1
|
Biondetti E, Cho J, Lee H. Cerebral oxygen metabolism from MRI susceptibility. Neuroimage 2023; 276:120189. [PMID: 37230206 PMCID: PMC10335841 DOI: 10.1016/j.neuroimage.2023.120189] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
This article provides an overview of MRI methods exploiting magnetic susceptibility properties of blood to assess cerebral oxygen metabolism, including the tissue oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). The first section is devoted to describing blood magnetic susceptibility and its effect on the MRI signal. Blood circulating in the vasculature can have diamagnetic (oxyhemoglobin) or paramagnetic properties (deoxyhemoglobin). The overall balance between oxygenated and deoxygenated hemoglobin determines the induced magnetic field which, in turn, modulates the transverse relaxation decay of the MRI signal via additional phase accumulation. The following sections of this review then illustrate the principles underpinning susceptibility-based techniques for quantifying OEF and CMRO2. Here, it is detailed whether these techniques provide global (OxFlow) or local (Quantitative Susceptibility Mapping - QSM, calibrated BOLD - cBOLD, quantitative BOLD - qBOLD, QSM+qBOLD) measurements of OEF or CMRO2, and what signal components (magnitude or phase) and tissue pools they consider (intravascular or extravascular). Validations studies and potential limitations of each method are also described. The latter include (but are not limited to) challenges in the experimental setup, the accuracy of signal modeling, and assumptions on the measured signal. The last section outlines the clinical uses of these techniques in healthy aging and neurodegenerative diseases and contextualizes these reports relative to results from gold-standard PET.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Cho J, Zhang J, Spincemaille P, Zhang H, Hubertus S, Wen Y, Jafari R, Zhang S, Nguyen TD, Dimov AV, Gupta A, Wang Y. QQ-NET - using deep learning to solve quantitative susceptibility mapping and quantitative blood oxygen level dependent magnitude (QSM+qBOLD or QQ) based oxygen extraction fraction (OEF) mapping. Magn Reson Med 2021; 87:1583-1594. [PMID: 34719059 DOI: 10.1002/mrm.29057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE To improve accuracy and speed of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) -based oxygen extraction fraction (OEF) mapping using a deep neural network (QQ-NET). METHODS The 3D multi-echo gradient echo images were acquired in 34 ischemic stroke patients and 4 healthy subjects. Arterial spin labeling and diffusion weighted imaging (DWI) were also performed in the patients. NET was developed to solve the QQ model inversion problem based on Unet. QQ-based OEF maps were reconstructed with previously introduced temporal clustering, tissue composition, and total variation (CCTV) and NET. The results were compared in simulation, ischemic stroke patients, and healthy subjects using a two-sample Kolmogorov-Smirnov test. RESULTS In the simulation, QQ-NET provided more accurate and precise OEF maps than QQ-CCTV with 150 times faster reconstruction speed. In the subacute stroke patients, OEF from QQ-NET had greater contrast-to-noise ratio (CNR) between DWI-defined lesions and their unaffected contralateral normal tissue than with QQ-CCTV: 1.9 ± 1.3 vs 6.6 ± 10.7 (p = 0.03). In healthy subjects, both QQ-CCTV and QQ-NET provided uniform OEF maps. CONCLUSION QQ-NET improves the accuracy of QQ-based OEF with faster reconstruction.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jinwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Hang Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Simon Hubertus
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yan Wen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ramin Jafari
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Wu D, Zhou Y, Cho J, Shen N, Li S, Qin Y, Zhang G, Yan S, Xie Y, Zhang S, Zhu W, Wang Y. The Spatiotemporal Evolution of MRI-Derived Oxygen Extraction Fraction and Perfusion in Ischemic Stroke. Front Neurosci 2021; 15:716031. [PMID: 34483830 PMCID: PMC8415351 DOI: 10.3389/fnins.2021.716031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to assess the spatiotemporal evolution of oxygen extraction fraction (OEF) in ischemic stroke with a newly developed cluster analysis of time evolution (CAT) for a combined quantitative susceptibility mapping and quantitative blood oxygen level-dependent model (QSM + qBOLD, QQ). Method One hundred and fifteen patients in different ischemic stroke phases were retrospectively collected for measurement of OEF of the infarcted area defined on diffusion-weighted imaging (DWI). Clinical severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Of the 115 patients, 11 underwent two longitudinal MRI scans, namely, three-dimensional (3D) multi-echo gradient recalled echo (mGRE) and 3D pseudo-continuous arterial spin labeling (pCASL), to evaluate the reversal region (RR) of the initial diffusion lesion (IDL) that did not overlap with the final infarct (FI). The temporal evolution of OEF and the cerebral blood flow (CBF) in the IDL, the RR, and the FI were assessed. Results Compared to the contralateral mirror area, the OEF of the infarcted region was decreased regardless of stroke phases (p < 0.05) and showed a declining tendency from the acute to the chronic phase (p = 0.022). Five of the 11 patients with longitudinal scans showed reversal of the IDL. Relative oxygen extraction fraction (rOEF, compared to the contralateral mirror area) of the RR increased from the first to the second MRI (p = 0.044). CBF was about 1.5-fold higher in the IDL than in the contralateral mirror area in the first MRI. Two patients showed penumbra according to the enlarged FI volume. The rOEF of the penumbra fluctuated around 1.0 at earlier scan times and then decreased, while the CBF decreased continuously. Conclusion The spatiotemporal evolution of OEF and perfusion in ischemic lesions is heterogeneous, and the CAT-based QQ method is feasible to capture cerebral oxygen metabolic information.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Investigation of the magnetic susceptibility properties of fresh and fixed mouse heart, liver, skeletal muscle and brain tissue. Phys Med 2021; 88:37-44. [PMID: 34171574 DOI: 10.1016/j.ejmp.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Several magnetic resonance imaging (MRI) techniques exploit the difference in magnetic susceptibilities between tissues, but systematic measurements of tissue susceptibility are lacking. Furthermore, there is the question as to whether chemical fixation that is used for ex vivo MRI studies, affects the magnetic properties of the tissue. Here, we determined the magnetic susceptibility and water content of fresh and chemically fixed mouse tissue. METHODS Mass susceptibility of brain, heart, liver and skeletal muscle samples were determined on a vibrating sample magnetometer at room temperature. Measurements at 50, 125, 200 and 295 K were performed to assess the temperature dependence of susceptibility. Moreover, we measured water content of fresh and fixed samples. RESULTS All samples show mass susceptibilities between -0.068 and -1.929 × 10-8 m3/kg, compared to -9.338 × 10-9 m3/kg of double distilled water. Heart tissue has a more diamagnetic susceptibility than the other tissues. Compared to fresh tissue, fixed tissue has a less diamagnetic susceptibility. Fixed tissue was not different in water content to fresh tissue and showed no consistent dependence of susceptibility with temperature, whereas fresh tissue shows a decrease to at least 125 K, indicative of a paramagnetic component. CONCLUSIONS Biological tissues are diamagnetic in comparison to water, where the heart is more diamagnetic than the other tissues, with paramagnetic contributions. Fixation rendered tissue less diamagnetic compared to fresh tissue. Our measurements revealed differences in tissue susceptibility between VSM and QSM, inviting more research to compare susceptibility-based MRI methods with physical measurements of tissue susceptibility.
Collapse
|
5
|
Cho J, Spincemaille P, Nguyen TD, Gupta A, Wang Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn Reson Med 2021; 86:2635-2646. [PMID: 34110656 DOI: 10.1002/mrm.28875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
6
|
Cho J, Zhang S, Kee Y, Spincemaille P, Nguyen TD, Hubertus S, Gupta A, Wang Y. Cluster analysis of time evolution (CAT) for quantitative susceptibility mapping (QSM) and quantitative blood oxygen level-dependent magnitude (qBOLD)-based oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) mapping. Magn Reson Med 2020; 83:844-857. [PMID: 31502723 PMCID: PMC6879790 DOI: 10.1002/mrm.27967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/07/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE To improve the accuracy of QSM plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD or QQ)-based mapping of the oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using cluster analysis of time evolution (CAT). METHODS 3D multi-echo gradient echo and arterial spin labeling images were acquired in 11 healthy subjects and 5 ischemic stroke patients. DWI was also carried out on patients. CAT was developed for analyzing signal evolution over TE. QQ-based OEF and CMRO2 were reconstructed with and without CAT, and results were compared using region of interest analysis and a paired t-test. RESULTS Simulations demonstrated that CAT substantially reduced noise error in QQ-based OEF. In healthy subjects, QQ-based OEF appeared less noisy and more uniform with CAT than without CAT; average OEF with and without CAT in cortical gray matter was 32.7 ± 4.0% and 37.9 ± 4.5%, with corresponding CMRO2 of 148.4 ± 23.8 and 171.4 ± 22.4 μmol/100 g/min, respectively. In patients, regions of low OEF were confined within the ischemic lesions defined on DWI when using CAT, which was not observed without CAT. CONCLUSION The cluster analysis of time evolution (CAT) significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Tongji Hospital, Wuhan 430030, China
| | - Youngwook Kee
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Simon Hubertus
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim 68167, Germany
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
7
|
Hubertus S, Thomas S, Cho J, Zhang S, Wang Y, Schad LR. Using an artificial neural network for fast mapping of the oxygen extraction fraction with combined QSM and quantitative BOLD. Magn Reson Med 2019; 82:2199-2211. [PMID: 31273828 DOI: 10.1002/mrm.27882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To apply an artificial neural network (ANN) for fast and robust quantification of the oxygen extraction fraction (OEF) from a combined QSM and quantitative BOLD analysis of gradient echo data and to compare the ANN to a traditional quasi-Newton (QN) method for numerical optimization. METHODS Random combinations of OEF, deoxygenated blood volume ( ν ), R2 , and nonblood magnetic susceptibility ( χ nb ) with each parameter following a Gaussian distribution that represented physiological gray matter and white matter values were used to simulate quantitative BOLD signals and QSM values. An ANN was trained with the simulated data with added Gaussian noise. The ANN was applied to multigradient echo brain data of 7 healthy subjects, and the reconstructed parameters and maps were compared to QN results using Student t test and Bland-Altman analysis. RESULTS Intersubject means and SDs of gray matter were OEF = 43.5 ± 0.8 %, R 2 = 13.5 ± 0.3 Hz, ν = 3.4 ± 0.1 %, χ nb = - 25 ± 5 ppb for ANN; and OEF = 43.8 ± 5.2 %, R 2 = 12.2 ± 0.8 Hz, ν = 4.2 ± 0.6 %, χ nb = - 39 ± 7 ppb for QN, with a significant difference ( P < 0.05 ) for R 2 , ν , and χ nb . For white matter, they were OEF = 47.5 ± 1.1 %, R 2 = 17.1 ± 0.4 Hz, ν = 2.5 ± 0.2 %, χ nb = - 38 ± 5 ppb for ANN; and OEF = 42.3 ± 5.6 %, R 2 = 16.7 ± 0.7 Hz, ν = 2.9 ± 0.3 %, χ nb = - 45 ± 9 ppb for QN, with a significant difference ( P < 0.05 ) for OEF and ν . ANN revealed more gray-white matter contrast but less intersubject variation in OEF than QN. In contrast to QN, the ANN reconstruction did not need an additional sequence for parameter initialization and took approximately 1 s rather than roughly 1 h. CONCLUSION ANNs allow faster and, with regard to initialization, more robust reconstruction of OEF maps with lower intersubject variation than QN approaches.
Collapse
Affiliation(s)
- Simon Hubertus
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Thomas
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Tongji Hospital, Wuhan, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Lothar Rudi Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Hubertus S, Thomas S, Cho J, Zhang S, Wang Y, Schad LR. Comparison of gradient echo and gradient echo sampling of spin echo sequence for the quantification of the oxygen extraction fraction from a combined quantitative susceptibility mapping and quantitative BOLD (QSM+qBOLD) approach. Magn Reson Med 2019; 82:1491-1503. [DOI: 10.1002/mrm.27804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Hubertus
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Sebastian Thomas
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Junghun Cho
- Department of Biomedical Engineering Cornell University Ithaca New York
| | - Shun Zhang
- Department of Radiology Weill Cornell Medical College New York New York
- Department of Radiology Tongji Hospital Wuhan China
| | - Yi Wang
- Department of Biomedical Engineering Cornell University Ithaca New York
- Department of Radiology Weill Cornell Medical College New York New York
| | - Lothar Rudi Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
9
|
Cho J, Kee Y, Spincemaille P, Nguyen TD, Zhang J, Gupta A, Zhang S, Wang Y. Cerebral metabolic rate of oxygen (CMRO 2 ) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn Reson Med 2018. [PMID: 29516537 DOI: 10.1002/mrm.27135] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To map the cerebral metabolic rate of oxygen (CMRO2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. THEORY AND METHODS 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. RESULTS The average CMRO2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. CONCLUSION Quantitative CMRO2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Youngwook Kee
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Radiology, Tongji Hospital, Wuhan, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Yablonskiy DA, Sukstanskii AL. Effects of biological tissue structural anisotropy and anisotropy of magnetic susceptibility on the gradient echo MRI signal phase: theoretical background. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3655. [PMID: 27862452 PMCID: PMC6375105 DOI: 10.1002/nbm.3655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 07/18/2016] [Accepted: 09/09/2016] [Indexed: 05/11/2023]
Abstract
Quantitative susceptibility mapping is a potentially powerful technique for mapping tissue magnetic susceptibility from gradient recalled echo (GRE) MRI signal phase. In this review, we present up-to-date theoretical developments in analyzing the relationships between GRE signal phase and the underlying tissue microstructure and magnetic susceptibility at the cellular level. Two important phenomena contributing to the GRE signal phase are at the focus of this review - tissue structural anisotropy (e.g. cylindrical axonal bundles in white matter) and magnetic susceptibility anisotropy. One of the most intriguing and challenging problems in this field is calculating the so-called Lorentzian contribution to the phase shift induced by the local environment - magnetized tissue structures that have dimensions smaller than the imaging voxel (e.g. cells, cellular components, blood capillaries). In this review, we briefly discuss a "standard" approach to this problem, based on introduction of an imaginary Lorentzian cavity, as well as a more recent method - the generalized Lorentzian tensor approach (GLTA) - that is based on a statistical approach and a direct solution of the magnetostatic Maxwell equations. The latter adequately accounts for both types of anisotropy: the anisotropy of magnetic susceptibility and the structural tissue anisotropy. In the GLTA the frequency shift due to the local environment is characterized by the Lorentzian tensor L^, which has a substantially different structure than the susceptibility tensor χ^. While the components of χ^ are compartmental susceptibilities "weighted" by their volume fractions, the components of L^ are weighted by specific numerical factors depending on tissue geometrical microsymmetry. In multi-compartment structures, the components of the Lorentzian tensor also depend on the compartmental relaxation properties, hence the MR pulse sequence settings. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dmitriy A. Yablonskiy
- Correspondence to: D.A. Yablonskiy, Mallinckrodt Institute of Radiology, St Louis, MO, USA.
| | | |
Collapse
|
11
|
Zhang J, Cho J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn Reson Med 2017; 79:172-179. [PMID: 28295523 DOI: 10.1002/mrm.26657] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The objective of this study was to demonstrate the feasibility of a cerebral metabolic rate of oxygen (CMRO2 ) mapping method based on its minimum local variance (MLV) without vascular challenge using quantitative susceptibility mapping (QSM) and cerebral blood flow (CBF). METHODS Three-dimensional multi-echo gradient echo imaging and arterial spin labeling were performed in 11 healthy subjects to calculate QSM and CBF. Minimum local variance was used to compute whole-brain CMRO2 map from QSM and CBF. The MLV method was compared with a reference method using the caffeine challenge. Their agreement within the cortical gray matter (CGM) was assessed on CMRO2 and oxygen extraction fraction (OEF) maps at both baseline and challenge states. RESULTS Mean CMRO2 (in µmol/100 g/min) obtained in CGM using the caffeine challenge and MLV were 142 ± 16.5 and 139 ± 14.8 µmol/100 g/min, respectively; the corresponding baseline OEF were 33.0 ± 4.0% and 31.8 ± 3.2%, respectively. The MLV and caffeine challenge methods showed no statistically significant differences across subjects with small ( < 4%) biases in CMRO2 and OEF values. CONCLUSIONS Minimum local variance-based CMRO2 mapping without vascular challenge using QSM and arterial spin labeling is feasible in healthy subjects. Magn Reson Med 79:172-179, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Dong Zhou
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
12
|
Abdel Fattah AR, Meleca E, Mishriki S, Lelic A, Geng F, Sahu RP, Ghosh S, Puri IK. In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomater Sci Eng 2016; 2:2133-2138. [DOI: 10.1021/acsbiomaterials.6b00614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abdel Rahman Abdel Fattah
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Elvira Meleca
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Sarah Mishriki
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Alina Lelic
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Fei Geng
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Rakesh P. Sahu
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Suvojit Ghosh
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| | - Ishwar K. Puri
- Department
of Mechanical Engineering, §School of Biomedical Engineering, ⊥McMaster Immunology
Research Center, and ∥Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|
13
|
Leutritz T, Hilfert L, Busse U, Smalla K, Speck O, Zhong K. Contribution of iron and protein contents from rat brain subcellular fractions to MR phase imaging. Magn Reson Med 2016; 77:2028-2039. [DOI: 10.1002/mrm.26288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022]
Affiliation(s)
- T. Leutritz
- Dept. Biomedical Magnetic ResonanceOtto‐von‐Guericke UniversityMagdeburg Germany
| | - L. Hilfert
- Institute for ChemistryOtto‐von‐Guericke UniversityMagdeburg Germany
| | - U. Busse
- Institute of Apparatus and Environmental EngineeringOtto‐von‐Guericke UniversityMagdeburg Germany
| | - K.‐H. Smalla
- Center for Behavioral Brain Sciences Magdeburg
- Leibniz Institute for NeurobiologyMagdeburg Germany
| | - O. Speck
- Dept. Biomedical Magnetic ResonanceOtto‐von‐Guericke UniversityMagdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg
- Leibniz Institute for NeurobiologyMagdeburg Germany
- German Center for Neurodegenerative Disease (DZNE)Site Magdeburg Germany
| | - K. Zhong
- Dept. Biomedical Magnetic ResonanceOtto‐von‐Guericke UniversityMagdeburg Germany
- High Magnetic Field Lab, Chinese Academy of SciencesHefei China
| |
Collapse
|
14
|
Abdel Fattah AR, Ghosh S, Puri IK. High gradient magnetic field microstructures for magnetophoretic cell separation. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:194-9. [PMID: 27294532 DOI: 10.1016/j.jchromb.2016.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 11/18/2022]
Abstract
Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them. We describe the effect of these ferromagnetic microstructure geometries have on the blood separation efficacy by numerically simulating the influence of microstructure height and pitch on the HGMF characteristics and resulting RBC separation. Visualizations of RBC trajectories provide insight into how arrays can be optimized to best separate these cells from a host fluid. Periodic microstructures are shown to moderate the applied field due to magnetic interference between the adjacent teeth of an array. Since continuous microstructures do not similarly weaken the resultant HGMF, they facilitate significantly higher RBC separation. Nevertheless, periodic arrays are more appropriate for relatively deep microchannels since, unlike continuous microstructures, their separation effectiveness is independent of depth. The results are relevant to the design of microfluidic devices that leverage HGMFs to fractionate blood by separating RBCs and WBCs.
Collapse
Affiliation(s)
| | - Suvojit Ghosh
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada
| | - Ishwar K Puri
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Zhang J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping with hyperventilation challenge using quantitative susceptibility mapping (QSM). Magn Reson Med 2016; 77:1762-1773. [DOI: 10.1002/mrm.26253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/06/2016] [Accepted: 03/31/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Dong Zhou
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Thanh D. Nguyen
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Pascal Spincemaille
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Ajay Gupta
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| | - Yi Wang
- Department of Biomedical EngineeringCornell University301 Weill HallIthaca New York, USA
- Department of RadiologyWeill Cornell Medical College515 East 71st St, Suite 104New York, USA
| |
Collapse
|
16
|
Zhang J, Liu T, Gupta A, Spincemaille P, Nguyen TD, Wang Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 ) using quantitative susceptibility mapping (QSM). Magn Reson Med 2015; 74:945-52. [PMID: 25263499 PMCID: PMC4375095 DOI: 10.1002/mrm.25463] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE To quantitatively map cerebral metabolic rate of oxygen ( CMRO2) and oxygen extraction fraction ( OEF) in human brains using quantitative susceptibility mapping (QSM) and arterial spin labeling-measured cerebral blood flow (CBF) before and after caffeine vasoconstriction. METHODS Using the multiecho, three-dimensional gradient echo sequence and an oral bolus of 200 mg caffeine, whole brain CMRO2 and OEF were mapped at 3-mm isotropic resolution on 13 healthy subjects. The QSM-based CMRO2 was compared with an R2*-based CMRO2 to analyze the regional consistency within cortical gray matter (CGM) with the scaling in the R2* method set to provide same total CMRO2 as the QSM method for each subject. RESULTS Compared to precaffeine, susceptibility increased (5.1 ± 1.1 ppb; P < 0.01) and CBF decreased (-23.6 ± 6.7 ml/100 g/min; P < 0.01) at 25-min postcaffeine in CGM. This corresponded to a CMRO2 of 153.0 ± 26.4 μmol/100 g/min with an OEF of 33.9 ± 9.6% and 54.5 ± 13.2% (P < 0.01) pre- and postcaffeine, respectively, at CGM, and a CMRO2 of 58.0 ± 26.6 μmol/100 g/min at white matter. CMRO2 from both QSM- and R2*-based methods showed good regional consistency (P > 0.05), but quantitation of R2*-based CMRO2 required an additional scaling factor. CONCLUSION QSM can be used with perfusion measurements pre- and postcaffeine vascoconstriction to map CMRO2 and OEF.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Tian Liu
- Medimagemetric, LLC, New York, NY, NY, United States Address: 455 Main Street, New York, NY, 10044
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States Address: 301 Weill Hall, Cornell University, Ithaca, NY14853
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States Address: 515 East 71 St, Suite 104, New York, NY, 10021
| |
Collapse
|
17
|
Feng Y, Taraban MB, Yu YB. Linear dependence of the water proton transverse relaxation rate on the shear modulus of hydrogels. Chem Commun (Camb) 2015; 50:12120-2. [PMID: 25171207 DOI: 10.1039/c4cc04717f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is found that hydrogelation of peptides enhances the transverse relaxation rate R2 of water protons but has no effect on the longitudinal relaxation rate R1 and the diffusion coefficient D. The magnitude of water proton R2 enhancement increases linearly with the shear modulus G of hydrogels.
Collapse
Affiliation(s)
- Y Feng
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
18
|
Feng Y, Taraban MB, Yu YB. Water proton NMR—a sensitive probe for solute association. Chem Commun (Camb) 2015; 51:6804-7. [DOI: 10.1039/c5cc00741k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transverse relaxation rate of water protons, R2(H2O), can quantify solute association, such as protein aggregation and micelle assembly.
Collapse
Affiliation(s)
- Yue Feng
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Marc B. Taraban
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| | - Yihua Bruce Yu
- Department of Pharmaceutical Sciences
- University of Maryland
- Baltimore
- USA
| |
Collapse
|
19
|
Li J, Noll BC, Oliver AG, Schulz CE, Scheidt WR. Correlated ligand dynamics in oxyiron picket fence porphyrins: structural and Mössbauer investigations. J Am Chem Soc 2013; 135:15627-41. [PMID: 24025123 PMCID: PMC3827975 DOI: 10.1021/ja408431z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disorder in the position of the dioxygen ligand is a well-known problem in dioxygen complexes and, in particular, those of picket fence porphyrin species. The dynamics of Fe-O2 rotation and tert-butyl motion in three different picket fence porphyrin derivatives has been studied by a combination of multitemperature X-ray structural studies and Mössbauer spectroscopy. Structural studies show that the motions of the dioxygen ligand also require motions of the protecting pickets of the ligand binding pocket. The two motions appear to be correlated, and the temperature-dependent change in the O2 occupancies cannot be governed by a simple Boltzmann distribution. The three [Fe(TpivPP)(RIm)(O2)] derivatives studied have RIm = 1-methyl-, 1-ethyl-, or 2-methylimidazole. In all three species there is a preferred orientation of the Fe-O2 moiety with respect to the trans imidazole ligand and the population of this orientation increases with decreasing temperature. In the 1-MeIm and 1-EtIm species the Fe-O2 unit is approximately perpendicular to the imidazole plane, whereas in the 2-MeHIm species the Fe-O2 unit is approximately parallel. This reflects the low energy required for rotation of the Fe-O2 unit and the small energy differences in populating the possible pocket quadrants. All dioxygen complexes have a crystallographically required 2-fold axis of symmetry that limits the accuracy of the determined Fe-O2 geometry. However, the 80 K structure of the 2-MeHIm derivative allowed for resolution of the two bonded oxygen atom positions and provided the best geometric description for the Fe-O2 unit. The values determined are Fe-O = 1.811(5) Å, Fe-O-O = 118.2(9)°, O-O = 1.281(12) Å, and an off-axis tilt of 6.2°. Demonstration of the off-axis tilt is a first. We present detailed temperature-dependent simulations of the Mössbauer spectra that model the changing value of the quadrupole splitting and line widths. Residuals to fits are poorer at higher temperature. We believe that this is consistent with the idea that population of the two conformers is related to the concomitant motions of both Fe-O2 rotations and motions of the protecting tert-butyl pickets.
Collapse
Affiliation(s)
- Jianfeng Li
- To whom correspondence should be addressed. JL: , CES: , WRS:
| | | | | | | | | |
Collapse
|
20
|
Moore LR, Nehl F, Dorn J, Chalmers JJ, Zborowski M. Open Gradient Magnetic Red Blood Cell Sorter Evaluation on Model Cell Mixtures. IEEE TRANSACTIONS ON MAGNETICS 2013; 49:309-315. [PMID: 24910468 PMCID: PMC4047673 DOI: 10.1109/tmag.2012.2225098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The emerging applications of biological cell separation to rare circulating tumor cell (CTC) detection and separation from blood rely on efficient methods of red blood cell (RBC) debulking. The two most widely used methods of centrifugation and RBC lysis have been associated with the concomitant significant losses of the cells of interest (such as progenitor cells or circulating tumor cells). Moreover, RBC centrifugation and lysis are not well adapted to the emerging diagnostic applications, relying on microfluidics and micro-scale total analytical systems. Therefore, magnetic RBC separation appears a logical alternative considering the high iron content of the RBC (normal mean 105 fg) as compared to the white blood cell iron content (normal mean 1.6 fg). The typical magnetic forces acting on a RBC are small, however, as compared to typical forces associated with centrifugation or the forces acting on synthetic magnetic nanoparticles used in current magnetic cell separations. This requires a significant effort in designing and fabricating a practical magnetic RBC separator. Applying advanced designs to the low cost, high power permanent magnets currently available, and building on the accumulated knowledge of the immunomagnetic cell separation methods and devices, an open gradient magnetic red blood cell (RBC) sorter was designed, fabricated and tested on label-free cell mixtures, with potential applications to RBC debulking from whole blood samples intended for diagnostic tests.
Collapse
Affiliation(s)
- Lee R Moore
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Franzisca Nehl
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA ; Technische Universität Dresden, Fakultät Maschinenwesen/Bioverfahrenstechnik, Dresden, Germany
| | - Jenny Dorn
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA ; Technische Universität Dresden, Fakultät Maschinenwesen/Bioverfahrenstechnik, Dresden, Germany
| | - Jeffrey J Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Maciej Zborowski
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
21
|
Burke BA, Diamond SG. Measuring cerebral hemodynamics with a modified magnetoencephalography system. Physiol Meas 2012; 33:2079-98. [PMID: 23171539 DOI: 10.1088/0967-3334/33/12/2079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Magnetoencephalography (MEG) systems are designed to noninvasively measure magnetic fields produced by neural electrical currents. This project examines the possibility of measuring hemodynamics with an MEG system that has been modified with dc electromagnets to measure magnetic susceptibility while maintaining the capability of measuring neural dynamics. A forward model is presented that simulates the interaction of an applied magnetic field with changes in magnetic susceptibility in the brain associated with hemodynamics. Model predictions are compared with an experiment where deionized water was pumped into an inverted flask under the MEG sensor array of superconducting quantum interference device (SQUID) gradiometers (R(2) = 0.98, p < 0.001). The forward model was used to simulate the SQUID readouts from hemodynamics in the scalp and brain induced by performing the Valsalva maneuver. Experimental human subject recordings (N = 10) were made from the prefrontal region during Valsalva using concurrent measurement with the modified MEG system and near-infrared spectroscopy (NIRS). The NIRS deoxyhemoglobin signal was found to correlate significantly with the SQUID readouts (R(2) = 0.84, p < 0.01). SQUID noise was found to increase with the applied field, which will need to be mitigated in future work. These results demonstrate the potential and technical challenges of measuring cerebral hemodynamics with a modified MEG system.
Collapse
Affiliation(s)
- Broc A Burke
- Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| | | |
Collapse
|
22
|
Leutritz T, Hilfert L, Smalla KH, Speck O, Zhong K. Accurate quantification of water-macromolecule exchange induced frequency shift: Effects of reference substance. Magn Reson Med 2012; 69:263-8. [DOI: 10.1002/mrm.24223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 11/06/2022]
|
23
|
Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med 2011; 68:863-7. [PMID: 22162033 DOI: 10.1002/mrm.23282] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/15/2011] [Accepted: 10/12/2011] [Indexed: 01/06/2023]
Abstract
Quantification of blood oxygen saturation on the basis of a measurement of its magnetic susceptibility demands knowledge of the difference in volume susceptibility between fully oxygenated and fully deoxygenated blood (Δχ(do) ). However, two very different values of Δχ(do) are currently in use. In this work we measured Δχ(do) as well as the susceptibility of oxygenated blood relative to water, Δχ(oxy) , by MR susceptometry in samples of freshly drawn human blood oxygenated to various levels, from 6 to 98% as determined by blood gas analysis. Regression analysis yielded 0.273 ± 0.006 and -0.008 ± 0.003 ppm (cgs) respectively, for Δχ(do) and Δχ(oxy) , in excellent agreement with previous work by Spees et al. (Magn Reson Med 2001;45:533-542).
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
24
|
Low-lying electronic states of the ferrous high-spin (S=2) heme in deoxy-Mb and deoxy-Hb studied by highly-sensitive multi-frequency EPR. J Inorg Biochem 2011; 105:1596-602. [DOI: 10.1016/j.jinorgbio.2011.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022]
|
25
|
Abstract
Recently reported contrast in phase images of human and animal brains obtained with gradient-recalled echo MRI holds great promise for the in vivo study of biological tissue structure with substantially improved resolution. Herein we investigate the origins of this contrast and demonstrate that it depends on the tissue "magnetic architecture" at the subcellular and cellular levels. This architecture is mostly determined by the structural arrangements of proteins, lipids, non-heme tissue iron, deoxyhemoglobin, and their magnetic susceptibilities. Such magnetic environment affects/shifts magnetic resonance (MR) frequencies of the water molecules moving/diffusing in the tissue. A theoretical framework allowing quantitative evaluation of the corresponding frequency shifts is developed based on the introduced concept of a generalized Lorentzian approximation. It takes into account both tissue architecture and its orientation with respect to the external magnetic field. Theoretical results quantitatively explain frequency contrast between GM, WM, and CSF previously reported in motor cortex area, including the absence of the contrast between WM and CSF. Comparison of theory and experiment also suggests that in a normal human brain, proteins, lipids, and non-heme iron provide comparable contributions to tissue phase contrast; however, the sign of iron and lipid contributions is opposite to the sign of contribution from proteins. These effects of cellular composition and architecture are important for quantification of tissue microstructure based on MRI phase measurements. Also theory predicts the dependence of the signal phase on the orientation of WM fibers, holding promise as additional information for fiber tracking applications.
Collapse
|
26
|
Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta Mol Basis Dis 2008; 1792:93-9. [PMID: 19056489 DOI: 10.1016/j.bbadis.2008.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/24/2008] [Accepted: 11/03/2008] [Indexed: 02/02/2023]
Abstract
During intra-erythrocytic maturation, malaria parasites catabolize up to 80% of cellular haemoglobin. Haem is liberated inside the parasite and converted to haemozoin, preventing haem iron from participating in cell-damaging reactions. Several experimental techniques exploit the relatively large paramagnetic susceptibility of malaria-infected cells as a means of sorting cells or investigating haemoglobin degradation, but the source of the dramatic increase in cellular magnetic susceptibility during parasite growth has not been unequivocally determined. Plasmodium falciparum cultures were enriched using high-gradient magnetic fractionation columns and the magnetic susceptibility of cell contents was directly measured. The forms of haem iron in the erythrocytes were quantified spectroscopically. In the 3D7 laboratory strain, the parasites converted approximately 60% of host cell haemoglobin to haemozoin and this product was the primary source of the increase in cell magnetic susceptibility. Haemozoin iron was found to have a magnetic susceptibility of (11.0+/-0.9)x10(-3) mL mol(-1). The calculated volumetric magnetic susceptibility (SI units) of the magnetically enriched cells was (1.88+/-0.60)x10(-6) relative to water while that of uninfected cells was not significantly different from water. Magnetic enrichment of parasitised cells can therefore be considered dependent primarily on the magnetic susceptibility of the parasitised cells.
Collapse
|
27
|
Chen H, Ikeda-Saito M, Shaik S. Nature of the Fe-O2 bonding in oxy-myoglobin: effect of the protein. J Am Chem Soc 2008; 130:14778-90. [PMID: 18847206 DOI: 10.1021/ja805434m] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nature of the Fe-O2 bonding in oxy-myoglobin was probed by theoretical calculations: (a) QM/MM (hybrid quantum mechanical/molecular mechanical) calculations using DFT/MM and CASSCF/MM methods and (b) gas-phase calculations using DFT (density functional theory) and CASSCF (complete active space self-consistent field) methods. Within the protein, the O2 is hydrogen bonded by His64 and the complex feels the bulk polarity of the protein. Removal of the protein causes major changes in the complex. Thus, while CASSCF/MM and DFT/MM are similar in terms of state constitution, degree of O2 charge, and nature of the lowest triplet state, the gas-phase CASSCF(g) species is very different. Valence bond (VB) analysis of the CASSCF/MM wave function unequivocally supports the Weiss bonding mechanism. This bonding arises by electron transfer from heme-Fe(II) to O2 and the so formed species coupled then to a singlet state Fe(III)-O2(-) that possesses a dative sigma(Fe-O) bond and a weakly coupled pi(Fe-O2) bond pair. The bonding mechanism in the gas phase is similar, but now the sigma(Fe-O) bond involves higher back-donation from O2(-) to Fe(III), while the constituents of pi(Fe-O2) bond pair have greater delocalization tails. The protein thus strengthens the Fe(III)-O2(-) character of the complex and thereby affects its bonding features and the oxygen binding affinity of Mb. The VB model is generalized, showing how the protein or the axial ligand of the oxyheme complex can determine the nature of its bonding in terms of the blend of the three bonding models: Weiss, Pauling, and McClure-Goddard.
Collapse
Affiliation(s)
- Hui Chen
- Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
28
|
Ribas-Ariño J, Novoa JJ. The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. Chem Commun (Camb) 2007:3160-2. [PMID: 17653374 DOI: 10.1039/b704871h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By performing CASPT2 calculations, the lowest energy pathway for oxygen addition to an isolated heme center of a heme-protein is evaluated and found to be reversible (the oxyheme compound is just 14.9 kcal mol(-1) more stable than the deoxyheme + O(2) reactants, and the energy barriers to dissociation are even smaller).
Collapse
Affiliation(s)
- Jordi Ribas-Ariño
- Departament de Química Física, Facultat de Química and CERQT, Parc Científic, Universitat de Barcelona, Av. Diagonal 647, Barcelona 08028, Spain
| | | |
Collapse
|
29
|
Zborowski M. Magnetic formulary. LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007. [DOI: 10.1016/s0075-7535(06)32002-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Magnetic susceptibility. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0075-7535(06)32001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
31
|
Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg B, Zimmerman P, Zborowski M. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J 2006; 20:747-9. [PMID: 16461330 PMCID: PMC3728832 DOI: 10.1096/fj.05-5122fje] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of beta-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 x 10(-6) mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Deltachi = 1.80 x 10(-6), significantly higher than that of the oxygenated erythrocyte (-0.18x10(-6)) but lower than that of the fully deoxygenated erythrocyte (3.33x10(-6)). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination.
Collapse
Affiliation(s)
- Lee R. Moore
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Hisashi Fujioka
- Institute of Pathology Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - P. Stephen Williams
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jeffrey J. Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Brian Grimberg
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Peter Zimmerman
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Maciej Zborowski
- Department of Biomedical Engineering Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
32
|
Caprani A, Richert A, Guerbaoui S, Guglielmi JP, Flaud P. Preliminary Study of Pulsed-Electromagnetic Fields Effects on Endothelial Cells Line Secretions: Evidence of a Potential Increased Thrombotic Risk. Electromagn Biol Med 2004. [DOI: 10.1081/jbc-120039592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Caprani A, Richert A, Flaud P. Experimental evidence of a potentially increased thrombo-embolic disease risk by domestic electromagnetic field exposure. Bioelectromagnetics 2004; 25:313-5. [PMID: 15114641 DOI: 10.1002/bem.20022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have used the EaHy926 endothelial cell line, able to secrete both pro and anti-aggregant platelet agents, as a model for thrombo-embolic diseases. We experimentally established, by comparing these two secretions with or without a Faraday cage, that the environmental electromagnetic field significantly increases the thrombo-embolic risks in this endothelial cell line.
Collapse
Affiliation(s)
- A Caprani
- LBHP, CNRS UMR 7057, Université Paris 7, Jussieu, Paris, France.
| | | | | |
Collapse
|
34
|
Abstract
The existence of unpaired electrons in the four heme groups of deoxy and methemoglobin (metHb) gives these species paramagnetic properties as contrasted to the diamagnetic character of oxyhemoglobin. Based on the measured magnetic moments of hemoglobin and its compounds, and on the relatively high hemoglobin concentration of human erythrocytes, we hypothesized that differential migration of these cells was possible if exposed to a high magnetic field. With the development of a new technology, cell tracking velocimetry, we were able to measure the migration velocity of deoxygenated and metHb-containing erythrocytes, exposed to a mean magnetic field of 1.40 T and a mean gradient of 0.131 T/mm, in a process we call cell magnetophoresis. Our results show a similar magnetophoretic mobility of 3.86 x 10(-6) mm(3) s/kg for erythrocytes with 100% deoxygenated hemoglobin and 3.66 x 10(-6) mm(3) s/kg for erythrocytes containing 100% metHb. Oxygenated erythrocytes had a magnetophoretic mobility of from -0.2 x 10(-6) mm(3) s/kg to +0.30 x 10(-6) mm(3) s/kg, indicating a significant diamagnetic component relative to the suspension medium, in agreement with previous studies on the hemoglobin magnetic susceptibility. Magnetophoresis may open up an approach to characterize and separate cells for biochemical analysis based on intrinsic and extrinsic magnetic properties of biological macromolecules.
Collapse
Affiliation(s)
- Maciej Zborowski
- Department of Biomedical Engineering/ND20, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44915, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Winoto-Morbach S, Tchikov V, Müller-Ruchholtz W. Magnetophoresis: II. Quantification of iron and hemoglobin content at the single erythrocyte level. J Clin Lab Anal 1995; 9:42-6. [PMID: 7722771 DOI: 10.1002/jcla.1860090108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The iron and hemoglobin content of individual erythrocytes was determined using a method based on parallel velocity measurements during magnetophoresis and gravitational sedimentation of individual erythrocytes in suspension. In previous publications we have suggested employing cell magnetophoresis, a biophysical phenomenon characterized by cell movement in a fluid under magnetic field influence, for cytometry. The paramagnetic ferric iron in methemoglobin is used as a magnetic label. The iron content is estimated from the magnetophoresis velocity, and hemoglobin content from the gravitational sedimentation velocity of erythrocytes. Blood samples are also analyzed in a Coulter counter to determine their mean corpuscular hemoglobin. The time course of the reaction of methemoglobin reduction is quantified at the single erythrocyte level. The methemoglobin content in individual erythrocytes is determined following the oxidation reaction. Erythrocytes from patients with normo-, hypo-, or hyperchromic anemia exhibit magnetophoresis and gravitational sedimentation velocities that correlate closely with mean corpuscular hemoglobin. We propose the utilization of magnetophoretic cytometry for detailed diagnostic studies at the single erythrocyte level. Furthermore, the magnetophoresis velocity to gravitational sedimentation velocity ratio is proposed as a standard value for comparative study of magnetically labeled cells in future investigations, as it was found to be constant and independent of hemoglobin content.
Collapse
|
36
|
Lee HC, Peisach J, Dou Y, Ikeda-Saito M. Electron-nuclear coupling to the proximal histidine in oxy cobalt-substituted distal histidine mutants of human myoglobin. Biochemistry 1994; 33:7609-18. [PMID: 8011627 DOI: 10.1021/bi00190a014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electron spin echo envelope modulation (ESEEM) spectroscopy was used to investigate electron-nuclear coupling to the N epsilon of the proximal histidine (F8, His93) imidazole in oxyCo(II)-substituted distal histidine (E7, His64) mutants (His-->Leu, His-->Val, His-->Gly, His-->Gln) and recombinant wild-type human myoglobins (Mbs). Nuclear hyperfine and nuclear quadrupole coupling constants decrease in the order: H64L > H64V > or = H64G approximately H64Q > wild-type. The differences in couplings found for the four mutant proteins are correlated with the differences in polarity of the E7 side chain. On the basis of the relative orientation of the nuclear quadrupole and g tensors, obtained by computer simulation of ESEEM spectra, the Co-O-O bond angle of H64G and H64Q appears to be similar to that of oxyCo sperm whale Mb (and possibly wild-type human Mb) at room temperature [Hori et al. (1982) J. Biol. Chem. 257, 3636], while that in H64V and H64L is more obtuse. ESEEM measurements in D2O demonstrate the presence of a hydrogen bond between the distal histidine and bound O2 in the wild-type protein, as was found in oxyCo sperm whale and horse Mbs [Lee et al. (1992) Biochemistry 31, 7274]. This hydrogen bond leads to a reduction in the N epsilon coupling in the wild-type protein as compared to that in the E7 mutants. No hyperfine-coupled deuterons were found in any of the mutants, and therefore, the proposed hydrogen bond between bound O2 and the distal glutamine in H64Q [Ikeda-Saito et al. (1991) J. Biol. Chem. 266, 23641] could not be substantiated.
Collapse
Affiliation(s)
- H C Lee
- Department of Molecular Pharmacology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | | | | | | |
Collapse
|
37
|
|
38
|
EPR characterization of the stereochemistry of the distal heme pocket of the engineered human myoglobin mutants. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54332-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Day EP, Kent TA, Lindahl PA, Münck E, Orme-Johnson WH, Roder H, Roy A. SQUID measurement of metalloprotein magnetization. New methods applied to the nitrogenase proteins. Biophys J 1987; 52:837-53. [PMID: 3480761 PMCID: PMC1330187 DOI: 10.1016/s0006-3495(87)83277-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New techniques have been developed to exploit the sensitivity of a commercial SQUID susceptometer in the study of the magnetization of metalloproteins. Previous studies have ignored both the slow relaxation (hours) of spin I = 1/2 nuclei and residual ferromagnetic impurities in sample holders. These potential sources of noise were at or below the sensitivity of previous instruments. With these noise sources under control, one can now decrease the protein concentration by a factor of ten. In addition careful characterization of the frozen magnetization sample, including the use of a multi-instrument holder for combined study of the magnetization sample with Mössbauer spectroscopy, is required for reliable interpretation of the data in the face of paramagnetic impurities common to metalloprotein samples. Many previous magnetic studies of metalloproteins have been carried out in the Curie region. Saturation magnetization studies down to 1.8 K and up to 5 T can determine zero-field splitting parameters in addition to the spin and exchange coupling parameters measured in previous studies at lower fields and higher temperatures. Applications of these techniques to the study of the nitrogenase proteins of Azotobacter vinelandii are presented as examples.
Collapse
Affiliation(s)
- E P Day
- Gray Freshwater Biological Institute, University of Minnesota, Navarre 55392
| | | | | | | | | | | | | |
Collapse
|
40
|
Cordone L, Cupane A, Leone M, Vitrano E. Optical absorption spectra of deoxy- and oxyhemoglobin in the temperature range 300-20 K. Relation with protein dynamics. Biophys Chem 1986; 24:259-75. [PMID: 3768470 DOI: 10.1016/0301-4622(86)85031-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the optical absorption spectra of human deoxy- and oxyhemoglobin in the temperature range 300-20 K and in the wavelength range 350-1350 nm. By lowering the temperature, a narrowing and a shift of all bands were observed together with a sizeable increase of the integrated intensities of the charge-transfer bands of deoxyhemoglobin. At all temperatures the spectra are in full agreement with the band assignment previously suggested in the literature and no new relevant bands have been detected for both deoxy- and oxyhemoglobin. Analysis of the first and second moment of the bands, within the framework of the harmonic Franck-Condon approximation, gave information on the dynamic properties of the heme in the heme pocket.
Collapse
|
41
|
Neya S, Funasaki N. Proton nuclear magnetic resonance investigation of the spin-state equilibrium of the alpha and beta subunits in intact azidomethemoglobin. Biochemistry 1986; 25:1221-6. [PMID: 3964673 DOI: 10.1021/bi00354a005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hyperfine-shifted proton NMR spectra of human azidomethemoglobin were examined at 300 MHz in the 2-60 degree C range. From analysis of the temperature-dependent heme methyl shifts, the thermal spin-state equilibria of the alpha and beta subunits were independently analyzed in the intact tetramer. The thermodynamic values of the spin equilibrium of the alpha and beta subunits were comparable, suggesting that the spin equilibrium properties of the constituent subunits are similar to each other. Examination of the azidomethemoglobins reconstituted with deutero- or mesohemin further shows that the alpha and beta subunit difference is still small in these hemoglobins probably due to the smallness of the steric and electronic difference of the heme 2,4-substituents of the examined porphyrins. The similarity of the spin equilibrium profiles of the subunits indicates that the strain imposed from the globin to the heme iron is of comparable magnitude for the alpha and beta subunits within the azidomethemoglobins.
Collapse
|
42
|
Reexamination of the evidence for paramagnetism in oxy- and carbonmonoxyhemoglobins. Proc Natl Acad Sci U S A 1985; 82:102-3. [PMID: 2982138 PMCID: PMC396979 DOI: 10.1073/pnas.82.1.102] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Experiments have been carried out in an attempt to confirm previous reports of paramagnetism in the oxy- and carbonmonoxy derivatives of human and carp hemoglobin. When care is taken to ensure complete saturation of the hemoglobins with ligand and the diamagnetic contributions of all of the buffers are carefully evaluated, these hemoglobin derivatives are found to have the same gram susceptibilities as exhibited by a set of metal free proteins, suggesting that they are fully diamagnetic.
Collapse
|