1
|
Prabhu J, Frigerio M, Petretto E, Campomanes P, Salentinig S, Vanni S. A Coarse-Grained SPICA Makeover for Solvated and Bare Sodium and Chloride Ions. J Chem Theory Comput 2024; 20:7624-7634. [PMID: 39160094 PMCID: PMC11391577 DOI: 10.1021/acs.jctc.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Aqueous ionic solutions are pivotal in various scientific domains due to their natural prevalence and vital roles in biological and chemical processes. Molecular dynamics has emerged as an effective methodology for studying the dynamic behavior of these systems. While all-atomistic models have made significant strides in accurately representing and simulating these ions, the challenge persists in achieving precise models for coarse-grained (CG) simulations. Our study introduces two optimized models for sodium and chloride ions within the nonpolarizable surface property fitting coarse-grained force field (SPICA-FF) framework. The two models represent solvated ions, such as the original FF model, and unsolvated or bare ions. The nonbonded Lennard-Jones interactions were reparameterized to faithfully reproduce bulk properties, including density and surface tension, in sodium chloride solutions at varying concentrations. Notably, these optimized models replicate experimental surface tensions at high ionic strengths, a property not well-captured by the ions of the original model in the SPICA-FF. The optimized unsolvated model also proved successful in reproducing experimental osmotic pressure. Additionally, the newly reparameterized ion models capture hydrophobic interactions within sodium chloride solutions and show qualitative agreement when modeling structural changes in phospholipid bilayers, aligning with experimental observations. For aqueous solutions, these optimized models promise a more precise representation of the ion behavior.
Collapse
Affiliation(s)
- Janak Prabhu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matteo Frigerio
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Emanuele Petretto
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Lee S, Jiao M, Zhang Z, Yu Y. Nanoparticles for Interrogation of Cell Signaling. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:333-351. [PMID: 37314874 PMCID: PMC10627408 DOI: 10.1146/annurev-anchem-092822-085852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell functions rely on signal transduction-the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.
Collapse
Affiliation(s)
- Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Mengchi Jiao
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
4
|
Wu L, Yuan Z, Wang P, Mao X, Zhou M, Hou Y. The plasma membrane H + -ATPase FgPMA1 regulates the development, pathogenicity, and phenamacril sensitivity of Fusarium graminearum by interacting with FgMyo-5 and FgBmh2. MOLECULAR PLANT PATHOLOGY 2022; 23:489-502. [PMID: 34921490 PMCID: PMC8916210 DOI: 10.1111/mpp.13173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 05/06/2023]
Abstract
Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+ -ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+ -ATPases: FgPMA1 and FgPMA2 in F. graminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.
Collapse
Affiliation(s)
- Luoyu Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Zhili Yuan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Pengwei Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xuewei Mao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Mingguo Zhou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yiping Hou
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
5
|
Uwineza C, Mahboubi A, Atmowidjojo A, Ramadhani A, Wainaina S, Millati R, Wikandari R, Niklasson C, Taherzadeh MJ. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. BIORESOURCE TECHNOLOGY 2021; 337:125410. [PMID: 34157433 DOI: 10.1016/j.biortech.2021.125410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, edible filamentous fungi (single cell protein) can be cultivated on volatile fatty acids (VFAs) derived from anaerobic digestion (AD) of organic-rich waste streams. In this study, the effect of pH, concentration/distribution of VFAs, nutrient supplementation, and type of waste on Aspergillus oryzae cultivation on synthetic VFAs, and actual VFAs derived from AD of food waste and cow manure were investigated. The optimal pH for A. oryzae growth on VFAs were 6 and 7 with maximum acetic acid consumption rates of 0.09 g/L.h. The fungus could thrive on high concentrations of acetic (up to 9 g/L) yielding 0.29 g dry biomass/gVFAsfed. In mixed VFAs cultures, A. oryzae primarily consumed caproic and acetic acids reaching a biomass yield of 0.26 g dry biomass/gVFAsfed (containing up to 41% protein). For waste-derived VFAs at pH 6, the fungus successfully consumed 81-100% of caproic, acetic, and butyric acids.
Collapse
Affiliation(s)
- Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amelia Atmowidjojo
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alya Ramadhani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Claes Niklasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | |
Collapse
|
6
|
Rauh O, Hansen UP, Scheub DD, Thiel G, Schroeder I. Site-specific ion occupation in the selectivity filter causes voltage-dependent gating in a viral K + channel. Sci Rep 2018; 8:10406. [PMID: 29991721 PMCID: PMC6039446 DOI: 10.1038/s41598-018-28751-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022] Open
Abstract
Many potassium channels show voltage-dependent gating without a dedicated voltage sensor domain. This is not fully understood yet, but often explained by voltage-induced changes of ion occupation in the five distinct K+ binding sites in the selectivity filter. To better understand this mechanism of filter gating we measured the single-channel current and the rate constant of sub-millisecond channel closure of the viral K+ channel KcvNTS for a wide range of voltages and symmetric and asymmetric K+ concentrations in planar lipid membranes. A model-based analysis employed a global fit of all experimental data, i.e., using a common set of parameters for current and channel closure under all conditions. Three different established models of ion permeation and various relationships between ion occupation and gating were tested. Only one of the models described the data adequately. It revealed that the most extracellular binding site (S0) in the selectivity filter functions as the voltage sensor for the rate constant of channel closure. The ion occupation outside of S0 modulates its dependence on K+ concentration. The analysis uncovers an important role of changes in protein flexibility in mediating the effect from the sensor to the gate.
Collapse
Affiliation(s)
- O Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - U P Hansen
- Department of Structural Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - D D Scheub
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - G Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - I Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
7
|
Sze H, Chanroj S. Plant Endomembrane Dynamics: Studies of K +/H + Antiporters Provide Insights on the Effects of pH and Ion Homeostasis. PLANT PHYSIOLOGY 2018; 177:875-895. [PMID: 29691301 PMCID: PMC6053008 DOI: 10.1104/pp.18.00142] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 05/17/2023]
Abstract
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the trans-Golgi network or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane and contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and, in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis (Arabidopsis thaliana) genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet, the presence of distinct residues suggests that some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Salil Chanroj
- Department of Biotechnology, Burapha University, Chon-Buri 20131, Thailand
| |
Collapse
|
8
|
Stanić M, Križak S, Jovanović M, Pajić T, Ćirić A, Žižić M, Zakrzewska J, Antić TC, Todorović N, Živić M. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites. MICROBIOLOGY-SGM 2017; 163:364-372. [PMID: 28100310 DOI: 10.1099/mic.0.000429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.
Collapse
Affiliation(s)
- Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Strahinja Križak
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tanja Pajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ana Ćirić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milan Žižić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Tijana Cvetić Antić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Nataša Todorović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA. Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:91-111. [PMID: 27895207 PMCID: PMC5210754 DOI: 10.1104/pp.16.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Ion homeostasis and signaling are crucial to regulate pollen tube growth and morphogenesis and affect upstream membrane transporters and downstream targets.
Collapse
Affiliation(s)
- Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Bárbara Tavares
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| |
Collapse
|
10
|
Sarkar Y, Das S, Ray A, Jewrajka SK, Hirota S, Parui PP. A simple interfacial pH detection method for cationic amphiphilic self-assemblies utilizing a Schiff-base molecule. Analyst 2016; 141:2030-9. [DOI: 10.1039/c5an02128f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple pH-sensing method to monitor interfacial pH deviation from the bulk pH for cationic micelle and vesicle is introduced by estimating the change in the Schiff-base molecule (AH) proton dissociation between interface and bulk.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | - Suresh K. Jewrajka
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat-364002
- India
| | - Shun Hirota
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | | |
Collapse
|
11
|
Hansen UP, Rauh O, Schroeder I. A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme. Channels (Austin) 2015; 10:119-38. [PMID: 26646356 DOI: 10.1080/19336950.2015.1120391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.
Collapse
Affiliation(s)
- Ulf-Peter Hansen
- a Department of Structural Biology , University of Kiel , Kiel , Germany
| | - Oliver Rauh
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| | - Indra Schroeder
- b Plant Membrane Biophysics , Technical University of Darmstadt , Darmstadt , Germany
| |
Collapse
|
12
|
Abstract
Any bilayer lipid membrane can support a membrane voltage. The combination of optical perturbation and optical readout of membrane voltage opens the door to studies of electrophysiology in a huge variety of systems previously inaccessible to electrode-based measurements. Yet, the application of optogenetic electrophysiology requires careful reconsideration of the fundamentals of bioelectricity. Rules of thumb appropriate for neuroscience and cardiology may not apply in systems with dramatically different sizes, lipid compositions, charge carriers, or protein machinery. Optogenetic tools are not electrodes; thus, optical and electrode-based measurements have different quirks. Here we review the fundamental aspects of bioelectricity with the aim of laying a conceptual framework for all-optical electrophysiology.
Collapse
Affiliation(s)
- Adam E Cohen
- Department of Chemistry and Chemical Biology and
| | | |
Collapse
|
13
|
Felle HH. Ion-selective Microelectrodes: Their Use and Importance in Modern Plant Cell Biology. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1993.tb00331.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sánchez E, Heredia N, Camacho-Corona MDR, García S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae
of methyl gallate isolated from Acacia farnesiana. J Appl Microbiol 2013; 115:1307-16. [DOI: 10.1111/jam.12328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- E. Sánchez
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Biológicas; Universidad Autónoma de Nuevo León; San Nicolás de los Garza NL México
| | - N. Heredia
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Biológicas; Universidad Autónoma de Nuevo León; San Nicolás de los Garza NL México
| | - M. del R. Camacho-Corona
- Facultad de Ciencias Químicas; Universidad Autónoma de Nuevo León; San Nicolás de los Garza NL México
| | - S. García
- Departamento de Microbiología e Inmunología; Facultad de Ciencias Biológicas; Universidad Autónoma de Nuevo León; San Nicolás de los Garza NL México
| |
Collapse
|
15
|
Campetelli A, Bonazzi D, Minc N. Electrochemical regulation of cell polarity and the cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:601-12. [PMID: 22736620 DOI: 10.1002/cm.21047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023]
Abstract
Cell polarity plays a key role in regulating cell-cell communication, tissue architecture, and development. Both internal and external cues participate in directing polarity and feedback onto each other for robust polarization. One poorly appreciated layer of polarity regulation comes from electrochemical signals spatially organized at the level of the cell or the tissue. These signals which include ion fluxes, membrane potential gradients, or even steady electric fields, emerge from the polarized activation of specific ion transporters, and may guide polarity in wound-healing, development or regeneration. How a given electrochemical cue may influence cytoskeletal elements and cell polarity remains unclear. Here, we review recent progress highlighting the role of electrochemical signals in cell and tissue spatial organization, and elucidating the mechanisms for how such signals may regulate cytoskeletal assembly for cell polarity.
Collapse
Affiliation(s)
- Alexis Campetelli
- Institut Curie, UMR 144 CNRS/IC, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
16
|
YU. PLYUSNINA T, LAVROVA AI, PRICE CB, YU. RIZNICHENKO G, RUBIN AB. NONLINEAR DYNAMICS NEAR THE CELL MEMBRANE OFCHARA CORALLINA. J BIOL SYST 2011. [DOI: 10.1142/s0218339008002538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The phenomenon of patterned distribution of pH near the cell membrane of the algae Chara corallina upon illumination is well-known. In this paper, we develop a mathematical model, based on the detailed kinetic analysis of proton fluxes across the cell membrane, to explain this phenomenon. The model yields two coupled nonlinear partial differential equations which describe the spatial dynamics of proton concentration changes and transmembrane potential generation. The experimental observation of pH pattern formation, its period and amplitude of oscillation, and also its hysteresis in response to changing illumination, are all reproduced by our model. A comparison of experimental results and predictions of our theory is made. Finally, a mechanism for pattern formation in Chara corallina is proposed.
Collapse
Affiliation(s)
- T. YU. PLYUSNINA
- Biophysics Department, Faculty of Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| | - A. I. LAVROVA
- Biophysics Department, Faculty of Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| | - C. B. PRICE
- Computing, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK
| | - G. YU. RIZNICHENKO
- Biophysics Department, Faculty of Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| | - A. B. RUBIN
- Biophysics Department, Faculty of Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| |
Collapse
|
17
|
Roberts SK, Milnes J, Caddick M. Characterisation of AnBEST1, a functional anion channel in the plasma membrane of the filamentous fungus, Aspergillus nidulans. Fungal Genet Biol 2011; 48:928-38. [PMID: 21596151 DOI: 10.1016/j.fgb.2011.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022]
Abstract
Two distant homologues of the bestrophin gene family have been identified in the filamentous fungus, Aspergillus nidulans (anbest1 and anbest2). AnBEST1 was functionally characterised using the patch clamp technique and was shown to be an anion selective channel permeable to citrate. Furthermore, AnBEST1 restored the growth of the pdr12Δ yeast mutant on inhibitory concentrations of extracellular propionate, benzoate and sorbate, also consistent with carboxylated organic anion permeation of AnBEST1. Similar to its animal counterparts, AnBEST1 currents were activated by elevated cytosolic Ca(2+) with a K(d) of 1.60μM. Single channel currents showed long (>10s) open and closed times with a unitary conductance of 16.3pS. Transformation of A. nidulans with GFP-tagged AnBEST1 revealed that AnBEST1 localised to the plasma membrane. An anbest1 null mutant was generated to investigate the possibility that AnBEST1 mediated organic anion efflux across the plasma membrane. Although organic anion efflux was reduced from anbest1 null mutants, this phenotype was linked to the restoration of uracil/uridine-requiring A. nidulans strains to uracil/uridine prototrophy. In conclusion, this study identifies a new family of organic anion-permeable channels in filamentous fungi. We also reveal that uracil/uridine-requiring Aspergillus strains exhibit altered organic anion metabolism which could have implications for the interpretation of physiological studies using auxotrophic Aspergillus strains.
Collapse
Affiliation(s)
- Stephen K Roberts
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK.
| | | | | |
Collapse
|
18
|
Messerli MA, Amaral-Zettler LA, Zettler E, Jung SK, Smith PJS, Sogin ML. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile. ACTA ACUST UNITED AC 2005; 208:2569-79. [PMID: 15961743 DOI: 10.1242/jeb.01660] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers.
Collapse
Affiliation(s)
- Mark A Messerli
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Tazawa M. Cell physiological aspects of the plasma membrane electrogenic H+ pump. JOURNAL OF PLANT RESEARCH 2003; 116:419-442. [PMID: 12905075 DOI: 10.1007/s10265-003-0109-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 04/20/2003] [Indexed: 05/24/2023]
Abstract
This article deals with cell physiological aspects of the plasma membrane electrogenic proton (H+) pump and emphasizes the contribution of the giant algal cells of the Characeae in elucidating the mechanism of the pump. First, a history of the development of intracellular perfusion techniques in characean internodal cells is described, including preparation of tonoplast-free cells. Then, an outline of the hypothesis of the electrogenic H+ pump proposed by Kitasato is introduced, who prophesied the existence of an electric potential generated by an active H+ efflux. Subsequently, a history of finding ATP as the direct energy source of the electrogenic ion pump is presented. Quantitative agreement between the pump current and the ATP-dependent H+ efflux supports the notion that the ion carried by the electrogenic ion pump is H+. The role of the H+ pump in regulation of the cytosolic pH is discussed. Mechanisms of light-induced potential change through photosynthesis-controlled activation of the H+ pump are discussed in terms of changes in the levels of adenine nucleotides and in modulation of the Km value for the ATP of H+-ATPase. Recent progress in the molecular mechanism of the blue-light-induced activation of the H+-ATPase in guard cells is presented. However, there are cases where H+-ATPase activity is inhibited by blue light, indicating the flexibility of the control mechanisms of H+-ATPase activity. Finally, modulation of H+-pumping or H+-ATPase activities in response to environmental factors, such as anoxia, membrane excitation, osmotic and salt stresses, nutrient deficiencies and aluminum toxicity are described. Discussions are presented on the regulation of the electrogenic H+ pump.
Collapse
Affiliation(s)
- Masashi Tazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Holoubek A, Vecer J, Opekarová M, Sigler K. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:71-9. [PMID: 12507760 DOI: 10.1016/s0005-2736(02)00656-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.
Collapse
Affiliation(s)
- A Holoubek
- Institute of Physics, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Pérez-Fernández MA, Rodríguez-Echeverría S. Effect of smoke, charred wood, and nitrogenous compounds on seed germination of ten species from woodland in central-western Spain. J Chem Ecol 2003; 29:237-51. [PMID: 12647865 DOI: 10.1023/a:1021997118146] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of smoke, charred wood, and nitrogenous compounds on germination was tested on 10 species of the Cistaceae, Poaceae, Fabaceae, and Asteraceae, from fire-prone, shrubby woodlands in central-western Spain. Dry seeds were exposed to smoke, by watering with distilled water-charred wood suspensions, or NaNO2, KNO3, NH4Cl, and NH4NO3. Smoke enhanced germination in 9 of 10 of the species. In species of Poaceae, germination was stimulated by 20 min of smoke exposure. In Asteraceae and Fabaceae species, 10 min of smoke exposure was the most effective treatment for enhancing germination. Three species--Cistus ladanifer, Cistus crispus, and Cistus monspeliensis--had a positive response to 20 min of smoke exposure; germination of Cistus salviifolius L. was also enhanced after 10 min. The effect of charred wood was variable, with no consistent germination pattern within the families. Trifolium angustifolium and Retama sphaerocarpa showed no stimulation of germination under most of the charred wood concentrations. Similarly, germination of Senecio jacobea under the charred wood treatment did not surpass that of the control. NaNO2 promoted seed germination in Dactylis glomerata (10 mM), Cistus ladanifer (1, 10, and 25 mM), and Cistus crispus (1 and 10 mM). KNO3 enhanced germination in Dactylis glomerata (1 and 25 mM), Dittrichia viscosa (10 and 25 mM), C. ladanifer (1, 10, and 25 mM), Cistus crispus (1 and 25 mM), and C. salviifolius aud C. monspeliensis (25 mM). NH4Cl induced germination of Dactylis glomerata and Dittrichia viscosa (1 mM), and Cistus species germinated best in 25 mM of this salt. NH4NO3 induced germination only in Cistus species. Holcus lanatus had the highest level of germination regardless of treatment.
Collapse
Affiliation(s)
- M A Pérez-Fernández
- Ecology Department, University of Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain.
| | | |
Collapse
|
22
|
Hesse SJA, Ruijter GJG, Dijkema C, Visser J. Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3485-94. [PMID: 12135488 DOI: 10.1046/j.1432-1033.2002.03042.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular pH homeostasis in the filamentous fungus Aspergillus niger was measured in real time by 31P NMR during perfusion in the NMR tube of fungal biomass immobilized in Ca2+-alginate beads. The fungus maintained constant cytoplasmic pH (pH(cyt)) and vacuolar pH (pH(vac)) values of 7.6 and 6.2, respectively, when the extracellular pH (pH(ex)) was varied between 1.5 and 7.0 in the presence of citrate. Intracellular metabolism did not collapse until a Delta pH over the cytoplasmic membrane of 6.6-6.7 was reached (pH(ex) 0.7-0.8). Maintenance of these large pH differences was possible without increased respiration compared to pH(ex) 5.8. Perfusion in the presence of various hexoses and pentoses (pH(ex) 5.8) revealed that the magnitude of Delta pH values over the cytoplasmic and vacuolar membrane could be linked to the carbon catabolite repressing properties of the carbon source. Also, larger Delta pH values coincided with a higher degree of respiration and increased accumulation of polyphosphate. Addition of protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 microm CCCP), transient (2 microm CCCP) or permanent (10 microm CCCP) collapse of the vacuolar membrane Delta pH. Nonlethal levels of the metabolic inhibitor azide (N3-, 0.1 mm) caused a transient decrease in pH(cyt) that was closely paralleled by a transient vacuolar acidification. Vacuolar H+ influx in response to cytoplasmic acidification, also observed during extreme medium acidification, indicates a role in pH homeostasis for this organelle. Finally, 31P NMR spectra of citric acid producing A. niger mycelium showed that despite a combination of low pH(ex) (1.8) and a high acid-secreting capacity, pH(cyt) and pH(vac) values were still well maintained (pH 7.5 and 6.4, respectively).
Collapse
|
23
|
Brummer B, Felle H, Parish RW. Evidence that acid solutions induce plant cell elongation by acidifying the cytosol and stimulating the proton pump. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)81162-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
An electrogenic proton pump in plasma membranes from the cellular slime mouldDictyostelium discoideum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80781-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Miedema H, Bothwell JH, Brownlee C, Davies JM. Calcium uptake by plant cells--channels and pumps acting in concert. TRENDS IN PLANT SCIENCE 2001; 6:514-9. [PMID: 11701379 DOI: 10.1016/s1360-1385(01)02124-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
How do plant cells accomplish a net uptake of Ca(2+) but keep the membrane potential under control? Consideration of the voltage dependence of the depolarization-activated calcium channel and hyperpolarization-activated calcium channel types, and two other major transporters in the plasma membrane, the H(+)-ATPase and I(K,out), suggests that one channel is well suited for both nutritive and signalling Ca(2+) uptake whereas the other could be limited to a signalling function.
Collapse
Affiliation(s)
- H Miedema
- Dept of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
| | | | | | | |
Collapse
|
26
|
|
27
|
Hanke GT, Northrop FD, Devine GR, Bothwell JH, Davies JM. Chloride channel antagonists perturb growth and morphology of Neurospora crassa. FEMS Microbiol Lett 2001; 201:243-7. [PMID: 11470368 DOI: 10.1111/j.1574-6968.2001.tb10763.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The chloride channel antagonists anthracene-9-carboxylic acid, ethacrynic acid and niflumic acid were found to be fungistatic and morphogenic when tested against the ascomycete Neurospora crassa. Potency increased with decreasing pH, suggesting that the protonated forms of the compounds were active. Niflumic acid produced the most pronounced growth aberrations which may reflect an ability to acidify the cytoplasm and block the plasma membrane anion channel of N. crassa.
Collapse
Affiliation(s)
- G T Hanke
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- A Rodríguez-Navarro
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Pouliquin P, Boyer JC, Grouzis JP, Gibrat R. Passive nitrate transport by root plasma membrane vesicles exhibits an acidic optimal pH like the H(+)-ATPase. PLANT PHYSIOLOGY 2000; 122:265-274. [PMID: 10631270 PMCID: PMC58865 DOI: 10.1104/pp.122.1.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Accepted: 09/24/1999] [Indexed: 05/23/2023]
Abstract
The net initial passive flux (J(Ni)) in reconstituted plasma membrane (PM) vesicles from maize (Zea mays) root cells was measured as recently described (P. Pouliquin, J.-P. Grouzis, R. Gibrat ¿1999 Biophys J 76: 360-373). J(Ni) in control liposomes responded to membrane potential or to NO(3)(-) as expected from the Goldman-Hodgkin-Katz diffusion theory. J(Ni) in reconstituted PM vesicles exhibited an additional component (J(Nif)), which was saturable (K(m) for NO(3)(-) approximately 3 mM, with J(Nifmax) corresponding to 60 x 10(-9) mol m(-2) s(-1) at the native PM level) and selective (NO(3)(-) = ClO(3)(-) > Br(-) > Cl(-) = NO(2)(-); relative fluxes at 5 mM: 1:0.34:0.19). J(Nif) was totally inhibited by La(3+) and the arginine reagent phenylglyoxal. J(Nif) was voltage dependent, with an optimum voltage at 105 mV at pH 6.5. The activation energy of J(Nif) was high (129 kJ mol(-1)), close to that of the H(+)-ATPase (155 kJ mol(-1)), and J(Nif) displayed the same acidic optimal pH (pH 6.5) as that of the H(+) pump. This is the first example, to our knowledge, of a secondary transport at the plant PM with such a feature. Several properties of the NO(3)(-) uniport seem poorly compatible with that reported for plant anion channels and to be attributable instead to a classical carrier. The physiological relevance of these findings is suggested.
Collapse
Affiliation(s)
- P Pouliquin
- Biochimie et Physiologie Mol¿eculaire des Plantes, Agro-M/CNRS (Unit¿e Mixte de Recherche 5004)/Institut National de la Recherche Agronomique/Universit¿e de Montpellier 11, 2, Place Viala, F-34060 Montpellier, France
| | | | | | | |
Collapse
|
30
|
Homblé F, Raussens V, Ruysschaert JM, Grouzis JP, Goormaghtigh E. Secondary structure of the plasma membrane ATPase of corn roots (Zea mais L.): An attenuated total reflection FTIR spectroscopy study. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1520-6343(1996)2:3<193::aid-bspy6>3.0.co;2-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Walker, Black, Miller. The role of cytosolic potassium and pH in the growth of barley roots. PLANT PHYSIOLOGY 1998; 118:957-64. [PMID: 9808740 PMCID: PMC34806 DOI: 10.1104/pp.118.3.957] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/1998] [Accepted: 08/07/1998] [Indexed: 05/18/2023]
Abstract
In an earlier paper we showed that in fully developed barley (Hordeum vulgare L.) root epidermal cells a decrease in cytosolic K+ was associated with an acidification of the cytosol (D.J. Walker, R. A. Leigh, A.J. Miller [1996] Proc Natl Acad Sci USA 93: 10510-10514). To show that these changes in cytosolic ion concentrations contributed to the decreased growth of K+-starved roots, we first measured whether similar changes occurred in cells of the growing zone. Triple-barreled ion-selective microelectrodes were used to measure cytosolic K+ activity and pH in cells 0.5 to 1.0 mm from the root tip. In plants growing from 7 to 21 d after germination under K+-replete conditions, the mean values did not change significantly, with values ranging from 80 to 84 mM for K+ and 7.3 to 7.4 for pH. However, in K+-starved plants (external [K+], 2 &mgr;M), the mean cytosolic K+ activity and pH had declined to 44 mM and 7.0, respectively, after 14 d. For whole roots, sap osmolality was always lower in K+-starved than in K+-replete plants, whereas elongation rate and dry matter accumulation were significantly decreased after 14 and 16 d of K+ starvation. The rate of protein synthesis in root tips did not change for K+-replete plants but declined significantly with age in K+-starved plants. Butyrate treatment decreased cytosolic pH and diminished the rate of protein synthesis in K+-replete roots. Procaine treatment of K+-starved roots gave an alkalinization of the cytosol and increased protein synthesis rate. These results show that changes in both cytosolic pH and K+ can be significant factors in inhibiting protein synthesis and root growth during K+ deficiency.
Collapse
Affiliation(s)
- Walker
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (D.J.W., A.J.M.)
| | | | | |
Collapse
|
32
|
Johannes, Crofts, Sanders. Control of Cl- efflux in chara corallina by cytosolic pH, free ca2+, and phosphorylation indicates a role of plasma membrane anion channels in cytosolic pH regulation. PLANT PHYSIOLOGY 1998; 118:173-81. [PMID: 9733536 PMCID: PMC34853 DOI: 10.1104/pp.118.1.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/1998] [Accepted: 05/25/1998] [Indexed: 05/18/2023]
Abstract
Enhanced Cl- efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl- efflux via two mechanisms. The first is a direct effect of pHc on Cl- efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl- efflux. Cl- efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl- efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl- efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.
Collapse
Affiliation(s)
- Johannes
- The Plant Laboratory, Biology Department, University of York, P.O. Box 373, York YO1 5YW, United Kingdom
| | | | | |
Collapse
|
33
|
Reoyo E, Espeso EA, Peñalva MA, Suárez T. The essential Aspergillus nidulans gene pmaA encodes an homologue of fungal plasma membrane H(+)-ATPases. Fungal Genet Biol 1998; 23:288-99. [PMID: 9680959 DOI: 10.1006/fgbi.1998.1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pmaA, an Aspergillus nidulans gene encoding a P-ATPase, has been cloned by heterologous hybridization with the yeast PMA1 gene. The putative 990-residue PmaA polypeptide shows 50% identity to Saccharomyces cerevisiae and Neurospora crassa plasma membrane H(+)-ATPases and weak (19-26%) identity to other yeast P-type cation-translocating ATPases. PmaA contains all catalytic domains characterizing H(+)-ATPases. pmaA transcript levels are not regulated by PacC, the transcription factor mediating pH regulation, and were not significantly affected by an extreme creAd mutation resulting in carbon catabolite derepression. Deletion of pmaA causes lethality, but a single copy of the gene is sufficient to support normal growth rate in pmaA hemizygous diploids, even under acidic growth conditions. As compared to other fungal H(+)-ATPases, PmaA presents three insertions, 39, 7, and 16 residues long, in the conserved central region of the protein. Two of these insertions are predicted to be located in extracellular loops and might be of diagnostic value for the identification of Aspergillus species. Their absence from most mammalian P-type ATPases may have implications for antifungal therapy.
Collapse
Affiliation(s)
- E Reoyo
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas (C.S.I.C.), Velázquez, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Bachewich CL, Heath IB. The Cytoplasmic pH Influences Hyphal Tip Growth and Cytoskeleton-Related Organization. Fungal Genet Biol 1997; 21:76-91. [PMID: 9073482 DOI: 10.1006/fgbi.1997.0962] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regulatory role of protons in hyphal tip growth was investigated by using membrane-permeant weak acids to acidify cytoplasm of the oomycete Saprolegnia ferax. Acetic acid decreased cytoplasmic pH from approximately pH 7.2 to 6.8, as shown by SNARF-1 measurements of cytoplasmic pH. Inhibition of growth in a dose-dependent manner by acetic, propionic, and isobutyric acid was accompanied by changes in positioning and morphology of mitochondria and nuclei, condensation of chromatin, disruptions in peripheral actin, and increases in hyphal diameter. These cellular alterations were fully reversible, and during recovery, major cytoplasmic movements and extensive apical vacuolations were observed. The results are consistent with proton regulation of the cytoskeleton, nuclear matrix, and/or chromosomes. However, a macroscopic cytoplasmic gradient of H+ in hyphae was not revealed by SNARF-1, indicating that if such a H+ gradient were required, it must occur at a finer level than we detected.
Collapse
Affiliation(s)
- CL Bachewich
- Department of Biology, York University, 4700 Keele St., North York, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
35
|
Burgstaller W. Transport of small lons and molecules through the plasma membrane of filamentous fungi. Crit Rev Microbiol 1997; 23:1-46. [PMID: 9097013 DOI: 10.3109/10408419709115129] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Less than 1% of the estimated number of fungal species have been investigated concerning the transport of low-molecular-weight nutrients and metabolites through the plasma membrane. This is surprising if one considers the importance of the processes at the plasma membrane for the cell: this membrane mediates between the cell and its environment. Concentrating on filamentous fungi, in this review emphasis is placed on relating results from biophysical chemistry, membrane transport, fungal physiology, and fungal ecology. Among the treated subjects are the consequences of the small dimension of hyphae, the habitat and membrane transport, the properties of the plasma membrane, the efflux of metabolites, and the regulation of membrane transport. Special attention is given to methodological problems occurring with filamentous fungi. A great part of the presented material relies on work with Neurospora crassa, because for this fungus the most complete picture of plasma membrane transport exists. Following the conviction that we need "concepts instead of experiments", we delineate the lively network of membrane transport systems rather than listing the properties of single transport systems.
Collapse
|
36
|
Giglioli-Guivarc'h N, Pierre JN, Brown S, Chollet R, Vidal J, Gadal P. The Light-Dependent Transduction Pathway Controlling the Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase in Protoplasts from Digitaria sanguinalis. THE PLANT CELL 1996; 8:573-586. [PMID: 12239393 PMCID: PMC161121 DOI: 10.1105/tpc.8.4.573] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) was characterized in extracts from C4 mesophyll protoplasts isolated from Digitaria sanguinalis leaves and shown to display the structural, functional, and regulatory properties typical of a C4 PEPC. In situ increases in the apparent phosphorylation state of the enzyme and the activity of its Ca2+-independent protein-serine kinase were induced by light plus NH4Cl or methylamine. The photosynthesis-related metabolite 3-phosphoglycerate (3-PGA) was used as a substitute for the weak base in these experiments. The early effects of light plus the weak base or 3-PGA treatment were alkalinization of protoplast cytosolic pH, shown by fluorescence cytometry, and calcium mobilization from vacuoles, as suggested by the use of the calcium channel blockers TMB-8 and verapamil. The increases in PEPC kinase activity and the apparent phosphorylation state of PEPC also were blocked in situ by the electron transport and ATP synthesis inhibitors DCMU and gramicidin, respectively, the calcium/calmodulin antagonists W7, W5, and compound 48/80, and the cytosolic protein synthesis inhibitor cycloheximide. These results suggest that the production of ATP and/or NADPH by the illuminated mesophyll chloroplast is required for the activation of the transduction pathway, which presumably includes an upstream Ca2+-dependent protein kinase and a cytosolic protein synthesis event. The collective data support the view that the C4 PEPC light transduction pathway is contained entirely within the mesophyll cell and imply cross-talk between the mesophyll and bundle sheath cells in the form of the photosynthetic metabolite 3-PGA.
Collapse
Affiliation(s)
- N. Giglioli-Guivarc'h
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, UA D1128, Universite de Paris-Sud, Batiment 630, 91405 Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Larroche C, Besson I, Gros JB. Internal substrate concentrations during biotransformation of octanoic acid into 2-heptanone by spores ofPenicillium roquefortii. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01569918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
The Regulatory Phosphorylation of C4 Phosphoenolpyruvate Carboxylase: a Cardinal Event in C4 Photosynthesis. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-7091-7474-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
39
|
Ermolayeva E, Sanders D. Mechanism of pyrithione-induced membrane depolarization in Neurospora crassa. Appl Environ Microbiol 1995; 61:3385-90. [PMID: 7574648 PMCID: PMC167618 DOI: 10.1128/aem.61.9.3385-3390.1995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pyrithione is a general inhibitor of membrane transport in fungi and is widely used in antidandruff shampoos as an antifungal agent. An electrophysiological approach has been used to determine the mode of action of pyrithione on the plasma membrane of the model ascomycete, Neurospora crassa. At pH 5.8, pyrithione induces a dramatic dose-dependent electrical depolarization of the membrane which is complete within 4 min, amounts to 110 mV at saturating pyrithione concentrations, and is half maximal between 0.6 and 0.8 mM pyrithione. Zinc pyrithione induces a similar response but exerts a half-maximal effect at around 0.3 mM. The depolarization is strongly dependent on external pH, being almost absent at pH 8.2, at which the concentration of the uncharged form of pyrithione--which might be expected to permeate the membrane freely--is markedly lowered. However, quantitative considerations based on cytosolic buffer capacity, the pKa of pyrithione, and the submillimolar concentration at which it is active appear to preclude significant cytosolic acidification on dissociation of the thiol proton from the uncharged form of pyrithione. Current-voltage analysis demonstrates that the depolarization is accompanied by a decrease in membrane electrical conductance in a manner consistent with inhibition of the primary proton pump and inconsistent with a mode of action of pyrithione on plasma membrane ion channels. We conclude that pyrithione inhibits membrane transport via a direct or indirect effect on the primary proton pump which energizes transport and that the site of action of pyrithione is likely to be intra- rather than extracellular.
Collapse
Affiliation(s)
- E Ermolayeva
- Biology Department, University of York, United Kingdom
| | | |
Collapse
|
40
|
|
41
|
Larroche C, Besson I, Gros JB. Behavior of spores ofPenicillium roquefortii during fed-batch bioconversion of octanoic acid into 2-heptanone. Biotechnol Bioeng 1994; 44:699-709. [DOI: 10.1002/bit.260440606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Amtmann A, Gradmann D. Na+ transport in Acetabularia bypasses conductance of plasmalemma. J Membr Biol 1994; 139:117-25. [PMID: 8064844 DOI: 10.1007/bf00232430] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na(+)-selective microelectrodes with the sensor ETH 227 have been used to measure the cytoplasmic Na+ concentration, [Na+]c, in Acetabularia. In the steady-state, [Na+]c is about 60 mM (external 460 mM). Steps in external Na+ concentration, [Na+]o, cause biexponential relaxations of [Na+]c which have formally been described by a serial three-compartment model (outside<==>compartment 1<==>compartment 2). From the initial slopes (some mMsec-1) net uptake and release of about 3 mumolm-2sec-1 Na+ are determined. Surprisingly, but consistent with previous tracer flux measurements (Mummert, H., Gradmann, D. 1991. J. Membrane Biol, 124:255-263), these Na+ fluxes are not accompanied by corresponding changes of the transplasmalemma voltage. [Na+]c is neither affected by the membrane voltage, nor by electrochemical gradients of H+ or Cl- across the plasmalemma, nor by cytoplasmic ATP. The results suggest a powerful vesicular transport system for ions which bypasses the conductance of the plasmalemma. In addition, transient increases of [Na+]c have been observed to take place facultatively during action potentials. The exponential distribution of the amplitudes of these transients (many small and few large peaks) points to local events in the more ore less close vicinity of the Na+ recording electrode. These events are suggested to consist of disruption of endoplasmic vesicles due to a loss of pressure in the cytoplasm.
Collapse
Affiliation(s)
- A Amtmann
- Pflanzenphysiologisches Institut der Universität, Göttingen, Germany
| | | |
Collapse
|
43
|
Haworth RS, Fliegel L. Intracellular pH in Schizosaccharomyces pombe--comparison with Saccharomyces cerevisiae. Mol Cell Biochem 1993; 124:131-40. [PMID: 8232284 DOI: 10.1007/bf00929205] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We examined cytoplasmic pH regulation in Schizosaccharomyces pombe and Saccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 from S. pombe was much slower than leakage from C. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 for S. pombe and 6.6 for S. cerevisiae. We found that internal pH in S. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater in S. cerevisiae than in S. pombe. The plasma membrane H(+)-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 microM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 microM for S. cerevisiae and 490 microM for S. pombe.
Collapse
Affiliation(s)
- R S Haworth
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
44
|
van der Veen R, Heimovaara-Dijkstra S, Wang M. Cytosolic alkalinization mediated by abscisic Acid is necessary, but not sufficient, for abscisic Acid-induced gene expression in barley aleurone protoplasts. PLANT PHYSIOLOGY 1992; 100:699-705. [PMID: 16653048 PMCID: PMC1075615 DOI: 10.1104/pp.100.2.699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated whether intracellular pH (pH(i)) is a causal mediator in abscisic acid (ABA)-induced gene expression. We measured the change in pH(i) by a "null-point" method during stimulation of barley (Hordeum vulgare cv Himalaya) aleurone protoplasts with ABA and found that ABA induces an increase in pH(i) from 7.11 to 7.30 within 45 min after stimulation. This increase is inhibited by plasma membrane H(+)-ATPase inhibitors, which induce a decrease in pH(i), both in the presence and absence of ABA. This ABA-induced pH(i) increase precedes the expression of RAB-16 mRNA, as measured by northern analysis. ABA-induced pH(i) changes can be bypassed or clamped by addition of either the weak acids 5,5-dimethyl-2,4-oxazolidinedione and propionic acid, which decrease the pH(i), or the weak bases methylamine and ammonia, which increase the pH(i). Artificial pH(i) increases or decreases induced by weak bases or weak acids, respectively, do not induce RAB-16 mRNA expression. Clamping of the pH(i) at a high value with methylamine or ammonia treatment affected the ABA-induced increase of RAB-16 mRNA only slightly. However, inhibition of the ABA-induced pH(i) increase with weak acid or proton pump inhibitor treatments strongly inhibited the ABA-induced RAB-16 mRNA expression. We conclude that, although the ABA-induced the pH(i) increase is correlated with and even precedes the induction of RAB-16 mRNA expression and is an essential component of the transduction pathway leading from the hormone to gene expression, it is not sufficient to cause such expression.
Collapse
Affiliation(s)
- R van der Veen
- Center for Phytotechnology Leiden University/Netherlands Organisation for Applied Scientific Research, Wassenaarseweg 64, 2333 AL Leiden, the Netherlands
| | | | | |
Collapse
|
45
|
|
46
|
Pope AJ, Jennings IR, Sanders D, Leigh RA. Characterization of Cl- transport in vacuolar membrane vesicles using a Cl(-)-sensitive fluorescent probe: reaction kinetic models for voltage- and concentration-dependence of Cl- flux. J Membr Biol 1990; 116:129-37. [PMID: 2380980 DOI: 10.1007/bf01868671] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of Cl- concentration and membrane potential (delta psi) on Cl- influx in isolated vesicles of vacuolar membrane (tonoplast) from red beet (Beta vulgaris L.) storage tissue have been characterized using the Cl(-)-sensitive fluorescent probe, 6-methoxy-1-(3-sulfonatopropyl)quinolinium (SPQ). The initial rate of Cl- transport into the vesicles was enhanced both by the imposition of a positive delta psi and by increases in extravesicular Cl- concentration. The kinetic mechanism underlying these responses was investigated by examining the accuracy with which the data could be described by several transport models. A model based on constant field theory yielded a poor description of the data, but satisfactory fits were generated by pseudo-two-state reaction kinetic models based on classical carrier schemes. Fits were equally good when it was assumed that charge translocation accompanied Cl- entry, or when charge was carried by the unloaded transport system, as long as only a single charge is translocated in each carrier cycle. Expansion of the models to three states enabled description of the Cl- concentration dependence of transport by changes in a single, voltage insensitive rate constant which is tentatively identified with Cl- binding at the external surface of the membrane. The derived value of the dissociation constant between Cl- and the transport system is estimated at between 30 and 52 mM.
Collapse
Affiliation(s)
- A J Pope
- AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Hertfordshire, United Kingdom
| | | | | | | |
Collapse
|
47
|
Blatt MR, Beilby MJ, Tester M. Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 1990; 114:205-23. [PMID: 2157844 DOI: 10.1007/bf01869215] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is generally agreed that solute transport across the Chara plasma membrane is energized by a proton electrochemical gradient maintained by an H(+)-extruding ATPase. Nonetheless, as deduced from steady-state current-voltage (I-V) measurements, the kinetic and thermodynamic constraints on H(+)-ATPase function remain in dispute. Uncertainties necessarily surround long-term effects of the relatively nonspecific antagonists used in the past; but a second, and potentially more serious problem has sprung from the custom of subtracting, across the voltage spectrum, currents recorded following pump inhibition from currents measured in the control. This practice must fail to yield the true I-V profile for the pump when treatments alter the thermodynamic pressure on transport. We have reviewed these issues, using rapid metabolic blockade with cyanide and fitting the resultant whole-cell I-V and difference-current-voltage (dI-V) relations to a reaction kinetic model for the pump and parallel, ensemble leak. Measurements were carried out after blocking excitation with LaCl3, so that steady-state currents could be recorded under voltage clamp between -400 and +100 mV. Exposures to 1 mM NaCN (CN) and 0.4 mM salicylhydroxamic acid (SHAM) depolarized (positive-going) Chara membrane potentials by 44-112 mV with a mean half time of 5.4 +/- 0.8 sec (n = 13). ATP contents, which were followed in parallel experiments, decayed coincidently with a mean half time of 5.3 +/- 0.9 sec [( ATP]t = 0, 0.74 +/- 0.3 mM; [ATP]t = infinity, 0.23 +/- 0.02 mM). Current-voltage response to metabolic blockade was described quantitatively in context of these changes in ATP content and the consequent reduction in pump turnover rate accompanied by variable declines in ensemble leak conductance. Analyses of dI-V curves (+/- CN + SHAM) as well as of families of I-V curves taken at times during CN + SHAM exposures indicated a stoichiometry for the pump of one charge (H+) transported per ATP hydrolyzed and an equilibrium potential near -420 mV at neutral external pH; under these conditions, the pump accounted for approximately 60-75% of the total membrane conductance near Vm. Complementary results were obtained also in fitting previously published I-V data gathered over the external pH range 4.5-7.5. Kinetic features deduced for the pump were dominated by a slow step preceding H+ unloading outside, and by recycling and loading steps on the inside which were in rapid equilibrium.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Blatt
- Botany School, University of Cambridge, England
| | | | | |
Collapse
|
48
|
Affiliation(s)
- C L Slayman
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
49
|
Nakamoto RK, Slayman CW. Molecular properties of the fungal plasma-membrane [H+]-ATPase. J Bioenerg Biomembr 1989; 21:621-32. [PMID: 2531740 DOI: 10.1007/bf00808117] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fungal plasma membrane contains a proton-translocating ATPase that is closely related, both structurally and functionally, to the [Na+, K+]-, [H+, K+]-, and [Ca2+]-ATPases of animal cells, the plasma-membrane [H+]-ATPase of higher plants, and several bacterial cation-transporting ATPases. This review summarizes currently available information on the molecular genetics, protein structure, and reaction cycle of the fungal enzyme. Recent efforts to dissect structure-function relationships are also discussed.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Human Genetics, Yale School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
50
|
Parsons A, Sanders D. Electrical properties of soybean plasma membrane measured in heterotrophic suspension callus. PLANTA 1989; 177:499-510. [PMID: 24212492 DOI: 10.1007/bf00392618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/1988] [Accepted: 11/30/1988] [Indexed: 06/02/2023]
Abstract
Previous work on heterotrophic suspension-cultured cells has failed to detect the electrogenic processes normally associated with the plasma membranes of non-animal cells. This study reports measurements on heterotrophic cells from soybean (Glycine max L.) suspension cultures, which are shown to be amenable to impalement with microelectrodes. The plasma membrane clearly exhibits fundamental characteristics which are common to many other plant cell types: (i) a resting membrane potential significantly more negative than-100mV (measured value:121±4mV); (ii) obvious electrogenic activity, as evidenced by the marked depolarization of the membrane (87±6mV) by cyanide, and by the fact the membrane potential was frequently more negative than the equilibrium potential for K(+); (iii) a finite permeability to K(+) ions; (iv) electrophoretic transport of glucose. The development of a recording medium consisting primarily of 1:5 diluted growth medium was critical for successful impalement of these cells. It is proposed that the novel identification of electrogenic processes in heterotrophic suspension-cultured cells results from the deployment of electrodes with relatively dilute filling solutions, thus avoiding substantial changes in intracellular ion concentrations.The overwhelming majority of cells in soybean suspension cultures exist in small clusters, and the possibility of intercellular coupling potentially precludes assessment of membrane specific resistance and current density. Furthermore, as with most higher-plant cells, the vacuole occupies a large fraction of the intracellular volume. However, a model in which the measuring electrode is cytosolically located and the cells are electrically well-coupled is the only one which satisfactorily generates values for membrane specific resistance in a manner which is not strongly dependent on the number of cells in the cluster: other models in which the electrode tip is located in the vacuole and-or the impaled cell is electrically isolated from the others do not seem to apply. The measured values of membrane specific resistance are in the range 5.4 to 8.4 ω·m(2), which is in excellent agreement with comparable measurements on other plant and fungal cells. The results are discussed with respect to mechanisms of transmembrane signalling in soybean, as well as to general electrophysiological studies on higher-plant cells in suspension culture and in tissues.
Collapse
Affiliation(s)
- A Parsons
- Biology Department, University of York, YO1 5DD, Heslington, York, UK
| | | |
Collapse
|