1
|
Furlanetto V, Divne C. LolA and LolB from the plant-pathogen Xanthomonas campestris forms a stable heterodimeric complex in the absence of lipoprotein. Front Microbiol 2023; 14:1216799. [PMID: 37502397 PMCID: PMC10368991 DOI: 10.3389/fmicb.2023.1216799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterium Xanthomonas campestris is one of the most problematic phytopathogens, and especially the pathovar campestris (Xcc) that causes a devastating plant disease known as black rot and it is of considerable interest to understand the molecular mechanisms that enable virulence and pathogenicity. Gram-negative bacteria depend on lipoproteins (LPs) that serve many important functions including control of cell shape and integrity, biogenesis of the outer membrane (OM) and establishment of transport pathways across the periplasm. The LPs are localized to the OM where they are attached via a lipid anchor by a process known as the localization of lipoprotein (Lol) pathway. Once a lipid anchor has been synthesized on the nascent LP, the Lol pathway is initiated by a membrane-bound ABC transporter that extracts the lipid anchor of the LP from the IM. The ABC extractor presents the extracted LP to the transport protein LolA, which binds the anchor and thereby shields it from the hydrophilic periplasmic milieu. It is assumed that LolA then carries the LP across the periplasm to the OM. At the periplasmic face of the OM, the LP cargo is delivered to LolB, which completes the Lol pathway by inserting the LP anchor in the inner leaflet of the outer membrane. Earlier studies have shown that loss of Xcc LolA or LolB leads to decreased virulence and pathogenicity during plant infection, which motivates studies to better understand the Lol system in Xcc. In this study, we report the first experimental structure of a complex between LolA and LolB. The crystal structure reveals a stable LolA-LolB complex in the absence of LP. The structural integrity of the LP-free complex is safeguarded by specific protein-protein interactions that do not coincide with interactions predicted to participate in lipid binding. The results allow us to identify structural determinants that enable Xcc LolA to dock with LolB and initiate LP transfer.
Collapse
|
2
|
Abstract
The Lpp lipoprotein of Escherichia coli is the first identified protein with a covalently linked lipid. It is chemically bound by its C-terminus to murein (peptidoglycan) and inserts by the lipid at the N-terminus into the outer membrane. As the most abundant protein in E. coli (106 molecules per cell) it plays an important role for the integrity of the cell envelope. Lpp represents the type protein of a large variety of lipoproteins found in Gram-negative and Gram-positive bacteria and in archaea that have in common the lipid structure for anchoring the proteins to membranes but otherwise strongly vary in sequence, structure, and function. Predicted lipoproteins in known prokaryotic genomes comprise 2.7% of all proteins. Lipoproteins are modified by a unique phospholipid pathway and transferred from the cytoplasmic membrane into the outer membrane by a special system. They are involved in protein incorporation into the outer membrane, protein secretion across the cytoplasmic membrane, periplasm and outer membrane, signal transduction, conjugation, cell wall metabolism, antibiotic resistance, biofilm formation, and adhesion to host tissues. They are only found in bacteria and function as signal molecules for the innate immune system of vertebrates, where they cause inflammation and elicit innate and adaptive immune response through Toll-like receptors. This review discusses various aspects of Lpp and other lipoproteins of Gram-negative and Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Volkmar Braun
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Ring 5, 72076, Tübingen, Germany.
| | - Klaus Hantke
- IMIT, University of Tuebingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Denham EL, Ward PN, Leigh JA. In the absence of Lgt, lipoproteins are shed from Streptococcus uberis independently of Lsp. Microbiology (Reading) 2009; 155:134-141. [DOI: 10.1099/mic.0.022061-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of lipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) responsible for processing lipoproteins was investigated in Streptococcus uberis, a common cause of bovine mastitis. In the absence of Lgt, three lipoproteins [MtuA (SUB0473), Hap (SUB1625) and an extracellular solute-binding protein (SUB0365)] were detected in extracellular locations. All were shown by Edman degradation analysis to be cleaved on the carboxy side of the LXXC lipobox. Detection of MtuA, a lipoprotein shown previously to be essential for infectivity and virulence, was used as a surrogate lipoprotein marker to locate and assess processing of lipoproteins. The absence of Lgt did not prevent location of MtuA to the cell membrane, its location in the wild-type strain but, in contrast to the situation with wild-type, did result in a widespread location of this protein. In the absence of both Lgt and Lsp, MtuA was similarly released from the bacterial cell. In such strains, however, the cell-associated MtuA represented the full-length gene product, indicating that Lsp was able to cleave non-lipidated (lipo)proteins but was not responsible for their release from this bacterium.
Collapse
Affiliation(s)
- E. L. Denham
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - P. N. Ward
- Nuffield Department of Clinical Laboratory Sciences, Oxford University, John Radcliffe Hospital, Headington, Oxfordshire OX3 9DU, UK
| | - J. A. Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
4
|
Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis. J Bacteriol 2008; 190:4641-7. [PMID: 18469106 DOI: 10.1128/jb.00287-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein signal peptidase (lsp) is responsible for cleaving the signal peptide sequence of lipoproteins in gram-positive bacteria. Investigation of the role of Lsp in Streptococcus uberis, a common cause of bovine mastitis, was undertaken using the lipoprotein MtuA (a protein essential for virulence) as a marker. The S. uberis lsp mutant phenotype displayed novel lipoprotein processing. Not only was full-length (uncleaved) MtuA detected by Western blotting, but during late log phase, a lower-molecular-weight derivative of MtuA was evident. Similar analysis of an S. uberis double mutant containing insertions disrupting both lsp and eep (a homologue of the Enterococcus faecalis "enhanced expression of pheromone" gene) indicated a role for eep in cleavage of lipoproteins in the absence of Lsp. Such a function may indicate a role for eep in maintenance of secretion pathways during disruption of normal lipoprotein processing.
Collapse
|
5
|
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006; 188:2761-73. [PMID: 16585737 PMCID: PMC1446993 DOI: 10.1128/jb.188.8.2761-2773.2006] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid modification of the N-terminal Cys residue (N-acyl-S-diacylglyceryl-Cys) has been found to be an essential, ubiquitous, and unique bacterial posttranslational modification. Such a modification allows anchoring of even highly hydrophilic proteins to the membrane which carry out a variety of functions important for bacteria, including pathogenesis. Hence, being able to identify such proteins is of great value. To this end, we have created a comprehensive database of bacterial lipoproteins, called DOLOP, which contains information and links to molecular details for about 278 distinct lipoproteins and predicted lipoproteins from 234 completely sequenced bacterial genomes. The website also features a tool that applies a predictive algorithm to identify the presence or absence of the lipoprotein signal sequence in a user-given sequence. The experimentally verified lipoproteins have been classified into different functional classes and more importantly functional domain assignments using hidden Markov models from the SUPERFAMILY database that have been provided for the predicted lipoproteins. Other features include the following: primary sequence analysis, signal sequence analysis, and search facility and information exchange facility to allow researchers to exchange results on newly characterized lipoproteins. The website, along with additional information on the biosynthetic pathway, statistics on predicted lipoproteins, and related figures, is available at http://www.mrc-lmb.cam.ac.uk/genomes/dolop/.
Collapse
Affiliation(s)
- M Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Bernard R, El Ghachi M, Mengin-Lecreulx D, Chippaux M, Denizot F. BcrC from Bacillus subtilis Acts as an Undecaprenyl Pyrophosphate Phosphatase in Bacitracin Resistance. J Biol Chem 2005; 280:28852-7. [PMID: 15946938 DOI: 10.1074/jbc.m413750200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the BcrC(Bs) protein, formerly called YwoA, in Escherichia coli or in Bacillus subtilis allows these bacteria to stand higher concentrations of bacitracin. It was suggested that BcrC(Bs) was a membrane-spanning domain of an ATP binding cassette (ABC) transporter involved in bacitracin resistance. However, we hypothesized that this protein has an undecaprenyl pyrophosphate (UPP) phosphatase activity able to compete with bacitracin for UPP. We found that overexpression of a recombinant His6-BcrC(Bs) protein in E. coli (i) increased the resistance of the cells to bacitracin and (ii) increased UPP phosphatase activity in membrane preparations by 600-fold. We solubilized and prepared an electrophoretically pure protein exhibiting a strong UPP phosphatase activity. BcrC(Bs), which belongs to the type 2 phosphatidic acid phosphatase (PAP2) phosphatase superfamily (PF01569), differs totally from the already known BacA UPP phosphatase from E. coli, a member of the PF02673 family of the Protein family (Pfam) database. Thus, BcrC(Bs) and its orthologs form a new class of proteins within the PAP2 phosphatase superfamily, and likely all of them share a UPP phosphatase activity.
Collapse
Affiliation(s)
- Remi Bernard
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Bātiment 430, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
7
|
Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA, Clemens M, Swartling JR, Minton KL, Zheng F, Angleton EL, Mullen D, Jungheim LN, Klimkowski VJ, Nicas TI, Thompson RC, Peng SB. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 2004; 279:36250-8. [PMID: 15173160 DOI: 10.1074/jbc.m405884200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.
Collapse
|
8
|
Rahman MS, Simser JA, Macaluso KR, Azad AF. Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi. J Bacteriol 2003; 185:4578-84. [PMID: 12867468 PMCID: PMC165774 DOI: 10.1128/jb.185.15.4578-4584.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I signal peptidase lepB genes from Rickettsia rickettsii and Rickettsia typhi, the etiologic agents of Rocky Mountain spotted fever and murine typhus, respectively, were cloned and characterized. Sequence analysis of the cloned lepB genes from R. rickettsii and R. typhi shows open reading frames of 801 and 795 nucleotides, respectively. Alignment analysis of the deduced amino acid sequences reveals the presence of highly conserved motifs that are important for the catalytic activity of bacterial type I signal peptidase. Reverse transcription-PCR and Northern blot analysis demonstrated that the lepB gene of R. rickettsii is cotranscribed in a polycistronic message with the putative nuoF (encoding NADH dehydrogenase I chain F), secF (encoding protein export membrane protein), and rnc (encoding RNase III) genes in a secF-nuoF-lepB-rnc cluster. The cloned lepB genes from R. rickettsii and R. typhi have been demonstrated to possess signal peptidase I activity in Escherichia coli preprotein processing in vivo by complementation assay.
Collapse
Affiliation(s)
- M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
10
|
Zheng F, Angleton EL, Lu J, Peng SB. In vitro and in vivo self-cleavage of Streptococcus pneumoniae signal peptidase I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3969-77. [PMID: 12180973 DOI: 10.1046/j.1432-1033.2002.03083.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that Streptococcus pneumoniae signal peptidase (SPase) I catalyzes a self-cleavage to result in a truncated product, SPase37-204 [Peng, S.B., Wang, L., Moomaw, J., Peery, R.B., Sun, P.M., Johnson, R.B., Lu, J., Treadway, P., Skatrud, P.L. & Wang, Q.M. (2001) J. Bacteriol.183, 621-627]. In this study, we investigated the effect of phospholipid on invitro self-cleavage of S. pneumoniae SPase I. In the presence of phospholipid, the self-cleavage predominantly occurred at one cleavage site between Gly36-His37, whereas the self-cleavage occurred at multiple sites in the absence of phospholipid, and two additional self-cleavage sites, Ala65-His66 and Ala143-Phe144, were identified. All three self-cleavage sites strongly resemble the signal peptide cleavage site and follow the (-1, -3) rule for SPase I recognition. Kinetic analysis demonstrated that self-cleavage is a concentration dependent and intermolecular event, and the activity in the presence of phospholipid is 25-fold higher than that in the absence of phospholipid. Biochemical analysis demonstrated that SPase37-204, the major product of the self-cleavage totally lost activity to cleave its substrates, indicating that the self-cleavage resulted in the inactivation of the enzyme. More importantly, the self-cleavage was demonstrated to be happening in vivo in all the growth phases of S. pneumoniae cells. The bacterial cells keep the active SPase I at the highest level in exponential growth phase, suggesting that the self-cleavage may play an important role in regulating the activity of the enzyme under different conditions.
Collapse
Affiliation(s)
- Feng Zheng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
11
|
Masuda K, Matsuyama SI, Tokuda H. Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc Natl Acad Sci U S A 2002; 99:7390-5. [PMID: 12032293 PMCID: PMC124241 DOI: 10.1073/pnas.112085599] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli lipoproteins are anchored to the inner or outer membrane depending on the residue at position 2. Aspartate at this position makes lipoproteins specific to the inner membrane, whereas other residues cause the release of lipoproteins from the inner membrane in a manner dependent on both ATP binding cassette (ABC) transporter LolCDE and molecular chaperone LolA, followed by LolB-dependent localization in the outer membrane. The function of lipoprotein-sorting signals was examined in proteoliposomes reconstituted from LolCDE and lipoproteins. The release of outer membrane-specific lipoproteins was inhibited on reconstitution with other outer membrane-specific, but not inner membrane-specific, lipoproteins. Outer membrane-specific lipoproteins stimulated ATP hydrolysis by LolCDE whereas inner membrane-specific ones did not. LolA was not required for the stimulation of ATP hydrolysis. These results revealed a previously undocumented function of aspartate at position 2, i.e., lipoproteins having this signal avoid being recognized by LolCDE, thereby remaining in the inner membrane.
Collapse
Affiliation(s)
- Kazuhiro Masuda
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | |
Collapse
|
12
|
Peng SB, Zheng F, Angleton EL, Smiley D, Carpenter J, Scott JE. Development of an Internally Quenched Fluorescent Substrate and a Continuous Fluorimetric Assay for Streptococcus pneumoniae Signal Peptidase I. Anal Biochem 2001; 293:88-95. [PMID: 11373083 DOI: 10.1006/abio.2001.5102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I. Upon cleavage of the fluorogenic substrate by SPase I, the fluorescent intensity increases and can be monitored continuously by spectrofluorometer. Kinetic analysis with S. pneumoniae SPase I demonstrated that the K(m) value for the substrate is 118.1 microM, and the k(cat) value is 0.032 s(-1). Mass spectrometric analysis and peptide sequencing of the two cleaved products confirmed that the cleavage occurs specifically at the predicted site. More interestingly, the positively charged lysine in the N-terminus of the substrate was demonstrated to be important for effective cleavage. Phospholipids were found to stimulate the cleavage reaction. This stimulation by phospholipids is dependent upon the N-terminal charge of the substrate, indicating that the interaction of the positively charged substrate with anionic phospholipids is important for maintaining the substrate in certain conformation for cleavage. The substrate and assay described here can be readily automated and utilized for the identification of potential antibacterial agents.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Peng SB, Wang L, Moomaw J, Peery RB, Sun PM, Johnson RB, Lu J, Treadway P, Skatrud PL, Wang QM. Biochemical characterization of signal peptidase I from gram-positive Streptococcus pneumoniae. J Bacteriol 2001; 183:621-7. [PMID: 11133956 PMCID: PMC94918 DOI: 10.1128/jb.183.2.621-627.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2000] [Accepted: 10/25/2000] [Indexed: 11/20/2022] Open
Abstract
Bacterial signal peptidase I is responsible for proteolytic processing of the precursors of secreted proteins. The enzymes from gram-negative and -positive bacteria are different in structure and specificity. In this study, we have cloned, expressed, and purified the signal peptidase I of gram-positive Streptococcus pneumoniae. The precursor of streptokinase, an extracellular protein produced in pathogenic streptococci, was identified as a substrate of S. pneumoniae signal peptidase I. Phospholipids were found to stimulate the enzymatic activity. Mutagenetic analysis demonstrated that residues serine 38 and lysine 76 of S. pneumoniae signal peptidase I are critical for enzyme activity and involved in the active site to form a serine-lysine catalytic dyad, which is similar to LexA-like proteases and Escherichia coli signal peptidase I. Similar to LexA-like proteases, S. pneumoniae signal peptidase I catalyzes an intermolecular self-cleavage in vitro, and an internal cleavage site has been identified between glycine 36 and histidine 37. Sequence analysis revealed that the signal peptidase I and LexA-like proteases show sequence homology around the active sites and some common properties around the self-cleavage sites. All these data suggest that signal peptidase I and LexA-like proteases are closely related and belong to a novel class of serine proteases.
Collapse
Affiliation(s)
- S B Peng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tjalsma H, Zanen G, Venema G, Bron S, van Dijl JM. The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis. J Biol Chem 1999; 274:28191-7. [PMID: 10497172 DOI: 10.1074/jbc.274.40.28191] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II signal peptidases (SPase II) remove signal peptides from lipid-modified preproteins of eubacteria. As the catalytic mechanism employed by type II SPases was not known, the present studies were aimed at the identification of their potential active site residues. Comparison of the deduced amino acid sequences of 19 known type II SPases revealed the presence of five conserved domains. The importance of the 15 best conserved residues in these domains was investigated using the type II SPase of Bacillus subtilis, which, unlike SPase II of Escherichia coli, is not essential for viability. The results showed that only six residues are important for SPase II activity. These are Asp-14, Asn-99, Asp-102, Asn-126, Ala-128, and Asp-129. Only Asp-14 was required for stability of SPase II, indicating that the other five residues are required for catalysis, the active site geometry, or the specific recognition of lipid-modified preproteins. As Asp-102 and Asp-129 are the only residues invoked in the known catalytic mechanisms of proteases, we hypothesize that these two residues are directly involved in SPase II-mediated catalysis. This implies that type II SPases belong to a novel family of aspartic proteases.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Paitan Y, Orr E, Ron EZ, Rosenberg E. A nonessential signal peptidase II (Lsp) of Myxococcus xanthus might be involved in biosynthesis of the polyketide antibiotic TA. J Bacteriol 1999; 181:5644-51. [PMID: 10482504 PMCID: PMC94083 DOI: 10.1128/jb.181.18.5644-5651.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a gram-negative soil bacterium that produces the polyketide antibiotic TA. In this study, we describe the analysis of an M. xanthus gene which encodes a homologue of the prolipoprotein signal peptidase II (SPase II; lsp). Overexpression of the M. xanthus SPase II in Escherichia coli confers high levels of globomycin resistance, confirming its function as an SPase II. The M. xanthus gene encoding the lsp homologue is nonessential for growth, as determined by specific gene disruption. It has been mapped to the antibiotic TA gene cluster, and the disrupted mutants do not produce the antibiotic, indicating a probable involvement in TA production. These results suggest the existence of more than one SPase II protein in M. xanthus, where one is a system-specific SPase II (for TA biosynthesis).
Collapse
Affiliation(s)
- Y Paitan
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
16
|
Jovanovic M, Lilic M, Janjusevic R, Jovanovic G, Savic DJ, Milija J. tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin. J Bacteriol 1999; 181:2979-83. [PMID: 10217798 PMCID: PMC93749 DOI: 10.1128/jb.181.9.2979-2983.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies we demonstrated that mutations in the genes cysB, cysE, and cls (nov) affect resistance of Escherichia coli to novobiocin (J. Rakonjac, M. Milic, and D. J. Savic, Mol. Gen. Genet. 228:307-311, 1991; R. Ivanisevic, M. Milic, D. Ajdic, J. Rakonjac, and D. J. Savic, J. Bacteriol. 177:1766-1771, 1995). In this work we expand this list with mutations in rpoN (the gene for RNA polymerase subunit sigma54) and the tRNA synthetase genes alaS, argS, ileS, and leuS. Similarly to resistance to the penicillin antibiotic mecillinam, resistance to novobiocin of tRNA synthetase mutants appears to depend upon the RelA-mediated stringent response. However, at this point the overlapping pathways of mecillinam and novobiocin resistance diverge. Under conditions of stringent response induction, either by the presence of tRNA synthetase mutations or by constitutive production of RelA protein, inactivation of the cls gene diminishes resistance to novobiocin but not to mecillinam.
Collapse
Affiliation(s)
- M Jovanovic
- Institute of Molecular Genetics and Genetic Engineering, 11001 Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
17
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 935] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
18
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
19
|
Umelo E, Trust TJ. Physical map of the chromosome of Aeromonas salmonicida and genomic comparisons between Aeromonas strains. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2141-2149. [PMID: 9720035 DOI: 10.1099/00221287-144-8-2141] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
I-Ceul and Pmel physical maps of the Aeromonas salmonicida A449 chromosome were constructed using PFGE. The circular chromosome of A. salmonicida A449 was estimated to be 4658 +/- 30 kb. The approximate location of several genes, including those encoding proteins implicated in virulence, were identified. The map showed that the known virulence-factor-encoding genes were not clustered. The I-Ceul genomic digestion fingerprints of several typical and atypical strains of A. salmonicida were compared. The results confirmed the homogeneity of typical strains, which provided further support for the clonality of the population structure of this group. Extensive diversity was observed in the I-Ceul digestion fingerprint of atypical strains, although a clonality was observed in the strains isolated from diseased goldfish. The results suggest that comparison of I-Ceul digestion fingerprints could be used as a powerful taxonomic tool to subdivide the atypical strains and also help clarify some of the current confusion associated with the taxonomy of the genus Aeromonas.
Collapse
Affiliation(s)
- Elizabeth Umelo
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of VictoriaVictoria, BC, V8W 3P6 Canada
| | - Trevor J Trust
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of VictoriaVictoria, BC, V8W 3P6 Canada
| |
Collapse
|
20
|
Yakushi T, Tajima T, Matsuyama S, Tokuda H. Lethality of the covalent linkage between mislocalized major outer membrane lipoprotein and the peptidoglycan of Escherichia coli. J Bacteriol 1997; 179:2857-62. [PMID: 9139900 PMCID: PMC179046 DOI: 10.1128/jb.179.9.2857-2862.1997] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The major outer membrane lipoprotein (Lpp) of Escherichia coli possesses serine at position 2, which is thought to function as the outer membrane sorting signal, and lysine at the C terminus, through which Lpp covalently associates with peptidoglycan. Arginine (R) is present before the C-terminal lysine in the wild-type Lpp (LppSK). By replacing serine (S) at position 2 with aspartate (D), the putative inner membrane sorting signal, and by deleting lysine (K) at the C terminus, Lpp mutants with a different residue at either position 2 (LppDK) or the C terminus (LppSR) or both (LppDR) were constructed. Expression of LppSR and LppDR little affected the growth of E. coli. In contrast, the number of viable cells immediately decreased when LppDK was expressed. Prolonged expression of LppDK inhibited separation of the inner and outer membranes by sucrose density gradient centrifugation, whereas short-term expression did not. Pulse-labeled LppDK and LppDR were localized in the inner membrane, indicating that the amino acid residue at position 2 functions as a sorting signal for the membrane localization of Lpp. LppDK accumulated in the inner membrane covalently associated with the peptidoglycan and thus prevented the separation of the two membranes. Globomycin, an inhibitor of lipoprotein-specific signal peptidase II, was lethal for E. coli only when Lpp possessed the C-terminal lysine. Taken together, these results indicate that the inner membrane accumulation of Lpp per se is not lethal for E. coli. Instead, a covalent linkage between the inner membrane Lpp having the C-terminal lysine and the peptidoglycan is lethal for E. coli, presumably due to the disruption of the cell surface integrity.
Collapse
Affiliation(s)
- T Yakushi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
21
|
Fang H, Panzner S, Mullins C, Hartmann E, Green N. The homologue of mammalian SPC12 is important for efficient signal peptidase activity in Saccharomyces cerevisiae. J Biol Chem 1996; 271:16460-5. [PMID: 8663399 DOI: 10.1074/jbc.271.28.16460] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multisubunit signal peptidase catalyzes the cleavage of signal peptides and the degradation of some membrane proteins within the endoplasmic reticulum (ER). The only subunit of this enzyme functionally examined to date, yeast Sec11p, is related to signal peptidase I from bacteria. Since bacterial signal peptidase is capable of processing both prokaryotic and eukaryotic signal sequences as a monomer, it is unclear why the analogous enzyme in the ER contains proteins unrelated to signal peptidase I. To address this issue, the gene encoding Spc1p, the yeast homologue to mammalian SPC12, is isolated from the yeast Saccharomyces cerevisiae. Spc1p co-purifies and genetically interacts with Sec11p, but unlike Sec11p, Spc1p is not required for cell growth or the proteolytic processing of tested proteins in yeast. This indicates that only a subset of the ER signal peptidase subunits is required for signal peptidase and protein degradation activities in vivo. Through both genetic and biochemical criteria, Spc1p appears, however, to be important for efficient signal peptidase activity.
Collapse
Affiliation(s)
- H Fang
- Department of Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
22
|
Bass S, Gu Q, Christen A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 1996; 178:1154-61. [PMID: 8576052 PMCID: PMC177779 DOI: 10.1128/jb.178.4.1154-1161.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated three multicopy suppressors of the conditional lethal phenotype of a prc (tsp) null strain of Escherichia coli. One of these suppressors included two novel putative protease genes in tandem that map to 3400 kb or 72.5 centisomes on the chromosome. We propose the names hhoA and hhoB, for htrA homolog, to denote that these genes encode proteins that are 58 and 35% identical, respectively, to the HtrA (DegP) serine protease and 36% identical to each other. The HhoA and HhoB proteins are predicted to be 455 and 355 amino acids, respectively, in length. The mature HhoA protein is periplasmic in location, and amino-terminal sequencing shows that it arises following cleavage of a 27-amino-acid signal peptide. Searches of the protein and DNA databases reveal a rapidly growing family of homologous genes in a variety of other bacteria, including several which are required for virulence in their host. Deletion of the hhoAB genes shows that they are not required for viability at high temperatures like the homologous htrA but grow more slowly than wild-type strains. A second multicopy prc suppressor is the dksA (dnaK suppressor) gene, which is also a multicopy suppressor of defects in the heat shock genes dnaK, dnaJ, and grpE. The dksA gene was independently isolated as a multicopy suppressor of a mukB mutation, which is required for chromosomal partitioning. A third dosage-dependent prc suppressor includes a truncated rare lipoprotein A (rlpA) gene.
Collapse
Affiliation(s)
- S Bass
- Department of Molecular Biology, Genentech Inc, South San Francisco, California 94080-4990, USA
| | | | | |
Collapse
|
23
|
cDNA-derived primary structure of the 25-kDa subunit of canine microsomal signal peptidase complex. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47255-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Russell MA, Darzins A. The pilE gene product of Pseudomonas aeruginosa, required for pilus biogenesis, shares amino acid sequence identity with the N-termini of type 4 prepilin proteins. Mol Microbiol 1994; 13:973-85. [PMID: 7854130 DOI: 10.1111/j.1365-2958.1994.tb00489.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new locus required for type 4 pilus biogenesis by Pseudomonas aeruginosa has been identified. A pilE mutant, designated MJ-6, was broadly resistant to pili-specific phages and unable to translocate across solid surfaces by the pilus-dependent mechanism of twitching motility (Twt-). Immunoblot analysis demonstrated that MJ-6 was devoid of pili (Pil-) but was unaffected in the production of unassembled pilin pools. Genetic studies aimed at localizing the pilE mutation on the P. aeruginosa PAO chromosome demonstrated a strong co-linkage between MJ-6 phage resistance and the proB marker located at 71 min. Cloning of the pilE gene was facilitated by the isolation and identification of a pro(B+)-containing plasmid from a PAO1 cosmid library. Upon introduction of the PAO1 proB+ cosmid clone into MJ-6, sensitivity to pili-specific phage, twitching motility and pilus production were restored. The nucleotide sequence of a 1 kb EcoRV-ClaI fragment containing the pilE region revealed a single complete open reading frame with characteristic P. aeruginosa codon bias. PilE, a protein with a molecular weight of 15,278, showed significant sequence identity to the pilin precursors of P. aeruginosa and to other type 4 prepilin proteins. The region of highest homology was localized to the N-terminal 40 amino acid residues. The putative PilE N-terminus contained a seven-residue basic leader sequence followed by a consensus cleavage site for prepilin peptidase and a largely hydrophobic region which contained tyrosine residues (Tyr-24 and Tyr-27) previously implicated in maintaining pilin subunit-subunit interactions. The requirement of PilE in pilus biogenesis was confirmed by demonstrating that chromosomal pilE insertion mutants were pilus- and twitching-motility deficient.
Collapse
Affiliation(s)
- M A Russell
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
25
|
Sankaran K, Wu H. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32077-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Jain R, Rusch S, Kendall D. Signal peptide cleavage regions. Functional limits on length and topological implications. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34008-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Palzkill T, Le QQ, Wong A, Botstein D. Selection of functional signal peptide cleavage sites from a library of random sequences. J Bacteriol 1994; 176:563-8. [PMID: 8300511 PMCID: PMC205091 DOI: 10.1128/jb.176.3.563-568.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The export of proteins to the periplasmic compartment of bacterial cells is mediated by an amino-terminal signal peptide. After transport, the signal peptide is cleaved by a processing enzyme, signal peptidase I. A comparison of the cleavage sites of many exported proteins has identified a conserved feature of small, uncharged amino acids at positions -1 and -3 relative to the cleavage site. To determine experimentally the sequences required for efficient signal peptide cleavage, we simultaneously randomized the amino acid residues from positions -4 to +2 of the TEM-1 beta-lactamase enzyme to form a library of random sequences. Mutants that provide wild-type levels of ampicillin resistance were then selected from the random-sequence library. The sequences of 15 mutants indicated a bias towards small amino acids. The N-terminal amino acid sequence of the mature enzyme was determined for nine of the mutants to assign the new -1 and -3 residues. Alanine was present in the -1 position for all nine of these mutants, strongly supporting the importance of alanine at the -1 position. The amino acids at the -3 position were much less conserved but were consistent with the -3 rules derived from sequence comparisons. Compared with the wild type, two of the nine mutants have an altered cleavage position, suggesting that sequence is more important than position for processing of the signal peptide.
Collapse
Affiliation(s)
- T Palzkill
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
28
|
Braun V, Wu H. Chapter 14 Lipoproteins, structure, function, biosynthesis and model for protein export. BACTERIAL CELL WALL 1994. [DOI: 10.1016/s0167-7306(08)60417-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Abstract
Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them.
Collapse
Affiliation(s)
- M Simonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
30
|
Ichihara S, Matsubara Y, Kato C, Akasaka K, Mizushima S. Molecular cloning, sequencing, and mapping of the gene encoding protease I and characterization of proteinase and proteinase-defective Escherichia coli mutants. J Bacteriol 1993; 175:1032-7. [PMID: 8432696 PMCID: PMC193016 DOI: 10.1128/jb.175.4.1032-1037.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clones carrying the gene encoding a proteinase were isolated from Clarke and Carbon's collection, using a chromogenic substrate, N-benzyloxycarbonyl-L-phenylalanine beta-naphthyl ester. The three clones isolated, pLC6-33, pLC13-1, and pLC36-46, shared the same chromosomal DNA region. A 0.9-kb Sau3AI fragment within this region was found to be responsible for the overproduction of the proteinase, and the nucleotide sequence of the region was then determined. The proteinase was purified to homogeneity from the soluble fraction of an overproducing strain possessing the cloned gene. N-terminal amino acid sequencing of the purified protein revealed that the cloned gene is the structural gene for the protein, with the protein being synthesized in precursor form with a signal peptide. On the basis of its molecular mass (20 kDa), periplasmic localization, and substrate specificity, we conclude this protein to be protease I. By using the gene cloned on a plasmid, a deletion mutant was constructed in which the gene was replaced by the kanamycin resistance gene (Kmr) on the chromosome. The Kmr gene was mapped at 11.8 min, the gene order being dnaZ-adk-ush-Kmr-purE, which is consistent with the map position of apeA, the gene encoding protease I in Salmonella typhimurium. Therefore, the gene was named apeA. Deletion of the apeA gene, either with or without deletion of other proteinases (protease IV and aminopeptidase N), did not have any effect on cell growth in the various media tested.
Collapse
Affiliation(s)
- S Ichihara
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) of Staphylococcus aureus was cloned by screening a genomic library for plasmid clones capable of complementing a conditionally lethal lsp allele of Escherichia coli. E. coli cells carrying one of five overlapping clones exhibited increased resistance to globomycin. The nucleotide sequence of the S. aureus lsp gene was determined. The deduced amino acid sequence of the signal peptidase II of S. aureus suggests that this enzyme has a hydropathy profile very similar to those of E. coli, Enterobacter aerogenes and Pseudomonas fluorescens. Comparison of the primary structures of this enzyme from these four distinct bacterial species reveals three highly conserved domains in proteins which have a low degree of overall sequence homology. Unlike the lsp genes from the Gram-negative bacteria, the lsp gene in S. aureus is not flanked by x-ileS and orf149-orf316 as found in E. coli, Ent. aerogenes, and P. fluorescens.
Collapse
Affiliation(s)
- X J Zhao
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20899-4799
| | | |
Collapse
|
33
|
Newsome AL, McLean JW, Lively MO. Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase. Biochem J 1992; 282 ( Pt 2):447-52. [PMID: 1546959 PMCID: PMC1130799 DOI: 10.1042/bj2820447] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common.
Collapse
Affiliation(s)
- A L Newsome
- Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103
| | | | | |
Collapse
|
34
|
Abstract
In E. coli, protein degradation plays important roles in regulating the levels of specific proteins and in eliminating damaged or abnormal proteins. E. coli possess a very large number of proteolytic enzymes distributed in the cytoplasm, the inner membrane, and the periplasm, but, with few exceptions, the physiological functions of these proteases are not known. More than 90% of the protein degradation occurring in the cytoplasm is energy-dependent, but the activities of most E. coli proteases in vitro are not energy-dependent. Two ATP-dependent proteases, Lon and Clp, are responsible for 70-80% of the energy-dependent degradation of proteins in vivo. In vitro studies with Lon and Clp indicate that both proteases directly interact with substrates for degradation. ATP functions as an allosteric effector promoting an active conformation of the proteases, and ATP hydrolysis is required for rapid catalytic turnover of peptide bond cleavage in proteins. Lon and Clp show virtually no homology at the amino acid level, and thus it appears that at least two families of ATP-dependent proteases have evolved independently.
Collapse
Affiliation(s)
- M R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Affiliation(s)
- G von Heijne
- Department of Molecular Biology, Karolinska Institute Center for Structural Biochemistry, NOVUM, Huddinge, Sweden
| |
Collapse
|
36
|
Kikuchi Y, Sasaki N. Site-specific cleavage of natural mRNA sequences by newly designed hairpin catalytic RNAs. Nucleic Acids Res 1991; 19:6751-5. [PMID: 1762907 PMCID: PMC329305 DOI: 10.1093/nar/19.24.6751] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The negative strand of tobacco ringspot virus satellite RNA is a self-cleaving RNA. Its catalytic domain and substrate domain have been identified, and the catalytic domain has been named hairpin catalytic RNA. Here we report the construction of a plasmid containing a modified hairpin catalytic RNA sequence that can be transcribed in vitro. Because this plasmid has two specific restriction enzyme recognition sites at both ends of the substrate binding site in the catalytic RNA sequence, it is possible to construct new plasmids by substituting different sequences in the substrate binding site. Using this plasmid, synthetic DNA, and in vitro transcription, we obtained three ribozymes designed to cleave Escherichia coli prolipoprotein signal peptidase (lsp) mRNA at specific sites. All three ribozymes cleaved the lsp mRNA sequence in vitro at the specific sites, and two of them cleaved it efficiently. Kinetic analyses showed that one had a higher kcat/Km value than that of the well-known hammerhead ribozyme. Problems associated with attaining the goal of expressing these ribozymes in vivo also are discussed.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Molecular Biology, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
37
|
Muñoa F, Miller K, Beers R, Graham M, Wu H. Membrane topology of Escherichia coli prolipoprotein signal peptidase (signal peptidase II). J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47423-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Behrens M, Michaelis G, Pratje E. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. MOLECULAR & GENERAL GENETICS : MGG 1991; 228:167-76. [PMID: 1886606 DOI: 10.1007/bf00282462] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nuclear yeast mutant pet ts2858 is defective in the removal of pre-sequences from the mitochondrially encoded cytochrome oxidase subunit II (COXII) and the processing intermediate of cytochrome b2 (Cytb2), a nuclear gene product. In order to identify the genetic lesion in this mutant we have cloned and characterized a DNA region which complements the pet ts2858 mutation. The DNA sequence revealed three open reading frames, one of which is responsible for the complementation. A 570 bp reading frame represents the structural gene PET2858, as demonstrated by in vitro mutagenesis, gene expression from a foreign promoter, and allelism tests. PET2858 encodes a 21.4 kDa protein, which is essential for growth on non-fermentable carbon sources and for the proteolytic processing of COXII and the Cytb2 intermediate. When the N-terminus of the PET2858 protein is fused to a reporter protein, the resulting hybrid molecule is imported into mitochondria. Interestingly, the N-terminal half of the deduced PET2858 protein exhibits 30.7% amino acid identity to the leader peptidase of Escherichia coli. These results suggest that PET2858 codes for a mitochondrial inner membrane protease (IMP1) or at least a subunit of it. This protease is involved in protein processing and export from the mitochondrial matrix.
Collapse
Affiliation(s)
- M Behrens
- Botanisches Institut, Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
39
|
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, Columbus 43210
| |
Collapse
|
40
|
Condemine G, Smith CL. Transcription regulates oxolinic acid-induced DNA gyrase cleavage at specific sites on the E. coli chromosome. Nucleic Acids Res 1990; 18:7389-96. [PMID: 2175434 PMCID: PMC332877 DOI: 10.1093/nar/18.24.7389] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prominent DNA gyrase-mediated cleavage sites, induced by oxolinic acid, occur at specific, but infrequent, locations on the Escherichia coli chromosome. These sites, which we call toposites, may represent high affinity DNA gyrase binding sites or may mark chromosomal regions that accumulate superhelical stress. Toposites are usually grouped in 5 to 10 kb clusters that are mostly 50 to 100 kb apart. The total number of clusters on the chromosome is between 50 and 100. The location of sites depends on the local sequence. The extent of DNA gyrase cleavage at toposites can be strongly modulated by transcription occurring at as far as 35 kb away.
Collapse
Affiliation(s)
- G Condemine
- Laboratoire de Microbiologie, INSA Bat 406, Villeurbanne, France
| | | |
Collapse
|
41
|
Isaki L, Beers R, Wu HC. Nucleotide sequence of the Pseudomonas fluorescens signal peptidase II gene (lsp) and flanking genes. J Bacteriol 1990; 172:6512-7. [PMID: 2121716 PMCID: PMC526840 DOI: 10.1128/jb.172.11.6512-6517.1990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) is organized into an operon consisting of ileS and three open reading frames, designated genes x, orf149, and orf316 in both Escherichia coli and Enterobacter aerogenes. A plasmid, pBROC128, containing a 5.8-kb fragment of Pseudomonas fluorescens DNA was found to confer pseudomonic acid resistance on E. coli host cells and to contain the structural gene of ileS from P. fluorescens. In addition, E. coli strains carrying pBROC128 exhibited increased globomycin resistance. This indicated that the P. fluorescens lsp gene was present on the plasmid. The nucleotide sequences of the P. fluorescens lsp gene and of its flanking regions were determined. Comparison of the nucleotide sequences of the lsp genes in E. coli and P. fluorescens revealed two highly conserved domains in this enzyme. Furthermore, the five genes which constitute an operon in E. coli and Enterobacter aerogenes were found in P. fluorescens in the same order as in the first two species.
Collapse
Affiliation(s)
- L Isaki
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-4799
| | | | | |
Collapse
|
42
|
van Dijl JM, van den Bergh R, Reversma T, Smith H, Bron S, Venema G. Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:233-40. [PMID: 2250650 DOI: 10.1007/bf00265059] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A system is described which enabled the selection of a heterologous lep gene, encoding signal peptidase I, in Escherichia coli. It is based on complementation of an E. coli mutant, in which the synthesis of signal peptidase I can be regulated. With this system the lep gene of Salmonella typhimurium was cloned and the nucleotide sequence was determined. The S. typhimurium lep gene encodes a protein of 324 amino acids. Expression of the gene in the E. coli mutant resulted in suppression of growth inhibition and in the restoration of processing activity under conditions where synthesis of E. coli signal peptidase I was repressed. The cloned S. typhimurium signal peptidase I had an apparent molecular weight of 36,000 daltons, which is in agreement with the calculated molecular weight of 35,782 daltons. The system described for selection of the S. typhimurium lep gene may permit the cloning and expression of other heterologous signal peptidase I genes.
Collapse
Affiliation(s)
- J M van Dijl
- Department of Genetics, Center of Biological Sciences, Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein of E. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at -3 to +1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.
Collapse
Affiliation(s)
- S Hayashi
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
44
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
45
|
Lichens-Park A, Smith CL, Syvanen M. Integration of bacteriophage lambda into the cryptic lambdoid prophages of Escherichia coli. J Bacteriol 1990; 172:2201-8. [PMID: 2139644 PMCID: PMC208843 DOI: 10.1128/jb.172.5.2201-2208.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteriophage lambda missing its chromosomal attachment site will integrate into recA+ Escherichia coli K-12 and C at the sites of cryptic prophages. The specific regions in which these recombination events occur were identified in both lambda and the bacterial chromosomes. A NotI restriction site on the prophage allowed its physical mapping. This allowed us to identify the locations of Rac, Qin, and Qsr' cryptic prophages on the NotI map of E. coli K-12 and, by analogy, to identify the cryptic prophage in E. coli C as Qin. No new cryptic prophages were detected in E. coli K-12.
Collapse
Affiliation(s)
- A Lichens-Park
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
46
|
Jann A, Cavard D, Martin C, Cami B, Patte JC. A lipopeptide-encoding sequence upstream from the lysA gene of Pseudomonas aeruginosa. Mol Microbiol 1990; 4:677-82. [PMID: 2112674 DOI: 10.1111/j.1365-2958.1990.tb00637.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An open reading frame (ORF) of 141 bp was observed upstream from the Pseudomonas aeruginosa lysA gene. The translation product of this ORF contains a signal peptide with a lipoprotein box, Ile-Ala-Ala-Cys, at the predicted signal peptidase cleavage site. The Escherichia coli phoA gene without its signal sequence was fused in frame to this ORF in a broad host-range plasmid. The resulting construct expressed a hybrid protein exhibiting alkaline phosphatase activity in phoA mutants of both E. coli and P. aeruginosa. This indicates that the ORF encodes a peptide, part of which acts as an export signal. The hybrid peptide was identified by immunoblotting with alkaline phosphatase antiserum. The accumulation of a precursor form was observed when P. aeruginosa cells carrying this gene fusion on a plasmid were treated with globomycin. Moreover, the mature form could be labelled with 2-[3H]-glycerol, indicating that lipidic residues may be linked to the hybrid protein. Taken together, these results strongly suggest that the ORF encodes a lipopeptide. We propose that the gene is called IppL.
Collapse
Affiliation(s)
- A Jann
- Laboratoire de Chimie Bactérienne, C.N.R.S., Marseille, France
| | | | | | | | | |
Collapse
|
47
|
Cloning and nucleotide sequence of the Enterobacter aerogenes signal peptidase II (lsp) gene. J Bacteriol 1990; 172:469-72. [PMID: 2403548 PMCID: PMC208454 DOI: 10.1128/jb.172.1.469-472.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Escherichia coli, prolipoprotein signal peptidase is encoded by the lsp gene, which is organized into an operon consisting of ileS, lsp, and three open reading frames, designated genes x, orf-149, and orf-316. The Enterobacter aerogenes lsp gene was cloned and expressed in E. coli. The nucleotide sequence of the Enterobacter aerogenes lsp gene and a part of its flanking sequences were determined. A high degree of homology was found between the E. coli ileS-lsp operon and the corresponding genes in Enterobacter aerogenes. Furthermore, the same five genes which constitute an operon in E. coli were found in Enterobacter aerogenes in the same order.
Collapse
|
48
|
|
49
|
Shelness GS, Kanwar YS, Blobel G. cDNA-derived primary structure of the glycoprotein component of canine microsomal signal peptidase complex. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37498-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
van Dijl JM, Smith H, Bron S, Venema G. Synthesis and processing of Escherichia coli TEM-beta-lactamase and Bacillus licheniformis alpha-amylase in E. coli: the role of signal peptidase I. MOLECULAR & GENERAL GENETICS : MGG 1988; 214:55-61. [PMID: 3067081 DOI: 10.1007/bf00340179] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A mutant of Escherichia coli, in which signal peptidase I synthesis can be regulated, was constructed. The mutant was used to study the effects of signal peptidase I limitation on the synthesis and efficiency of processing of two proteins: the periplasmic E. coli TEM-beta-lactamase and Bacillus licheniformis alpha-amylase, which also accumulates in the periplasm of E. coli. Signal peptidase I limitation resulted in reduced rates of processing of pre-beta-lactamase and in strong inhibition of synthesis of alpha-amylase. The data suggest that beta-lactamase is processed post-translationally and that an intimate relationship exists between the synthesis and processing of alpha-amylase.
Collapse
Affiliation(s)
- J M van Dijl
- Department of Genetics, Center of Biological Sciences, Haren, The Netherlands
| | | | | | | |
Collapse
|