1
|
Helliwell JR. Observations on Laue diffraction within synchrotron radiation and neutron macromolecular crystallography research and developments. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:061301. [PMID: 38107246 PMCID: PMC10725304 DOI: 10.1063/4.0000225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
A seminal contribution in the domain of physiologically relevant biological structure and function determination was by Keith Moffat, of Cornell and latterly of the University of Chicago proposing that synchrotrons should offer the option of a Laue method data collection mode. I enthusiastically joined in supporting this initiative. This proposal needed detailed methods development though; theoretical, experimental and software development. This work was added to the broad research and development program of synchrotron radiation at the UK's SRS. This whole program led to knowledge transfer from the UK's SRS to the ESRF as well as for neutron Laue protein crystallography to the reactor spallation sources and later to spallation neutron sources.
Collapse
Affiliation(s)
- John R. Helliwell
- School of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Helliwell JR. Respect the synchrotron beam strength: how to model it, measure it and mitigate it for various scientific fields. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1275-1277. [PMID: 34475276 PMCID: PMC8415337 DOI: 10.1107/s1600577521008328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Extremely bright synchrotron radiation sources give extremely strong intensities at the sample. Lawrence Bright et al. (2021) [J. Synchrotron Rad. (2021), 28 , 1377–1385] dive into the details for materials science. I offer a Commentary including a historical context.
Collapse
Affiliation(s)
- John R. Helliwell
- Science and Engineering Research Council (now Science and Technology Facilities Council), Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| |
Collapse
|
3
|
Clabbers MTB, Abrahams JP. Electron diffraction and three-dimensional crystallography for structural biology. CRYSTALLOGR REV 2018. [DOI: 10.1080/0889311x.2018.1446427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Max T. B. Clabbers
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Jan Pieter Abrahams
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
- Department of Biology and Chemistry, Paul Scherrer Institute (PSI), Villigen PSI, Switzerland
- Institute of Biology Leiden (IBL), Leiden, Netherlands
| |
Collapse
|
4
|
Pawate AS, Šrajer V, Schieferstein J, Guha S, Henning R, Kosheleva I, Schmidt M, Ren Z, Kenis PJA, Perry SL. Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr F Struct Biol Commun 2015; 71:823-30. [PMID: 26144226 PMCID: PMC4498702 DOI: 10.1107/s2053230x15009061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/11/2015] [Indexed: 11/10/2022] Open
Abstract
Serial methods for crystallography have the potential to enable dynamic structural studies of protein targets that have been resistant to single-crystal strategies. The use of serial data-collection strategies can circumvent challenges associated with radiation damage and repeated reaction initiation. This work utilizes a microfluidic crystallization platform for the serial time-resolved Laue diffraction analysis of macroscopic crystals of photoactive yellow protein (PYP). Reaction initiation was achieved via pulsed laser illumination, and the resultant electron-density difference maps clearly depict the expected pR(1)/pR(E46Q) and pR(2)/pR(CW) states at 10 µs and the pB1 intermediate at 1 ms. The strategies presented here have tremendous potential for extension to chemical triggering methods for reaction initiation and for extension to dynamic, multivariable analyses.
Collapse
Affiliation(s)
- Ashtamurthy S. Pawate
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, Illinois, USA
| | - Jeremy Schieferstein
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sudipto Guha
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, Illinois, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, Illinois, USA
| | - Marius Schmidt
- Department of Physics, The University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Zhong Ren
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, Illinois, USA
- Renz Research Inc., Westmont, Illinois, USA
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sarah L. Perry
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Perry SL, Guha S, Pawate AS, Henning R, Kosheleva I, Srajer V, Kenis PJA, Ren Z. In situ serial Laue diffraction on a microfluidic crystallization device. J Appl Crystallogr 2014; 47:1975-1982. [PMID: 25484843 PMCID: PMC4248567 DOI: 10.1107/s1600576714023322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
Renewed interest in room-temperature diffraction has been prompted by the desire to observe structural dynamics of proteins as they function. Serial crystallography, an experimental strategy that aggregates small pieces of data from a large uniform pool of crystals, has been demonstrated at synchrotrons and X-ray free-electron lasers. This work utilizes a microfluidic crystallization platform for serial Laue diffraction from macroscopic crystals and proposes that a collection of small slices of Laue data from many individual crystals is a realistic solution to the difficulties in dynamic studies of irreversible biochemical reactions.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA, USA
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Sudipto Guha
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Ashtamurthy S. Pawate
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL, USA
| | - Vukica Srajer
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL, USA
| | - Paul J. A. Kenis
- Department of Chemical and Biomolecular Engineering, The University of Illinois at Urbana–Champaign, Urbana, IL, USA
| | - Zhong Ren
- Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL, USA
- Renz Research Inc., Westmont, IL, USA
| |
Collapse
|
6
|
Alkire RW, Rotella FJ, Duke NEC. Testing commercial protein crystallography sample mounting loops for movement in a cold-stream. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813003348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The purpose of this study was to determine the relative stiffness of the more common sample mounting loops used in protein crystallography experiments and to see if they were moving under the influence of the nitrogen cold-stream gas. The `stress test' involved mounting a silicon single crystal onto a loop and seeing how reproducibly a single reflection could be measured at low temperature using a photodiode detector. Once a general ranking of loop stiffness was obtained, crystals of tetragonal lysozyme were mounted in these loops to investigate if data quality was being degraded as a result of cold-stream gas-induced loop motion. Sample motion was assessed using a differential measurement based on data sets taken at two different κ orientations on the same sample. Four of the eight sample mounting loops tested showed evidence of motion in at least one lysozyme data set using typical sample sizes and normal data collection conditions. These results suggest that loop thickness is key to increased stiffness, and factors such as loop design and frozen solvent can also play an important role.
Collapse
|
7
|
Affiliation(s)
- John R Helliwell
- School of Chemistry, Manchester University, Manchester M13 9PL, UK.
| |
Collapse
|
8
|
Helliwell JR. The evolution of synchrotron radiation and the growth of its importance in crystallography. CRYSTALLOGR REV 2012. [DOI: 10.1080/0889311x.2011.631919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
|
10
|
Time-dependent analysis of K2PtBr6binding to lysozyme studied by protein powder and single crystal X-ray analysis. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/zkri.2010.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Duke EMH, Johnson LN. Macromolecular crystallography at synchrotron radiation sources: current status and future developments. Proc Math Phys Eng Sci 2010. [DOI: 10.1098/rspa.2010.0448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X-ray diffraction with synchrotron radiation (SR) has revealed the atomic structures of numerous biological macromolecules including proteins and protein complexes, nucleic acids and their protein complexes, viruses, membrane proteins and drug targets. The bright SR X-ray beam with its small divergence has made the study of weakly diffracting crystals of large biological molecules possible. The ability to tune the wavelength of the SR beam to the absorption edge of certain elements has allowed anomalous scattering to be exploited for phase determination. We review the developments at synchrotron sources and beamlines from the early days to the present time, and discuss the significance of the results in providing a deeper understanding of the biological function, the design of new therapeutic molecules and time-resolved studies of dynamic events using pump–probe techniques. Radiation damage, a problem with bright X-ray sources, has been partially alleviated by collecting data at low temperature (100 K) but work is ongoing. In the most recent development, free electron laser sources can offer a peak brightness of hard X-rays approximately 10
8
times brighter than that achieved at SR sources. We describe briefly how early experiments at FLASH and Linear Coherent Light Source have shown exciting possibilities for the future.
Collapse
Affiliation(s)
- E. M. H. Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - L. N. Johnson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
12
|
Cornaby S, Szebenyi DME, Smilgies DM, Schuller DJ, Gillilan R, Hao Q, Bilderback DH. Feasibility of one-shot-per-crystal structure determination using Laue diffraction. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:2-11. [PMID: 20057043 PMCID: PMC2803125 DOI: 10.1107/s0907444909037731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/17/2009] [Indexed: 11/10/2022]
Abstract
Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a 'pink' beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20-30 microm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.
Collapse
Affiliation(s)
- Sterling Cornaby
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| | - Doletha M. E. Szebenyi
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Detlef-M. Smilgies
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| | - David J. Schuller
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Richard Gillilan
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Quan Hao
- MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York, USA
| | - Donald H. Bilderback
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
- CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
|
14
|
Riekel C, Burghammer M, Schertler G. Protein crystallography microdiffraction. Curr Opin Struct Biol 2006; 15:556-62. [PMID: 16168633 DOI: 10.1016/j.sbi.2005.08.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 11/15/2022]
Abstract
Protein microdiffraction using monochromatic beams is becoming a routine tool at third-generation synchrotron radiation sources. Beam sizes have reached the scale of about 5 microm, with illuminated crystal volumes of approximately 500 microm3, as shown for the case of bovine rhodopsin, which was refined to a resolution of 2.6 A. Progress in X-ray optical systems and instrumentation will enable the method to be extended to smaller beams and smaller crystal volumes.
Collapse
Affiliation(s)
- Christian Riekel
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France.
| | | | | |
Collapse
|
15
|
Cianci M, Helliwell JR, Helliwell M, Kaucic V, Logar NZ, Mali G, Tusar NN. Anomalous scattering in structural chemistry and biology¶. CRYSTALLOGR REV 2005. [DOI: 10.1080/08893110500421268] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Meitzner G, Gardea-Torresdey J, Parsons J, Scott S, Deguns E. The effect of cryogenic sample cooling on X-ray absorption spectra. Microchem J 2005. [DOI: 10.1016/j.microc.2005.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Parthasarathy S, Eaazhisai K, Balaram H, Balaram P, Murthy MRN. Structure of Plasmodium falciparum triose-phosphate isomerase-2-phosphoglycerate complex at 1.1-A resolution. J Biol Chem 2003; 278:52461-70. [PMID: 14563846 DOI: 10.1074/jbc.m308525200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triose-phosphate isomerase, a key enzyme of the glycolytic pathway, catalyzes the isomerization of dihydroxy acetone phosphate and glyceraldehyde 3-phosphate. In this communication we report the crystal structure of Plasmodium falciparum triose-phosphate isomerase complexed to the inhibitor 2-phosphoglycerate at 1.1-A resolution. The crystallographic asymmetric unit contains a dimeric molecule. The inhibitor bound to one of the subunits in which the flexible catalytic loop 6 is in the open conformation has been cleaved into two fragments presumably due to radiation damage. The cleavage products have been tentatively identified as 2-oxoglycerate and meta-phosphate. The intact 2-phosphoglycerate bound to the active site of the other subunit has been observed in two different orientations. The active site loop in this subunit is in both open and "closed" conformations, although the open form is predominant. Concomitant with the loop closure, Phe-96, Leu-167, and residues 208-211 (YGGS) are also observed in dual conformations in the B-subunit. Detailed comparison of the active-site geometry in the present case to the Saccharomyces cerevisiae triose-phosphate isomerase-dihydroxy acetone phosphate and Leishmania mexicana triose-phosphate isomerase-phosphoglycolate complexes, which have also been determined at atomic resolution, shows that certain interactions are common to the three structures, although 2-phosphoglycerate is neither a substrate nor a transition state analogue.
Collapse
|
18
|
Abstract
BACKGROUND Exposure of biomacromolecules to ionising radiation results in damage that is initiated by free radicals and progresses through a variety of mechanisms. A widely used technique to study the three-dimensional structures of biomacromolecules is crystallography, which makes use of ionising X-rays. It is crucial to know to what extent structures determined using this technique might be biased by the inherent radiation damage. RESULTS The consequences of radiation damage have been investigated for three dissimilar proteins. Similar results were obtained for each protein, atomic B factors increase, unit-cell volumes increase, protein molecules undergo slight rotations and translations, disulphide bonds break and decarboxylation of acidic residues occurs. All of these effects introduce non-isomorphism. The absorbed dose in these experiments can be reached during routine data collection at undulator beamlines of third generation synchrotron sources. CONCLUSIONS X-rays can leave a 'fingerprint' on structures, even at cryogenic temperatures. Serious non-isomorphism can be introduced, thus hampering multiple isomorphous replacement (MIR) and multiwavelength anomalous dispersion (MAD) phasing methods. Specific structural changes can occur before the traditional measures of radiation damage have signalled it. Care must be taken when assigning structural significance to features that might easily be radiation-damage-induced changes. It is proposed that the electron-affinic disulphide bond traps electrons that migrate over the backbone of the protein, and that the sidechains of glutamic acid and aspartic acid donate electrons to nearby electron holes and become decarboxylated successively. The different disulphide bonds in each protein show a clear order of susceptibility, which might well relate to their intrinsic stability.
Collapse
Affiliation(s)
- R B Ravelli
- EMBL Grenoble outstation, Grenoble, BP 156, 38042, France.
| | | |
Collapse
|
19
|
Wallace BA. Recent Advances in the High Resolution Structures of Bacterial Channels: Gramicidin A. J Struct Biol 1998; 121:123-41. [PMID: 9618340 DOI: 10.1006/jsbi.1997.3948] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gramicidin is a polypeptide antibiotic which forms dimeric channels specific for the transport of monovalent cations across membranes. It adopts several different conformations, most notably double helical (pore) and helical dimer (channels) forms, which have very different structural and functional characteristics. This review focuses on recent high resolution structure determinations of both the pore and channel forms of the molecule by X-ray crystallographic and/or NMR spectroscopic techniques. It discusses the structural consequences of binding ions and the location of ion binding sites and how the structures are related to the conductance properties of the molecule. This relatively simple molecule is probably the best characterized ion channel (both structurally and functionally) and has, to date, been the principal proving-ground for many of our ideas about the molecular nature of ion conduction in membranes. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- BA Wallace
- Department of Crystallography, Birkbeck College, University of London, London, WC1E 7HX, United Kingdom
| |
Collapse
|
20
|
Chayen NE, Boggon TJ, Cassetta A, Deacon A, Gleichmann T, Habash J, Harrop SJ, Helliwell JR, Nieh YP, Peterson MR, Raftery J, Snell EH, Hädener A, Niemann AC, Siddons DP, Stojanoff V, Thompson AW, Ursby T, Wulff M. Trends and challenges in experimental macromolecular crystallography. Q Rev Biophys 1996; 29:227-78. [PMID: 8968112 DOI: 10.1017/s0033583500005837] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Macromolecular X-ray crystallography underpins the vigorous field of structural molecular biology having yielded many protein, nucleic acid and virus structures in fine detail. The understanding of the recognition by these macromolecules, as receptors, of their cognate ligands involves the detailed study of the structural chemistry of their molecular interactions. Also these structural details underpin the rational design of novel inhibitors in modern drug discovery in the pharmaceutical industry. Moreover, from such structures the functional details can be inferred, such as the biological chemistry of enzyme reactivity. There is then a vast number and range of types of biological macromolecules that potentially could be studied. The completion of the protein primary sequencing of the yeast genome, and the human genome sequencing project comprising some 105proteins that is underway, raises expectations for equivalent three dimensional structural databases.
Collapse
Affiliation(s)
- N E Chayen
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wallace BA. Crystallographic studies of a transmembrane ion channel, gramicidin A. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1992; 57:59-69. [PMID: 1375761 DOI: 10.1016/0079-6107(92)90004-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- B A Wallace
- Department of Crystallography, Birkbeck College, University of London, U.K
| |
Collapse
|
22
|
Hajdu J, Johnson LN. Progress with Laue diffraction studies on protein and virus crystals. Biochemistry 1990; 29:1669-78. [PMID: 2184884 DOI: 10.1021/bi00459a001] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J Hajdu
- Laboratory of Molecular Biophysics, University of Oxford, U.K
| | | |
Collapse
|
23
|
|
24
|
Glover ID, Helliwell JR, Papiz MZ. Protein single crystal diffraction. Top Curr Chem (Cham) 1988. [DOI: 10.1007/3-540-19040-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Abstract
Gramicidin A forms ion-conducting channels which can traverse the hydrocarbon core of lipid bilayer membranes. The structures formed by gramicidin A are among the best characterized of all membrane-bound polypeptides or proteins. In this review a brief summary is given of the occurrence, conformation, and synthesis of gramicidin A, and of its use as a model for ion transport and the interaction of proteins and lipids in biological membranes.
Collapse
Affiliation(s)
- B Cornell
- Commonwealth Scientific and Industrial Research Organization, North Ryde, N.S.W., Australia
| |
Collapse
|
26
|
Abstract
Instrumental and specimen considerations pertinent to performing time-resolved x-ray diffraction on biological materials are discussed. Existing synchrotron x-ray sources, in conjunction with integrating x-ray detectors, have made millisecond diffraction experiments feasible; exposure times several orders of magnitude shorter than this will be possible with synchrotron sources now on the drawing boards. Experience gained from time-resolved studies together with order-of-magnitude estimates of specimen requirements can be used to determine the instrumental capabilities needed for various time-resolved experiments. Existing instrumental capabilities and methods of dealing with time-resolved specimens are reviewed.
Collapse
|
27
|
White Beam Laue Diffraction: Data Processing Developments and Results for Single Crystal Data. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/978-3-642-71490-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|