAs as assessed by two-dimensional gel electrophoretic analysis of their corresponding peptides. E2 also elicits a twofold increase in the steady-state concentration of alpha 1(I)-procollagen mRNA as demonstrated by northern blot hybridization. Thus, we here extend our previous data obtained in osteoblast-like osteosarcoma cells to indicate that a normal osteoblastic cell line is a target for the action of estrogen.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J Benz
- Department of Biochemistry, University of Arizona, Tucson
| | | | | |
Collapse
|
43
|
Grise MA, Marks SC, MacKay CA, Popoff SN. Effects of 1,25 dihydroxyvitamin D on osteoclast number and cytochemistry in normal and osteopetrotic (os) rabbits. THE AMERICAN JOURNAL OF ANATOMY 1990; 189:261-6. [PMID: 2148052 DOI: 10.1002/aja.1001890309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Osteoclast-mediated bone resorption is increased in response to 1,25 dihydroxyvitamin D (1,25[OH]2D or calcitriol). Osteopetrosis is a metabolic bone disease characterized by defective, osteoclast-mediated bone resorption, which co-exists with elevated serum 1,25-(OH)2D levels in some osteopetrotic children and animals. We examined the effects of high doses of calcitriol on osteoclast number and cytochemistry in both normal and osteopetrotic (os) rabbits. Calcitriol was continuously infused at doses of 0.5, 2.5, or 25 micrograms/kg/day via subcutaneously implanted osmotic minipumps for a period of 7 days. Following treatment, the proximal tibial metaphyses were processed for histomorphometric and cytochemical analyses. Sections were stained for tartrate-resistant acid phosphatase (TrAP) or acid ATPase (TraATPase). Osteoclasts were significantly reduced in untreated os rabbits compared with age-matched normal littermates between birth and 3 weeks of age (41-46% of normal). Whereas most normal osteoclasts (85%) stained heavily for TrAP or TraATPase, less than half of os osteoclasts were heavily stained for these acid hydrolases. Infusions of 1,25(OH)2D resulted in elevations of osteoclast numbers in both normal and os rabbits, but the number of osteoclasts remained significantly lower in mutants than in normal littermates at any given dose. Calcitriol infusions also resulted in a significant increase in the percentage of os osteoclasts staining heavily for TrAP and TraATPase. These results suggest that in response to 1,25(OH)2D normal osteoclasts increase their production of acid hydrolases before increasing cell numbers and that, in spite of high levels of endogenous calcitriol, os rabbits can respond to exogenous 1,25(OH)2D as evidenced by increased osteoclast number and cytochemical staining, even though these osteoclasts fail to resorb the excess skeletal matrix.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M A Grise
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
44
|
Davidson RM, Tatakis DW, Auerbach AL. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 1990; 416:646-51. [PMID: 1701046 DOI: 10.1007/bf00370609] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patch-clamp recording techniques were used to examine the direct effects of mechanical stimulation on ion channel activity in human osteoblast-like osteosarcoma cells. Three classes of mechanosensitive ion channels were present and could be distinguished on the basis of conductance, ionic selectivity, and sensitivity to membrane tension. The largest conductance channel (160 pS) was K(+)-selective and showed both a decrease in long closed interval duration and an increase in burst length with increasing membrane tension. For low applied pressures, there was an e-fold increase in the probability of this channel being open (Popen) for every 3.4 cm2 Hg change in pressure. Two additional pressure-dependent channels had smaller conductances, i.e., 60 pS and 20 pS; the 60 pS channel appeared to be non-selective for cations. We propose that one or more of these mechanosensitive channels is involved in the response of bone to mechanical loading.
Collapse
Affiliation(s)
- R M Davidson
- Department of Oral Biology, University at Buffalo, NY 14214
| | | | | |
Collapse
|
45
|
Goldring SR, Stephenson ML, Downie E, Krane SM, Korn JH. Heterogeneity in hormone responses and patterns of collagen synthesis in cloned dermal fibroblasts. J Clin Invest 1990; 85:798-803. [PMID: 2155928 PMCID: PMC296497 DOI: 10.1172/jci114506] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fibroblasts cultured from normal human dermis are heterogeneous with respect to growth kinetics, synthetic function, and morphologic features. There are many examples of clonal heterogeneity in apparently homogeneous connective tissue cell populations, and it has been suggested that selection of cell populations with particular phenotypic features is the basis for the development of pathologic connective tissue changes in inflammatory disorders. In these studies we report characterization of the pattern of matrix biosynthesis and responses to hormones in cells cloned from normal human dermis. The results indicate that cloned dermal fibroblasts are heterogeneous with respect to synthesis of collagens as well as their responses to prostaglandin E2 and parathyroid hormone. Selective expansion of clonal populations with unique patterns of matrix synthesis and cell surface receptors could provide the basis for abnormal connective tissue remodeling in certain pathologic states.
Collapse
Affiliation(s)
- S R Goldring
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
46
|
Turksen K, Grigoriadis AE, Heersche JN, Aubin JE. Forskolin has biphasic effects on osteoprogenitor cell differentiation in vitro. J Cell Physiol 1990; 142:61-9. [PMID: 2153690 DOI: 10.1002/jcp.1041420109] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells isolated from fetal rat calvaria (RC) and maintained in vitro in medium containing ascorbic acid and B-glycerophosphate form three-dimensional, mineralized nodules having the histological, immunohistological, and ultrastructural characteristics of woven bone. We have studied the effects of forskolin (FSK), a diterpene that activates adenylate cyclase, in this system. While 10(-7)-10(-5) M FSK significantly stimulated cAMP levels in RC cells, lower concentrations did not. cAMP levels with 10(-5) M FSK reached a maximum by 30 min at 37 degrees C and returned to basal level in 2-3 hr. Changes in cAMP levels correlated with changes in cellular shape: cells treated with 10(-5) M FSK assumed a stellate morphology, lost microfilament bundles, and reduced their substrate adhesiveness, while cells treated with 10(-9) M were not affected. Exponential growth and saturation densities of FSK-treated cultures were similar to untreated cultures, indicating that FSK was neither toxic nor stimulatory to the population. The effect on bone nodule formation of FSK present continuously depended on concentration: 10(-5) M FSK significantly inhibited the number of nodules formed, while 10(-9) M FSK significantly stimulated bone nodule formation. Single short treatments with either 10(-5) M or 10(-9) M FSK had no effect on nodule formation, but repeated short duration treatments (1 hr every 2 days for 21 days) gave results similar to continuous exposure. These results indicate that intermittent elevations in intracellular cAMP have an inhibitory effect on bone formation. In addition, our work indicates that low concentrations of FSK stimulate differentiation of osteoprogenitor cells possibly through a non-cAMP-dependent process.
Collapse
Affiliation(s)
- K Turksen
- Medical Research Council, Group in Periodontal Physiology, Faculty of Dentistry, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
Collagens are extracellular matrix proteins that play important structural roles in many tissues and organs. Thirteen types of collagen, the products of 23 genes, have been described. Most of the collagen genes are developmentally regulated; a given tissue or cell type expresses only a subset of the collagen genes. Type I collagen, the most abundant protein in vertebrate connective tissues, is produced by most cells of mesenchymal origin except hyaline cartilage. Each tissue or cell type expresses the type I collagen genes at a characteristic rate. Maintenance of the normal synthetic rate appears to be important for preservation of normal tissue structure and function. Fibrotic lesions are characterized by increased production of type I collagen. The mechanisms that determine both the normal tissue-specific pattern of type I collagen gene expression and the elevated expression in fibrosis are complex. Both transcriptional and post-transcriptional mechanisms have been described, with modulation of mRNA stability being perhaps the most important post-transcriptional mechanism. Several sequences have been identified in the promoters of the type I collagen genes which are required for transcriptional activity; in addition, transcriptional enhances have been identified within the first introns of the genes. Type I collagen gene expression is also regulated both positively and negatively by a variety of exogenous factors, including inflammatory response mediators. The specific combination of such exogenous factors available in a given tissue probably determines the net rate at which the genes are expressed.
Collapse
Affiliation(s)
- S L Adams
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003
| |
Collapse
|
48
|
Rydziel S, Canalis E. Analysis of hydroxyproline by high performance liquid chromatography and its application to collagen turnover studies in bone cultures. Calcif Tissue Int 1989; 44:421-4. [PMID: 2504455 DOI: 10.1007/bf02555971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a high performance liquid chromatography (HPLC) technique for separating and quantitating hydroxyproline in calvarial cultures. Using a reverse-phase Nova-Pak C18 column and a 140 mM sodium acetate, 0.05% triethylamine (TEA), 6% acetonitrile solvent system, we obtained a complete separation of hydroxyproline. Recovery of added standards ranged from 89 to 103% and intraassay variability was less than 8%. [3H]hydroxyproline measurements were used to examine changes in collagen turnover in rat calvariae labeled with [3H]proline and "chased" in the presence of 10 mM unlabeled proline. The addition of parathyroid hormone (PTH) during a 24-48 hour "chase" period increased the release of acid-soluble [3H]hydroxyproline into the culture medium, indicating an increase of fully degraded collagen. This method offers a sensitive and reproducible technique for monitoring changes in bone matrix degradation and in studying agents that modify this process.
Collapse
Affiliation(s)
- S Rydziel
- Department of Medicine, St. Francis Hospital and Medical Center, Hartford, CT 06105
| | | |
Collapse
|
49
|
Yee JA, Sutton JK. Parathyroid hormone regulation of proline uptake by cultured neonatal mouse osteoblastlike cells. J Bone Miner Res 1989; 4:23-7. [PMID: 2541599 DOI: 10.1002/jbmr.5650040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulation of proline uptake by the synthetic amino-terminal fragment of bovine parathyroid hormone [bPTH-(1-34)] has been studied in confluent primary cultures of osteoblastlike cells isolated from neonatal mouse calvaria. The initial velocity of proline transport was increased by 85% in cultures treated with 24 nM bPTH-(1-34) for 6 h. Cycloheximide, at a concentration that inhibited protein synthesis by 97%, did not prevent this effect. However, adding the inhibitor during the first 1-2 h of hormone treatment did significantly reduce its magnitude. Exposure of cells to the inhibitor alone caused a time-dependent decrease in the basal rate of proline uptake. In the absence of protein synthesis, the maximal velocity (Vmax) of transport was 60% greater in cultures treated with 24 nM bPTH-(1-34) than in controls. The concentration of proline at which half-maximal transport occurred (Km) was unchanged. In cultures treated with cycloheximide alone, proline transport decreased as a first-order exponential with a half-life of 250-280 min. Parathyroid hormone significantly reduced this decline, increasing the half-life of proline transport activity about fourfold. These effects were duplicated by 1 mM DBcAMP. It is concluded that bPTH-(1-34) increases proline transport in osteoblastlike cells by decreasing the degradation of amino acid transport system A proteins. The hormone may also affect the synthesis of these molecules. These effects appear to be mediated by cAMP.
Collapse
Affiliation(s)
- J A Yee
- Department of Cell Biology and Anatomy, Texas Tech University Health Sciences Center, Lubbock 79430
| | | |
Collapse
|
50
|
|