1
|
Qin J, Wang R, Liang W, Man Z, Li W, An Y, Chen H. Adipose-Derived Stem Cell Specific Affinity Peptide-Modified Adipose Decellularized Scaffolds for Promoting Adipogenesis. ACS Biomater Sci Eng 2025. [PMID: 39969077 DOI: 10.1021/acsbiomaterials.4c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Adipose-derived stem cells (ADSCs) are known to promote angiogenesis and adipogenesis. However, their limited ability to efficiently target and integrate into specific tissues poses a major challenge for ADSC-based therapies. In this study, we identified a seven-amino acid peptide sequence (P7) with high specificity for ADSCs using phage display technology. P7 was then covalently conjugated to decellularized adipose-derived matrix (DAM), creating an "ADSC homing device" designed to recruit ADSCs both in vitro and in vivo. The P7-conjugated DAM significantly enhanced ADSC adhesion and proliferation in vitro. After being implanted into rat subcutaneous tissue, immunofluorescence staining after 14 days revealed that P7-conjugated DAM recruited a greater number of ADSCs, promoting angiogenesis and adipogenesis in the surrounding tissue. Moreover, CD206 immunostaining at 14 days indicated that P7-conjugated DAM facilitated the polarization of macrophages to the M2 phenotype at the implantation site. These findings demonstrate that the P7 peptide has a high affinity for ADSCs, and its conjugation with DAM significantly improves ADSC recruitment in vivo. This approach holds great potential for a wide range of applications in material surface modification.
Collapse
Affiliation(s)
- Jiahang Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Ruoxi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Masuda R, Ohira N, Kitaguchi K, Yabe T. Novel role of homogalacturonan region of pectin in disrupting the interaction between fibronectin and integrin β1. Carbohydr Polym 2024; 336:122122. [PMID: 38670769 DOI: 10.1016/j.carbpol.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5β1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin β1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.
Collapse
Affiliation(s)
- Ryoya Masuda
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Natsuho Ohira
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Ornithopoulou E, Åstrand C, Gustafsson L, Crouzier T, Hedhammar M. Self-Assembly of RGD-Functionalized Recombinant Spider Silk Protein into Microspheres in Physiological Buffer and in the Presence of Hyaluronic Acid. ACS APPLIED BIO MATERIALS 2023; 6:3696-3705. [PMID: 37579070 PMCID: PMC10521021 DOI: 10.1021/acsabm.3c00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Biomaterials made of self-assembling protein building blocks are widely explored for biomedical applications, for example, as drug carriers, tissue engineering scaffolds, and functionalized coatings. It has previously been shown that a recombinant spider silk protein functionalized with a cell binding motif from fibronectin, FN-4RepCT (FN-silk), self-assembles into fibrillar structures at interfaces, i.e., membranes, fibers, or foams at liquid/air interfaces, and fibrillar coatings at liquid/solid interfaces. Recently, we observed that FN-silk also assembles into microspheres in the bulk of a physiological buffer (PBS) solution. Herein, we investigate the self-assembly process of FN-silk into microspheres in the bulk and how its progression is affected by the presence of hyaluronic acid (HA), both in solution and in a cross-linked HA hydrogel. Moreover, we characterize the size, morphology, mesostructure, and protein secondary structure of the FN-silk microspheres prepared in PBS and HA. Finally, we examine how the FN-silk microspheres can be used to mediate cell adhesion and spreading of human mesenchymal stem cells (hMSCs) during cell culture. These investigations contribute to our fundamental understanding of the self-assembly of silk protein into materials and demonstrate the use of silk microspheres as additives for cell culture applications.
Collapse
Affiliation(s)
- Eirini Ornithopoulou
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Carolina Åstrand
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Spiber
Technologies AB, Roslagstullsbacken
15, 114 21 Stockholm, Sweden
| | - Linnea Gustafsson
- Spiber
Technologies AB, Roslagstullsbacken
15, 114 21 Stockholm, Sweden
- Division
of Micro and Nanosystems, School
of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Thomas Crouzier
- Department
of Chemistry, School of Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - My Hedhammar
- Department
of Protein Science, School of Chemistry, Biotechnology and Health
(CBH), KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Ghribi N, Guay-Bégin AA, Bilem I, Chevallier P, Auger FA, Ruel J, Laroche G. Peptide grafting on intraosseous transcutaneous amputation prostheses to promote sealing with skin cells: Potential to limit infections. J Biomed Mater Res A 2023; 111:688-700. [PMID: 36680491 DOI: 10.1002/jbm.a.37505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
The long-term success of intraosseous transcutaneous amputation prostheses (ITAPs) mainly relies on dermal attachment of skin cells to the implant. Otherwise, bacteria can easily penetrate through the interface between the implant and the skin. Therefore, infection at this implant/skin interface remains a significant complication in orthopedic surgeries in which these prostheses are required. Two main strategies were investigated to prevent these potential infection problems which consist in either establishing a strong sealing at the skin/implant interface or on eradicating infections by killing bacteria. In this work, two adhesion peptides, either KRGDS or KYIGSR and one antimicrobial peptide, Magainin 2 (Mag 2), were covalently grafted via phosphonate anchor arms to the surface of the Ti6Al4V ELI (extra low interstitials) material, commonly used to manufacture ITAPs. X-ray photoelectron spectroscopy, contact angle, and confocal microscopy analyses enabled to validate the covalent and stable grafting of these three peptides. Dermal fibroblasts cultures on bare Ti6Al4V ELI surfaces and functionalized ones displayed a good cell adhesion and proliferation on all samples. However, cell spreading and viability appeared to be improved on grafted surfaces, especially for those conjugated with KRGDS and Mag 2. Moreover, the dermal sheet attachment, was significantly higher on surfaces functionalized with Mag 2 as compared to the other surfaces. Therefore, the surface functionalization with the antimicrobial peptide Mag 2 seems to be the best approach for the targeted application, as it could play a dual role, inducing a strong skin adhesion while limiting infections on Ti6Al4V ELI materials.
Collapse
Affiliation(s)
- Nawel Ghribi
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Andrée-Anne Guay-Bégin
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Ibrahim Bilem
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Pascale Chevallier
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - François A Auger
- Centre de Recherche du CHU de Québec-Université Laval, LOEX, Québec, Québec, Canada
| | - Jean Ruel
- Département de Génie mécanique, Université Laval, Québec, Québec, Canada
| | - Gaétan Laroche
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| |
Collapse
|
6
|
Trossmann VT, Scheibel T. Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding. Adv Healthc Mater 2023; 12:e2202660. [PMID: 36565209 PMCID: PMC11468868 DOI: 10.1002/adhm.202202660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Cytophilic (cell-adhesive) materials are very important for tissue engineering and regenerative medicine. However, for engineering hierarchically organized tissue structures comprising different cell types, cell-specific attachment and guidance are decisive. In this context, materials made of recombinant spider silk proteins are promising scaffolds, since they exhibit high biocompatibility, biodegradability, and the underlying proteins can be genetically functionalized. Here, previously established spider silk variants based on the engineered Araneus diadematus fibroin 4 (eADF4(C16)) are genetically modified with cell adhesive peptide sequences from extracellular matrix proteins, including IKVAV, YIGSR, QHREDGS, and KGD. Interestingly, eADF4(C16)-KGD as one of 18 tested variants is cell-selective for C2C12 mouse myoblasts, one out of 11 tested cell lines. Co-culturing with B50 rat neuronal cells confirms the cell-specificity of eADF4(C16)-KGD material surfaces for C2C12 mouse myoblast adhesion.
Collapse
Affiliation(s)
- Vanessa Tanja Trossmann
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
| | - Thomas Scheibel
- Chair of BiomaterialsEngineering FacultyUniversity of BayreuthProf.‐Rüdiger‐Bormann‐Straße 195447BayreuthGermany
- Bayreuth Center for Colloids and Interfaces (BZKG)Bavarian Polymer Institute (BPI)Bayreuth Center for Molecular Biosciences (BZMB)Bayreuth Center for Material Science (BayMAT)University of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
7
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
8
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
9
|
Sukocheva OA, Liu J, Neganova ME, Beeraka NM, Aleksandrova YR, Manogaran P, Grigorevskikh EM, Chubarev VN, Fan R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin Cancer Biol 2022; 86:358-375. [PMID: 35623562 DOI: 10.1016/j.semcancer.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation by microRNAs (miRs) demonstrated a promising therapeutic potential of these molecules to regulate genetic activity in different cancers, including colorectal cancers (CRCs). The RNA-based therapy does not change genetic codes in tumor cells but can silence oncogenes and/or reactivate inhibited tumor suppressor genes. In many cancers, specific miRs were shown to promote or stop tumor progression. Among confirmed and powerful epigenetic regulators of colon carcinogenesis and development of resistance are onco-miRs, which include let-7, miR-21, miR-22, miR-23a, miR-27a, miR-34, miR-92, miR-96, miR-125b, miR-135b, miR-182, miR-200c, miR-203, miR-221, miR-421, miR-451, and others. Moreover, various tumor-suppressor miRs (miR-15b-5b, miR-18a, miR-20b, miR-22, miR-96, miR-139-5p, miR-145, miR-149, miR-197, miR-199b, miR-203, miR-214, miR-218, miR-320, miR-375-3p, miR-409-3p, miR-450b-5p, miR-494, miR-577, miR-874, and others) were found silenced in drug-resistant CRCs. Re-expression of tumor suppressor miR is complicated by the chemical nature of miRs that are not long-lasting compounds and require protection from the enzymatic degradation. Several recent studies explored application of miRs using nanocarrier complexes. This study critically describes the most successfully tested nanoparticle complexes used for intracellular delivery of nuclear acids and miRs, including micelles, liposomes, inorganic and polymeric NPs, dendrimers, and aptamers. Nanocarriers shield incorporated miRs and improve the agent stability in circulation. Attachment of antibodies and/or specific peptide or ligands facilitates cell-targeted miR delivery. Addressing in vivo challenges, a broad spectrum of non-toxic materials has been tested and indicated reliable advantages of lipid-based (lipoplexes) and polymer-based liposomes. Recent cutting-edge developments indicated that lipid-based complexes with multiple cargo, including several miRs, are the most effective approach to eradicate drug-resistant tumors. Focusing on CRC-specific miRs, this review provides a guidance and insights towards the most promising direction to achieve dramatic reduction in tumor growth and metastasis using miR-nanocarrier complexes.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Queensland, Australia; Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Junqi Liu
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Narasimha M Beeraka
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia; Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, Karnataka, India
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Prasath Manogaran
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Ekaterina M Grigorevskikh
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Chubarev
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Ruitai Fan
- Cancer Center and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China.
| |
Collapse
|
10
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
11
|
An injectable self-assembling hydrogel based on RGD peptidomimetic β-sheets as multifunctional biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112633. [PMID: 35527136 DOI: 10.1016/j.msec.2021.112633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Ability of the cells to adhere to an extracellular material is central to successful tissue genesis. Arg-Gly-Asp (RGD) sequences found in extracellular matrix proteins are well known for cell adhesion, however, enzymatic degradation and lack of specificity have limited their widespread use. Besides, a multifunctional material with inherent antimicrobial ability would help in invigorating the practical tissue engineering applications. Here, we report novel modified RGD (MR) and RGD mimic [R(K)] peptides (MOH and MNH2) which were synthesized post-in-silico screening, based on their interactions with integrin protein αVβ3 using HEX 8.0 docking server. These mimics, containing hydrophobic Phe-Phe (FF) moiety which has been specifically introduced to initiate the self-assembling process of β-sheet structures, were characterized thoroughly using various physicochemical and spectroscopic techniques. Under physiological conditions, these mimetics displayed thixotropic behavior rendering them highly suitable as injectable hydrogels having an added advantage of site-specific targeting abilities. Electron microscopy further revealed the formation of nanofibers upon self-assembly of these peptides. Besides, enhanced cell adhesiveness by these peptides compared to the commercial Poly l-lysine coated surfaces as well as the inherent antimicrobial potential against both sensitive and antibiotic-resistant pathogens (Methicillin-resistant Staphylococcus aureus and multi-drug resistant Salmonella enteritidis) substantiated the applicability of these unique injectable hydrogels wherein the porous fibrous framework offered a favorable environment for drug entrapment and 3D cell culture. Altogether, these properties render these novel RGD mimic peptides as promising multifunctional candidates for various tissue regenerative applications.
Collapse
|
12
|
Shao W, Cui C, Xiong J, Wang L, Zhao X, Hou Y, Chang S, Sun N, Zhang Y, Gao Y, Ni Q, Liu F, He J. Small‐Diameter PLCL/PCL Nanofiber Grafted TSF Vascular Scaffolds with a Double‐Layer Structure for Vascular Tissue Engineering. MACROMOLECULAR MATERIALS AND ENGINEERING 2021; 306. [DOI: 10.1002/mame.202100462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/06/2025]
Abstract
AbstractSuccessful construction of small‐diameter double‐layer vascular scaffolds (SDVSs) whose inner diameters are less than 1.5 mm, especially those with multilayer mimic structures, remains a challenge in vascular tissue engineering. In this study, poly(L‐lactide‐co‐caprolactone) (PLCL)/poly(Ɛ‐caprolactone) (PCL)/tussah silk fibroin (TSF) SDVSs with a double‐layer structure are prepared by one‐step method based on friction twisting core‐spun electrospinning technology. The constructed PLCL/PCL SDVSs grafted TSF have an obvious double‐layer structure; tube wall thickness 524 ± 28 µm; and inner tube diameter 1390 ± 40 µm. Compared with traditional nanofiber vascular scaffolds (TS), the axial and radial tensile strengths of PLCL/PCL SDVSs grafted TSF increase by 86% and 34%, respectively. They also show good scaffold elastic recovery and burst pressure (BP) (8505 ± 875 mmHg). Compared with the PLCL/PCL SDVSs, the inner and outer layers of PLCL/PCL SDVSs grafted TSF show good hydrophilicity and protein adsorption performance. The in vitro cell viability results indicate that the inner and outer layers of PLCL/PCL SDVSs grafted TSF show enhanced proliferation and adhesion of vein endothelial cells (VECs) and smooth muscle cells (SMCs), respectively. Therefore, the successful preparation of PLCL/PCL SDVSs grafted TSF provides more possibilities for the clinical transplantation of small‐diameter vascular scaffolds.
Collapse
Affiliation(s)
- Weili Shao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Chen Cui
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Junpeng Xiong
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ling Wang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Xu Zhao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yijun Hou
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Shuzhen Chang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Ning Sun
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yuting Zhang
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
| | - Yanfei Gao
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Qingqing Ni
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda 386‐8567 Japan
| | - Fan Liu
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| | - Jianxin He
- Textile and Garment Industry of Research Institute Zhongyuan University of Technology Zhengzhou 450007 China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province Zhengzhou 450007 China
| |
Collapse
|
13
|
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021; 13:1365. [PMID: 34575441 PMCID: PMC8465808 DOI: 10.3390/pharmaceutics13091365] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.
Collapse
Affiliation(s)
- Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Pablo Scodeller
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Lorena Simón-Gracia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| |
Collapse
|
14
|
Perez JJ, Perez RA, Perez A. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Front Mol Biosci 2021; 8:681617. [PMID: 34095231 PMCID: PMC8173110 DOI: 10.3389/fmolb.2021.681617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions (PPIs) mediate a large number of important regulatory pathways. Their modulation represents an important strategy for discovering novel therapeutic agents. However, the features of PPI binding surfaces make the use of structure-based drug discovery methods very challenging. Among the diverse approaches used in the literature to tackle the problem, linear peptides have demonstrated to be a suitable methodology to discover PPI disruptors. Unfortunately, the poor pharmacokinetic properties of linear peptides prevent their direct use as drugs. However, they can be used as models to design enzyme resistant analogs including, cyclic peptides, peptide surrogates or peptidomimetics. Small molecules have a narrower set of targets they can bind to, but the screening technology based on virtual docking is robust and well tested, adding to the computational tools used to disrupt PPI. We review computational approaches used to understand and modulate PPI and highlight applications in a few case studies involved in physiological processes such as cell growth, apoptosis and intercellular communication.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat, Spain
| | - Alberto Perez
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Evaluation of Silk Fibroin-RGD-Stem Cell Factor Scaffold Effect on Adhesion, Migration, and Proliferation of Stem Cells of Apical Papilla. Stem Cells Int 2021; 2021:6612324. [PMID: 34046070 PMCID: PMC8128554 DOI: 10.1155/2021/6612324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
This study explored the effects of a silk fibroin-RGD-stem cell factor (SF-RGD-SCF) scaffold on the migration, proliferation, and attachment of stem cells of apical papilla (SCAPs). SF, SF-RGD, SF-SCF, and SF-RGD-SCF scaffolds were prepared, and laser confocal microscopy was used to observe the adhesion and growth status of SCAPs on the scaffolds. Furthermore, the numbers of SCAPs on the scaffolds were counted by a digestion counting method to evaluate their proliferation. Cells on the SF-RGD-SCF scaffold proliferated more than those on the other scaffolds and showed a more obvious tendency to migrate to the scaffold's deep porous structure after 7 d seeding. Live/dead cell staining results showed that almost all the adhered cells were alive after 7 d. Furthermore, cell counting showed that the number of cells on the SF-RGD-SCF scaffold was highest after both 1 and 7 d (P < 0.05). Thus, the SF-RGD-SCF composite is biocompatible and promotes the migration, adhesion, and proliferation of SCAPs, making it of potential use as a scaffold for cell-homing pulp regeneration.
Collapse
|
16
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
17
|
Ayo A, Laakkonen P. Peptide-Based Strategies for Targeted Tumor Treatment and Imaging. Pharmaceutics 2021; 13:pharmaceutics13040481. [PMID: 33918106 PMCID: PMC8065807 DOI: 10.3390/pharmaceutics13040481] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure–function relationship data that have been used to improve the peptide’s activity and conjugation strategies are highlighted.
Collapse
Affiliation(s)
- Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Laboratory Animal Center, HiLIFE—Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-4489100
| |
Collapse
|
18
|
Ludwig BS, Tomassi S, Di Maro S, Di Leva FS, Benge A, Reichart F, Nieberler M, Kühn FE, Kessler H, Marinelli L, Reuning U, Kossatz S. The organometallic ferrocene exhibits amplified anti-tumor activity by targeted delivery via highly selective ligands to αvβ3, αvβ6, or α5β1 integrins. Biomaterials 2021; 271:120754. [PMID: 33756215 DOI: 10.1016/j.biomaterials.2021.120754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
High levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery. Therefore, we conjugated Fc to five synthetic, Arg-Gly-Asp (RGD)-based integrin binding ligands to enable targeting of the cell adhesion and signaling receptor integrin subtypes αvβ3, α5β1, or αvβ6, which are overexpressed in various, distinct tumors. We designed and synthesized a library of integrin-ligand-ferrocene (ILF) derivatives and showed that ILF conjugates maintained the high integrin affinity and selectivity of their parent ligands. A thorough biological characterization allowed us to identify the two most promising ligands, an αvβ3 (L2b) and an αvβ6 (L3b) targeting ILF, which displayed selective integrin-dependent cell uptake and pronounced ferrocene-mediated anti-tumor effects in vitro, along with increased ROS production and DNA damage. Hence, ILFs are promising candidates for the selective, tumor-targeted delivery of ferrocene to maximize its anti-cancer efficacy and minimize systemic toxicity, thereby improving the therapeutic window of ferrocene compared to currently used non-selective anti-cancer drugs.
Collapse
Affiliation(s)
- Beatrice Stefanie Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Salvatore Di Maro
- Università degli Studi della Campania "Luigi Vanvitelli", Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Caserta, Italy
| | | | - Anke Benge
- Department of Obstetrics and Gynecology, Clinical Research Unit, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Florian Reichart
- Institute for Advanced Study, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center, Technical University Munich, Munich, Germany; Department of Chemistry, Technical University Munich, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, Technical University Munich, Garching, Germany
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Ute Reuning
- Department of Obstetrics and Gynecology, Clinical Research Unit, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum rechts der Isar, Technical University Munich, Munich, Germany; Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany; Department of Chemistry, Technical University Munich, Munich, Germany.
| |
Collapse
|
19
|
Damjanovic J, Miao J, Huang H, Lin YS. Elucidating Solution Structures of Cyclic Peptides Using Molecular Dynamics Simulations. Chem Rev 2021; 121:2292-2324. [PMID: 33426882 DOI: 10.1021/acs.chemrev.0c01087] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions are vital to biological processes, but the shape and size of their interfaces make them hard to target using small molecules. Cyclic peptides have shown promise as protein-protein interaction modulators, as they can bind protein surfaces with high affinity and specificity. Dozens of cyclic peptides are already FDA approved, and many more are in various stages of development as immunosuppressants, antibiotics, antivirals, or anticancer drugs. However, most cyclic peptide drugs so far have been natural products or derivatives thereof, with de novo design having proven challenging. A key obstacle is structural characterization: cyclic peptides frequently adopt multiple conformations in solution, which are difficult to resolve using techniques like NMR spectroscopy. The lack of solution structural information prevents a thorough understanding of cyclic peptides' sequence-structure-function relationship. Here we review recent development and application of molecular dynamics simulations with enhanced sampling to studying the solution structures of cyclic peptides. We describe novel computational methods capable of sampling cyclic peptides' conformational space and provide examples of computational studies that relate peptides' sequence and structure to biological activity. We demonstrate that molecular dynamics simulations have grown from an explanatory technique to a full-fledged tool for systematic studies at the forefront of cyclic peptide therapeutic design.
Collapse
Affiliation(s)
- Jovan Damjanovic
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - He Huang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
20
|
Raynal L, Rose NC, Donald JR, Spicer CD. Photochemical Methods for Peptide Macrocyclisation. Chemistry 2021; 27:69-88. [PMID: 32914455 PMCID: PMC7821122 DOI: 10.1002/chem.202003779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 12/19/2022]
Abstract
Photochemical reactions have been the subject of renewed interest over the last two decades, leading to the development of many new, diverse and powerful chemical transformations. More recently, these developments have been expanded to enable the photochemical macrocyclisation of peptides and small proteins. These constructs benefit from increased stability, structural rigidity and biological potency over their linear counterparts, providing opportunities for improved therapeutic agents. In this review, an overview of both the established and emerging methods for photochemical peptide macrocyclisation is presented, highlighting both the limitations and opportunities for further innovation in the field.
Collapse
Affiliation(s)
- Laetitia Raynal
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Nicholas C. Rose
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James R. Donald
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Christopher D. Spicer
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
21
|
Kobayashi J, Arisaka Y, Yui N, Yamato M, Okano T. Preservation of heparin-binding EGF-like growth factor activity on heparin-modified poly( N-isopropylacrylamide)-grafted surfaces. RSC Adv 2021; 11:37225-37232. [PMID: 35496401 PMCID: PMC9043771 DOI: 10.1039/d1ra07317f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
A heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was able to culture hepatocytes maintaining high albumin secretion and high expression of hepatocyte-specific genes. However, the activity of HB-EGF on the surface and its binding effects on hepatocytes remain unclear. In this study, we investigated the temperature-dependent interactions of HB-EGF and EGF receptor (EGFR) with heparin-modified PIPAAm to evaluate the activity of HB-EGF on the surface. Quartz crystal microbalance (QCM) measurements revealed that the amounts of adsorbed HB-EGF on either the heparin-modified PIPAAm-grafted surface (heparin-IC1) or PIPAAm-grafted surfaces were almost the same regardless of swelling/deswelling of grafted PIPAAm chains. The heparin-IC1 surface bound to HB-EGF at 37 °C had the ability to bind to hepatocytes through specific affinity interaction with EGFR, whose activation was confirmed by western blotting. However, the physisorbed HB-EGF on the PIPAAm surface greatly diminished its activity. Taken together, the introduction of heparin into grafted PIPAAm chains on the surface plays a pivotal role in holding HB-EGF while preserving its activity. Hydration and swelling of surface-grafted PIPAAm chains at 20 °C greatly diminished the attachment of hepatocytes with HB-EGF bound to heparin-IC1, whereas hepatocytes were able to bind to HB-EGF bound to heparin-IC1 at 37 °C. Thus, the equilibrated affinity interaction between EGFRs and surface-bound HB-EGF was considered to be attenuated by steric hindrance due to hydration and/or swelling of grafted PIPAAm chains. Activity of HB-EGF bound to a heparin-modified poly(N-isopropylacrylamide) (PIPAAm)-grafted surface was preserved through specific binding to heparin, whereas physisorbed HB-EGF on a PIPAAm-grafted surface greatly diminished its activity.![]()
Collapse
Affiliation(s)
- Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Cell Sheet Tissue Engineering Center, Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
22
|
Hellmund KS, Lospichl B, Böttcher C, Ludwig K, Keiderling U, Noirez L, Weiß A, Mikolajczak DJ, Gradzielski M, Koksch B. Functionalized peptide hydrogels as tunable extracellular matrix mimics for biological applications. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katharina S. Hellmund
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Benjamin Lospichl
- Stranski‐Laboratory of Physical and Theoretical Chemistry Institute of Chemistry, Technische Universität Berlin Berlin Germany
| | - Christoph Böttcher
- Center of Electron Microscopy at Freie Universität Berlin Institute of Chemistry and Biochemistry and CoreFacility BioSupraMol Freie Universität Berlin Berlin Germany
| | - Kai Ludwig
- Center of Electron Microscopy at Freie Universität Berlin Institute of Chemistry and Biochemistry and CoreFacility BioSupraMol Freie Universität Berlin Berlin Germany
| | - Uwe Keiderling
- Department Experiment Control and Data Acquisition Helmholtz‐Zentrum Berlin für Materialien und Energie Berlin Germany
| | - Laurence Noirez
- Laboratoire Léon Brillouin (CEA‐CNRS) Université Paris‐Saclay Gif‐sur‐Yvette Cédex France
| | - Annika Weiß
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Dorian J. Mikolajczak
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| | - Michael Gradzielski
- Stranski‐Laboratory of Physical and Theoretical Chemistry Institute of Chemistry, Technische Universität Berlin Berlin Germany
| | - Beate Koksch
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry–Organic Chemistry, Freie Universität Berlin Berlin Germany
| |
Collapse
|
23
|
Tandon S, Kandasubramanian B, Ibrahim SM. Silk-Based Composite Scaffolds for Tissue Engineering Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, Maharashtra, India
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Jia J, Jeon EJ, Li M, Richards DJ, Lee S, Jung Y, Barrs RW, Coyle R, Li X, Chou JC, Yost MJ, Gerecht S, Cho SW, Mei Y. Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. SCIENCE ADVANCES 2020; 6:eaaz5894. [PMID: 32923589 PMCID: PMC7455498 DOI: 10.1126/sciadv.aaz5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 05/04/2023]
Abstract
Biologically active ligands (e.g., RGDS from fibronectin) play critical roles in the development of chemically defined biomaterials. However, recent decades have shown only limited progress in discovering novel extracellular matrix-protein-derived ligands for translational applications. Through motif analysis of evolutionarily conserved RGD-containing regions in laminin (LM) and peptide-functionalized hydrogel microarray screening, we identified a peptide (a1) that showed superior supports for endothelial cell (EC) functions. Mechanistic studies attributed the results to the capacity of a1 engaging both LM- and Fn-binding integrins. RNA sequencing of ECs in a1-functionalized hydrogels showed ~60% similarities with Matrigel in "vasculature development" gene ontology terms. Vasculogenesis assays revealed the capacity of a1-formulated hydrogels to improve EC network formation. Injectable alginates functionalized with a1 and MMPQK (a vascular endothelial growth factor-mimetic peptide with a matrix metalloproteinase-degradable linker) increased blood perfusion and functional recovery over decellularized extracellular matrix and (RGDS + MMPQK)-functionalized hydrogels in an ischemic hindlimb model, illustrating the power of this approach.
Collapse
Affiliation(s)
- Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Biomaterials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Mei Li
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Cardiology, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan J. Richards
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Soojin Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Coyle
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
- Ocean University of China, School of Medicine and Pharmacy, Qingdao, Shandong, China
| | - James C. Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Michael J. Yost
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, and Johns Hopkins Physical Sciences–Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
25
|
Park CR, Song MG, Park JY, Youn H, Chung JK, Jeong JM, Lee YS, Cheon GJ, Kang KW. Conjugation of arginylglycylaspartic acid to human serum albumin decreases the tumor-targeting effect of albumin by hindering its secreted protein acidic and rich in cysteine-mediated accumulation in tumors. Am J Transl Res 2020; 12:2488-2498. [PMID: 32655786 PMCID: PMC7344055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Human serum albumin (HSA) accumulates in tumors by the enhanced permeability and retention (EPR) effect, which is a passive targeting effect in tumors. A recent study showed that secreted protein acidic and rich in cysteine (SPARC), an albumin-binding protein, mediates albumin accumulation in tumors. Arg-Gly-Asp (RGD) is a peptide targeting integrin αvβ3, which is highly expressed during tumor angiogenesis. We investigated whether conjugation of RGD to HSA could synergistically enhance tumor targeting. Accumulation of cRGDyK-HSA in integrin αvβ3-expressing SK-OV3 cells was observed by confocal microscopy. In SK-OV3 cells overexpressing the albumin binding protein SPARC, cellular uptake of HSA increased, but uptake of cRGDyK-HSA did not. cRGDyK-HSA showed decreased tumor accumulation compared with HSA by positron emission tomography (PET) scanning and biodistribution studies in an SK-OV3 xenograft mouse model. In SK-OV3 tumors, HSA accumulation colocalized with SPARC expression, while cRGDyK-HSA only accumulated in the outer region of the tumor, even though SPARC and integrin αvβ3 were expressed within the tumor core. We speculate that cRGDyK conjugation to HSA changes the characteristics of HSA and hinders its tumor-targeting effect. Therefore, HSA should be modified to preserve its native characteristics and enhance the tumor-targeting effects of HSA conjugates.
Collapse
Affiliation(s)
- Cho Rong Park
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
| | - Myung Geun Song
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Biomedical Research Institute, Seoul National University HospitalSeoul, Korea
| | - Ji-Yong Park
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Cancer Imaging Center, Seoul National University HospitalSeoul, Korea
- Tumor Microenvironment Global Core Research Center, Seoul National UniversitySeoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of MedicineSeoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
- Tumor Microenvironment Global Core Research Center, Seoul National UniversitySeoul, Korea
- National Cancer CenterGoyang, Korea
| | - Jae Min Jeong
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of MedicineSeoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of MedicineSeoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of MedicineSeoul, Korea
- Tumor Biology Program, Seoul National University College of MedicineSeoul, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of MedicineSeoul, Korea
- Cancer Research Institute, Seoul National University College of MedicineSeoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of MedicineSeoul, Korea
- Tumor Biology Program, Seoul National University College of MedicineSeoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate SchoolSeoul, Korea
| |
Collapse
|
26
|
Tariq S, Naqvi SAR, Naz S, Mubarik MS, Yaseen M, Riaz M, Shah SMA, Rafi M, Roohi S. Dose-Dependent Internalization and Externalization Integrity Study of Newly Synthesized 99mTc-Thymoquinone Radiopharmaceutical as Cancer Theranostic Agent. Dose Response 2020; 18:1559325820914189. [PMID: 32362794 PMCID: PMC7180313 DOI: 10.1177/1559325820914189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022] Open
Abstract
Thymoquinone (TQ) is a bioactive phytochemical isolated from Nigella
sativa and has been investigated for biochemical and biological
activities in both in vitro and in vivo models. It is best known for its
anticancer activities. Thymoquinone accomplishes anticancer activities through
targeting multiple cancer markers including PPAR-γ, PTEN, P53, P73, STAT3, and
generation of reactive oxygen species at the cancer cell surface. The
radiolabeling of TQ with γ- and β-emitter radionuclide could be used as cancer
diagnostic or therapeutic radiopharmaceutical, respectively. In this study, we
are reporting the radiolabeling of TQ with technetium-99m (99mTc),
stability in saline and blood serum, internalization and externalization of
99mTc-TQ using rhabdomyosarcoma cancer cells line. The quality
control study revealed more than 95% labeling yield and stable in blood serum up
to 4 hours. In vitro internalization rate was recorded 27.08% ± 0.95% at 1 hour
post 2 hours internalization period and comparatively slow externalization. The
results of this study are quite encourging and could be investigated for further
key preclinical parameters to enter phase I clinical trials.
Collapse
Affiliation(s)
- Saima Tariq
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan.,Department of Food Technology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sumaira Naz
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
| | | | - Muhammad Yaseen
- Division of Science and Technology, Department of Chemistry, University of Education, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Rafi
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Samina Roohi
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
| |
Collapse
|
27
|
Royer C, Guay‐Bégin A, Chanseau C, Chevallier P, Bordenave L, Laroche G, Durrieu M. Bioactive micropatterning of biomaterials for induction of endothelial progenitor cell differentiation: Acceleration of in situ endothelialization. J Biomed Mater Res A 2020; 108:1479-1492. [DOI: 10.1002/jbm.a.36918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Caroline Royer
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Andrée‐Anne Guay‐Bégin
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
| | | | - Pascale Chevallier
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | | | - Gaétan Laroche
- Laboratoire d'Ingénierie de SurfaceCentre de recherche du CHU de Québec—Université Laval, Hôpital Saint‐François d'Assise Québec Quebec Canada
- Département de génie des minesde la métallurgie et des matériaux, Centre de Recherche sur les Matériaux Avancés Québec Quebec Canada
| | - Marie‐Christine Durrieu
- Univ. BordeauxChimie et Biologie des Membranes et Nano‐Objets (UMR5248 CBMN) Pessac France
- CNRSCBMN UMR5248 Pessac France
- Bordeaux INPCBMN UMR5248 Pessac France
| |
Collapse
|
28
|
Bochynska-Czyz M, Redkiewicz P, Kozlowska H, Matalinska J, Konop M, Kosson P. Can Keratin Scaffolds be used for Creating Three-dimensional Cell Cultures? Open Med (Wars) 2020; 15:249-253. [PMID: 32292820 PMCID: PMC7147289 DOI: 10.1515/med-2020-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell cultures were created with the use of fur keratin associated proteins (F-KAPs) as scaffolds. The procedure of preparation F-KAP involves combinations of chemical activation and enzymatic digestion. The best result in porosity and heterogeneity of F-KAP surface was received during pepsin digestion. The F-KAP had a stable structure, no changes were observed after heat treatment, shaking and washing. The 0.15-0.5 mm fraction had positive effect for formation of 3D scaffolds and cell culturing. Living rat mesenchymal cells on the F-KAP with no abnormal morphology were observed by SEM during 32 days of cell culturing.
Collapse
Affiliation(s)
- Marta Bochynska-Czyz
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Science, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| | - Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Science, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Techniques, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| | - Joanna Matalinska
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Science, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| | - Marek Konop
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Science, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| | - Piotr Kosson
- Toxicology Research Laboratory, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, 5 Pawinskiego Street, Poland
| |
Collapse
|
29
|
Bracalello A, Secchi V, Mastrantonio R, Pepe A, Persichini T, Iucci G, Bochicchio B, Battocchio C. Fibrillar Self-Assembly of a Chimeric Elastin-Resilin Inspired Engineered Polypeptide. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1613. [PMID: 31739482 PMCID: PMC6915571 DOI: 10.3390/nano9111613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/07/2023]
Abstract
In the field of tissue engineering, recombinant protein-based biomaterials made up of block polypeptides with tunable properties arising from the functionalities of the individual domains are appealing candidates for the construction of medical devices. In this work, we focused our attention on the preparation and structural characterization of nanofibers from a chimeric-polypeptide-containing resilin and elastin domain, designed on purpose to enhance its cell-binding ability by introducing a specific fibronectin-derived Arg-Gly-Asp (RGD) sequence. The polypeptide ability to self-assemble was investigated. The molecular and supramolecular structure was characterized by Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM), circular dichroism, state-of-the-art synchrotron radiation-induced techniques X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The attained complementary results allow us to assess as H-bonds influence the morphology of the aggregates obtained after the self-assembling of the chimeric polypeptide. Finally, a preliminary investigation of the potential cytotoxicity of the polypeptide was performed by culturing human fetal foreskin fibroblast (HFFF2) for its use as biomedical device.
Collapse
Affiliation(s)
- Angelo Bracalello
- Department of Sciences, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy; (A.B.); (A.P.)
| | - Valeria Secchi
- Department of Sciences, University of Roma Tre, Via della Vasca Navale, 79, 00146 Rome, Italy; (R.M.); (T.P.); (G.I.)
| | - Roberta Mastrantonio
- Department of Sciences, University of Roma Tre, Via della Vasca Navale, 79, 00146 Rome, Italy; (R.M.); (T.P.); (G.I.)
| | - Antonietta Pepe
- Department of Sciences, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy; (A.B.); (A.P.)
| | - Tiziana Persichini
- Department of Sciences, University of Roma Tre, Via della Vasca Navale, 79, 00146 Rome, Italy; (R.M.); (T.P.); (G.I.)
| | - Giovanna Iucci
- Department of Sciences, University of Roma Tre, Via della Vasca Navale, 79, 00146 Rome, Italy; (R.M.); (T.P.); (G.I.)
| | - Brigida Bochicchio
- Department of Sciences, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy; (A.B.); (A.P.)
| | - Chiara Battocchio
- Department of Sciences, University of Roma Tre, Via della Vasca Navale, 79, 00146 Rome, Italy; (R.M.); (T.P.); (G.I.)
| |
Collapse
|
30
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
31
|
Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C. Toxic HypF-N Oligomers Selectively Bind the Plasma Membrane to Impair Cell Adhesion Capability. Biophys J 2019; 114:1357-1367. [PMID: 29590593 DOI: 10.1016/j.bpj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.
Collapse
Affiliation(s)
- Reinier Oropesa-Nuñez
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Sandeep Keshavan
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy.
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Cristina Cecchi
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Massimo Stefani
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | - Claudio Canale
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy
| |
Collapse
|
32
|
Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, Ao Y, Boyan BD, Chen H. Advances in Porous Scaffold Design for Bone and Cartilage Tissue Engineering and Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:14-29. [PMID: 30079807 PMCID: PMC6388715 DOI: 10.1089/ten.teb.2018.0119] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
IMPACT STATEMENT Challenges in musculoskeletal tissue regeneration affect millions of patients globally. Scaffolds for tissue engineering bone and cartilage provide promising solutions that increase healing and decrease need for complicated surgical procedures. Porous scaffolds have emerged as an attractive alternative to traditional scaffolds. However, the success of advanced materials, use of biological factors, and manufacturing techniques can vary depending on use case. This review provides perspective on porous scaffold manufacturing, characterization and application, and can be used to inform future scaffold design.
Collapse
Affiliation(s)
- Alice Cheng
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
- Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Adrian Kahn
- Department of Oral and Maxillofacial Surgery, University of Tel Aviv, Tel Aviv, Israel
| | - Xiyu Li
- Department of Biomedical Engineering, Peking University, Beijing, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Zhenxing Shao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Muyang Sun
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Barbara D. Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Haifeng Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| |
Collapse
|
33
|
Mason TO, Shimanovich U. Fibrous Protein Self-Assembly in Biomimetic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706462. [PMID: 29883013 DOI: 10.1002/adma.201706462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Indexed: 05/22/2023]
Abstract
Protein self-assembly processes, by which polypeptides interact and independently form multimeric structures, lead to a wide array of different endpoints. Structures formed range from highly ordered molecular crystals to amorphous aggregates. Order arises in the system from a balance between many low-energy processes occurring due to a set of interactions between residues in a chain, between residues in different chains, and between solute and solvent. In Nature, self-assembling protein systems have evolved over millions of years to organize into supramolecular structures, optimized for specific functions, with this propensity determined by the sequence of their constituent amino acids, of which only 20 are encoded in DNA. The structural materials that arise from biological self-assembly can display remarkable mechanical properties, often as a result of hierarchical structure on the nano- and microscales, and much research has been devoted to mimicking and exploiting these properties for a variety of end uses. This work presents a review of a range of studies in which biological functions are effectively reproduced through the design of self-assembling fibrous protein systems.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
34
|
Bioactive Poly(ethylene Glycol) Acrylate Hydrogels for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0074-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Mbizana S, Hlalele L, Pfukwa R, Du Toit A, Lumkwana D, Loos B, Klumperman B. Synthesis and Cell Interaction of Statistical l-Arginine-Glycine-l-Aspartic Acid Terpolypeptides. Biomacromolecules 2018; 19:3058-3066. [PMID: 29715425 DOI: 10.1021/acs.biomac.8b00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copolymerizations and terpolymerizations of N-carboxyanhydrides (NCAs) of glycine (Gly), Nδ-carbobenzyloxy-l-ornithine (Z-Orn), and β-benzyl-l-aspartate (Bz-Asp) were investigated. In situ 1H NMR spectroscopy was used to monitor individual comonomer consumptions during binary and ternary copolymerizations. The six relevant reactivity ratios were determined from copolymerizations of the NCAs of amino acids via nonlinear least-squares curve fitting. The reactivity ratios were subsequently used to maximize the occurrence of the Asp-Gly-Orn ( DGR') sequence in the terpolymers. Terpolymers with variable probability of occurrence of DGR' were prepared in the lab. Subsequently, the ornithine residues on the terpolymers were converted to l-arginine (R) residues via guanidination reaction after removal of the protecting groups. The resulting DGR terpolymers translate to traditional peptides and proteins with variable RGD content, due to the convention in nomenclature that peptides are depicted from N- to C-terminus, whereas the NCA ring-opening polymerization is conducted from C- to N-terminus. The l-arginine containing terpolymers were evaluated for cell interaction, where it was found that neuronal cells display enhanced adhesion and process formation when plated in the presence of statistical DGR terpolymers.
Collapse
|
36
|
Salvé M, Avohou HT, Monbaliu JCM, Lebrun P, Lemaire C, Damblon C, de Tullio P, Hubert P, Hustinx R, Luxen A. "NOTA-PRGD 2 and NODAGA-PRGD 2 : Bioconjugation, characterization, radiolabelling, and design space". J Labelled Comp Radiopharm 2018; 61:487-500. [PMID: 29430693 DOI: 10.1002/jlcr.3613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
This work reports on the development of amide bond bioconjugation for the production of -NOTA and -NODAGA PRGD2 using batch strategy and microfluidic reactor technology. The final radiolabelling step was fully optimized using Design of Experiments and Design Space approaches, hence targeting robust labelling yields in routine. Optimal labelling conditions were defined in sodium acetate buffer as 168 μg/mL peptide concentration, 4.9 pH, 47.5°C temperature, and 12.5-minute reaction time. Upon optimization, the Gallium-68 radiolabelling was fully automated. All the work was designed to be compliant to the GMP environment and to support the pharmaceutical scale-up.
Collapse
Affiliation(s)
- Mallory Salvé
- GIGA-CRC In VIVO Imaging, University of Liège, Liège, Belgium.,Nuclear Medicine and Oncological Imaging Division, CHU of Liege, Liège, Belgium
| | - Hermane T Avohou
- Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | | | - Pierre Lebrun
- Pharmalex Statistical Solution, Mont-Saint-Guibert, Belgium
| | | | | | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Philippe Hubert
- Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
| | - Roland Hustinx
- GIGA-CRC In VIVO Imaging, University of Liège, Liège, Belgium.,Nuclear Medicine and Oncological Imaging Division, CHU of Liege, Liège, Belgium
| | - André Luxen
- GIGA-CRC In VIVO Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
38
|
Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 2018; 127:167-184. [PMID: 29567395 PMCID: PMC6003852 DOI: 10.1016/j.addr.2018.03.007] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Hydrogels have been utilized in regenerative applications for many decades because of their biocompatibility and similarity in structure to the native extracellular matrix. Initially, these materials were formed outside of the patient and implanted using invasive surgical techniques. However, advances in synthetic chemistry and materials science have now provided researchers with a library of techniques whereby hydrogel formation can occur in situ upon delivery through standard needles. This provides an avenue to minimally invasively deliver therapeutic payloads, fill complex tissue defects, and induce the regeneration of damaged portions of the body. In this review, we highlight these injectable therapeutic hydrogel biomaterials in the context of drug delivery and tissue regeneration for skin wound repair.
Collapse
Affiliation(s)
- Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Nicole J Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, Bioengineering, and Dermatology, School of Medicine, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
39
|
Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, Ogle R, Francis M. Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa9c6f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2017; 36:208-227. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022]
Abstract
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.
Collapse
|
41
|
Hu NN, Zhang W, Wang L, Wang YZ, Chen CF. Inhibition of viral replication by small interfering RNA targeting of the foot-and-mouth disease virus receptor integrin β6. Exp Ther Med 2017; 14:735-742. [PMID: 28672992 DOI: 10.3892/etm.2017.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
In animals, foot-and-mouth disease (FMD) causes symptoms such as fever, limping and the development of blister spots on the skin and mucous membranes. RNA interference (RNAi) may be a novel way of controlling the FMD virus (FMDV), specifically by targeting its cognate receptor protein integrin β6. The present study used RNAi technology to construct and screen plasmids that expressed small interfering RNA molecules (siRNAs) specific for the integrin β6 subunit. Expression of green fluorescence protein from the RNAi plasmids was observed following transfection into porcine embryonic fibroblast (PEF) cells, and RNAi plasmids were screened using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. A fragment (5'AAAGGCCAAGTGGCAAACGGG 3') with marked interference activity was ligated into a PXL-EGFP-NEO integration plasmid and transfected into PEF cells. Transfected cells were selected using G418, and interference of the integrated plasmid was subsequently evaluated by FMDV challenge experiments, in which the levels of viral replication were determined using optical microscopy and RT-qPCR. A total of seven interference plasmids were successfully constructed, including the pGsi-Z4 plasmid, which had a significant interference efficiency of 91.7% in PEF cells (**P<0.01). Upon transfection into PEF cells for 36 h, a Z4 integration plasmid exhibited significant inhibitory effects (**P<0.01) on the integrin β6 subunit. Subsequent challenge experiments in transfected PEF cells also demonstrated that viral replication was reduced by 24.2 and 12.8% after 24 and 36 h, respectively. These data indicate that RNAi technology may inhibit intracellular viral replication in PEF cells by reducing expression of the FMDV receptor integrin β6.
Collapse
Affiliation(s)
- Na-Na Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Wenzhi Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Lina Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Yuan-Zhi Wang
- College of Medicine, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
42
|
Morris PJ. THE DEVELOPMENTAL ROLE OF THE EXTRACELLULAR MATRIX SUGGESTS A MONOPHYLETIC ORIGIN OF THE KINGDOM ANIMALIA. Evolution 2017; 47:152-165. [DOI: 10.1111/j.1558-5646.1993.tb01206.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/1992] [Accepted: 05/17/1992] [Indexed: 11/28/2022]
Affiliation(s)
- Paul J. Morris
- Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| |
Collapse
|
43
|
Sonntag MH, Schill J, Brunsveld L. Integrin-Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites. Chembiochem 2017; 18:441-443. [PMID: 28004511 PMCID: PMC5347895 DOI: 10.1002/cbic.201600514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 11/07/2022]
Abstract
The potential of the fluorescent protein scaffold to control peptide sequence functionality is illustrated by an exploration of fluorescent proteins as novel probes for targeting integrins. A library of fluorescent mCitrine proteins with RGD motifs incorporated at several positions in loops within the protein main chain was generated and characterized. Amino acid mutations to RGD as well as RGD insertions were evaluated: both led to constructs with typical mCitrine fluorescent properties. Screening experiments against four human integrin receptors revealed two strong‐binding constructs and two selective integrin binders. The effect of the site of RGD incorporation illustrates the importance of the protein scaffold on RGD sequence functionality, leading to fluorescent protein constructs with the potential for selective integrin targeting.
Collapse
Affiliation(s)
- Michael H. Sonntag
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Jurgen Schill
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| |
Collapse
|
44
|
Clausen TM, Pereira MA, Al Nakouzi N, Oo HZ, Agerbæk MØ, Lee S, Ørum-Madsen MS, Christensen AR, El-Naggar A, Grandgenett PM, Grem JL, Hollingsworth MA, Holst PJ, Theander T, Sorensen PH, Daugaard M, Salanti A. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility. Mol Cancer Res 2016; 14:1288-1299. [PMID: 27655130 PMCID: PMC5136311 DOI: 10.1158/1541-7786.mcr-16-0103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 01/21/2023]
Abstract
Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. IMPLICATIONS The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Marina Ayres Pereira
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Mette Ø Agerbæk
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sherry Lee
- Vancouver Prostate Centre, Vancouver, Canada
| | - Maj Sofie Ørum-Madsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
- Vancouver Prostate Centre, Vancouver, Canada
| | - Anders Riis Christensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Amal El-Naggar
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Paul M. Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L. Grem
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter J. Holst
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thor Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Molecular Pathology and Cell Imaging Laboratory, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
45
|
Nguyen DHK, Pham VTH, Al Kobaisi M, Bhadra C, Orlowska A, Ghanaati S, Manzi BM, Baulin VA, Joudkazis S, Kingshott P, Crawford RJ, Ivanova EP. Adsorption of Human Plasma Albumin and Fibronectin onto Nanostructured Black Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10744-10751. [PMID: 27718587 DOI: 10.1021/acs.langmuir.6b02601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 μg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.
Collapse
Affiliation(s)
- Duy H K Nguyen
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Vy T H Pham
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Chris Bhadra
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Anna Orlowska
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Berardo Mario Manzi
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Saulius Joudkazis
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne VIC 3001, Australia
| | - Elena P Ivanova
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| |
Collapse
|
46
|
Shafiq M, Kim SH. Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications. Macromol Res 2016. [DOI: 10.1007/s13233-016-4138-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Identification of mutations in FN1 leading to glomerulopathy with fibronectin deposits. Pediatr Nephrol 2016; 31:1459-67. [PMID: 27056061 DOI: 10.1007/s00467-016-3368-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glomerulopathy with fibronectin deposits (GFND) is a rare autosomal dominant disease characterized by massive fibronectin deposits, leading to end-stage renal failure. Although mutations within the heparin-binding domains of the fibronectin 1 gene (FN1) have been associated with GFND, no mutations have been reported within the integrin-binding domains. METHODS In this study, FN1 mutational analysis was conducted in 12 families with GFND. Biochemical and functional features of mutated proteins were examined using recombinant fibronectin fragments encompassing both the integrin- and heparin-binding domains. RESULTS We report six FN1 mutations from 12 families with GFND, including five that are novel (p.Pro969Leu, p.Pro1472del, p.Trp1925Cys, p.Lys1953_Ile1961del, and p.Leu1974Pro). p.Pro1472del is localized in the integrin-binding domain of fibronectin, while the others are in heparin-binding domains. We detected p.Tyr973Cys, p.Pro1472del, and p.Leu1974Pro mutations in multiple families, and haplotype analysis implied that p.Pro1472del and p.Leu1974Pro are founder mutations. The protein encoded by the novel integrin-binding domain mutation p.Pro1472del showed decreased cell binding ability via the integrin-binding site. Most affected patients developed urine abnormalities during the first or second decade of life, and some mutation carriers were completely asymptomatic. CONCLUSIONS This is the second large-scale analysis of GFND families and the first report of an integrin-binding domain mutation. These findings may help determine the pathogenesis of GFND.
Collapse
|
48
|
Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci 2016; 73:3265-77. [PMID: 27098513 PMCID: PMC11108312 DOI: 10.1007/s00018-016-2225-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
Abstract
Fibronectin is a dimeric protein widely distributed in solid tissues and blood. This major extracellular matrix protein is indispensable for embryogenesis and plays crucial roles in many physiological and pathological processes. Fibronectin pre-mRNA undergoes alternative splicing to generate over 20 splicing variants, which are categorized as either plasma fibronectin (pFn) or cellular fibronectin (cFn). All fibronectin variants contain integrin binding motifs, as well as N-terminus collagen and fibrin binding motifs. With motifs that can be recognized by platelet integrins and coagulation factors, fibronectin, especially pFn, has long been suspected to be involved in hemostasis and thrombosis, but the exact function of fibronectin in these processes is controversial. The advances made using intravital microscopy models and fibronectin deficient and mutant mice have greatly facilitated the direct investigation of fibronectin function in vivo. Recent studies revealed that pFn is a vital hemostatic factor that is especially crucial for hemostasis in both genetic and anticoagulant-induced deficiencies of fibrin formation. pFn may also be an important self-limiting regulator to prevent hemorrhage as well as excessive thrombus formation and vessel occlusion. In addition to pFn, cFn is found to be prothrombotic and may contribute to thrombotic complications in various diseases. Further investigations of the role of pFn and cFn in thrombotic and hemorrhagic diseases may provide insights into development of novel therapeutic strategies (e.g., pFn transfusion) for the maintenance of the fine balance between hemostasis and thrombosis.
Collapse
Affiliation(s)
- Yiming Wang
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Heyu Ni
- Room 420, LKSKI-Keenan Research Centre for Biomedical Science, Department of Laboratory Medicine, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Canadian Blood Services, Toronto, ON, Canada.
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
50
|
Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150129. [PMID: 27298431 PMCID: PMC4920278 DOI: 10.1098/rsta.2015.0129] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 05/29/2023]
Abstract
Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|