1
|
Wang R, Yang K, Banerjee S, Greenberg MM. Rotational Effects within Nucleosome Core Particles on Abasic Site Reactivity. Biochemistry 2018; 57:3945-3952. [PMID: 29894168 DOI: 10.1021/acs.biochem.8b00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An abasic (AP) site is a ubiquitous DNA lesion that is produced via several cellular processes. Although AP sites are cytotoxic and mutagenic, cells are protected from them by different DNA damage tolerance and repair pathways, including base excision repair (BER). AP lesions are alkali-labile, but the half-life for strand scission is several weeks in free DNA at around neutral pH. The AP lifetime is reduced ∼100-fold in nucleosome core particles (NCPs) because the histone proteins promote strand scission. The reactivity of other DNA lesions to BER enzymes and exogenous reagents is highly dependent upon rotational positioning within the NCP. We examined strand scission at AP sites as a function of rotational position over approximately one helical turn of DNA. The rate constant for strand scission at AP varies ∼4-fold, a range of reactivity much smaller than that observed for processes that involve reaction with diffusible reagents in solution. In addition, the change in rate constant does not exhibit an obvious pattern with respect to rotational position. The small dependence of reactivity on rotational position is attributed to interactions with histone proteins. A molecular model based upon NCP X-ray crystal structures indicates that histone protein tails access AP sites via the major or minor groove and are therefore not limited to regions where one particular groove is exposed to solvent. Determining the roles of individual proteins is difficult because of the unstructured nature of the histone tails and the chemical mechanism, which involves reversible Schiff base formation, followed by irreversible elimination.
Collapse
Affiliation(s)
- Ruixiang Wang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kun Yang
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Samya Banerjee
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
2
|
Kotera N, Granzhan A, Teulade-Fichou MP. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay. Biochimie 2016; 128-129:133-7. [PMID: 27523781 DOI: 10.1016/j.biochi.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.
Collapse
Affiliation(s)
- Naoko Kotera
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France
| | - Anton Granzhan
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France.
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France
| |
Collapse
|
3
|
Benner K, Ihmels H, Kölsch S, Pithan PM. Targeting abasic site-containing DNA with annelated quinolizinium derivatives: the influence of size, shape and substituents. Org Biomol Chem 2014; 12:1725-34. [DOI: 10.1039/c3ob42140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative analysis showed that the type and degree of annelation as well as methyl or chloro-substitution are relevant structural features that determine the interactions of quinolizinium derivatives with abasic site-containing DNA.
Collapse
Affiliation(s)
- Katja Benner
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Heiko Ihmels
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | - Sarah Kölsch
- University of Siegen
- Organic Chemistry II
- Siegen, Germany
| | | |
Collapse
|
4
|
Zhou C, Sczepanski JT, Greenberg MM. Mechanistic studies on histone catalyzed cleavage of apyrimidinic/apurinic sites in nucleosome core particles. J Am Chem Soc 2012; 134:16734-41. [PMID: 23020793 DOI: 10.1021/ja306858m] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Duplex DNA containing an apurinic/apyrimidinic (AP) lesion undergoes cleavage significantly more rapidly in nucleosome core particles (NCPs) than it does when free. The mechanism of AP cleavage within NCPs was studied through independently generating lesions within them. AP mediated DNA cleavage within NCPs is initiated by DNA-protein cross-link (DPC(un)) formation followed by β-elimination to give DPCs containing cleaved DNA (DPC(cl)). Hydrolysis of DPC(cl) produces a DNA single strand break (SSB). C2-dideuteration of AP showed that deprotonation from this position is involved in the rate-determining step. Experiments utilizing NCPs containing mutated histone H4 proteins indicated that lysine residues in the amino terminal tail are involved in both DPC formation and β-elimination steps. Lysines 16 and 20 seem to play a greater role in reacting with AP at superhelical location 1.5, but other amino acids (e.g., lysines 5, 8, and 12) compensate in their absence. The mechanism of rapid double strand breaks in bistranded, clustered AP lesions was studied by independently preparing reaction intermediates within model NCPs. A single strand break on one strand enhances the cleavage of a proximal AP on the opposite strand.
Collapse
Affiliation(s)
- Chuanzheng Zhou
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
5
|
Mandal SM, Migliolo L, Das S, Mandal M, Franco OL, Hazra TK. Identification and characterization of a bactericidal and proapoptotic peptide from cycas revoluta seeds with DNA binding properties. J Cell Biochem 2011; 113:184-93. [DOI: 10.1002/jcb.23343] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Prata CAH, Zhang XX, Luo D, McIntosh TJ, Barthelemy P, Grinstaff MW. Lipophilic peptides for gene delivery. Bioconjug Chem 2008; 19:418-20. [PMID: 18186598 DOI: 10.1021/bc700451b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA transfections are widely performed in research laboratories and in vivo gene delivery holds the promise for curing many diseases. The synthetic carriers or vectors for DNA are typically cationic lipids. However, in biology, the recognition of nucleic acids by proteins involves both electrostatic and stacking contributions. As such we have prepared a series of new lipophilic peptide vectors that possess lysine and tryptophan amino acids for evaluation. These lipophilic peptides show minimal cytotoxicity and enhanced in vitro gene transfection activity.
Collapse
Affiliation(s)
- Carla A H Prata
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
7
|
Minko IG, Kozekov ID, Kozekova A, Harris TM, Rizzo CJ, Lloyd RS. Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts. Mutat Res 2008; 637:161-72. [PMID: 17868748 PMCID: PMC3181171 DOI: 10.1016/j.mrfmmm.2007.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/27/2007] [Accepted: 08/01/2007] [Indexed: 04/09/2023]
Abstract
Current data suggest that DNA-peptide crosslinks are formed in cellular DNA as likely intermediates in the repair of DNA-protein crosslinks. In addition, a number of naturally occurring peptides are known to efficiently conjugate with DNA, particularly through the formation of Schiff-base complexes at aldehydic DNA adducts and abasic DNA sites. Since the potential role of DNA-peptide crosslinks in promoting mutagenesis is not well elucidated, here we report on the mutagenic properties of Schiff-base-mediated DNA-peptide crosslinks in mammalian cells. Site-specific DNA-peptide crosslinks were generated by covalently trapping a lysine-tryptophan-lysine-lysine peptide to the N(6) position of deoxyadenosine (dA) or the N(2) position of deoxyguanosine (dG) via the aldehydic forms of acrolein-derived DNA adducts (gamma-hydroxypropano-dA or gamma-hydroxypropano-dG, respectively). In order to evaluate the potential of DNA-peptide crosslinks to promote mutagenesis, we inserted the modified oligodeoxynucleotides into a single-stranded pMS2 shuttle vector, replicated these vectors in simian kidney (COS-7) cells and tested the progeny DNAs for mutations. Mutagenic analyses revealed that at the site of modification, the gamma-hydroxypropano-dA-mediated crosslink induced mutations at only approximately 0.4%. In contrast, replication bypass of the gamma-hydroxypropano-dG-mediated crosslink resulted in mutations at the site of modification at an overall frequency of approximately 8.4%. Among the types of mutations observed, single base substitutions were most common, with a prevalence of G to T transversions. Interestingly, while covalent attachment of lysine-tryptophan-lysine-lysine at gamma-hydroxypropano-dG caused an increase in mutation frequencies relative to gamma-hydroxypropano-dG, similar modification of gamma-hydroxypropano-dA resulted in decreased levels of mutations. Thus, certain DNA-peptide crosslinks can be mutagenic, and their potential to cause mutations depends on the site of peptide attachment. We propose that in order to avoid error-prone replication, proteolytic degradation of proteins covalently attached to DNA and subsequent steps of DNA repair should be tightly coordinated.
Collapse
Affiliation(s)
- Irina G. Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Ivan D. Kozekov
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Albena Kozekova
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
- Corresponding author. Tel.: +1 503 494 9957; fax: +1 503 494 6831.,
| |
Collapse
|
8
|
Weiss B, Grossman L. Phosphodiesterases involved in DNA repair. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 60:1-34. [PMID: 2444076 DOI: 10.1002/9780470123065.ch1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- B Weiss
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | | |
Collapse
|
9
|
Kaneda K, Sekiguchi J, Shida T. Role of the tryptophan residue in the vicinity of the catalytic center of exonuclease III family AP endonucleases: AP site recognition mechanism. Nucleic Acids Res 2006; 34:1552-63. [PMID: 16540594 PMCID: PMC1408312 DOI: 10.1093/nar/gkl059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms by which AP endonucleases recognize AP sites have not yet been determined. Based on our previous study with Escherichia coli exonuclease III (ExoIII), the ExoIII family AP endonucleases probably recognize the DNA-pocket formed at an AP site. The indole ring of a conserved tryptophan residue in the vicinity of the catalytic site presumably intercalates into this pocket. To test this hypothesis, we constructed a series of mutants of ExoIII and human APE1. Trp-212 of ExoIII and Trp-280 of APE1 were critical to the AP endonuclease activity and binding to DNA containing an AP site. To confirm the ability of the tryptophan residue to intercalate with the AP site, we examined the interaction between an oligopeptide containing a tryptophan residue and an oligonucleotide containing AP sites, using spectrofluorimetry and surface plasmon resonance (SPR) technology. The tryptophan residue of the oligopeptide specifically intercalated into an AP site of DNA. The tryptophan residue in the vicinity of the catalytic site of the ExoIII family AP endonucleases plays a key role in the recognition of AP sites.
Collapse
Affiliation(s)
| | | | - Toshio Shida
- To whom correspondence should be addressed. Tel: +81 268 21 5346; Fax: +81 268 21 5346;
| |
Collapse
|
10
|
Preuss M, Tecle M, Shah I, Matthews DA, Miller AD. Comparison between the interactions of adenovirus-derived peptides with plasmid DNA and their role in gene delivery mediated by liposome-peptide-DNA virus-like nanoparticles. Org Biomol Chem 2003; 1:2430-8. [PMID: 12956058 DOI: 10.1039/b302361c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previously we have described the development and applications of an important new platform system for gene delivery known as liposome-mu-DNA (LMD), prepared from cationic liposomes (L), plasmid DNA (D) and the mu(M) peptide derived from the adenovirus core. In an attempt to improve upon mu, an alternative peptide (pepV) derived from the adenovirus peptide/protein-DNA core complex was identified, synthesised and studied alongside mu using a number of biophysical techniques including gel retardation, ethidium bromide exclusion, CD binding titration, DNA melting, and plasmid protection assays. PepV binds to pDNA less efficiently than mu but is able to charge neutralise and condense pDNA into negatively charged pepVD particles comparable in dimension to MD particles. The results of CD studies and plasmid protection assays suggest that peptide-DNA interactions are likely to cause pDNA condensation by a combination of charge neutralisation, base pair tilting, double helix destabilisation and the induction of pDNA superfolding. Data suggest the pepVD particles may be formulated with cationic liposomes to give defined LpepVD particles that appear to transfect HeLa cells with marginally more efficiency than LMD particles suggesting that pepV may have some effect on the pDNA transcription process. Although pepV harbours a nuclear-nucleolar localisation sequence (NLS), transfection data show that this capacity is not being appropriately harnessed by the current LpepVD formulation. Further improvements may be required in terms of optimising LpepVD formulations--for instance, to ensure the integrity of the peptide-DNA complexes following cell entry--in order to fully exploit the full NLS capacity of the peptide, thereby facilitating the transfection of slowly dividing or quiescent cells.
Collapse
Affiliation(s)
- Monika Preuss
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, London, UK SW7 2AZ.
| | | | | | | | | |
Collapse
|
11
|
Teulade-Fichou MP, Perrin D, Boutorine A, Polverari D, Vigneron JP, Lehn JM, Sun JS, Garestier T, Helene C. Direct photocleavage of HIV-DNA by quinacridine derivatives triggered by triplex formation. J Am Chem Soc 2001; 123:9283-92. [PMID: 11562210 DOI: 10.1021/ja0109040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino-p-quinacridine compounds (PQs) have been shown to stabilize strongly and specifically triple-helical DNA. Moreover, these derivatives display photoactive properties that make them efficient DNA cleavage agents. We exploited these two properties (triplex-specific binding and photoactivity) to selectively cleave a double-stranded (ds)DNA sequence present in the HIV-1 genome. Cleavage was first carried out on a linearized plasmid (3300 bp) containing the HIV polypurine tract (PPT) that allowed targeting by a triplex-forming oligonucleotide (TFO). PQ(3)(), the most active compound of the series, efficiently cleaved double-stranded DNA in the vicinity of the PPT when this sequence had formed a triplex with a 16-mer TFO. Investigation of the cleavage at the molecular level was addressed on a short DNA fragment (56 bp); the photoinduced cleavage by PQ(3)() occurred only in the presence of the triple helix. Nevertheless, unusual cleavage patterns were observed: damage was observed at guanines located 6-9 bp away from the end of the triple helical site. This cleavage is very efficient (up to 60%), does not require alkaline treatment, and is observed on both strands. A quinacridine-TFO conjugate produced the same cleavage pattern. This observation, along with others, excludes the hypothesis of a triplex-induced allosteric binding site of PQ(3 )()adjacent to the damaged sequence and indicates that PQ(3 )()preferentially binds in the vicinity of the 5'-triplex junction. Irradiation in the presence of TFO-conjugates with acridine (an intercalative agent) and with the tripeptide lys-tryp-lys led to a complete inhibition of the photocleavage reaction. These results are interpreted in terms of competitive binding and of electron-transfer quenching. Together with the findings of simple mechanistic investigations, they led to the conclusion that the photoinduced damage proceeds through a direct electron transfer between the quinacridine and the guanines. This study addresses the chemical mechanism leading to strand breakage and characterizes the particular photosensitivity of the HIV-DNA target sequence which could be an oxidative hot spot for addressed photoinduced strand scission by photosensitizers.
Collapse
Affiliation(s)
- M P Teulade-Fichou
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wilson DM, Barsky D. The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 2001; 485:283-307. [PMID: 11585362 DOI: 10.1016/s0921-8777(01)00063-5] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA continuously suffers the loss of its constituent bases, and thereby, a loss of potentially vital genetic information. Sites of missing bases--termed abasic or apurinic/apyrimidinic (AP) sites--form spontaneously, through damage-induced hydrolytic base release, or by enzyme-catalyzed removal of modified or mismatched bases during base excision repair (BER). In this review, we discuss the structural and biological consequences of abasic lesions in DNA, as well as the multiple repair pathways for such damage, while emphasizing the mechanistic operation of the multi-functional human abasic endonuclease APE1 (or REF-1) and its potential relationship to disease.
Collapse
Affiliation(s)
- D M Wilson
- Molecular and Structural Biology Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
| | | |
Collapse
|
13
|
Abstract
Loss of a base in DNA, i.e., creation of an abasic site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously, or under the action of radiations and alkylating agents, or enzymatically as an intermediate in the repair of modified or abnormal bases. The abasic site lesion is mutagenic or lethal if not repaired. From a chemical point of view,the abasic site is an alkali-labile residue that leads to strand breakage through beta- and delta- elimination. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of synthetic abasic duplexes. Several efficient synthetic methods have thus been developed to introduce the lesion (or a stable analogue) at defined position in the sequence. Physicochemical and spectroscopic examination of such duplexes, including calorimetry, melting temperature, high-field nmr and molecular modeling indicate that the lesion strongly destabilizes the duplex, although remaining in the canonical B-form with structural modifications strictly located at the site of the lesion. Probes have been developed to titrate the damage in DNA in vitro. Series of molecules have been devised to recognize specifically the abasic site, exhibiting a cleavage activity and mimicking the AP nucleases. Others have been prepared that bind strongly to the abasic site and show promise in potentiating the cytotoxic and antitumor activity of the clinically used nitrosourea (bis-chloroethylnitrosurea).
Collapse
Affiliation(s)
- J Lhomme
- LEDSS, Chimie Bioorganique, UMR CNRS 5616, Université Joseph Fourier, Grenoble Cedex 9, France.
| | | | | |
Collapse
|
14
|
Malvy C, Lefrançois M, Bertrand JR, Markovits J. Modified alkaline elution allows the measurement of intact apurinic sites in mammalian genomic DNA. Biochimie 2000; 82:717-21. [PMID: 11018287 DOI: 10.1016/s0300-9084(00)01152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presence of apurinic/apyrimidinic (AP) sites in cell genomes is known to be toxic and mutagenic. These lesions are therefore repaired in cells by efficient enzymatic systems. However, a report (Nakamura and Swenberg, Cancer Res. 59 (1999) 2522-2526) indicates an unexpected high rate of endogenous apurinic/apyrimidinic (AP) sites in genomic DNA in mammalian tissues. The technology used does not allow the authors to distinguish between intact AP sites and 3'cleaved AP sites. The corresponding values range between 2 and 4 sites per million of nucleotides in various human and rat tissues. Using a modified alkaline elution method we show here that the stationary level of intact AP sites is about 0.16 per million of nucleotides in leukemic mouse L1210 cells.
Collapse
Affiliation(s)
- C Malvy
- UMR 8532 CNRS, Physicochimie et Pharmacologie des Macromolécules Biologiques, Institut Gustave Roussy, rue Camille-Desmoulins, 94800, Villejuif, France.
| | | | | | | |
Collapse
|
15
|
Wagenknecht HA, Stemp ED, Barton JK. DNA-Bound peptide radicals generated through DNA-mediated electron transport. Biochemistry 2000; 39:5483-91. [PMID: 10820021 DOI: 10.1021/bi992897m] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flash-quench experiments were carried out to explore peptide/DNA electron-transfer reactions. DNA-bound [Ru(phen)(2)(dppz)](3+) (phen = 1,10-phenanthroline; dppz = dipyridophenazine) and [Ru(phen)(bpy')(dppz)](3+) [bpy' = 4-(4'-methyl-2, 2'-bipyridyl)valerate], generated in situ by flash-quench methodology, are powerful ground-state oxidants, capable of oxidizing guanine or tyrosine intercalated in DNA. In flash-quench experiments with mixed-sequence oligonucleotides in the presence of Lys-Tyr-Lys, transient absorption spectroscopy yielded a spectrum with a sharp maximum at 405 nm assigned to the tyrosine radical. Experiments with poly(dG.dC) suggested the intermediacy of the guanine radical, since the rise of the 405 nm signal occurred with the same kinetics as the disappearance of the guanine radical, as monitored at 510 nm. In oligonucleotide duplexes containing [Ru(phen)(bpy')(dppz)](2+) tethered at one end, damage to distant guanines was observed by gel electrophoresis, consistent with the mobility of the electron hole through the DNA duplex; the presence of the peptide did not inhibit but instead altered the distribution of guanine damage. Covalent adducts of the DNA and Lys-Tyr-Lys were detected as final irreversible products of this peptide-to-DNA electron-transfer chemistry by mass spectrometric and enzymatic digestive analysis. From these different assays and comparison of reactions of Lys-Trp-Lys and Lys-Tyr-Lys, the reactivity of the DNA-bound tyrosine radical was found to differ considerably from that of the tryptophan radical. These results establish that Lys-Tyr-Lys and Lys-Trp-Lys can participate in long-range electron-transfer reactions through the DNA from a distinct binding site. On that basis, proposals for functional roles for these peptide radicals may be considered.
Collapse
Affiliation(s)
- H A Wagenknecht
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
16
|
Wagenknecht HA, Stemp EDA, Barton JK. Evidence of Electron Transfer from Peptides to DNA: Oxidation of DNA-Bound Tryptophan Using the Flash-Quench Technique. J Am Chem Soc 1999. [DOI: 10.1021/ja991855i] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hans-Achim Wagenknecht
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Eric D. A. Stemp
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jacqueline K. Barton
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
17
|
Abstract
Anthraquinone and naphthalene diimide intercalators with amine-containing side chains cleave plasmid DNA at abasic sites (apurinic or apyrimidinic (AP) sites). The intercalator-amine is substantially more effective than the amine itself; many intercalators with diamine side chains cleave most of the abasic sites at micromolar concentration (30 min at 37 degrees C). Intercalators with two amino moieties in the side chain are more efficient than those with one, arguing for a role for each of two amines in the cleavage mechanism. Side chains ending in tertiary amines are somewhat more effective than those ending in primary amines, indicating that imine formation is not required for cleavage at the abasic site. We also report a systematic study of abasic site cleavage by polyamines, including piperidine, spermine, spermidine and 12 other di-, tri- and tetra-amines. For polyamines as well as intercalator-amines, examples with three carbon atoms between neighboring nitrogens atoms cleave most efficiently. This may reflect a particularly favorable geometry for proton abstraction for these species. The effect of nitrogen-nitrogen spacing on the pKa values of the nitrogens may contribute as well. Overall, cleavage of plasmid DNA at adventitious abasic sites by intercalator-amines bearing two nitrogens in a single side chain occurs readily.
Collapse
Affiliation(s)
- V Steullet
- Department of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta 30303, USA
| | | | | |
Collapse
|
18
|
Abstract
The past year has seen a coming-of-age in DNA enzyme research. Far from being laboratory curiosities, the activities of new DNA enzymes have broadened the known catalytic repertoire of nucleic acid enzymes, provided valuable insights into different mechanistic possibilities open to nucleic acid catalysts, and explored the importance for catalysis of native functionalities within DNA and RNA, as well as of a diversity of extrinsic cofactors. Thus, the first amino acid cofactor-utilizing DNA enzyme has been described, as well as DNA enzymes that cleave RNA without the assistance of any external cofactor. On the practical side, the most efficient RNA-cleaving nucleic acid enzyme described to date is a DNA enzyme.
Collapse
Affiliation(s)
- D Sen
- Institute of Molecular Biology and Biochemistry Department of Chemistry Simon Fraser University Burnaby British Columbia V5A 1S6 Canada.
| | | |
Collapse
|
19
|
Sidorkina OM, Laval J. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein). Nucleic Acids Res 1998; 26:5351-7. [PMID: 9826758 PMCID: PMC148015 DOI: 10.1093/nar/26.23.5351] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.
Collapse
Affiliation(s)
- O M Sidorkina
- Groupe 'Réparation des Lésions Radio- et Chimio-Induites', UMR 1772 CNRS, Institut Gustave Roussy,94805 Villejuif Cédex, France
| | | |
Collapse
|
20
|
Erzberger JP, Barsky D, Schärer OD, Colvin ME, Wilson DM. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res 1998; 26:2771-8. [PMID: 9592167 PMCID: PMC147600 DOI: 10.1093/nar/26.11.2771] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sites of base loss in DNA arise spontaneously, are induced by damaging agents or are generated by DNA glycosylases. Repair of these potentially mutagenic or lethal lesions is carried out by apurinic/apyrimidinic (AP) endonucleases. To test current models of AP site recognition, we examined the effects of site-specific DNA structural modifications and an F266A mutation on incision and protein-DNA complex formation by the major human AP endonuclease, Ape. Changing the ring component of the abasic site from a neutral tetrahydrofuran (F) to a positively charged pyrrolidine had only a 4-fold effect on the binding capacity of Ape. A non-polar 4-methylindole base analog opposite F had a <2-fold effect on the incision activity of Ape and the human protein was unable to incise or specifically bind 'bulged' DNA substrates. Mutant Ape F266A protein complexed with F-containing DNA with only a 6-fold reduced affinity relative to wild-type protein. Similar studies are described using Escherichia coli AP endonucleases, exonuclease III and endonuclease IV. The results, in combination with previous findings, indicate that the ring structure of an AP site, the base opposite an AP site, the conformation of AP-DNA prior to protein binding and the F266 residue of Ape are not critical elements in targeted recognition by AP endonucleases.
Collapse
Affiliation(s)
- J P Erzberger
- Biology and Biotechnology Research Program, L-452, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | | | | | | | | |
Collapse
|
21
|
Shida T, Noda M, Sekiguchi J. Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI). Nucleic Acids Res 1996; 24:4572-6. [PMID: 8948651 PMCID: PMC146277 DOI: 10.1093/nar/24.22.4572] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli exonuclease III (AP endonuclease VI) is a DNA-repair enzyme that hydrolyzes the phosphodiester bond 5' to an abasic site in DNA. To study how the enzyme recognizes the abasic site, we used oligonucleotides containing a synthetic abasic site at any desired position in the sequence. We prepared oligonucleotides containing an abasic residue such as 2'-deoxyribosylformamide, 2'-deoxyribose, 1',2'-dideoxy ribofuranose or propanediol. Duplex oligonucleotides containing an abasic residue used in this study were cleaved on the 5' side of the abasic site by exonuclease III in spite of the varieties of the bases opposite and adjacent to the abasic site. In addition, we observed that the enzyme cleaved single-stranded oligonucleotides containing an abasic site on the 5' side of the abasic site. These findings suggest that the enzyme may principally recognize the DNA-pocket formed at an abasic site. The indole ring of the tryptophan 212 residue of the exonuclease III is probably intercalated to the abasic site. The tryptophan in the vicinity of the catalytic site is conserved in the type II AP endonuclease from various organisms.
Collapse
Affiliation(s)
- T Shida
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan.
| | | | | |
Collapse
|
22
|
Factors influencing the stability of ATP in ternary complexes: Spectroscopic investigation of the interaction of certain biomimetic copper(II) complexe with ATP and AMP. J Inorg Biochem 1994. [DOI: 10.1016/0162-0134(94)85024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
|
24
|
Doi T, Recktenwald A, Karaki Y, Kikuchi M, Morikawa K, Ikehara M, Inaoka T, Hori N, Ohtsuka E. Role of the basic amino acid cluster and Glu-23 in pyrimidine dimer glycosylase activity of T4 endonuclease V. Proc Natl Acad Sci U S A 1992; 89:9420-4. [PMID: 1409651 PMCID: PMC50143 DOI: 10.1073/pnas.89.20.9420] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
T4 endonuclease V [endodeoxyribonuclease (pyrimidine dimer); deoxyribonuclease (pyrimidine dimer), EC 3.1.25.1] initiates repair of damaged DNA by hydrolysis of the N-glycosyl bond at the 5' side of a pyrimidine photodimer in double-stranded DNA. To study one of the active sites of T4 endonuclease V, systematic site-directed mutagenesis was performed on the synthetic T4 endonuclease V gene, in parallel with three-dimensional structure analysis by x-ray crystallography. The mutant proteins were evaluated for DNA glycosylase activity using an oligonucleotide duplex (14-mer) containing a single thymidine dimer as a substrate. Replacement of either Glu-23 with glutamine or asparatic acid or Arg-3 with glutamine completely abolished DNA glycosylase activity. Mutation of Arg-3 to lysine or of Arg-26 to glutamine or lysine in a basic amino acid cluster caused serious defects in DNA glycosylase activity, which are reflected in the increases in Km and decreases in kcat of DNA glycosylase activity. On the other hand, substitutions of lysine for Arg-22 or of glutamine for Arg-117 or Lys-121 resulted in increases in the Km value. The completely inactive mutant proteins, E23Q and R3Q, in which glutamine was substituted for Glu-23 and Arg-3, respectively, were further investigated by CD spectroscopy for their ability to bind the oligonucleotide substrate. It was found that the E23Q protein retained specific substrate-binding ability, whereas the R3Q protein did not. These results indicate that Glu-23 plays an important role in catalysis of the DNA glycosylase reaction, and that Arg-3 is a crucial residue for substrate binding. In addition, Arg-22, Arg-26, Arg-117, and Lys-121 in the basic amino acid cluster also participate in substrate binding. We conclude that the basic amino acid cluster in T4 endonuclease V is an essential structure for DNA glycosylase activity.
Collapse
Affiliation(s)
- T Doi
- Protein Engineering Research Institute, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Recinos A, Lloyd RS. Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130. Biochemistry 1988; 27:1832-8. [PMID: 3132202 DOI: 10.1021/bi00406a006] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Recinos
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
27
|
Abstract
The paper is an outline review of the main aspects concerning the formation and repair of AP (apurinic/apyrimidinic) sites in DNA as well as some of the chemical properties allowing their quantitative determination. A new method for the measurement of AP sites based on their reaction with [14C]methoxyamine is described. It has been applied to the measurement of AP sites produced in DNA either by physical (gamma-rays) or chemical (methyl methanesulphonate, osmium tetroxide) agents. The method has also been used to quantify the excision of abnormal bases from DNA under the action of specific DNA glycosylases and to prevent the chemical or enzymatic degradation of DNA containing AP sites. The paper contains data about the purification and characterization of uracil-DNA glycosylase and AP endodeoxyribonuclease from carrot cells, two enzymes involved in the first steps of base excision repair through AP site intermediates. The biological effects of unrepaired AP sites are also discussed.
Collapse
|
28
|
Raap J, Dreef CE, van der Marel GA, van Boom JH, Hilbers CW. Synthesis and proton-NMR studies of oligonucleotides containing an apurinic (AP) site. J Biomol Struct Dyn 1987; 5:219-47. [PMID: 2856028 DOI: 10.1080/07391102.1987.10506391] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated. It is concluded that the indole ring of the tryptophan residue probably stacks on top of the 3'-terminal guanine base of both duplexes, but not on the nucleic acid bases next to the apurinic (AP) site.
Collapse
Affiliation(s)
- J Raap
- Gorlaeus Laboratories State University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Malvy C, Prévost P, Gansser C, Viel C, Paoletti C. Efficient breakage of DNA apurinic sites by the indoleamine related 9-amino-ellipticine. Chem Biol Interact 1986; 57:41-53. [PMID: 3512111 DOI: 10.1016/0009-2797(86)90047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aromatic amine, 9-NH2-ellipticine, is a synthetic DNA intercalating derivative of the antitumor agent ellipticine, which breaks circular DNA containing apurinic sites. This breakage is inhibited when the apurinic (AP) sites are reduced. The concentration of 9-NH2-ellipticine required to get a significant effect (0.1 microM) is the lowest known among chemicals which induce the same breakage reaction. Comparison with the action of structurally related amines shows that the amino-indole structure is specific for AP sites. The ability of ellipticine derivatives to induce breakage in DNA containing apurinic sites is related to the nucleophile substituent in position 9. Two ellipticine derivatives with known antitumor activity, BD 40 and 9-OH-ellipticine, were able to break purified DNA at apurinic sites.
Collapse
|
30
|
Colot V, Toulme JJ, Helene C. Interaction of a tryptophan-containing peptide with chromatin core particles. A fluorescence study. FEBS Lett 1984; 169:205-10. [PMID: 6714425 DOI: 10.1016/0014-5793(84)80319-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The binding of a tetrapeptide lysyltryptophylglycyllysine to nucleosome core particles has been investigated using UV absorption and fluorescence spectroscopy. Modifications of the absorption spectra and fluorescence quenching of the tryptophyl residue are consistent with stacking between the indole ring and nucleic acid bases. Therefore DNA interactions with histones do not prevent stacking of the tryptophyl residue with nucleic acid bases in the peptide-core particle complexes. The number of peptide binding sites is reduced to half that of naked DNA.
Collapse
|
31
|
Duker NJ, Jensen DE, Hart DM, Fishbein DE. Perturbations of enzymic uracil excision due to purine damage in DNA. Proc Natl Acad Sci U S A 1982; 79:4878-82. [PMID: 6956898 PMCID: PMC346788 DOI: 10.1073/pnas.79.16.4878] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phage PBS-2 DNA, which contains uracil in place of thymine, was selectively damaged and then used as substrate for purified Bacillus subtilis uracil-DNA glycosylase. This enzyme releases uracil from DNA in a limited processive manner. Irradiation by ultraviolet light (greater than 305 nm) in the presence of isopropanol and a free radical photoinitiator introduced covalently bound 8-(2-hydroxy-2-propyl)purines into DNA. Methylation by dimethylsulfate yielded 7-methylguanine. Apurinic sites were produced by gentle heating of methylated DNA. Rates of enzymic release of uracil from DNA varied among these three substrates. The Vmax was markedly decreased for DNA containing 8-(2-hydroxy-2-propyl)purines and apurinic sites but was unaffected by the presence of larger quantities of 7-methylguanine. This suggests that certain types of damaged DNA moieties may decrease the capacity for uracil excision. Therefore, interference with enzymic excision of this potentially mutagenic base may constitute a common mechanism of action of the reaction products of several unrelated DNA damaging agents.
Collapse
|
32
|
Bobst AM, Langemeier PW, Warwick-Koochaki PE, Bobst EV, Ireland JC. Nucleic binding affinity of bacteriophage T4 gene 32 protein in the cooperative binding mode. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(20)65124-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Warner HR, Persson ML, Bensen RJ, Mosbaugh DW, Linn S. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease. Nucleic Acids Res 1981; 9:6083-92. [PMID: 6273822 PMCID: PMC327585 DOI: 10.1093/nar/9.22.6083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.
Collapse
|
34
|
|
35
|
Behmoaras T, Toulmé JJ, Hélène C. A tryptophan-containing peptide recognizes and cleaves DNA at apurinic sites. Nature 1981; 292:858-9. [PMID: 7266655 DOI: 10.1038/292858a0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
|