1
|
Sarto F, Franchi MV, McPhee JS, Stashuk DW, Paganini M, Monti E, Rossi M, Sirago G, Zampieri S, Motanova ES, Valli G, Moro T, Paoli A, Bottinelli R, Pellegrino MA, De Vito G, Blau HM, Narici MV. Neuromuscular impairment at different stages of human sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:1797-1810. [PMID: 39236304 PMCID: PMC11446718 DOI: 10.1002/jcsm.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Degeneration of the motoneuron and neuromuscular junction (NMJ) and loss of motor units (MUs) contribute to age-related muscle wasting and weakness associated with sarcopenia. However, these features have not been comprehensively investigated in humans. This study aimed to compare neuromuscular system integrity and function at different stages of sarcopenia, with a particular focus on NMJ stability and MU properties. METHODS We recruited 42 young individuals (Y) (aged 25.98 ± 4.6 years; 57% females) and 88 older individuals (aged 75.9 ± 4.7 years; 55% females). The older group underwent a sarcopenia screening according to the revised guidelines of the European Working Group on Sarcopenia in Older People 2. In all groups, knee extensor muscle force was evaluated by isometric dynamometry, muscle morphology by ultrasound and MU potential properties by intramuscular electromyography (iEMG). MU number estimate (iMUNE) and blood samples were obtained. Muscle biopsies were collected in a subgroup of 16 Y and 52 older participants. RESULTS Thirty-nine older individuals were non-sarcopenic (NS), 31 pre-sarcopenic (PS) and 18 sarcopenic (S). A gradual decrease in quadriceps force, cross-sectional area and appendicular lean mass was observed across the different stages of sarcopenia (for all P < 0.0001). Handgrip force and the Short Physical Performance Battery score also showed a diminishing trend. iEMG analyses revealed elevated near fibre segment jitter in NS, PS and S compared with Y (Y vs. NS and S: P < 0.0001; Y vs. PS: P = 0.0169), suggestive of age-related impaired NMJ transmission. Increased C-terminal agrin fragment (P < 0.0001) and altered caveolin 3 protein expression were consistent with age-related NMJ instability in all the older groups. The iMUNE was lower in all older groups (P < 0.0001), confirming age-related loss of MUs. An age-related increase in MU potential complexity was also observed. These observations were accompanied by increased muscle denervation and axonal damage, evinced by the increase in neural cell adhesion molecule-positive fibres (Y vs. NS: P < 0.0001; Y vs. S: P = 0.02) and the increase in serum concentration of neurofilament light chain (P < 0.0001), respectively. Notably, most of these MU and NMJ parameters did not differ when comparing older individuals with or without sarcopenia. CONCLUSIONS Alterations in MU properties, axonal damage, an altered innervation profile and NMJ instability are prominent features of the ageing of the neuromuscular system. These neuromuscular alterations are accompanied by muscle wasting and weakness; however, they appear to precede clinically diagnosed sarcopenia, as they are already detectable in older NS individuals.
Collapse
Affiliation(s)
- Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Daniel W Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maira Rossi
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Roberto Bottinelli
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Maria A Pellegrino
- Institute of Physiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Centre, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Zhang Y, Dos Santos M, Huang H, Chen K, Iyengar P, Infante R, Polanco PM, Brekken RA, Cai C, Caijgas A, Cano Hernandez K, Xu L, Bassel-Duby R, Liu N, Olson EN. A molecular pathway for cancer cachexia-induced muscle atrophy revealed at single-nucleus resolution. Cell Rep 2024; 43:114587. [PMID: 39116208 PMCID: PMC11472345 DOI: 10.1016/j.celrep.2024.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthieu Dos Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rodney Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Patricio M Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ambar Caijgas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Longo S, Messi ML, Wang Z, Meeker W, Delbono O. Accelerated sarcopenia precedes learning and memory impairments in the P301S mouse model of tauopathies and Alzheimer's disease. J Cachexia Sarcopenia Muscle 2024; 15:1358-1375. [PMID: 38646816 PMCID: PMC11294019 DOI: 10.1002/jcsm.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) impairs cognitive functions and peripheral systems, including skeletal muscles. The PS19 mouse, expressing the human tau P301S mutation, shows cognitive and muscular pathologies, reflecting the central and peripheral atrophy seen in AD. METHODS We analysed skeletal muscle morphology and neuromuscular junction (NMJ) through immunohistochemistry and advanced image quantification. A factorial Analysis of Variance assessed muscle weight, NCAM expression, NMJ, myofibre type distribution, cross-sectional areas, expression of single or multiple myosin heavy-chain isoforms, and myofibre grouping in PS19 and wild type (WT) mice over their lifespan (1-12 months). RESULTS Significant weight differences in extensor digitorum longus (EDL) and soleus muscles between WT and PS19 mice were noted by 7-8 months. For EDL muscle in females, WT weighed 0.0113 ± 0.0005 compared with PS19's 0.0071 ± 0.0008 (P < 0.05), and in males, WT was 0.0137 ± 0.0001 versus PS19's 0.0069 ± 0.0006 (P < 0.005). Similarly, soleus muscle showed significant differences; females (WT: 0.0084 ± 0.0004; PS19: 0.0057 ± 0.0005, P < 0.005) and males (WT: 0.0088 ± 0.0003; PS19: 0.0047 ± 0.0004, P < 0.0001). Analysis of the NMJ in PS19 mice revealed a marked reduction in myofibre innervation at 5 months, with further decline by 10 months. NMJ pre-terminals in PS19 mice became shorter and simpler by 5 months, showing a steep decline by 10 months. Genotype and age strongly influenced muscle NCAM immunoreactivity, denoting denervation as early as 5-6 months in EDL muscle Type II fibres, with earlier effects in soleus muscle Type I and II fibres at 3-4 months. Muscle denervation and subsequent myofibre atrophy were linked to a reduction in Type IIB fibres in the EDL muscle and Type IIA fibres in the soleus muscle, accompanied by an increase in hybrid fibres. The EDL muscle showed Type IIB fibre atrophy with WT females at 1505 ± 110 μm2 versus PS19's 1208 ± 94 μm2, and WT males at 1731 ± 185 μm2 versus PS19's 1227 ± 116 μm2. Similarly, the soleus muscle demonstrated Type IIA fibre atrophy from 5 to 6 months, with WT females at 1194 ± 52 μm2 versus PS19's 858 ± 62 μm2, and WT males at 1257 ± 43 μm2 versus PS19's 1030 ± 55 μm2. Atrophy also affected Type IIX, I + IIA, and IIA + IIX fibres in both muscles. The timeline for both myofibre and overall muscle atrophy in PS19 mice was consistent, indicating a simultaneous decline. CONCLUSIONS Progressive and accelerated neurogenic sarcopenia may precede and potentially predict cognitive deficits observed in AD.
Collapse
Affiliation(s)
- Savannah Longo
- Department of Internal Medicine, Sections on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - María Laura Messi
- Department of Internal Medicine, Sections on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Zhong‐Min Wang
- Department of Internal Medicine, Sections on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - William Meeker
- Department of Internal Medicine, Sections on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| | - Osvaldo Delbono
- Department of Internal Medicine, Sections on Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
4
|
Izumi R, Ikeda K, Niihori T, Suzuki N, Shirota M, Funayama R, Nakayama K, Warita H, Tateyama M, Aoki Y, Aoki M. Nuclear pore pathology underlying multisystem proteinopathy type 3-related inclusion body myopathy. Ann Clin Transl Neurol 2024; 11:577-592. [PMID: 38158701 DOI: 10.1002/acn3.51977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Multisystem proteinopathy type 3 (MSP3) is an inherited, pleiotropic degenerative disorder caused by a mutation in heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), which can affect the muscle, bone, and/or nervous system. This study aimed to determine detailed histopathological features and transcriptomic profile of HNRNPA1-mutated skeletal muscles to reveal the core pathomechanism of hereditary inclusion body myopathy (hIBM), a predominant phenotype of MSP3. METHODS Histopathological analyses and RNA sequencing of HNRNPA1-mutated skeletal muscles harboring a c.940G > A (p.D314N) mutation (NM_031157) were performed, and the results were compared with those of HNRNPA1-unlinked hIBM and control muscle tissues. RESULTS RNA sequencing revealed aberrant alternative splicing events that predominantly occurred in myofibril components and mitochondrial respiratory complex. Enrichment analyses identified the nuclear pore complex (NPC) and nucleocytoplasmic transport as suppressed pathways. These two pathways were linked by the hub genes NUP50, NUP98, NUP153, NUP205, and RanBP2. In immunohistochemistry, these nucleoporin proteins (NUPs) were mislocalized to the cytoplasm and aggregated mostly with TAR DNA-binding protein 43 kDa and, to a lesser extent, with hnRNPA1. Based on ultrastructural observation, irregularly shaped myonuclei with deep invaginations were frequently observed in atrophic fibers, consistent with the disorganization of NPCs. Additionally, regarding the expression profiles of overall NUPs, reduced expression of NUP98, NUP153, and RanBP2 was shared with HNRNPA1-unlinked hIBMs. INTERPRETATION The shared subset of altered NUPs in amyotrophic lateral sclerosis (ALS), as demonstrated in prior research, HNRNPA1-mutated, and HNRNPA1-unlinked hIBM muscle tissues may provide evidence regarding the underlying common nuclear pore pathology of hIBM, ALS, and MSP.
Collapse
Grants
- KAKENHI (20K16571) Grant-in-Aid for Early-Career Scientists from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (20H03586) Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (23H02821) Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science (JSPS)
- KAKENHI (20K07897) Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS)
- 23FC1008 Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan
- 23FC1010 Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan
- 20FC1036 Grants-in-Aid for Research on Rare and Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan
- 23FC1014 Grants-in-Aid for Research on Rare and Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan
- Haruki ALS Research Foundation
- 2-5 Intramural Research Grant for Neurological and Psychiatric Disorders Provided from National Center of Neurology and Psychiatry of Japan
- 5-6 Intramural Research Grant for Neurological and Psychiatric Disorders Provided from National Center of Neurology and Psychiatry of Japan
Collapse
Affiliation(s)
- Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Piñol-Jurado P, Verdú-Díaz J, Fernández-Simón E, Domínguez-González C, Hernández-Lain A, Lawless C, Vincent A, González-Chamorro A, Villalobos E, Monceau A, Laidler Z, Mehra P, Clark J, Filby A, McDonald D, Rushton P, Bowey A, Alonso Pérez J, Tasca G, Marini-Bettolo C, Guglieri M, Straub V, Suárez-Calvet X, Díaz-Manera J. Imaging mass cytometry analysis of Becker muscular dystrophy muscle samples reveals different stages of muscle degeneration. Sci Rep 2024; 14:3365. [PMID: 38336890 PMCID: PMC10858026 DOI: 10.1038/s41598-024-51906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.
Collapse
Affiliation(s)
- Patricia Piñol-Jurado
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - José Verdú-Díaz
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Esther Fernández-Simón
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Neurology Department, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Aurelio Hernández-Lain
- Neuropathology Unit, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Conor Lawless
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Amy Vincent
- Faculty of Medical Sciences, Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Alejandro González-Chamorro
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Elisa Villalobos
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Alexandra Monceau
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Zoe Laidler
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Priyanka Mehra
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - James Clark
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Andrew Filby
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - David McDonald
- Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul Rushton
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Andrew Bowey
- Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Jorge Alonso Pérez
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain.
| |
Collapse
|
6
|
Lipp SN, Jacobson KR, Colling HA, Tuttle TG, Miles DT, McCreery KP, Calve S. Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction. Matrix Biol 2023; 116:28-48. [PMID: 36709857 PMCID: PMC10218368 DOI: 10.1016/j.matbio.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development. We found that MTJ-specific ECM deposition can be initiated via static loading due to growth; however, it required cyclic loading to develop a mature morphology. Furthermore, the MTJ can mature without the tendon terminating into cartilage. Based on these results, we describe a model wherein MTJ development depends on mechanical loading but not insertion into an enthesis.
Collapse
Affiliation(s)
- Sarah N Lipp
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, IN 46202, United States
| | - Kathryn R Jacobson
- Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States
| | - Haley A Colling
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder CO, 80309, United States
| | - Tyler G Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Dalton T Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, CO 80309, United States
| | - Kaitlin P McCreery
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
7
|
Muscle 4EBP1 activation modifies the structure and function of the neuromuscular junction in mice. Nat Commun 2022; 13:7792. [PMID: 36526657 PMCID: PMC9758177 DOI: 10.1038/s41467-022-35547-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.
Collapse
|
8
|
Soendenbroe C, Flindt Heisterberg MF, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Human skeletal muscle acetylcholine receptor gene expression in elderly males performing heavy resistance exercise. Am J Physiol Cell Physiol 2022; 323:C159-C169. [PMID: 35649253 DOI: 10.1152/ajpcell.00365.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in muscle mass and function during aging. Heavy resistance exercise is an effective tool for increasing muscle mass and strength, but whether it can rescue denervated muscle fibers remains unclear. Therefore, the purpose of this study was to investigate the potential of heavy resistance exercise to modify indices of denervation in healthy elderly individuals. 38 healthy elderly men (72±5 years) underwent 16 weeks of heavy resistance exercise while 20 healthy elderly men (72±6 years) served as non-exercising sedentary controls. Muscle biopsies were obtained pre and post training, and midway at eight weeks. Biopsies were analysed by immunofluorescence for the prevalence of myofibers expressing embryonic myosin (MyHCe), neonatal myosin (MyHCn), nestin, and neural cell adhesion molecule (NCAM), and by RT-qPCR for gene expression levels of acetylcholine receptor (AChR) subunits, MyHCn, MyHCe, p16 and Ki67. In addition to increases in strength and type II fiber hypertrophy, heavy resistance exercise training led to a decrease in AChR α1 and ε subunit mRNA (at eight weeks). Changes in gene expression levels of the α1 and ε AChR subunits with eight weeks of heavy resistance exercise supports the role of this type of exercise in targeting stability of the neuromuscular junction. The number of fibers positive for NCAM, nestin, and MyHCn was not affected, suggesting that a longer timeframe is needed for adaptations to manifest at the protein level.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Mette F Flindt Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen NV, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
9
|
Irazoki A, Martinez‐Vicente M, Aparicio P, Aris C, Alibakhshi E, Rubio‐Valera M, Castellanos J, Lores L, Palacín M, Gumà A, Zorzano A, Sebastián D. Coordination of mitochondrial and lysosomal homeostasis mitigates inflammation and muscle atrophy during aging. Aging Cell 2022; 21:e13583. [PMID: 35263007 PMCID: PMC9009131 DOI: 10.1111/acel.13583] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia is one of the main factors contributing to the disability of aged people. Among the possible molecular determinants of sarcopenia, increasing evidences suggest that chronic inflammation contributes to its development. However, a key unresolved question is the nature of the factors that drive inflammation during aging and that participate in the development of sarcopenia. In this regard, mitochondrial dysfunction and alterations in mitophagy induce inflammatory responses in a wide range of cells and tissues. However, whether accumulation of damaged mitochondria (MIT) in muscle could trigger inflammation in the context of aging is still unknown. Here, we demonstrate that BCL2 interacting protein 3 (BNIP3) plays a key role in the control of mitochondrial and lysosomal homeostasis, and mitigates muscle inflammation and atrophy during aging. We show that muscle BNIP3 expression increases during aging in mice and in some humans. BNIP3 deficiency alters mitochondrial function, decreases mitophagic flux and, surprisingly, induces lysosomal dysfunction, leading to an upregulation of Toll‐like receptor 9 (TLR9)‐dependent inflammation and activation of the NLRP3 (nucleotide‐binding oligomerization domain (NOD)‐, leucine‐rich repeat (LRR)‐, and pyrin domain‐containing protein 3) inflammasome in muscle cells and mouse muscle. Importantly, downregulation of muscle BNIP3 in aged mice exacerbates inflammation and muscle atrophy, and high BNIP3 expression in aged human subjects associates with a low inflammatory profile, suggesting a protective role for BNIP3 against age‐induced muscle inflammation in mice and humans. Taken together, our data allow us to propose a new adaptive mechanism involving the mitophagy protein BNIP3, which links mitochondrial and lysosomal homeostasis with inflammation and is key to maintaining muscle health during aging.
Collapse
Affiliation(s)
- Andrea Irazoki
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - Marta Martinez‐Vicente
- Neurodegenerative Diseases Research Group Vall d’Hebron Research Institute‐Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Barcelona Spain
| | - Pilar Aparicio
- Department of Orthopedic Surgery and Traumatology Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Cecilia Aris
- Department of Family and Community Medicine Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Esmaeil Alibakhshi
- Pneumology Department Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
- Physical Medicine and Rehabilitation Department Clinical Research Development Unite Baqyiatallah Hospital, Faculty of Medicine Baqyiatallah University of Medical Science Tehran Iran
- Quantitative MR Imaging and Spectroscopy Group Research Center for Molecular and Cellular Imaging Advanced Medical Technologies and Equipment Institute Tehran University of Medical Science Tehran Iran
| | - Maria Rubio‐Valera
- Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
- The Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP) Madrid Spain
| | - Juan Castellanos
- Department of Orthopedic Surgery and Traumatology Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Luis Lores
- Pneumology Department Hospital General Parc Sanitari Sant Joan de Déu Sant Boi de Llobregat, Barcelona Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- CIBER de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Anna Gumà
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
- Institute of Biomedicine of the University of Barcelona (IBUB) Barcelona Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona) The Barcelona Institute of Science and Technology Barcelona Spain
- Departament de Bioquímica i Biomedicina Molecular Facultat de Biologia Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Barcelona Spain
| |
Collapse
|
10
|
Deschenes MR, Flannery R, Hawbaker A, Patek L, Mifsud M. Adaptive Remodeling of the Neuromuscular Junction with Aging. Cells 2022; 11:cells11071150. [PMID: 35406714 PMCID: PMC8997609 DOI: 10.3390/cells11071150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with gradual degeneration, in mass and function, of the neuromuscular system. This process, referred to as “sarcopenia”, is considered a disease by itself, and it has been linked to a number of other serious maladies such as type II diabetes, osteoporosis, arthritis, cardiovascular disease, and even dementia. While the molecular causes of sarcopenia remain to be fully elucidated, recent findings have implicated the neuromuscular junction (NMJ) as being an important locus in the development and progression of that malady. This synapse, which connects motor neurons to the muscle fibers that they innervate, has been found to degenerate with age, contributing both to senescent-related declines in muscle mass and function. The NMJ also shows plasticity in response to a number of neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) and Lambert-Eaton myasthenic syndrome (LEMS). Here, the structural and functional degradation of the NMJ associated with aging and disease is described, along with the measures that might be taken to effectively mitigate, if not fully prevent, that degeneration.
Collapse
|
11
|
Soendenbroe C, Dahl CL, Meulengracht C, Tamáš M, Svensson RB, Schjerling P, Kjaer M, Andersen JL, Mackey AL. Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exercise. J Physiol 2022; 600:1969-1989. [PMID: 35229299 PMCID: PMC9315046 DOI: 10.1113/jp282677] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age‐matched sedentary (SED) and young subjects. Lean body mass and maximal voluntary contraction were assessed, and a strength training bout was performed. From muscle biopsies, tissue and primary myogenic cell cultures were analysed by immunofluorescence and RT‐qPCR to assess myofibre denervation and satellite cell quantity and function. LLEX demonstrated superior muscle function under challenged conditions. When compared with SED, the muscle of LLEX was found to contain a greater content of satellite cells associated with type II myofibres specifically, along with higher mRNA levels of the beta and gamma acetylcholine receptors (AChR). No difference was observed between LLEX and SED for the proportion of denervated fibres or satellite cell function, as assessed in vitro by myogenic cell differentiation and fusion index assays. When compared with inactive counterparts, the skeletal muscle of lifelong exercisers is characterised by greater fatigue resistance under challenged conditions in vivo, together with a more youthful tissue satellite cell and AChR profile. Our data suggest a little recreational level exercise goes a long way in protecting against the emergence of classic phenotypic traits associated with the aged muscle. Key points The detrimental effects of ageing can be partially offset by lifelong self‐organized recreational exercise, as evidence by preserved type II myofibre‐associated satellite cells, a beneficial muscle innervation status and greater fatigue resistance under challenged conditions. Satellite cell function (in vitro), muscle fibre size and muscle fibre denervation determined by immunofluorescence were not affected by recreational exercise. Individuals that are recreationally active are far more abundant than master athletes, which sharply increases the translational perspective of the present study. Future studies should further investigate recreational activity in relation to muscle health, while also including female participants.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Christopher L Dahl
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Christopher Meulengracht
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Michal Tamáš
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark
| | - Rene B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Jesper L Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Building 8, Nielsine Nielsens vej 11, Copenhagen, NV, 2400, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark.,Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, 2200, Denmark
| |
Collapse
|
12
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
13
|
Tsitkanou S, Della Gatta PA, Abbott G, Wallace MA, Lindsay A, Gerlinger-Romero F, Walker AK, Foletta VC, Russell AP. miR-23a suppression accelerates functional decline in the rNLS8 mouse model of TDP-43 proteinopathy. Neurobiol Dis 2021; 162:105559. [PMID: 34774794 DOI: 10.1016/j.nbd.2021.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle dysfunction may contribute to the progression and severity of amyotrophic lateral sclerosis (ALS). In the present study, we characterized the skeletal muscle pathophysiology in an inducible transgenic mouse model (rNLS8) that develops a TAR-DNA binding protein (TDP-43) proteinopathy and ALS-like neuropathology and disease progression; representative of >90% of all familial and sporadic ALS cases. As we previously observed elevated levels of miR-23a in skeletal muscle of patients with familial and sporadic ALS, we also investigated the effect of miR-23a suppression on skeletal muscle pathophysiology and disease severity in rNLS8 mice. Five weeks after disease onset TDP-43 protein accumulation was observed in tibialis anterior (TA), quadriceps (QUAD) and diaphragm muscle lysates and associated with skeletal muscle atrophy. In the TA muscle TDP-43 was detected in muscle fibres that appeared atrophied and angular in appearance and that also contained β-amyloid aggregates. These fibres were also positive for neural cell adhesion molecule (NCAM), but not embryonic myosin heavy chain (eMHC), indicating TDP-43/ β-amyloid localization in denervated muscle fibres. There was an upregulation of genes associated with myogenesis and NMJ degeneration and a decrease in the MURF1 atrophy-related protein in skeletal muscle. Suppression of miR-23a impaired rotarod performance and grip strength and accelerated body weight loss during early stages of disease progression. This was associated with increased AchRα mRNA expression and decreased protein levels of PGC-1α. The TDP-43 proteinopathy-induced impairment of whole body and skeletal muscle functional performance is associated with muscle wasting and elevated myogenic and NMJ stress markers. Suppressing miR-23a in the rNLS8 mouse model of ALS contributes to an early acceleration of disease progression as measured by decline in motor function.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Marita A Wallace
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Frederico Gerlinger-Romero
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
14
|
Therapeutic efficacy of new botulinum toxin identified in CCUG 7968 strain. Appl Microbiol Biotechnol 2021; 105:8727-8737. [PMID: 34716460 DOI: 10.1007/s00253-021-11640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 10/19/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) induces muscle atrophy by cleaving synaptosomal-associated protein 25. Thus, BoNT/A has been actively utilized for the treatment of masseter and gastrocnemius hypertrophy. In this study, INI101 toxin was newly identified from the CCUG 7968 strain, and its therapeutic efficacy was evaluated both in vitro and in vivo. The INI101 toxin showed identical genetic sequence, amino acid sequence, and protein subunit composition to BoNT/A produced from strain Hall A. Electromyography (EMG), and immunofluorescence staining demonstrated that INI101 (at 2 ~ 8 U/rat) effectively blocked the neuromuscular junction with no toxicity in a rat model. The EMG results showed INI101 toxin-induced weight loss and volume reduction of the gastrocnemius, similar to the effects of Botox® (BTX). Histological and immunofluorescence staining was consistent with this EMG result, showing that INI101 toxin caused muscle fiber reduction in the gastrocnemius. Notably, INI101 toxin diffused less into adjacent muscle tissue than BTX, indicating that INI101 toxin may reduce potential side effects due to diffusion into normal tissues. INI101 toxin isolated from the novel strain CCUG 7968 is a newly identified meaningful biopharmaceutical comparable to the conventional BoNT/A in the medical field. KEY POINTS: • Botulinum neurotoxin type A (BoNT/A, INI101) was identified from the CCUG 7968 strain. • INI101 toxin showed similar safety and therapeutic efficacy comparable to conventional BoNT/A both in vitro and in vivo. • INI101 toxin is a meaningful biopharmaceutical comparable to the conventional BoNT/A in the medical field.
Collapse
|
15
|
Lagerwaard B, Nieuwenhuizen AG, Bunschoten A, de Boer VC, Keijer J. Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. J Cachexia Sarcopenia Muscle 2021; 12:1214-1231. [PMID: 34219410 PMCID: PMC8517362 DOI: 10.1002/jcsm.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Due to the interaction between skeletal muscle ageing and lifestyle factors, it is often challenging to attribute the decline in muscle mass and quality to either changes in lifestyle or to advancing age itself. Because many of the physiological factors affecting muscle mass and quality are modulated by physical activity and physical activity declines with age, the aim of this study is to better understand the effects of early ageing on muscle function by comparing a population of healthy older and young males with similar physical activity patterns. METHODS Eighteen older (69 ± 2.0 years) and 20 young (22 ± 2.0 years) males were recruited based on similar self-reported physical activity, which was verified using accelerometry measurements. Gene expression profiles of vastus lateralis biopsies obtained by RNA sequencing were compared, and key results were validated using quantitative polymerase chain reaction and western blot. RESULTS Total physical activity energy expenditure was similar between the young and old group (404 ± 215 vs. 411 ± 189 kcal/day, P = 0.11). Three thousand seven hundred ninety-seven differentially expressed coding genes (DEGs) were identified (adjusted P-value cut-off of <0.05), of which 1891 were higher and 1906 were lower expressed in the older muscle. The matrisome, innervation and inflammation were the main upregulated processes, and oxidative metabolism was the main downregulated process in old compared with young muscle. Lower protein levels of mitochondrial transcription factor A (TFAM, P = 0.030) and mitochondrial respiratory Complexes IV and II (P = 0.011 and P = 0.0009, respectively) were observed, whereas a trend was observed for Complex I (P = 0.062), in older compared with young muscle. Protein expression of Complexes I and IV was significantly correlated to mitochondrial capacity in the vastus lateralis as measured in vivo (P = 0.017, R2 = 0.42 and P = 0.030, R2 = 0.36). A trend for higher muscle-specific receptor kinase (MUSK) protein levels in the older group was observed (P = 0.08). CONCLUSIONS There are clear differences in the transcriptome signatures of the vastus lateralis muscle of healthy older and young males with similar physical activity levels, including significant differences at the protein level. By disentangling physical activity and ageing, we appoint early skeletal muscle ageing processes that occur despite similar physical activity. Improved understanding of these processes will be key to design targeted anti-ageing therapies.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
- TI Food and NutritionWageningenThe Netherlands
| | - Arie G. Nieuwenhuizen
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Annelies Bunschoten
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Vincent C.J. de Boer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
16
|
Jarmusch S, Baber L, Bidlingmaier M, Ferrari U, Hofmeister F, Hintze S, Mehaffey S, Meinke P, Neuerburg C, Schoser B, Tanganelli F, Drey M. Influence of IGF-I serum concentration on muscular regeneration capacity in patients with sarcopenia. BMC Musculoskelet Disord 2021; 22:807. [PMID: 34544407 PMCID: PMC8454138 DOI: 10.1186/s12891-021-04699-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/10/2021] [Indexed: 02/01/2023] Open
Abstract
Background Previous research has described a neuroprotective effect of IGF-I, supporting neuronal survival, axon growth and proliferation of muscle cells. Therefore, the association between IGF-I concentration, muscle histology and electrophysiological markers in a cohort of patients with sarcopenia dares investigation. Methods Measurement of serum concentrations of IGF-I and binding partners, electromyographic measurements with the MUNIX (Motor Unit Number Index) method and muscle biopsies were performed in 31 patients with acute hip fracture older age 60 years. Molecular markers for denervation (neural cell adhesion molecule NCAM) and proliferation markers (Ki67) were assessed by immunofluorescence staining of muscle biopsy tissue. Skeletal muscle mass by bioelectrical impedance analysis and hand-grip strength were measured to assess sarcopenia status according to EWGSOP2 criteria. Results Thirty-one patients (20 women) with a mean age of 80.6 ± 7.4 years were included. Concentrations of IGF-I and its binding partners were significantly associated with sarcopenia (ß = − 0.360; p = 0.047) and MUNIX (ß = 0.512; p = 0.005). Further, expression of NCAM (ß = 0.380; p = 0.039) and Ki67 (ß = 0.424; p = 0.022) showed significant associations to IGF-I concentrations. Conclusions The findings suggest a pathogenetic role of IGF-I in sarcopenia based on muscle denervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04699-3.
Collapse
Affiliation(s)
- Stefanie Jarmusch
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Lisa Baber
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Martin Bidlingmaier
- Department of Medicine IV, Endocrinological Laboratory, University Hospital of LMU Munich, Munich, Germany
| | - Uta Ferrari
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Fabian Hofmeister
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Stefan Mehaffey
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital of LMU Munich, Munich, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital of LMU Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Fabiana Tanganelli
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Michael Drey
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Pereira JD, DuBreuil DM, Devlin AC, Held A, Sapir Y, Berezovski E, Hawrot J, Dorfman K, Chander V, Wainger BJ. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat Commun 2021; 12:4744. [PMID: 34362895 PMCID: PMC8346474 DOI: 10.1038/s41467-021-24776-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Human induced pluripotent stem cells (iPSC) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from multiple human iPSC lines generated from individuals with ALS and isogenic lines edited to harbor familial ALS mutations show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable to understand the pathophysiological mechanisms of ALS.
Collapse
Affiliation(s)
- João D Pereira
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M DuBreuil
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna-Claire Devlin
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yechiam Sapir
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene Berezovski
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Hawrot
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine Dorfman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vignesh Chander
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
18
|
Pratt J, De Vito G, Narici M, Boreham C. Neuromuscular Junction Aging: A Role for Biomarkers and Exercise. J Gerontol A Biol Sci Med Sci 2021; 76:576-585. [PMID: 32832976 DOI: 10.1093/gerona/glaa207] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related skeletal muscle degradation known as "sarcopenia" exerts considerable strain on public health systems globally. While the pathogenesis of such atrophy is undoubtedly multifactorial, disruption at the neuromuscular junction (NMJ) has recently gained traction as a key explanatory factor. The NMJ, an essential communicatory link between nerve and muscle, undergoes profound changes with advancing age. Ascertaining whether such changes potentiate the onset of sarcopenia would be paramount in facilitating a timely implementation of targeted therapeutic strategies. Hence, there is a growing level of importance to further substantiate the effects of age on NMJs, in parallel with developing measures to attenuate such changes. As such, this review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations. Recent insights into the importance of key biomarkers for NMJ stability are provided, while the stimulative benefits of exercise in preserving NMJ function are demonstrated. Further elucidation of the diagnostic and prognostic relevance of biomarkers, coupled with the therapeutic benefits of regular exercise may be crucial in combating age-related NMJ and skeletal muscle degradation.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Ireland.,Genuity Science, Dublin, Ireland
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Marco Narici
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Ireland
| |
Collapse
|
19
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
20
|
Soendenbroe C, Andersen JL, Mackey AL. Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. Am J Physiol Cell Physiol 2021; 321:C317-C329. [PMID: 34161153 DOI: 10.1152/ajpcell.00174.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.
Collapse
Affiliation(s)
- Casper Soendenbroe
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Andersen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review encompasses the main novelties regarding nonimmune mechanisms implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). RECENT FINDINGS In recent years, growing data support a role for endoplasmic-reticulum (ER) stress as a propagator of muscular damage, together with the release of interferon type I and reactive oxygen species in hypoxemic muscle fibers. Other studies evaluating the relationship between autophagy and Toll-like receptors (TLRs) in IIM subtypes have shown increased TLR3 and TLR4 expression in fibers of IIM patients and colocalization with LC3, an autophagy marker, submitting autophagy as a likely player in IIM pathogenesis. Most novel evidences concern the potential role of denervation of the neuromuscular junction in IIM, possibly connected to hyperexpression of MHC-I, and trafficking of extracellular vesicles, which may represent a connection between nonimmune and immune-mediated mechanisms of muscle inflammation and damage. SUMMARY Nonimmune mechanisms contribute to the pathogenesis of IIM, likely cooperating with immune-mediated inflammation. Consistent data were released for ER stress, autophagy, mitochondrial dysfunction and hypoxia; in addition to, neuromuscular denervation and extracellular vesicles have been proposed as thoughtful links between muscle inflammation, damage and atrophy. Further understanding of nonimmune abnormalities and potential reversible pathways is needed to improve the management of IIM.
Collapse
|
23
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
24
|
Gordon T, Fu SY. Peripheral nerves preferentially regenerate in intramuscular endoneurial tubes to reinnervate denervated skeletal muscles. Exp Neurol 2021; 341:113717. [PMID: 33839142 DOI: 10.1016/j.expneurol.2021.113717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Schwann cells are essential for peripheral nerve regeneration but, over short distances in acellular nerve grafts, extracellular matrix (ECM) molecules can support growth. The ECM molecules are present also on denervated muscle surfaces where they can support nerve growth. In this study, we addressed the efficacy of the ECM molecules of denervated muscle to support nerve fiber regeneration and muscle reinnervation. In the hindlimb of Sprague-Dawley rats, the proximal stump of the transected posterior tibial nerve, was cross-sutured to the distal nerve stump (NN) of each of three denervated muscles, tibialis anterior, extensor digitorum longus, and soleus, or implanted onto the denervated muscles' surfaces (N-M), proximal or distal to the endplate zone. Recordings of muscle and motor unit (MU) isometric forces and silver/cholinesterase histochemical staining of longitudinal muscle cryosections were used to determine the numbers of reinnervated MUs and the spatial course of regenerating nerve fibers, respectively. MU numbers declined significantly after N-M (>50%) as compared to those after NN. Muscle forces were reduced despite each nerve reinnervating up to three times the normal MU muscle fiber number. Regenerating nerves 'streamed' from the N-M site either proximal or distal to endplate zones toward the denervated intramuscular endoneurial tubes, with reduced numbers reinnervating endplates. We conclude that there is preferential reinnervation through the endoneurial tube and that it is important to drive implanted nerve fibers to enter endoneurial tubes for optimal muscle reinnervation. Schwann cells play the essential role in guiding regenerating nerve fibers to reinnervate denervated muscle fibers.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| | - Susan Y Fu
- Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
25
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
26
|
Straka T, Schröder C, Roos A, Kollipara L, Sickmann A, Williams MPI, Hafner M, Khan MM, Rudolf R. Regulatory Function of Sympathetic Innervation on the Endo/Lysosomal Trafficking of Acetylcholine Receptor. Front Physiol 2021; 12:626707. [PMID: 33776791 PMCID: PMC7991846 DOI: 10.3389/fphys.2021.626707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.
Collapse
Affiliation(s)
- Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Na J, Lee E, Kim YJ, Choi MJ, Kim SY, Nam JS, Yun BJ, Kim BJ. Long-term efficacy and safety of a new botulinum toxin type A preparation in mouse gastrocnemius muscle. Toxicon 2020; 187:163-170. [PMID: 32918927 DOI: 10.1016/j.toxicon.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/09/2023]
Abstract
A new type A botulinum toxin (BoNT/A) preparation, JTM201 (NCBI chromosomal DNA ID: CP046450), has been developed, which comprises 900-kDa complexed toxin purified from Clostridium botulinum (strain: NCTC13319), but its safety and efficacy have not yet been evaluated. The purpose of this study was to evaluate the long-term efficacy and safety of JTM201 at different concentrations in comparison to another commercially available BoNT/A product, Botox® (onabotulinumtoxin A, ONA), using a mouse model. The LD50 of JTM201 was similar to that of ONA, but the intrinsic activity of JTM201 was higher than that of ONA. Functional recovery of the nerves and muscles in SKH-1 mice after administration of the two BoNT/A preparations (JTM201 and ONA) to the right gastrocnemius muscle was observed over 24 weeks. In addition, JTM201 did not induce any skin or muscle inflammatory response in 24 weeks. Paralysis induced by neurotransmitter blockade after JTM201 administration was comparable to that of ONA treatment. Both muscle weight and volume decreased in a concentration-dependent manner following JTM201 or ONA toxin injection until week 4. Reduced muscle fiber size due to atrophy and consequent fibrosis were detected following injection of JTM201 or ONA. Moreover, we assessed the extent of diffusion of JTM201 or ONA to the tibialis anterior and quadriceps femoris muscles, demonstrating limited diffusion to off-target muscles. In conclusion, JTM201 demonstrated long-term efficacy and safety equivalent to those of ONA based on compound muscle action potential, muscle volume, and histology analyses. These data suggest that JTM201 is a new BoNT/A formulation with safety and efficacy comparable to those of ONA.
Collapse
Affiliation(s)
- Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea; Department of Life Science, Sogang University, Seoul, 04107, South Korea
| | - Esther Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea; Department of Medicine, Graduate School, Chung-Ang University, Seoul, 06973, South Korea
| | - Yu-Jin Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Mi Ji Choi
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea; Department of Medicine, Graduate School, Chung-Ang University, Seoul, 06973, South Korea
| | | | | | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, 06974, South Korea; Department of Medicine, Graduate School, Chung-Ang University, Seoul, 06973, South Korea.
| |
Collapse
|
28
|
Dulac M, Leduc-Gaudet JP, Reynaud O, Ayoub MB, Guérin A, Finkelchtein M, Hussain SN, Gouspillou G. Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation. J Physiol 2020; 598:3691-3710. [PMID: 32539155 DOI: 10.1113/jp279802] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The maintenance of optimal mitochondrial content and function is critical for muscle health. Mitochondrial dynamics play key roles in mitochondrial quality control; however, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. Here we report knocking down Drp1 (a protein regulating mitochondrial fission) for 4 months in adult mouse skeletal muscle resulted in severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration, an increase in markers of impaired autophagy and increased muscle regeneration, denervation, fibrosis and oxidative stress. Our data indicate that Drp1 is crucial for the maintenance of normal mitochondrial function and that Drp1 depletion severely impairs muscle health. ABSTRACT Mitochondria play central roles in skeletal muscle physiology, including energy supply, regulation of energy-sensitive signalling pathways, reactive oxygen species production/signalling, calcium homeostasis and the regulation of apoptosis. The maintenance of optimal mitochondrial content and function is therefore critical for muscle cells. Mitochondria are now well known as highly dynamic organelles, able to change their morphology through fusion and fission processes. Solid experimental evidence indicates that mitochondrial dynamics play key roles in mitochondrial quality control, and alteration in the expression of proteins regulating mitochondrial dynamics have been reported in many conditions associated with muscle atrophy and wasting. However, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. To address this issue, we investigated the impact of Drp1 (a protein regulating mitochondrial fission) knockdown, introduced via intramuscular injection of adeno-associated virus (AAV) on adult mouse skeletal muscle. Knocking down Drp1 for 4 months resulted in very severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration and increases in markers of muscle regeneration, denervation, fibrosis, oxidative stress and impaired autophagy. Our findings indicate that Drp1 is essential for the maintenance of normal mitochondrial function and that Drp1 suppression severely impairs muscle health.
Collapse
Affiliation(s)
- Maude Dulac
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Département des Sciences Biologiques, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada.,Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Olivier Reynaud
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Département des Sciences Biologiques, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada
| | - Marie-Belle Ayoub
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Amanda Guérin
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Michel Finkelchtein
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Sabah Na Hussain
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| |
Collapse
|
29
|
Key Components of Human Myofibre Denervation and Neuromuscular Junction Stability are Modulated by Age and Exercise. Cells 2020; 9:cells9040893. [PMID: 32268508 PMCID: PMC7226801 DOI: 10.3390/cells9040893] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/26/2023] Open
Abstract
The decline in muscle mass and function with age is partly caused by a loss of muscle fibres through denervation. The purpose of this study was to investigate the potential of exercise to influence molecular targets involved in neuromuscular junction (NMJ) stability in healthy elderly individuals. Participants from two studies (one group of 12 young and 12 elderly females and another group of 25 elderly males) performed a unilateral bout of resistance exercise. Muscle biopsies were collected at 4.5 h and up to 7 days post exercise for tissue analysis and cell culture. Molecular targets related to denervation and NMJ stability were analysed by immunohistochemistry and real-time reverse transcription polymerase chain reaction. In addition to a greater presence of denervated fibres, the muscle samples and cultured myotubes from the elderly individuals displayed altered gene expression levels of acetylcholine receptor (AChR) subunits. A single bout of exercise induced general changes in AChR subunit gene expression within the biopsy sampling timeframe, suggesting a sustained plasticity of the NMJ in elderly individuals. These data support the role of exercise in maintaining NMJ stability, even in elderly inactive individuals. Furthermore, the cell culture findings suggest that the transcriptional capacity of satellite cells for AChR subunit genes is negatively affected by ageing.
Collapse
|
30
|
Lee YI. Developmental neuromuscular synapse elimination: Activity-dependence and potential downstream effector mechanisms. Neurosci Lett 2019; 718:134724. [PMID: 31877335 DOI: 10.1016/j.neulet.2019.134724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Synaptic connections initially formed during nervous system development undergo a significant transformation during nervous system maturation. Such maturation is essential for the proper architecture and function of the nervous system. Developmental synaptic transformation includes "synapse elimination," a process in which multiple immature presynaptic inputs converge at and compete for control of a common postsynaptic target. This developmental synaptic remodeling is best understood at mammalian neuromuscular junctions. It is well established that neuromuscular activity provides the impetus for the pruning of redundant motor axon inputs. Despite the dominant influence neuromuscular activity exerts on developmental synapse elimination, however, the downstream mechanisms of neuromuscular activity that affect synapse elimination remain poorly understood. Conversely, although several cellular and molecular effector mechanisms are known to impact synapse elimination, it is unclear whether they are modulated by neuromuscular activity. This review discusses how the motor neurons, synaptic glia and muscle fibers each contributes to the developmental phenomenon, and speculates how neuromuscular activity may modulate these contributions.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Boscolo Sesillo F, Wong M, Cortez A, Alperin M. Isolation of muscle stem cells from rat skeletal muscles. Stem Cell Res 2019; 43:101684. [PMID: 31931473 PMCID: PMC7357689 DOI: 10.1016/j.scr.2019.101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/15/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Muscle stem cells (MuSCs) are involved in homeostatic maintenance of skeletal muscle and play a central role in muscle regeneration in response to injury. Thus, understanding MuSC autonomous properties is of fundamental importance for studies of muscle degenerative diseases and muscle plasticity. Rat, as an animal model, has been widely used in the skeletal muscle field, however rat MuSC isolation through fluorescence-activated cell sorting has never been described. This work validates a protocol for effective MuSC isolation from rat skeletal muscles. Tibialis anterior was harvested from female rats and digested for isolation of MuSCs. Three protocols, employing different cell surface markers (CD106, CD56, and CD29), were compared for their ability to isolate a highly enriched MuSC population. Cells isolated using only CD106 as a positive marker showed high expression of Pax7, ability to progress through myogenic lineage while in culture, and complete differentiation in serum-deprived conditions. The protocol was further validated in gastrocnemius, diaphragm, and the individual components of the pelvic floor muscle complex (coccygeus, iliocaudalis, and pubocaudalis), proving to be reproducible. CD106 is an efficient marker for reliable isolation of MuSCs from a variety of rat skeletal muscles.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Michelle Wong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy Cortez
- Flow Cytometry Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marianna Alperin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Kastenschmidt JM, Ellefsen KL, Mannaa AH, Giebel JJ, Yahia R, Ayer RE, Pham P, Rios R, Vetrone SA, Mozaffar T, Villalta SA. QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology. Front Physiol 2019; 10:1416. [PMID: 31849692 PMCID: PMC6895564 DOI: 10.3389/fphys.2019.01416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber cross-sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the "patchy" distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigator-specific needs and provides novel analytical approaches for quantifying muscle morphology.
Collapse
Affiliation(s)
- Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Kyle L. Ellefsen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ali H. Mannaa
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jesse J. Giebel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rachel E. Ayer
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Sylvia A. Vetrone
- Department of Biology, Whittier College, Whittier, CA, United States
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
- Department of Orthopaedic Surgery, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
33
|
Soendenbroe C, Heisterberg MF, Schjerling P, Karlsen A, Kjaer M, Andersen JL, Mackey AL. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 2019; 60:453-463. [DOI: 10.1002/mus.26638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Casper Soendenbroe
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Mette F. Heisterberg
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery MBispebjerg Hospital Copenhagen Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
34
|
Lee YI. Differences in the constituent fiber types contribute to the intermuscular variation in the timing of the developmental synapse elimination. Sci Rep 2019; 9:8694. [PMID: 31213646 PMCID: PMC6582271 DOI: 10.1038/s41598-019-45090-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
The emergence of a mature nervous system requires a significant refinement of the synaptic connections initially formed during development. Redundant synaptic connections are removed in a process known as synapse elimination. Synapse elimination has been extensively studied at the rodent neuromuscular junction (NMJ). Although several axons initially converge onto each postsynaptic muscle fiber, all redundant inputs are removed during early postnatal development until a single motor neuron innervates each NMJ. Neuronal activity as well as synaptic glia influence the course of synapse elimination. It is, however, unclear whether target muscle fibers are more than naïve substrates in this process. I examined the influence of target myofiber contractile properties on synapse elimination. The timing of redundant input removal in muscles examined correlates strongly with their proportion of slow myofibers: muscles with more slow fibers undergo elimination more slowly. Moreover, this intermuscular difference in the timing of synapse elimination appears to result from local differences in the rate of elimination on fast versus slow myofibers. These results, therefore, imply that differences in the constituent fiber types help account for the variation in the timing of the developmental synapse elimination between muscles and show that the muscle plays a role in the process.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Biology, Texas A&M University, College Station, TX, 77843, Texas, USA.
| |
Collapse
|
35
|
Glass TJ, Kelm-Nelson CA, Russell JA, Szot JC, Lake JM, Connor NP, Ciucci MR. Laryngeal muscle biology in the Pink1-/- rat model of Parkinson disease. J Appl Physiol (1985) 2019; 126:1326-1334. [PMID: 30844333 DOI: 10.1152/japplphysiol.00557.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular pathology is found in the larynx and pharynx in humans with Parkinson disease (PD); however, it is unknown when this pathology emerges. We hypothesized that pathology occurs in early (premanifest) stages. To address this, we used the Pink1-/- rat model of PD, which shows age-dependent dopaminergic neuron loss, locomotor deficits, and deficits related to laryngeal function. We report findings in the thyroarytenoid muscle (TA) in Pink1-/- rats compared with wild-type (WT) control rats at 4 and 6 mo of age. TAs were analyzed for force production, myosin heavy chain isoform (MyHC), centrally nucleated myofibers, neural cell adhesion molecule, myofiber size, and muscle section size. Compared with WT, Pink1-/- TA had reductions in force levels at 1-Hz stimulation and 20-Hz stimulation, increases in relative levels of MyHC 2L, increases in incidence of centrally nucleated myofibers in the external division of the TA, and reductions in myofiber size of the vocalis division of the TA at 6 mo of age. Alterations of laryngeal muscle biology occur in a rat model of premanifest PD. Although these alterations are statistically significant, their functional significance remains to be determined. NEW & NOTEWORTHY Pathology of peripheral nerves and muscle has been reported in the larynx and pharynx of humans diagnosed with Parkinson disease (PD); however, it is unknown whether differences of laryngeal muscle occur at premanifest stages. This study examined the thyroarytenoid muscles of the Pink1-/- rat model of PD for differences of muscle biology compared with control rats. Thyroarytenoid muscles of Pink1-/- rats at premanifest stages show differences in multiple measures of muscle biology.
Collapse
Affiliation(s)
- Tiffany J Glass
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | | | - John A Russell
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - John C Szot
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Jacob M Lake
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| | - Michelle R Ciucci
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
36
|
Phan V, Cox D, Cipriani S, Spendiff S, Buchkremer S, O'Connor E, Horvath R, Goebel HH, Hathazi D, Lochmüller H, Straka T, Rudolf R, Weis J, Roos A. SIL1 deficiency causes degenerative changes of peripheral nerves and neuromuscular junctions in fish, mice and human. Neurobiol Dis 2018; 124:218-229. [PMID: 30468864 DOI: 10.1016/j.nbd.2018.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/21/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Marinesco-Sjögren Syndrome (MSS) is a rare neuromuscular condition caused by recessive mutations in the SIL1 gene resulting in the absence of functional SIL1 protein, a co-chaperone for the major ER chaperone, BiP. As BiP is decisive for proper protein processing, loss of SIL1 results in the accumulation of misshaped proteins. This accumulation likely damages and destroys cells in vulnerable tissues, leading to congenital cataracts, cerebellar ataxia, vacuolar myopathy and other MSS phenotypes. Whether the peripheral nervous system (PNS) is affected in MSS has not been conclusively shown. METHODS To study PNS vulnerability in MSS, intramuscular nerves fibres from MSS patients and from SIL1-deficient mice (woozy) as well as sciatic nerves and neuromuscular junctions (NMJ) from these mice have been investigated via transmission electron microscopic and immunofluorescence studies accompanied by transcript studies and unbiased proteomic profiling. In addition, PNS and NMJ integrity were analyzed via immunofluorescence studies in an MSS-zebrafish model which has been generated for that purpose. RESULTS Electron microscopy revealed morphological changes indicative of impaired autophagy and mitochondrial maintenance in distal axons and in Schwann cells. Moreover, changes of the morphology of NMJs as well as of transcripts encoding proteins important for NMJ function were detected in woozy mice. These findings were in line with a grossly abnormal structure of NMJs in SIL1-deficient zebrafish embryos. Proteome profiling of sciatic nerve specimens from woozy mice revealed altered levels of proteins implicated in neuronal maintenance suggesting the activation of compensatory mechanisms. CONCLUSION Taken together, our combined data expand the spectrum of tissues affected by SIL1-loss and suggest that impaired neuromuscular transmission might be part of MSS pathophysiology.
Collapse
Affiliation(s)
- Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Dan Cox
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Silvia Cipriani
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK; Department of Neuromotor and Biomedical Sciences, Pathology Unit, University of Bologna, Bologna, Italy.
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada.
| | - Stephan Buchkremer
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Emily O'Connor
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK. emily.o'
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | | | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Joachim Weis
- Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften, ISAS, e.V. Dortmund, 44227, Dortmund, Germany; Institute of Neuropathology, University Hospital RWTH Aachen, Aachen, 52074, Germany; Pediatric Neurology, University Childrens Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany.
| |
Collapse
|
37
|
Nardo G, Trolese MC, Verderio M, Mariani A, de Paola M, Riva N, Dina G, Panini N, Erba E, Quattrini A, Bendotti C. Counteracting roles of MHCI and CD8 + T cells in the peripheral and central nervous system of ALS SOD1 G93A mice. Mol Neurodegener 2018; 13:42. [PMID: 30092791 PMCID: PMC6085701 DOI: 10.1186/s13024-018-0271-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The major histocompatibility complex I (MHCI) is a key molecule for the interaction of mononucleated cells with CD8+T lymphocytes. We previously showed that MHCI is upregulated in the spinal cord microglia and motor axons of transgenic SOD1G93A mice. METHODS To assess the role of MHCI in the disease, we examined transgenic SOD1G93A mice crossbred with β2 microglobulin-deficient mice, which express little if any MHCI on the cell surface and are defective for CD8+ T cells. RESULTS The lack of MHCI and CD8+ T cells in the sciatic nerve affects the motor axon stability, anticipating the muscle atrophy and the disease onset. In contrast, MHCI depletion in resident microglia and the lack of CD8+ T cell infiltration in the spinal cord protect the cervical motor neurons delaying the paralysis of forelimbs and prolonging the survival of SOD1G93A mice. CONCLUSIONS We provided straightforward evidence for a dual role of MHCI in the peripheral nervous system (PNS) compared to the CNS, pointing out regional and temporal differences in the clinical responses of ALS mice. These findings offer a possible explanation for the failure of systemic immunomodulatory treatments and suggest new potential strategies to prevent the progression of ALS.
Collapse
Affiliation(s)
- Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy.
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Mattia Verderio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Alessandro Mariani
- Laboratory of Analytical Biochemistry, Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Massimiliano de Paola
- Laboratory of Analytical Biochemistry, Department of Environmental Health Sciences, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Giorgia Dina
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Nicolò Panini
- Laboratory of Cancer Pharmacology Department of Oncology, Flow Cytometry Unit, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | - Eugenio Erba
- Laboratory of Cancer Pharmacology Department of Oncology, Flow Cytometry Unit, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Department of Neurology, INSPE- San Raffaele Scientific Institute, Dibit II, Via Olgettina 48, 20132, Milan, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| |
Collapse
|
38
|
GFRA1: A Novel Molecular Target for the Prevention of Osteosarcoma Chemoresistance. Int J Mol Sci 2018; 19:ijms19041078. [PMID: 29617307 PMCID: PMC5979596 DOI: 10.3390/ijms19041078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
The glycosylphosphatidylinositol-linked GDNF (glial cell derived neurotrophic factor) receptor alpha (GFRA), a coreceptor that recognizes the GDNF family of ligands, has a crucial role in the development and maintenance of the nervous system. Of the four identified GFRA isoforms, GFRA1 specifically recognizes GDNF and is involved in the regulation of proliferation, differentiation, and migration of neuronal cells. GFRA1 has also been implicated in cancer cell progression and metastasis. Recent findings show that GFRA1 can contribute to the development of chemoresistance in osteosarcoma. GFRA1 expression was induced following treatment of osteosarcoma cells with the popular anticancer drug, cisplatin and induction of GFRA1 expression significantly suppressed apoptosis mediated by cisplatin in osteosarcoma cells. GFRA1 expression promotes autophagy by activating the SRC-AMPK signaling axis following cisplatin treatment, resulting in enhanced osteosarcoma cell survival. GFRA1-induced autophagy promoted tumor growth in mouse xenograft models, suggesting a novel function of GFRA1 in osteosarcoma chemoresistance.
Collapse
|
39
|
Kelly NA, Hammond KG, Bickel CS, Windham ST, Tuggle SC, Bamman MM. Effects of aging and Parkinson's disease on motor unit remodeling: influence of resistance exercise training. J Appl Physiol (1985) 2018; 124:888-898. [PMID: 29357501 PMCID: PMC5972459 DOI: 10.1152/japplphysiol.00563.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/06/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Aging muscle atrophy is in part a neurodegenerative process revealed by denervation/reinnervation events leading to motor unit remodeling (i.e., myofiber type grouping). However, this process and its physiological relevance are poorly understood, as is the wide-ranging heterogeneity among aging humans. Here, we attempted to address 1) the relation between myofiber type grouping and molecular regulators of neuromuscular junction (NMJ) stability; 2) the impact of motor unit remodeling on recruitment during submaximal contractions; 3) the prevalence and impact of motor unit remodeling in Parkinson's disease (PD), an age-related neurodegenerative disease; and 4) the influence of resistance exercise training (RT) on regulators of motor unit remodeling. We compared type I myofiber grouping, molecular regulators of NMJ stability, and the relative motor unit activation (MUA) requirement during a submaximal sit-to-stand task among untrained but otherwise healthy young (YA; 26 yr, n = 27) and older (OA; 66 yr, n = 91) adults and OA with PD (PD; 67 yr, n = 19). We tested the effects of RT on these outcomes in OA and PD. PD displayed more motor unit remodeling, alterations in NMJ stability regulation, and a higher relative MUA requirement than OA, suggesting PD-specific effects. The molecular and physiological outcomes tracked with the severity of type I myofiber grouping. Together these findings suggest that age-related motor unit remodeling, manifested by type I myofiber grouping, 1) reduces MUA efficiency to meet submaximal contraction demand, 2) is associated with disruptions in NMJ stability, 3) is further impacted by PD, and 4) may be improved by RT in severe cases. NEW & NOTEWORTHY Because the physiological consequences of varying amounts of myofiber type grouping are unknown, the current study aims to characterize the molecular and physiological correlates of motor unit remodeling. Furthermore, because exercise training has demonstrated neuromuscular benefits in aged humans and improved innervation status and neuromuscular junction integrity in animals, we provide an exploratory analysis of the effects of high-intensity resistance training on markers of neuromuscular degeneration in both Parkinson's disease (PD) and age-matched older adults.
Collapse
Affiliation(s)
- Neil A Kelly
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kelley G Hammond
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - C Scott Bickel
- Department of Physical Therapy, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - S Craig Tuggle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
40
|
Hendrickse P, Galinska M, Hodson-Tole E, Degens H. An evaluation of common markers of muscle denervation in denervated young-adult and old rat gastrocnemius muscle. Exp Gerontol 2018. [PMID: 29524469 DOI: 10.1016/j.exger.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large part of age-related muscle wasting is due to incomplete reinnervation of fibres that have become denervated following motoneuron loss. Neural cell adhesion molecule (NCAM) and sodium channel NaV1.5 are considered markers for denervation, but the time course of changes in their expression following denervation has never been systematically evaluated in young-adult and old muscle. To assess the time course of denervation-induced changes in their expression, the left gastrocnemius muscle in 15 young-adult (5-month) and 10 old (25-month) male Wistar rats was denervated for 1, 2 or 4 weeks, while the right muscle served as an internal control. Sections were stained for α-bungarotoxin, to visualise the neuromuscular junctions, combined with NCAM, polysialylated NCAM (PSA-NCAM) or NaV1.5. In young-adult animals, denervation induced a transient decrease in junctional and cytoplasmic NCAM expression, while in the old NCAM expression was increased after 2 weeks. Cytoplasmic PSA-NCAM was increased in both young-adult and old fibres after 2 weeks denervation with a further increase after 4 weeks in the young only. The junctional PSA-NCAM was transiently increased or decreased in the young and old muscles, respectively. NaV1.5 expression decreased after 1 and 2 weeks of denervation in NaV1.5 in young muscle fibres before returning to control levels, whereas old muscle fibres displayed a transient increase after 1 week followed by a decrease and a return to control levels after 2 and 4 weeks respectively. In conclusion, NCAM and NaV1.5 are not unequivocally elevated with denervation and consequently are not adequate markers of fibre denervation.
Collapse
Affiliation(s)
- Paul Hendrickse
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.
| | | | - Emma Hodson-Tole
- School of Healthcare Science, Manchester Metropolitan University, UK
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania.
| |
Collapse
|
41
|
Pollock N, Staunton CA, Vasilaki A, McArdle A, Jackson MJ. Denervated muscle fibers induce mitochondrial peroxide generation in neighboring innervated fibers: Role in muscle aging. Free Radic Biol Med 2017; 112:84-92. [PMID: 28739532 PMCID: PMC5636617 DOI: 10.1016/j.freeradbiomed.2017.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Disruption of neuromuscular junctions and denervation of some muscle fibers occurs in ageing skeletal muscle and contribute to loss of muscle mass and function. Aging is associated with mitochondrial dysfunction and loss of redox homeostasis potentially occurs through increased mitochondrial generation of reactive oxygen species (ROS). No specific link between increased mitochondrial ROS generation and denervation has been defined in muscle ageing. To address this, we have examined the effect of experimental denervation of all fibers, or only a proportion of the fibers, in the mouse tibialis anterior (TA) muscle on muscle mitochondrial peroxide generation. Transection of the peroneal nerve of mice caused loss of pre-synaptic axons within 1-3 days with no significant morphological changes in post-synaptic structures up to 10 days post-surgery when decreased TA mass and fiber size were apparent. Mitochondria in the denervated muscle showed increased peroxide generation by 3 days post-transection. Use of electron transport chain (ETC) substrates and inhibitors of specific pathways indicated that the ETC was unlikely to contribute to increased ROS generation, but monoamine oxidase B, NADPH oxidase and phospholipase enzymes were implicated. Transection of one of the 3 branches of the peroneal nerve caused denervation of some TA muscle fibers while others retained innervation, but increased mitochondrial peroxide generation occurred in both denervated and innervated fibers. Thus the presence of recently denervated fibers leads to increased ROS generation by mitochondria in neighboring innervated fibers providing a novel explanation for the increased mitochondrial oxidative stress and damage seen with aging in skeletal muscles.
Collapse
Affiliation(s)
- Natalie Pollock
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Caroline A Staunton
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Anne McArdle
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK
| | - Malcolm J Jackson
- MRC - Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8XL, UK.
| |
Collapse
|
42
|
The Structure of Human Neuromuscular Junctions: Some Unanswered Molecular Questions. Int J Mol Sci 2017; 18:ijms18102183. [PMID: 29048368 PMCID: PMC5666864 DOI: 10.3390/ijms18102183] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
The commands that control animal movement are transmitted from motor neurons to their target muscle cells at the neuromuscular junctions (NMJs). The NMJs contain many protein species whose role in transmission depends not only on their inherent properties, but also on how they are distributed within the complex structure of the motor nerve terminal and the postsynaptic muscle membrane. These molecules mediate evoked chemical transmitter release from the nerve and the action of that transmitter on the muscle. Human NMJs are among the smallest known and release the smallest number of transmitter "quanta". By contrast, they have the most deeply infolded postsynaptic membranes, which help to amplify transmitter action. The same structural features that distinguish human NMJs make them particularly susceptible to pathological processes. While much has been learned about the molecules which mediate transmitter release and action, little is known about the molecular processes that control the growth of the cellular and subcellular components of the NMJ so as to give rise to its mature form. A major challenge for molecular biologists is to understand the molecular basis for the development and maintenance of functionally important aspects of NMJ structure, and thereby to point to new directions for treatment of diseases in which neuromuscular transmission is impaired.
Collapse
|
43
|
Messi ML, Li T, Wang ZM, Marsh AP, Nicklas B, Delbono O. Resistance Training Enhances Skeletal Muscle Innervation Without Modifying the Number of Satellite Cells or their Myofiber Association in Obese Older Adults. J Gerontol A Biol Sci Med Sci 2015; 71:1273-80. [PMID: 26447161 DOI: 10.1093/gerona/glv176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 11/14/2022] Open
Abstract
Studies in humans and animal models provide compelling evidence for age-related skeletal muscle denervation, which may contribute to muscle fiber atrophy and loss. Skeletal muscle denervation seems relentless; however, long-term, high-intensity physical activity appears to promote muscle reinnervation. Whether 5-month resistance training (RT) enhances skeletal muscle innervation in obese older adults is unknown. This study found that neural cell-adhesion molecule, NCAM+ muscle area decreased with RT and was inversely correlated with muscle strength. NCAM1 and RUNX1 gene transcripts significantly decreased with the intervention. Type I and type II fiber grouping in the vastus lateralis did not change significantly but increases in leg press and knee extensor strength inversely correlated with type I, but not with type II, fiber grouping. RT did not modify the total number of satellite cells, their number per area, or the number associated with specific fiber subtypes or innervated/denervated fibers. Our results suggest that RT has a beneficial impact on skeletal innervation, even when started late in life by sedentary obese older adults.
Collapse
Affiliation(s)
- María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tao Li
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| | - Barbara Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine and J Paul Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
44
|
Gillon A, Sheard P. Elderly mouse skeletal muscle fibres have a diminished capacity to upregulate NCAM production in response to denervation. Biogerontology 2015; 16:811-23. [PMID: 26385499 DOI: 10.1007/s10522-015-9608-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 01/17/2023]
Abstract
Sarcopenia is a major contributor to the loss of independence and deteriorating quality of life in elderly individuals, it manifests as a decline in skeletal muscle mass and strength beyond the age of 65. Muscle fibre atrophy is a major contributor to sarcopenia and the most severely atrophic fibres are commonly found in elderly muscles to have permanently lost their motor nerve input. By contrast with elderly fibres, when fibres in young animals lose their motor input they normally mount a response to induce restoration of nerve contact, and this is mediated in part by upregulated expression of the nerve cell adhesion molecule (NCAM). Therefore, skeletal muscles appear to progressively lose their ability to become reinnervated, and here we have investigated whether this decline occurs via loss of the muscle's ability to upregulate NCAM in response to denervation. We performed partial denervation (by peripheral nerve crush) of the extensor digitorum longus muscle of the lower limb in both young and elderly mice. We used immunohistochemistry to compare relative NCAM levels at denervated and control innervated muscle fibres, focused on measurements at neuromuscular junctional, extra-junctional and cytoplasmic locations. Muscle fibres in young animals responded to denervation with significant (32.9%) increases in unpolysialylated NCAM at extra-junctional locations, but with no change in polysialylated NCAM. The same partial denervation protocol applied to elderly animals resulted in no significant change in either polysialylated or unpolysialylated NCAM at junctional, extra-junctional or cytoplasmic locations, therefore muscle fibres in young mice upregulated NCAM in response to denervation but fibres in elderly mice failed to do so. Elevation of NCAM levels is likely to be an important component of the muscle fibre's ability to attract or reattract a neural input, so we conclude that the presence of increasing numbers of long-term denervated fibres in elderly muscles is due, at least in part, to the fibre's declining ability to mount a normal response to loss of motor input.
Collapse
Affiliation(s)
- Ashley Gillon
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | - Philip Sheard
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
45
|
Moloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 2014; 8:252. [PMID: 25177267 PMCID: PMC4132373 DOI: 10.3389/fnins.2014.00252] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
| | - Fred de Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Department of Neurosurgery, Leiden University Medical CentreLeiden, Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
46
|
Age-dependent changes cooperatively impact skeletal muscle regeneration after compartment syndrome injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2225-36. [PMID: 24909508 DOI: 10.1016/j.ajpath.2014.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Declining skeletal muscle function, due to injury and aging (sarcopenia), results in a significantly decreased quality of life and is a major cause of disability in the United States. Studies examining recovery from muscle injury in models of older animals principally used insults that primarily affect only the myofibers without affecting the muscle tissue microenvironment. This type of injury does not adequately represent the full extent of tissue damage observed in older humans, which encompasses injury not only to the muscle fibers, but also to the surrounding tissue components, such as the vasculature and nerves. Previously, we described a novel rat model of compression-induced muscle injury that results in multicomponent injury to the muscle and adequately mimics compartment syndrome injuries seen in patients. Herein, we characterized tissue regeneration in young, adult, and aged rats after compartment syndrome injury. We observed significant differences between the regeneration process in the different aged rats that involved muscle function, tissue anatomical features, neovascularization, and innervation. Compared to young rats, adult rats had delayed functional recovery, whereas the aged rats were deficient in their regenerative capacity. Age-dependent changes in both the ability to restore the contractile apparatus and myogenesis are important, and must be taken into consideration when designing therapies for the treatment of muscle injury.
Collapse
|
47
|
Chipman PH, Zhang Y, Rafuse VF. A stem-cell based bioassay to critically assess the pathology of dysfunctional neuromuscular junctions. PLoS One 2014; 9:e91643. [PMID: 24626225 PMCID: PMC3953473 DOI: 10.1371/journal.pone.0091643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/13/2014] [Indexed: 02/01/2023] Open
Abstract
Pluripotent stem cells can be directed to differentiate into motor neurons and assessed for functionality in vitro. An emerging application of this technique is to model genetically inherited diseases in differentiated motor neurons and to screen for new therapeutic targets. The neuromuscular junction (NMJ) is essential to the functionality of motor neurons and its dysfunction is a primary hallmark of motor neuron disease. However, mature NMJs that possess the functional and morphological characteristics of those formed in vivo have so far not been obtained in vitro. Here we describe the generation and analysis of mature NMJs formed between embryonic stem cell-derived motor neurons (ESCMNs) and primary myotubes. We compared the formation and maturation of NMJs generated by wild-type (NCAM+/+) ESCMNs to those generated by neural cell adhesion molecule null (NCAM-/-) ESCMNs in order to definitively test the sensitivity of this assay to identify synaptic pathology. We find that co-cultures using NCAM-/- ESCMNs replicate key in vivo NCAM-/- phenotypes and reveal that NCAM influences neuromuscular synaptogenesis by controlling the mode of synaptic vesicle endocytosis. Further, we could improve synapse formation and function in NCAM-/- co-cultures by chronic treatment with nifedipine, which blocks an immature synaptic vesicle recycling pathway. Together, our results demonstrate that this ESCMN/myofiber co-culture system is a highly sensitive bioassay for examining molecules postulated to regulate synaptic function and for screening therapeutics that will improve the function of compromised NMJs.
Collapse
Affiliation(s)
- Peter H. Chipman
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ying Zhang
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Life Science Research Centre, Halifax, Nova Scotia, Canada
| | - Victor F. Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Life Science Research Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
48
|
Neuropathy of the suprascapular nerve and massive rotator cuff tears: a prospective electromyographic study. J Shoulder Elbow Surg 2014; 23:28-34. [PMID: 24090983 DOI: 10.1016/j.jse.2013.07.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/28/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND An association between massive rotator cuff tear (RCT) and suprascapular nerve neuropathy has previously been suggested. The anatomic course of the suprascapular nerve is relatively fixed along its passage. Thus, injury to the nerve by trauma, compression, and iatrogenic reasons is well documented. However, the association between retraction of the RCT and development of neuropathy of the suprascapular nerve remains unclear. We aimed to prospectively evaluate the suprascapular nerve for preoperative neurodiagnostic abnormalities in shoulders with massive RCT. METHODS AND MATERIALS A prospective study was performed in 2 centers. Fifty patients with retracted tears of both supraspinatus and infraspinatus were evaluated. This was confirmed with preoperative computed tomography arthrography, and the fatty infiltration of the affected muscles was graded. Forty-nine preoperative electromyograms were performed in a standardized fashion and the results analyzed twice. RESULTS Of 49 shoulders, 6 (12%) had neurologic lesions noted on electromyography: 1 suprascapular nerve neuropathy, 1 radicular lesion of the C5 root, 1 affected electromyogram in the context of a previous stroke, and 3 cases of partial axillary nerve palsy with a history of shoulder dislocation. No difference or diminution of the latency or amplitude of the electromyographic curve was found in the cases that presented significant fatty infiltration. CONCLUSION This study did not detect a suprascapular lesion in the majority of cases of massive RCT. With a low association of neuropathy with massive RCT, we find no evidence to support the routine practice of suprascapular nerve release when RCT repair is performed.
Collapse
|
49
|
Ramirez-Castaneda J, Jankovic J, Comella C, Dashtipour K, Fernandez HH, Mari Z. Diffusion, spread, and migration of botulinum toxin. Mov Disord 2013; 28:1775-83. [PMID: 23868503 DOI: 10.1002/mds.25582] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/17/2013] [Accepted: 05/23/2013] [Indexed: 01/17/2023] Open
Abstract
Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context.
Collapse
Affiliation(s)
- Juan Ramirez-Castaneda
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
50
|
Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RAM, Thijssen DHJ, Hopman MTE, Van Loon LJC. Reduced satellite cell numbers with spinal cord injury and aging in humans. Med Sci Sports Exerc 2013; 44:2322-30. [PMID: 22776875 DOI: 10.1249/mss.0b013e3182667c2e] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Both sarcopenia and spinal cord injury (SCI) are characterized by the loss of skeletal muscle mass and function. Despite obvious similarities in atrophy between both models, differences in muscle fiber size and satellite cell content may exist on a muscle fiber type-specific level. METHODS In the present study, we compared skeletal muscle fiber characteristics between wheelchair-dependent young males with SCI (n = 8, 32 ± 4 yr), healthy elderly males (n = 8, 75 ± 2 yr), and young controls (n = 8, 31 ± 3 yr). Muscle biopsies were collected to determine skeletal muscle fiber type composition, fiber size, and satellite cell content. RESULTS Severe atrophy and a shift toward approximately 90% Type II muscle fibers were observed in muscle obtained from males with SCI. Muscle fiber size was substantially smaller in both the SCI (Types I and II fibers) and elderly subjects (Type II fibers) when compared with the controls. Satellite cell content was substantially lower in the wheelchair-dependent SCI subjects in both the Types I and II muscle fibers (0.049 ± 0.019 and 0.050 ± 0.005 satellite cells per fiber, respectively) when compared with the young controls (0.104 ± 0.011 and 0.117 ± 0.009 satellite cells per fiber, respectively). In the elderly, the number of satellite cells was lower in the Type II muscle fibers only (0.042 ± 0.005 vs 0.117 ± 0.009 satellite cells per fiber in the elderly vs young controls, respectively). CONCLUSION This is the first study to show that muscle fiber atrophy as observed with SCI (Types I and II fibers) and aging (Type II fibers) is accompanied by a muscle fiber type-specific reduction in satellite cell content in humans.
Collapse
Affiliation(s)
- Lex B Verdijk
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|