1
|
Perera LA, Hattersley AT, Harding HP, Wakeling MN, Flanagan SE, Mohsina I, Raza J, Gardham A, Ron D, De Franco E. Infancy-onset diabetes caused by de-regulated AMPylation of the human endoplasmic reticulum chaperone BiP. EMBO Mol Med 2023; 15:e16491. [PMID: 36704923 PMCID: PMC9994480 DOI: 10.15252/emmm.202216491] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/28/2023] Open
Abstract
Dysfunction of the endoplasmic reticulum (ER) in insulin-producing beta cells results in cell loss and diabetes mellitus. Here we report on five individuals from three different consanguineous families with infancy-onset diabetes mellitus and severe neurodevelopmental delay caused by a homozygous p.(Arg371Ser) mutation in FICD. The FICD gene encodes a bifunctional Fic domain-containing enzyme that regulates the ER Hsp70 chaperone, BiP, via catalysis of two antagonistic reactions: inhibitory AMPylation and stimulatory deAMPylation of BiP. Arg371 is a conserved residue in the Fic domain active site. The FICDR371S mutation partially compromises BiP AMPylation in vitro but eliminates all detectable deAMPylation activity. Overexpression of FICDR371S or knock-in of the mutation at the FICD locus of stressed CHO cells results in inappropriately elevated levels of AMPylated BiP and compromised secretion. These findings, guided by human genetics, highlight the destructive consequences of de-regulated BiP AMPylation and raise the prospect of tuning FICD's antagonistic activities towards therapeutic ends.
Collapse
Affiliation(s)
- Luke A Perera
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- Present address:
The Francis Crick InstituteLondonUK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Heather P Harding
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Matthew N Wakeling
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Ibrahim Mohsina
- Department of Endocrine and DiabetesNational Institute of Child HealthKarachiPakistan
| | - Jamal Raza
- Department of Endocrine and DiabetesNational Institute of Child HealthKarachiPakistan
| | | | - David Ron
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
2
|
Gulen B, Itzen A. Revisiting AMPylation through the lens of Fic enzymes. Trends Microbiol 2021; 30:350-363. [PMID: 34531089 DOI: 10.1016/j.tim.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
AMPylation, a post-translational modification (PTM) first discovered in the late 1960s, is catalyzed by adenosine monophosphate (AMP)-transferring enzymes. The observation that filamentation-induced-by-cyclic-AMP (fic) enzymes are associated with this unique PTM revealed that AMPylation plays a major role in hijacking of host signaling by pathogenic bacteria during infection. Studies over the past decade showed that AMPylation is conserved across all kingdoms of life and, outside their role in infection, also modulates cellular functions. Many aspects of AMPylation are yet to be uncovered. In this review we present the advancement in research on AMPylation and Fic enzymes as well as other distinct classes of enzymes that catalyze AMPylation.
Collapse
Affiliation(s)
- Burak Gulen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany; Present address: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aymelt Itzen
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033894. [PMID: 30396883 PMCID: PMC6442202 DOI: 10.1101/cshperspect.a033894] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiological consequences of the unfolded protein response (UPR) are mediated by changes in gene expression. Underlying them are rapid processes involving preexisting components. We review recent insights gained into the regulation of the endoplasmic reticulum (ER) Hsp70 chaperone BiP, whose incorporation into inactive oligomers and reversible AMPylation and de-AMPylation present a first line of response to fluctuating levels of unfolded proteins. BiP activity is tied to the regulation of the UPR transducers by a recently discovered cycle of ER-localized, J protein-mediated formation of a repressive IRE1-BiP complex, whose working we contrast to an alternative model for UPR regulation that relies on direct recognition of unfolded proteins. We conclude with a discussion of mechanisms that repress messenger RNA (mRNA) translation to limit the flux of newly synthesized proteins into the ER, a rapid adaptation that does not rely on new macromolecule biosynthesis.
Collapse
|
5
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
6
|
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108:383-393. [PMID: 28363604 DOI: 10.1016/j.freeradbiomed.2017.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
7
|
FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat Struct Mol Biol 2016; 24:23-29. [PMID: 27918543 PMCID: PMC5221731 DOI: 10.1038/nsmb.3337] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) is defended by an unfolded protein response (UPR) that matches ER chaperone capacity to the burden of unfolded proteins. As levels of unfolded proteins decline, a metazoan-specific FIC-domain containing ER-localized enzyme, FICD (HYPE), rapidly inactivates the major ER chaperone BiP by AMPylating T518. Here we show that the single catalytic domain of FICD can also release the attached AMP, restoring functionality to BiP. Consistent with a role for endogenous FICD in de-AMPylating BiP, FICD-/- hamster cells are hypersensitive to introduction of a constitutively AMPylating, de-AMPylation defective mutant FICD. These opposing activities hinge on a regulatory residue, E234, whose default state renders FICD a constitutive de-AMPylase in vitro. The location of E234 on a conserved regulatory helix and the mutually antagonistic activities of FICD in vivo, suggest a mechanism whereby fluctuating unfolded protein load actively switches FICD from a de-AMPylase to an AMPylase.
Collapse
|
8
|
Wang J, Sevier CS. Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress. J Biol Chem 2016; 291:7541-57. [PMID: 26865632 DOI: 10.1074/jbc.m115.694810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Redox fluctuations within cells can be detrimental to cell function. To gain insight into how cells normally buffer against redox changes to maintain cell function, we have focused on elucidating the signaling pathways that serve to sense and respond to oxidative redox stress within the endoplasmic reticulum (ER) using yeast as a model system. Previously, we have shown that a cysteine in the molecular chaperone BiP, a Hsp70 molecular chaperone within the ER, is susceptible to oxidation by peroxide during ER-derived oxidative stress, forming a sulfenic acid (-SOH) moiety. Here, we demonstrate that this same conserved BiP cysteine is susceptible also to glutathione modification (-SSG). Glutathionylated BiP is detected both as a consequence of enhanced levels of cellular peroxide and also as a by-product of increased levels of oxidized glutathione (GSSG). Similar to sulfenylation, we observe glutathionylation decouples BiP ATPase and peptide binding activities, turning BiP from an ATP-dependent foldase into an ATP-independent holdase. We show glutathionylation enhances cell proliferation during oxidative stress, which we suggest relates to modified BiP's increased ability to limit polypeptide aggregation. We propose the susceptibility of BiP to modification with glutathione may serve also to prevent irreversible oxidation of BiP by peroxide.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Carolyn S Sevier
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
9
|
Preissler S, Rato C, Chen R, Antrobus R, Ding S, Fearnley IM, Ron D. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. eLife 2015; 4:e12621. [PMID: 26673894 PMCID: PMC4739761 DOI: 10.7554/elife.12621] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 01/11/2023] Open
Abstract
The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr(518). AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr(518) AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Cláudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ruming Chen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Preissler S, Chambers JE, Crespillo-Casado A, Avezov E, Miranda E, Perez J, Hendershot LM, Harding HP, Ron D. Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. eLife 2015; 4:e08961. [PMID: 26473973 PMCID: PMC4608358 DOI: 10.7554/elife.08961] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
DnaK/Hsp70 chaperones form oligomers of poorly understood structure and functional significance. Site-specific proteolysis and crosslinking were used to probe the architecture of oligomers formed by the endoplasmic reticulum (ER) Hsp70, BiP. These were found to consist of adjacent protomers engaging the interdomain linker of one molecule in the substrate binding site of another, attenuating the chaperone function of oligomeric BiP. Native gel electrophoresis revealed a rapidly-modulated reciprocal relationship between the burden of unfolded proteins and BiP oligomers and slower equilibration between oligomers and inactive, covalently-modified BiP. Lumenal ER calcium depletion caused rapid oligomerization of mammalian BiP and a coincidental diminution in substrate binding, pointing to the relative inertness of the oligomers. Thus, equilibration between inactive oligomers and active monomeric BiP is poised to buffer fluctuations in ER unfolded protein load on a rapid timescale attainable neither by inter-conversion of active and covalently-modified BiP nor by the conventional unfolded protein response.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Edward Avezov
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Elena Miranda
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Juan Perez
- Laboratorio de Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2015; 35:1517-28. [PMID: 26119938 DOI: 10.1038/onc.2015.214] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 12/21/2022]
Abstract
Heat-shock protein 5 (HSPA5) is a marker for poor prognosis in breast cancer patients and has an important role in cancer progression, including promoting drug resistance and metastasis. In this study, we identify that the specific lysine residue 447 (K447) of HSPA5 could be modified with polyubiquitin for subsequent degradation through the ubiquitin proteasomal system, leading to the suppression of cell migration and invasion of breast cancer. We further found that GP78, an E3 ubiquitin ligase, interacted with the C-terminal region of HSPA5 and mediated HSPA5 ubiquitination and degradation. Knock down of GP78 significantly increased the expression of HSPA5 and enhanced migration/invasive ability of breast cancer cells. Knock down of histone deacetylase-6 (HDAC6) increased the acetylation of HSPA5 at lysine residues 353 (K353) and reduced GP78-mediated ubiquitination of HSPA5 at K447 and then increased cell migration/invasion. In addition, we demonstrate that E3 ubiquitin ligase GP78 preferentially binds to deacetylated HSPA5. Notably, the expression levels of GP78 inversely correlated with HSPA5 levels in breast cancer patients. Patients with low GP78 expression significantly correlated with invasiveness of breast cancer, advanced tumor stages and poor clinical outcome. Taken together, our results provide new mechanistic insights into the understanding that deacetylation of HSPA5 by HDAC6 facilitates GP78-mediated HSPA5 ubiquitination and suggest that post-translational regulation of HSPA5 protein is critical for HSPA5-mediated metastatic properties of breast cancer.
Collapse
|
12
|
Fabrizio G, Di Paola S, Stilla A, Giannotta M, Ruggiero C, Menzel S, Koch-Nolte F, Sallese M, Di Girolamo M. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell Mol Life Sci 2015; 72:1209-25. [PMID: 25292337 PMCID: PMC11113179 DOI: 10.1007/s00018-014-1745-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/12/2022]
Abstract
Protein mono-ADP-ribosylation is a reversible post-translational modification of cellular proteins. This scheme of amino-acid modification is used not only by bacterial toxins to attack host cells, but also by endogenous ADP-ribosyltransferases (ARTs) in mammalian cells. These latter ARTs include members of three different families of proteins: the well characterised arginine-specific ecto-enzymes (ARTCs), two sirtuins, and some members of the poly(ADP-ribose) polymerase (PARP/ARTD) family. In the present study, we demonstrate that human ARTC1 is localised to the endoplasmic reticulum (ER), in contrast to the previously characterised ARTC proteins, which are typical GPI-anchored ecto-enzymes. Moreover, using the "macro domain" cognitive binding module to identify ADP-ribosylated proteins, we show here that the ER luminal chaperone GRP78/BiP (glucose-regulated protein of 78 kDa/immunoglobulin heavy-chain-binding protein) is a cellular target of human ARTC1 and hamster ARTC2. We further developed a procedure to visualise ADP-ribosylated proteins using immunofluorescence. With this approach, in cells overexpressing ARTC1, we detected staining of the ER that co-localises with GRP78/BiP, thus confirming that this modification occurs in living cells. In line with the key role of GRP78/BiP in the ER stress response system, we provide evidence here that ARTC1 is activated during the ER stress response, which results in acute ADP-ribosylation of GRP78/BiP paralleling translational inhibition. Thus, this identification of ARTC1 as a regulator of GRP78/BiP defines a novel, previously unsuspected, player in GRP78-mediated ER stress responses.
Collapse
Affiliation(s)
- Gaia Fabrizio
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Simone Di Paola
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Annalisa Stilla
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Monica Giannotta
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Unit of Vascular Biology, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Carmen Ruggiero
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
- Present Address: Associated International Laboratory (LIA) NEOGENEX CNRS, University of Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinist 52, 20246 Hamburg, Germany
| | - Michele Sallese
- Genomic Approaches to Membrane Traffic Unit, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale, 8/A, 66030 Santa Maria Imbaro, CH Italy
| | - Maria Di Girolamo
- Laboratory of G-Protein-mediated Signalling, Department of Cellular and Translational Pharmacology, Mario Negri Sud Foundation, Via Nazionale 8/A, 66030 Santa Maria Imbaro, CH Italy
| |
Collapse
|
13
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
14
|
Ham H, Woolery AR, Tracy C, Stenesen D, Krämer H, Orth K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J Biol Chem 2014; 289:36059-69. [PMID: 25395623 DOI: 10.1074/jbc.m114.612515] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy.
Collapse
Affiliation(s)
- Hyeilin Ham
- From the Departments of Molecular Biology and
| | | | - Charles Tracy
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Drew Stenesen
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Helmut Krämer
- Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Kim Orth
- From the Departments of Molecular Biology and
| |
Collapse
|
15
|
Chambers JE, Marciniak SJ. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 2. Protein misfolding and ER stress. Am J Physiol Cell Physiol 2014; 307:C657-70. [PMID: 24944205 DOI: 10.1152/ajpcell.00183.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is a major site of protein synthesis, most strikingly in the specialized secretory cells of metazoans, which can produce their own weight in proteins daily. Cells possess a diverse machinery to ensure correct folding, assembly, and secretion of proteins from the ER. When this machinery is overwhelmed, the cell is said to experience ER stress, a result of the accumulation of unfolded or misfolded proteins in the lumen of the organelle. Here we discuss the causes of ER stress and the mechanisms by which cells elicit a response, with an emphasis on recent discoveries.
Collapse
Affiliation(s)
- Joseph E Chambers
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| |
Collapse
|
16
|
Čiplys E, Aučynaitė A, Slibinskas R. Generation of human ER chaperone BiP in yeast Saccharomyces cerevisiae. Microb Cell Fact 2014; 13:22. [PMID: 24512104 PMCID: PMC3926315 DOI: 10.1186/1475-2859-13-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human BiP is traditionally regarded as a major endoplasmic reticulum (ER) chaperone performing a number of well-described functions in the ER. In recent years it was well established that this molecule can also be located in other cell organelles and compartments, on the cell surface or be secreted. Also novel functions were assigned to this protein. Importantly, BiP protein appears to be involved in cancer and rheumatoid arthritis progression, autoimmune inflammation and tissue damage, and thus could potentially be used for therapeutic purposes. In addition, a growing body of evidence indicates BiP as a new therapeutic target for the treatment of neurodegenerative diseases. Increasing importance of this protein and its involvement in critical human diseases demands new source of high quality native recombinant human BiP for further studies and potential application. Here we introduce yeast Saccharomyces cerevisiae as a host for the generation of human BiP protein. RESULTS Expression of a full-length human BiP precursor in S. cerevisiae resulted in a high-level secretion of mature recombinant protein into the culture medium. The newly discovered ability of the yeast cells to recognize, correctly process the native signal sequence of human BiP and secrete this protein into the growth media allowed simple one-step purification of highly pure recombinant BiP protein with yields reaching 10 mg/L. Data presented in this study shows that secreted recombinant human BiP possesses native amino acid sequence and structural integrity, is biologically active and without yeast-derived modifications. Strikingly, ATPase activity of yeast-derived human BiP protein exceeded the activity of E. coli-derived recombinant human BiP by a 3-fold. CONCLUSIONS S. cerevisiae is able to correctly process and secrete human BiP protein. Consequently, resulting recombinant BiP protein corresponds accurately to native analogue. The ability to produce large quantities of native recombinant human BiP in yeast expression system should accelerate the analysis and application of this important protein.
Collapse
Affiliation(s)
- Evaldas Čiplys
- Vilnius University Institute of Biotechnology, V,A, Graiciuno 8, Vilnius LT-02241, Lithuania.
| | | | | |
Collapse
|
17
|
Unfolded protein responses with or without unfolded proteins? Cells 2012; 1:926-50. [PMID: 24710536 PMCID: PMC3901143 DOI: 10.3390/cells1040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site of secretory protein biogenesis. The ER quality control (QC) machinery, including chaperones, ensures the correct folding of secretory proteins. Mutant proteins and environmental stresses can overwhelm the available QC machinery. To prevent and resolve accumulation of misfolded secretory proteins in the ER, cells have evolved integral membrane sensors that orchestrate the Unfolded Protein Response (UPR). The sensors, Ire1p in yeast and IRE1, ATF6, and PERK in metazoans, bind the luminal ER chaperone BiP during homeostasis. As unfolded secretory proteins accumulate in the ER lumen, BiP releases, and the sensors activate. The mechanisms of activation and attenuation of the UPR sensors have exhibited unexpected complexity. A growing body of data supports a model in which Ire1p, and potentially IRE1, directly bind unfolded proteins as part of the activation process. However, evidence for an unfolded protein-independent mechanism has recently emerged, suggesting that UPR can be activated by multiple modes. Importantly, dysregulation of the UPR has been linked to human diseases including Type II diabetes, heart disease, and cancer. The existence of alternative regulatory pathways for UPR sensors raises the exciting possibility for the development of new classes of therapeutics for these medically important proteins.
Collapse
|
18
|
Abstract
BiP is the predominant DnaK/Hsp70-type chaperone protein in the ER. It is required for folding and assembling newly synthesized ER client proteins, yet having too much BiP inhibits folding. In this issue, Chambers et al. (2012. J. Cell Biol. doi:10.1083/jcb.201202005) report that ADP ribosylation of BiP provides a reversible switch that fine tunes BiP activity according to need.
Collapse
Affiliation(s)
- David Pincus
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
19
|
Chambers JE, Petrova K, Tomba G, Vendruscolo M, Ron D. ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load. J Cell Biol 2012; 198:371-85. [PMID: 22869598 PMCID: PMC3413365 DOI: 10.1083/jcb.201202005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/09/2012] [Indexed: 12/26/2022] Open
Abstract
Gene expression programs that regulate the abundance of the chaperone BiP adapt the endoplasmic reticulum (ER) to unfolded protein load. However, such programs are slow compared with physiological fluctuations in secreted protein synthesis. While searching for mechanisms that fill this temporal gap in coping with ER stress, we found elevated levels of adenosine diphosphate (ADP)-ribosylated BiP in the inactive pancreas of fasted mice and a rapid decline in this modification in the active fed state. ADP ribosylation mapped to Arg470 and Arg492 in the substrate-binding domain of hamster BiP. Mutations that mimic the negative charge of ADP-ribose destabilized substrate binding and interfered with interdomain allosteric coupling, marking ADP ribosylation as a rapid posttranslational mechanism for reversible inactivation of BiP. A kinetic model showed that buffering fluctuations in unfolded protein load with a recruitable pool of inactive chaperone is an efficient strategy to minimize both aggregation and costly degradation of unfolded proteins.
Collapse
Affiliation(s)
- Joseph E. Chambers
- Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, and Department of Chemistry, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Kseniya Petrova
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Giulia Tomba
- Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, and Department of Chemistry, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Michele Vendruscolo
- Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, and Department of Chemistry, University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - David Ron
- Metabolic Research Laboratories, National Institute for Health Research Cambridge Biomedical Research Centre, and Department of Chemistry, University of Cambridge, Cambridge CB2 0QQ, England, UK
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
20
|
Díaz-Troya S, Pérez-Pérez ME, Pérez-Martín M, Moes S, Jeno P, Florencio FJ, Crespo JL. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. PLANT PHYSIOLOGY 2011; 157:730-41. [PMID: 21825107 PMCID: PMC3192568 DOI: 10.1104/pp.111.179861] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/01/2011] [Indexed: 05/20/2023]
Abstract
The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORC1 and TORC2. Inactivation of TORC1 by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.
Collapse
|
21
|
Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, Kochanek PM, Jenkins LW, Szabó C, Clark RSB. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 2007; 104:1700-11. [PMID: 17996029 DOI: 10.1111/j.1471-4159.2007.05114.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly-ADP-ribosylation is a post-translational modification performed by poly(ADP-ribose) polymerases (PARP), involved in many diverse cellular functions including DNA repair, transcription, and long-term potentiation. Paradoxically, PARP over-activation under pathologic conditions including traumatic brain injury (TBI) results in cell death. We previously demonstrated that intra-mitochondrial poly-ADP-ribosylation occurs following excitotoxic and oxidative injury in vitro. Here we sought to identify mitochondrial proteins modified by poly-ADP-ribosylation after TBI in vivo. Poly-ADP-ribosylation within mitochondria from injured brain after experimental TBI in rats was first verified using western blot and immuno-electron microscopy. Poly-ADP-ribosylated mitochondrial proteins identified using a targeted proteomic approach included voltage-dependent anion channel-1, mitofilin, mitochondrial stress proteins, and the electron transport chain components F1F0 ATPase, cytochrome c oxidase, and cytochrome c reductase. To examine the functional consequences of mitochondrial poly-ADP-ribosylation, isolated rat brain mitochondria were exposed to conditions of nitrosative stress known to activate PARP. PARP activation-induced reductions in State 3 respiration were prevented by the PARP-1 inhibitor 5-iodo-6-amino-1,2-benzopyrone or exogenous poly(ADP-ribose) glycohydrolase. As the effects of PARP activation on mitochondrial respiration appear regulated by poly(ADP-ribose) glycohydrolase, a direct effect of poly-ADP-ribosylation on electron transport chain function is suggested. These findings may be of relevance to TBI and other diseases where mitochondrial dysfunction occurs.
Collapse
Affiliation(s)
- Yichen Lai
- Department of Critical Care Medicine, the Safar Center for Resuscitation Research and the Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1314] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
23
|
Carolino SMB, Vaez JR, Irsigler AST, Valente MAS, Rodrigues LAZ, Fontes EPB. Plant BiP gene family: differential expression, stress induction and protective role against physiological stresses. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s1677-04202003000200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to yeast or mammalian counterpart, BiP (Binding Protein) from several plant species, such as maize, tobacco, Arabidopsis and soybean, is encoded by a multigene family. A systematic characterization and analysis of soybean BiP expression have provided evidence for the existence of multiple, complex regulatory mechanisms controlling plant BiP gene expression. In support of this observation, the soybean BiP gene family has been shown to exhibit organ-specific expression and differential regulation in response to abiotic stresses through distinct signaling pathways. As a member of the stress-regulated HSP70 family of protein, the elucidation of plant BiP function and regulation is likely to lead do new strategies to enhance crop tolerance to environmental stress. Consistent with this observation, transgenic plants overexpressing soybean BiP have demonstrated to exhibit increased tolerance to ER (endoplasmic reticulum) stressors during seed germination and enhanced tolerance to water deficit during plant growth.
Collapse
|
24
|
Cascardo JC, Buzeli RA, Almeida RS, Otoni WC, Fontes EP. Differential expression of the soybean BiP gene family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 160:273-281. [PMID: 11164599 DOI: 10.1016/s0168-9452(00)00384-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The soybean binding protein (BiP) gene family consists of at least four members designated soyBiPA, soyBiPB, soyBiPC and soyBiPD. We have performed immunoblotting of two-dimensional (2D) gels and RT-PCR assays with gene-specific primers to analyze the differential expression of this gene family in various soybean organs. The 2D gel profiles of the BiP forms from different organs were distinct and suggested that the BiP genes are under organ-specific regulation. In fact, while all four BiP transcripts were detected in leaves by gene-specific reverse transcriptase-polymerase chain reaction (RT-PCR) assays, different subsets were detected in the other organs. The soyBiPD was expressed in all organs, whereas the expression of the soyBiPB was restricted to leaves. The soyBiPA transcripts were detected in leaves, roots and seeds and soyBiPC RNA was confined to leaves, seeds and pods. Our data are consistent with organ-specific expression of the soybean BiP gene family.
Collapse
Affiliation(s)
- J C.M. Cascardo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000 MG, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
25
|
Cascardo JC, Almeida RS, Buzeli RA, Carolino SM, Otoni WC, Fontes EP. The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 2000; 275:14494-500. [PMID: 10799532 DOI: 10.1074/jbc.275.19.14494] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian BiP is regulated by phosphorylation, and it is generally accepted that its unmodified form constitutes the biologically active species. In fact, the glycosylation inhibitor tunicamycin induces dephosphorylation of mammalian BiP. The stress-induced phosphorylation state of plant BiP has not been examined. Here, we demonstrated that soybean BiP exists in interconvertible phosphorylated and nonphosphorylated forms, and the equilibrium can be shift to either direction in response to different stimuli. In contrast to tunicamycin treatment, water stress condition stimulated phosphorylation of BiP species in soybean cultured cells and stressed leaves. Despite their phosphorylation state, we demonstrated that BiP isoforms from water-stressed leaves exhibit protein binding activity, suggesting that plant BiP functional regulation may differ from other eukaryotic BiPs. We also compared the induction of the soybean BiP gene family, which consists of at least four members designated soyBiPA, soyBiPB, soyBiPC, and soyBiPD, by tunicamycin and osmotic stress. Although all soybean BiP genes were induced by tunicamycin, just the soyBiPA RNA was up-regulated by osmotic stress. In addition, these stresses promoted BiP induction with different kinetics and acted synergistically to increase BiP accumulation. These results suggest that the soybean BiP gene family is differentially regulated by abiotic stresses through distinct signaling pathways.
Collapse
Affiliation(s)
- J C Cascardo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000 Viçosa Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
BiP, an HSP70 molecular chaperone located in the lumen of the endoplasmic reticulum (ER), binds newly-synthesized proteins as they are translocated into the ER and maintains them in a state competent for subsequent folding and oligomerization. BiP is also an essential component of the translocation machinery, as well as playing a role in retrograde transport across the ER membrane of aberrant proteins destined for degradation by the proteasome. BiP is an abundant protein under all growth conditions, but its synthesis is markedly induced under conditions that lead to the accumulation of unfolded polypeptides in the ER. This attribute provides a marker for disease states that result from misfolding of secretory and transmembrane proteins.
Collapse
Affiliation(s)
- M J Gething
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Laitusis AL, Brostrom MA, Brostrom CO. The dynamic role of GRP78/BiP in the coordination of mRNA translation with protein processing. J Biol Chem 1999; 274:486-93. [PMID: 9867869 DOI: 10.1074/jbc.274.1.486] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of GRP78/BiP in coordinating endoplasmic reticular (ER) protein processing with mRNA translation was examined in GH3 pituitary cells. ADP-ribosylation of GRP78 and eukaryotic initiation factor (eIF)-2alpha phosphorylation were assessed, respectively, as indices of chaperone inactivation and the inhibition of translational initiation. Inhibition of protein processing by ER stress (ionomycin and dithiothreitol) resulted in GRP78 deribosylation and eIF-2 phosphorylation. Suppression of translation relative to ER protein processing (cycloheximide) produced approximately 50% ADP-ribosylation of GRP78 within 90 min without eIF-2 phosphorylation. ADP-ribosylation was reversed in 90 min by cycloheximide removal in a manner accelerated by ER stressors. Cycloheximide sharply reduced eIF-2 phosphorylation in response to ER stressors for about 30 min; sensitivity returned as GRP78 became increasingly ADP-ribosylated. Reduced sensitivity of eIF-2 to phosphorylation appeared to derive from the accumulation of free, unmodified chaperone as proteins completed processing without replacements. Prolonged (24 h) incubations with cycloheximide resulted in the selective loss of the ADP-ribosylated form of GRP78 and increased sensitivity of eIF-2 phosphorylation in response to ER stressors. Brefeldin A decreased ADP-ribosylation of GRP78 in parallel with increased eIF-2 phosphorylation. The cytoplasmic stressor, arsenite, which inhibits translational initiation through eIF-2 phosphorylation without affecting the ER, also produced ADP-ribosylation of GRP78.
Collapse
Affiliation(s)
- A L Laitusis
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
28
|
Abstract
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament proteins that are expressed in 'simple-type' epithelial cells. They associate with several proteins including the 70 kDa cytoplasmic heat shock proteins (hsp70). We identified the human 78 kDa glucose-regulated protein (grp78) as a keratin-associated protein. Keratin-grp78 association was noted after co-immunoprecipitation of K8/18 from HT29 detergent solubilized cell lysates, and appears to involve non-posttranslationally modified grp78. The grp78-K8/18 association is induced by culturing cells in the presence of tunicamycin or after glucose starvation. K8/18-bound grp78 can be dissociated by Mg-ATP and the association can be reconstituted in vitro using purified grp78, then redissociated again by Mg-ATP. Binding of grp78 occurs preferentially with K8, and when reconstituted does not depend on the posttranslational modification state of K8/18. Co-incubation of K8/18 with hsp70 and grp78 shows preferential association with hsp70. Our results demonstrate a direct association of grp78 with K8 under conditions that induce grp78 expression.
Collapse
Affiliation(s)
- J Liao
- Clontech Laboratories Inc., Palo Alto, CA 94303, USA
| | | | | |
Collapse
|
29
|
Ha JH, Hellman U, Johnson ER, Li L, McKay DB, Sousa MC, Takeda S, Wernstedt C, Wilbanks SM. Destabilization of peptide binding and interdomain communication by an E543K mutation in the bovine 70-kDa heat shock cognate protein, a molecular chaperone. J Biol Chem 1997; 272:27796-803. [PMID: 9346924 DOI: 10.1074/jbc.272.44.27796] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have compared 70-kDa heat shock cognate protein (Hsc70) isolated from bovine brain with recombinant wild type protein and mutant E543K protein (previously studied as wild type in our laboratory). Wild type bovine and recombinant protein differ by posttranslational modification of lysine 561 but interact similarly with a short peptide (fluorescein-labeled FYQLALT) and with denatured staphylococcal nuclease-(Delta135-149). Mutation E543K results in 4. 5-fold faster release of peptide and lower stability of complexes with staphylococcal nuclease-(Delta135-149). ATP hydrolysis rates of the wild type proteins are enhanced 6-10-fold by the addition of peptide. The E543K mutant has a peptide-stimulated hydrolytic rate similar to that of wild type protein but a higher unstimulated rate, yielding a mere 2-fold enhancement. All three versions of Hsc70 possess similar ATP-dependent conformational shifts, and all show potassium ion dependence. These data support the following model: (i) in the presence of K+, Mg2+, and ATP, the peptide binding domain inhibits the ATPase; (ii) binding of peptide relieves this inhibition; and (iii) the E543K mutation significantly attenuates the inhibition by the peptide binding domain and destabilizes Hsc70-peptide complexes.
Collapse
Affiliation(s)
- J H Ha
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brostrom CO, Brostrom MA. Regulation of translational initiation during cellular responses to stress. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:79-125. [PMID: 9308364 DOI: 10.1016/s0079-6603(08)60034-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemicals and conditions that damage proteins, promote protein misfolding, or inhibit protein processing trigger the onset of protective homeostatic mechanisms resulting in "stress responses" in mammalian cells. Included in these responses are an acute inhibition of mRNA translation at the initiation step, a subsequent induction of various protein chaperones, and the recovery of mRNA translation. Separate, but closely related, stress response systems exist for the endoplasmic reticulum (ER), relating to the induction of specific "glucose-regulated proteins" (GRPs), and for the cytoplasm, pertaining to the induction of the "heat shock proteins" (HSPs). Activators of the ER stress response system, including Ca(2+)-mobilizing and thiol-reducing agents, are discussed and compared to activators of the cytoplasmic stress system, such as arsenite, heavy metal cations, and oxidants. An emerging integrative literature is reviewed that relates protein chaperones associated with cellular stress response systems to the coordinate regulation of translational initiation and protein processing. Background information is presented describing the roles of protein chaperones in the ER and cytoplasmic stress response systems and the relationships of chaperones and protein processing to the regulation of mRNA translation. The role of chaperones in regulating eIF-2 alpha kinase activities, eIF-2 cycling, and ribosomal loading on mRNA is emphasized. The putative role of GRP78 in coupling rates of translation to processing is modeled, and functional relationships between the HSP and GRP chaperone systems are discussed.
Collapse
Affiliation(s)
- C O Brostrom
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | |
Collapse
|
31
|
Ha JH, McKay DB. ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 1994; 33:14625-35. [PMID: 7981225 DOI: 10.1021/bi00252a031] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Steady-state kinetic, pre-steady-state kinetic, and equilibrium binding measurements have been applied to determine the rate constants of individual steps of the ATPase cycle for the recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal 44 kDa ATPase fragment. At 25 degrees C, pH 7.0, in the presence of 75 mM KCl and 4.5 mM Mg2+, the measured association rate constants for MgATP approximately hsc70 and MgADP approximately hsc70 are (2.7 +/- 0.5) x 10(5) and (4.1 +/- 0.5) x 10(5) M-1 s-1, respectively, while the dissociation rate constants are 0.0114 (+/- 0.0002) and 0.0288 (+/- 0.0018) s-1, respectively. MgATP (Kd = 0.042 microM) therefore binds to hsc70 more tightly than MgADP (Kd = 0.11 microM). ADP release is inhibited by inorganic phosphate (Pi), suggesting that product dissociation is ordered with Pi released first and ADP second. The rate of chemical hydrolysis of ATP is 0.0030 (+/- 0.0003) s-1 for hsc70 and 0.0135 (+/- 0.0033) s-1 for the 44 kDa fragment. The rate of Pi release is 0.0038 (+/- 0.0010) s-1 for hsc70 and 0.0051 (+/- 0.0006) s-1 for the 44 kDa fragment. For the 44 kDa fragment, Pi release is the slowest step in the ATPase cycle, while for hsc70, Pi release and chemical hydrolysis of MgATP have similar rates; in both cases, ADP release is a relatively rapid step in the ATPase cycle.
Collapse
Affiliation(s)
- J H Ha
- Beckman Laboratories for Structural Biology, Department of Structural Biology, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
32
|
Haas IG. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. EXPERIENTIA 1994; 50:1012-20. [PMID: 7988659 DOI: 10.1007/bf01923455] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BiP is a constitutively-expressed resident protein of the endoplasmic reticulum (ER) of all eucaryotic cells, and belongs to the highly conserved hsp70 protein family. In the ER, BiP is involved in polypeptide translocation, protein folding and presumably protein degradation as well. These functions are essential to cell viability, as has been shown for yeast. In this review, I will summarize the structural features of hsp70 proteins and focus on those experiments which revealed the biological function of BiP.
Collapse
Affiliation(s)
- I G Haas
- Institut für Biochemie, Universität Heidelberg, Germany
| |
Collapse
|
33
|
Puig A, Gilbert HF. Anti-chaperone behavior of BiP during the protein disulfide isomerase-catalyzed refolding of reduced denatured lysozyme. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47329-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
34
|
Abstract
Starvation of mouse hepatoma cells for essential amino acids or glucose results in the ADP-ribosylation of the molecular chaperone BiP/GRP78. Addition of the missing nutrient to the medium reverses the reaction. The signal mediating the response to environmental nutrients involves the translational efficiency. An inhibitor of proteins synthesis, cycloheximide, or reduced temperature, both of which reduce translational efficiency, stimulate the ADP-ribosylation of BiP/GRP78. Inhibition of N-linked glycosylation of proteins results in the overproduction of BiP/GRP78. The over produced protein is not ADP-ribosylated suggesting that this is the functional form of BiP/GRP78. The over produced BiP/GRP78 can, however, be ADP-ribosylated if the cells are starved for an essential amino acid. BiP/GRP78 resides in the lumen of the endoplasmic reticulum where it participates in the assembly of secretory and integral membrane proteins. ADP-ribosylation of BiP/GRP78 during starvation is probably part of a nutritional stress response which conserves limited nutrients by slowing flow through the secretory pathway.
Collapse
Affiliation(s)
- B E Ledford
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina 29425
| | | |
Collapse
|
35
|
Abstract
Mono-ADP-ribosylation appears to be a reversible modification of proteins, which occurs in many eukaryotic and prokaryotic organisms. Multiple forms of arginine-specific ADP-ribosyltransferases have been purified and characterized from avian erythrocytes, chicken polymorphonuclear leukocytes and mammalian skeletal muscle. The avian transferases have similar molecular weights of approximately 28 kDa, but differ in physical, regulatory and kinetic properties and subcellular localization. Recently, a 38-kDa rabbit skeletal muscle ADP-ribosyltransferase was purified and cloned. The deduced amino acid sequence contained hydrophobic amino and carboxy termini, consistent with known signal sequences of glycosylphosphatidylinositol (GPI)-anchored proteins. This arginine-specific transferase was present on the surface of mouse myotubes and of NMU cells transfected with the cDNA and was released with phosphatidylinositol-specific phospholipase C. Arginine-specific ADP-ribosyltransferases thus appear to exhibit considerable diversity in their structure, cellular localization, regulation and physiological role.
Collapse
Affiliation(s)
- A Zolkiewska
- Laboratory of Cellular Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
36
|
Abstract
The need for effective immune function for the maintenance of health has been clearly established in both agriculturally significant animal species and humans. Intensive agricultural practices present production species with numerous disease challenges during the rearing period. Environmental factors represent a ubiquitous, yet frequently manageable, category of immunomodulators that can influence immune performance and ultimately disease susceptibility or resistance. However, strategies for assessing overall immune potential have not been widely implemented for agricultural species. This is in contrast to the use of immune evaluation for human health considerations. Immune assessment relative to environmental-immune interactions can produce benefits in two areas. First, the efficiency of the production operation can be enhanced. Second, the welfare of the animals during the production cycle can be optimized. This paper presents an overview of environmental factors known to influence the immune function of poultry and the opportunities to manage environmental factors to benefit the health of the animals. In addition, the paper discusses the status of immunological assessment for humans and laboratory animals and proposes potential immune assessment panels that could serve as a tool to optimize the environmental management of poultry populations.
Collapse
Affiliation(s)
- R R Dietert
- Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
37
|
Wang C, Lin BL. The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein. PLANT MOLECULAR BIOLOGY 1993; 21:317-329. [PMID: 8425059 DOI: 10.1007/bf00019947] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have purified a 73 kDa protein from the cytosolic fraction of mung bean seeds. It comprises 0.5-1% of the total protein in seeds. This purified protein is a bona fide hsc70 on the basis of several lines of evidence. First, antibodies against bovine brain hsc70 cross-react with the purified 73 kDa protein. Second, the purified protein comigrates on two-dimensional gels with one of the heat-inducible hsc70s in mung bean seedlings. Third, similar to other hsc70 species, the purified 73 kDa protein has a high affinity for ATP. Finally, the hydrolysis of ATP by the purified protein can be stimulated by peptides; ATPase activity increases from 40 nmol/h to 165 nmol/h per mg of protein. The purified mung bean hsc70 autophosphorylates at a substoichiometric level. Moreover, the amount of this hsc70 species diminishes while new species of hsc70s appear after germination, suggesting that the expression of hsc70 in mung bean is subject to developmental regulation.
Collapse
Affiliation(s)
- C Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
38
|
McKay DB. Structure and mechanism of 70-kDa heat-shock-related proteins. ADVANCES IN PROTEIN CHEMISTRY 1993; 44:67-98. [PMID: 8317298 DOI: 10.1016/s0065-3233(08)60564-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D B McKay
- Beckman Laboratories for Structural Biology, Department of Cell Biology, Stanford University School of Medicine, California 94305
| |
Collapse
|
39
|
Interconversion of GRP78/BiP. A novel event in the action of Pasteurella multocida toxin, bombesin, and platelet-derived growth factor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74031-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
40
|
Maytin E. Differential effects of heat shock and UVB light upon stress protein expression in epidermal keratinocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50075-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Carlino A, Toledo H, Skaleris D, DeLisio R, Weissbach H, Brot N. Interactions of liver Grp78 and Escherichia coli recombinant Grp78 with ATP: multiple species and disaggregation. Proc Natl Acad Sci U S A 1992; 89:2081-5. [PMID: 1532251 PMCID: PMC48600 DOI: 10.1073/pnas.89.6.2081] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hamster gene encoding the 78-kDa glucose-regulated protein (Grp78) was expressed in Escherichia coli as a fusion protein with glutathione S-transferase. After induction with isopropyl beta-D-thiogalactopyranoside, the recombinant Grp78 was purified to homogeneity by affinity column chromatography of the fusion protein followed by thrombin cleavage. The purified recombinant protein was compared with liver Grp78 for its ability to interact with ATP. Like liver Grp78, the recombinant protein contained a weak ATPase activity and a Ca(2+)-stimulated autophosphorylation activity. However, unlike liver Grp78, in which the autophosphorylation reaction is stimulated less than 50% by CaCl2, the reaction with the recombinant Grp78 was stimulated about 15-fold in the presence of Ca2+. Although the liver protein showed at least four isoforms after two-dimensional gel electrophoresis, the recombinant Grp78 had one major species corresponding to the most basic form seen in liver. Both the liver Grp78 and the recombinant protein existed primarily as monomers and dimers. A small amount of oligomers was also present in the liver Grp78. When either protein was incubated with ATP, there was a conversion of the higher molecular weight species to the monomeric form.
Collapse
Affiliation(s)
- A Carlino
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- T Leustek
- Center for Agricultural Molecular Biology, Rutgers University, Cook College, New Brunswick, NJ 08903
| |
Collapse
|
43
|
Staddon JM, Bouzyk MM, Rozengurt E. A novel approach to detect toxin-catalyzed ADP-ribosylation in intact cells: its use to study the action of Pasteurella multocida toxin. J Cell Biol 1991; 115:949-58. [PMID: 1835459 PMCID: PMC2289951 DOI: 10.1083/jcb.115.4.949] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Certain microbial toxins are ADP-ribosyltransferases, acting on specific substrate proteins. Although these toxins have been of great utility in studies of cellular regulatory processes, a simple procedure to directly study toxin-catalyzed ADP-ribosylation in intact cells has not been described. Our approach was to use [2-3H]adenine to metabolically label the cellular NAD+ pool. Labeled proteins were then denatured with SDS, resolved by PAGE, and detected by flurography. In this manner, we show that pertussis toxin, after a dose-dependent lag period, [3H]-labeled a 40-kD protein intact cells. Furthermore, incubation of the gel with trichloroacetic acid at 95 degrees C before fluorography caused the release of label from bands other than the pertussis toxin substrate, thus, allowing its selective visualization. The modification of the 40-kD protein was ascribed to ADP-ribosylation of a cysteine residue on the basis of inhibition of labeling by nicotinamide and the release of [3H]ADP-ribose from the labeled protein by mercuric acetate. Cholera toxin catalyzed the [3H]-labeling of a 46-kD protein in the [2-3H]adenine-labeled cells. Pretreatment of the cells with pertussis toxin before the labeling of NAD+ with [2-3H]adenine blocked [2-3H]ADP-ribosylation catalyzed by pertussis toxin, but not that by cholera toxin. Thus, labeling with [2-3H]adenine permits the study of toxin-catalyzed ADP-ribosylation in intact cells. Pasteurella multocida toxin has recently been described as a novel and potent mitogen for Swiss 3T3 cell and acts to stimulate the phospholipase C-mediated hydrolysis of polyphosphoinositides. The basis of the action of the toxin is not known. Using the methodology described here, P. multocida toxin was not found to act by ADP-ribosylation.
Collapse
Affiliation(s)
- J M Staddon
- Imperial Cancer Research Fund, Lincoln's Inn Fields, London, United Kingdom
| | | | | |
Collapse
|
44
|
Fontes EB, Shank BB, Wrobel RL, Moose SP, OBrian GR, Wurtzel ET, Boston RS. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. THE PLANT CELL 1991; 3:483-96. [PMID: 1840923 PMCID: PMC160016 DOI: 10.1105/tpc.3.5.483] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The maize b-70 protein is an endoplasmic reticulum protein overproduced in the floury-2 (fl2) endosperm mutant. The increase in b-70 levels in fl2 plants occurs during seed maturation and is endosperm specific. We have used amino acid sequence homology to identify b-70 as a homolog of mammalian immunoglobulin binding protein (BiP). Purified b-70 fractions contain two 75-kilodalton polypeptides with pl values of 5.3 and 5.4. Both 75-kilodalton polypeptides share several properties with BiP, including the ability to bind ATP and localization within the lumen of the endoplasmic reticulum. In addition, both b-70 polypeptides can be induced in maize cell cultures with tunicamycin treatment. Like BiP, the pl 5.3 form of b-70 is post-translationally modified by phosphorylation and ADP-ribosylation. However, modification of the pl 5.4 species was not detected in vitro or in vivo. Although the b-70 gene is unlinked to fl2, b-70 overproduction is positively correlated with the fl2 gene and is regulated at the mRNA level. In contrast, the fl2 allele negatively affects the accumulation of the major endosperm storage proteins. The physical similarity of b-70 to BiP and its association with abnormal protein accumulation in fl2 endoplasmic reticulum may reflect a biological function to mediate protein folding and assembly in maize endosperm.
Collapse
Affiliation(s)
- E B Fontes
- Department of Botany, North Carolina State University, Raleigh 27695-7612
| | | | | | | | | | | | | |
Collapse
|
45
|
Csermely P, Kahn CR. The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67740-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Welch WJ, Kang HS, Beckmann RP, Mizzen LA. Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Curr Top Microbiol Immunol 1991; 167:31-55. [PMID: 2055098 DOI: 10.1007/978-3-642-75875-1_2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to adverse changes in their local environment, cells or tissues from all organisms increase the expression of a group of proteins referred to as heat shock or stress proteins. Collectively, the stress proteins are thought to provide the cell with some degree of protection during the environmental insult as well as facilitate the repair and recovery of metabolic pathways perturbed as a consequence of the stress event. Within the past few years it has become apparent that most all of the stress proteins are present in appreciable levels in the unstressed cell and are involved in a number of very basic and essential biochemical pathways. The present review has discussed pertinent changes in cell physiology in mammalian cells experiencing metabolic stress. In addition, considerable attention has been given to discussing the properties and possible functions of the individual stress proteins.
Collapse
Affiliation(s)
- W J Welch
- Department of Medicine, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
47
|
Abstract
Starvation of Mouse hepatoma cells for essential amino acids or glucose results in the mono-ADP-ribosylation of the 78 kDa glucose-regulated protein, GRP78. Here we show that the ADP-ribosylated and non-ADP-ribosylated forms of GRP78 are interconvertible during tryptophan starvation and refeeding. In addition, the ADP-ribosylation of GRP78 was shown to be reversible even during nutritional stress. The overexpressed pool of non-ADP-ribosylated GRP78 synthesized during tunicamycin treatment was available for ADP-ribosylation during subsequent amino acid starvation, especially in the absence of tunicamycin. The reversible ADP-ribosylation of GRP78 could be part of a metabolic control mechanism in operation during nutritional stress.
Collapse
Affiliation(s)
- G H Leno
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
48
|
Leno GH, Ledford BE. ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:205-11. [PMID: 2513184 DOI: 10.1111/j.1432-1033.1989.tb15196.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Starvation of a mouse hepatoma cell line, Hepa, for any essential amino acid results in the mono-ADP-ribosylation of an 80-kDa protein, P80. The ADP-ribose acceptor and its putative precursor were identified in two-dimensional gel patterns and isolated by electroelution. Amino-terminal sequence analysis showed they were the 78-kDa glucose-regulated protein, GRP78. Starvation of Hepa cells for tryptophan or glucose stimulated the relative rate of synthesis, and the ADP-ribosylation of GRP78. Inhibition of N-linked glycosylation by treatment with tunicamycin, 2-deoxy-D-glucose or glucosamine stimulated the synthesis of non-ADP-ribosylated GRP78 up to sixfold with relatively little effect on its ADP-ribosylation. Both forms were identified in mouse liver, lung, heart, kidney, spleen and brain.
Collapse
Affiliation(s)
- G H Leno
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
49
|
Schroedl NA, Bacon CR, Huang YC, Hartzell CR. Protein metabolism during nutrient deprivation and refeeding of neonatal heart cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 257:C913-9. [PMID: 2596585 DOI: 10.1152/ajpcell.1989.257.5.c913] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pathological conditions or nutrient deprivation in the heart cause an imbalance between rates of protein synthesis and degradation, often resulting in a severe depletion of cardiac protein. We used cultured neonatal rat heart cells, a model system exhibiting positive nitrogen balance, to examine the effects of 10 h of starvation on myocardial glucose and protein metabolism. Cellular capacity for glucose utilization was depressed after starvation, as evidenced by lower hexokinase and other glycolytic enzyme activities and a 21% decrease in glucose usage. A 21.0% decrease in protein synthetic rate and an increase in protein degradation rate combined to yield a 29.5% decrease in total cellular protein during starvation. Degradation rates increased 29.0, 46.7, and 59.6% in 2-, 24-, and 96-h prelabeled cells, respectively, indicating that lability increased with half-life of proteins. During refeeding of starved, cultured cells, at least three proteins were synthesized at a lower rate. At the same time, proteins with approximate molecular masses of 45, 84, 92, and 174 kDa exhibited increased synthesis.
Collapse
Affiliation(s)
- N A Schroedl
- Research Department, Alfred I. duPont Institute of the Nemours Foundation, Wilmington, Delaware
| | | | | | | |
Collapse
|
50
|
Winning RS, Heikkila JJ, Bols NC. Induction of glucose-regulated proteins in Xenopus laevis A6 cells. J Cell Physiol 1989; 140:239-45. [PMID: 2501316 DOI: 10.1002/jcp.1041400208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized the induction of glucose-regulated proteins (GRPs) in Xenopus laevis A6 cells, a kidney epithelial cell line. Exposure of A6 cells to medium in which 2-deoxyglucose replaced galactose resulted in enhanced synthesis of two proteins at 78 and 98 kd. The 78 kd protein was determined by two-dimensional PAGE to consist of two isoelectric variants with pls of 5.3 and 5.2 whereas the 98 kd protein resolved into a single spot with a pl of 5.1. The 78 kd protein cross-reacted with antiserum against chicken GRP78 (glucose-regulated protein), suggesting that the Xenopus protein shares homology with a previously characterized GRP. This was supported by the finding that a rat GRP78 probe hybridized with a 2-deoxyglucose-inducible mRNA. Synthesis of the two proteins was also induced by tunicamycin, 2-deoxygalactose, and dithiothreitol. However, the GRPs were not induced by glucosamine or calcium ionophore A23187 at concentrations and exposure periods that have previously been shown to elicit a GRP response in mammalian and avian cells. Enhanced synthesis of the two GRPs by 2-deoxyglucose was transient, reaching maximal levels by 12-24 h and decreasing to near control levels by 48 h. Removal of the stress at the point of peak synthesis resulted in decreased synthesis of both proteins within 6 h and a return to control levels within 24 h of recovery. These data suggest that Xenopus cells have a GRP response that is similar, but not identical, to that found in mammalian cells.
Collapse
Affiliation(s)
- R S Winning
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | |
Collapse
|