1
|
Kovács KD, Novák M, Hajnal Z, Hős C, Szabó B, Székács I, Fang Y, Bonyár A, Horvath R. Label-free tracking of whole-cell response on RGD functionalized surfaces to varied flow velocities generated by fluidic rotation. J Colloid Interface Sci 2021; 599:620-630. [PMID: 33984760 DOI: 10.1016/j.jcis.2021.04.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Fluidic flow plays important roles in colloid and interface sciences. Measuring adsorption, aggregation processes and living cell behavior under a fluidic environment with varied flow velocities in a parallel and high-throughput manner remains to be a challenging task. Here a method is introduced to monitor cell response to well-defined flow with varied velocities over an array of label-free resonant waveguide grating (RWG) based optical biosensors. The arrangement consists of a circular well with an array of biosensors at the bottom surface. By rotating the liquid over the biosensor array using a magnetic stirrer bar, flow velocities from zero to a predefined maximum can be easily established over different locations within the biosensor array as characterized in detail by numerical simulations. Cell adhesion and detachment measurements on an Arg-Gly-Asp (RGD) peptide functionalized surface were performed to demonstrate i) measurements at a wide range of simultaneous flow velocities over the same interface; ii) the possibility of parallel measurements at the same flow conditions in one run; and iii) the simple tuning of the employed range of flow velocities. Our setup made it possible to analyze the magnitude and rate of cell detachment at various flow velocities in parallel and determine the critical velocity and force where cells start to detach from the RGD motif displaying biomimetic surface. Furthermore, cellular response to simultaneous mechanical (flow) and chemical stimulation was also investigated using trypsin as a model. This study opens a new possibility to investigate interface phenomena under predefined and conveniently varied flow conditions.
Collapse
Affiliation(s)
- Kinga Dóra Kovács
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary; Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Martin Novák
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Zoltán Hajnal
- Microsystems Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Csaba Hős
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary
| | - Ye Fang
- EIG New Programs, Corning Research and Development Corporation, Corning Incorporated, NY, USA
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Laboratory, ELKH EK MFA, Budapest, Hungary.
| |
Collapse
|
2
|
Huang N, Fan X, Zaleta-Rivera K, Nguyen TC, Zhou J, Luo Y, Gao J, Fang RH, Yan Z, Chen ZB, Zhang L, Zhong S. Natural display of nuclear-encoded RNA on the cell surface and its impact on cell interaction. Genome Biol 2020; 21:225. [PMID: 32907628 PMCID: PMC7488101 DOI: 10.1186/s13059-020-02145-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Compared to proteins, glycans, and lipids, much less is known about RNAs on the cell surface. We develop a series of technologies to test for any nuclear-encoded RNAs that are stably attached to the cell surface and exposed to the extracellular space, hereafter called membrane-associated extracellular RNAs (maxRNAs). RESULTS We develop a technique called Surface-seq to selectively sequence maxRNAs and validate two Surface-seq identified maxRNAs by RNA fluorescence in situ hybridization. To test for cell-type specificity of maxRNA, we use antisense oligos to hybridize to single-stranded transcripts exposed on the surface of human peripheral blood mononuclear cells (PBMCs). Combining this strategy with imaging flow cytometry, single-cell RNA sequencing, and maxRNA sequencing, we identify monocytes as the major type of maxRNA+ PBMCs and prioritize 11 candidate maxRNAs for functional tests. Extracellular application of antisense oligos of FNDC3B and CTSS transcripts inhibits monocyte adhesion to vascular endothelial cells. CONCLUSIONS Collectively, these data highlight maxRNAs as functional components of the cell surface, suggesting an expanded role for RNA in cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
- Norman Huang
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Xiaochen Fan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jie Gao
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Liangfang Zhang
- Department of NanoEngineering, University of California San Diego, San Diego, CA, 92093, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, San Diego, CA, 92093, USA.
| |
Collapse
|
3
|
Abstract
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
Collapse
|
4
|
Mamputu JC, Wiernsperger N, Renier G. Metformin inhibits monocyte adhesion to endothelial cells and foam cell formation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514030030041501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The United Kingdom Prospective Diabetes Study (UKPDS) found that metformin reduces macrovascular complications in type 2 diabetic patients. To investigate the mechanisms involved we examined the effect of metformin on monocyte adhesion to human endothelial cells (ECs) induced by advanced glycation end-products (AGE), and on monocyte differentiation into macrophages and foam cell formation. Treatment of human ECs with AGEs (100 µg/ml) for up to 12 hours significantly increased human monocyte adhesion. Pre-treatment of the cells with metformin (0.1—2.5 µg/ml) inhibited AGE-induced monocyte adhesion and expression of endothelial cell adhesion molecules. In culture, human monocytes spontaneously differentiated into macrophages, as indicated by phenotypic changes, and increased expression of lectin-like oxidised low-density lipoprotein (LDL) receptor and scavenger receptor type A. Incubation of these cells in the presence of metformin decreased expression of all of these parameters. Metformin also inhibited foam cell formation induced by minimally modified LDL. Overall, these results suggest new mechanisms by which metformin may reduce the risk of vascular complications in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jean-Claude Mamputu
- CHUM Research Centre, Notre-Dame Hospital, Department of Nutrition, University of Montreal, Montreal, Canada
| | | | - Geneviève Renier
- CHUM Research Centre, Notre-Dame Hospital, Department of Nutrition, University of Montreal, Montreal, Canada,
| |
Collapse
|
5
|
Kuebler U, Ehlert U, Zuccarella C, Sakai M, Stemmer A, Wirtz PH. An in vitro method to investigate the microbicidal potential of human macrophages for use in psychosomatic research. Psychosom Med 2013; 75:841-8. [PMID: 24184844 DOI: 10.1097/psy.0000000000000008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Psychological states relate to changes in circulating immune cells, but associations with immune cells in peripheral tissues such as macrophages have hardly been investigated. Here, we aimed to implement and validate a method for measuring the microbicidal potential of ex vivo isolated human monocyte-derived macrophages (HMDMs) as an indicator of macrophage activation. METHODS The method was implemented and validated for two blood sampling procedures (short-term cannula insertion versus long-term catheter insertion) in 79 participants (34 women, 45 men) aged between 18 and 75 years. The method principle is based on the reduction of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-dis-ulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) by superoxide anions, the first in a series of pathogen-killing reactive oxygen species produced by phorbol myristate acetate-activated HMDM. Cytochrome c reduction and current generation were measured as reference methods for validation purposes. We further evaluated whether depressive symptom severity (Beck Depression Inventory) and chronic stress (Chronic Stress Screening Scale) were associated with macrophage microbicidal potential. RESULTS The assay induced superoxide anion responses by HMDM in all participants. Assay results depended on blood sampling procedure (cannula versus catheter insertion). Interassay variability as a measure for assay reliability was 10.92% or less. WST-1 reduction scores correlated strongly with results obtained by reference methods (cytochrome c: r = 0.57, p = .026; current generation: r values ≥ 0.47, p values <.033) and with psychological factors (depressive symptom severity: r = 0.35 [cannula insertion] versus r = -0.54 [catheter insertion]; chronic stress: r = 0.36 [cannula insertion]; p values ≤ .047). CONCLUSIONS Our findings suggest that the implemented in vitro method investigates microbicidal potential of HMDM in a manner that is valid and sensitive to psychological measures.
Collapse
Affiliation(s)
- Ulrike Kuebler
- Department of Psychology, Biological and Health Psychology, University of Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
6
|
Rauschemberger MB, Sandoval MJ, Massheimer VL. Cellular and molecular actions displayed by estrone on vascular endothelium. Mol Cell Endocrinol 2011; 339:136-43. [PMID: 21536098 DOI: 10.1016/j.mce.2011.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/04/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023]
Abstract
In this work we provide evidence that estrone "per se" modulates cellular endothelial growth and survival, events that play key roles in the development of vascular disease. Moreover, under oxidative stress conditions the hormone prevented apoptosis triggered by hydrogen peroxide. Although estrone did not affect E-selectin and VCAM-1 mRNAs synthesis, the hormone prevented the expression of these adhesion molecules induced by the proinflammatory agent LPS. The steroid partially attenuated leukocyte adhesion not only under basal conditions but also in the presence of LPS. Using ICI182780 compound as estrogen receptor antagonist, and PD98059 as MAPK inhibitor we obtained evidence that the mitogenic action of estrone involved the participation of ER and MAPK transduction pathway activation. The presence of estradiol impaired the effect of estrone on cell proliferation and vasoactive production. These results suggest that estrone exhibits a remarkable biological action on endothelial cells, modulating vasoactive production, proliferation, apoptosis, and cell adhesion events.
Collapse
Affiliation(s)
- M Belén Rauschemberger
- Cátedra de Bioquímica Clínica II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina
| | | | | |
Collapse
|
7
|
Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ. Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One 2011; 6:e19766. [PMID: 21572963 PMCID: PMC3091882 DOI: 10.1371/journal.pone.0019766] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 04/04/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H(2)S), the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H(2)S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction. METHODOLOGY AND PRINCIPAL FINDINGS Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS. SIGNIFICANCE H(2)S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.
Collapse
Affiliation(s)
- Li-Long Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin-Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Qi-Hai Gong
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dan Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Sandoval MJ, Cutini PH, Rauschemberger MB, Massheimer VL. The soyabean isoflavone genistein modulates endothelial cell behaviour. Br J Nutr 2010; 104:171-9. [PMID: 20187999 DOI: 10.1017/s0007114510000413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the present study was to investigate the direct action of the phyto-oestrogen genistein (Gen) on vascular endothelial behaviour, either in the presence or absence of proinflammatory agents. In rat aortic endothelial cell (EC) cultures, 24 h of treatment with Gen significantly increased cell proliferation in a wide range of concentration (0.001-10 nm). This mitogenic action was prevented by the oestrogen receptor (ER) antagonist ICI 182780 or by the presence of the specific NO synthase inhibitor l-nitro-arginine methyl ester. When monocytes adhesion to EC was measured, Gen partially attenuated leucocyte adhesion not only under basal conditions, but also in the presence of bacterial lipopolysaccharides (LPS). The effect of the phyto-oestrogen on the expression of EC adhesion molecules was evaluated. Gen down-regulated the enhancement in mRNA levels of E-selectin, vascular cell adhesion molecule-1 and P-selectin elicited by the proinflammatory agent bacterial LPS. The regulation of EC programmed death induced by the isoflavone was also demonstrated. Incubation with 10 nm Gen prevented DNA fragmentation induced by the apoptosis inductor H2O2. The results presented suggest that Gen would exert a protective effect on vascular endothelium, due to its regulatory action on endothelial proliferation, apoptosis and leucocyte adhesion, events that play a critical role in vascular diseases. The molecular mechanism displayed by the phyto-oestrogen involved the participation of the ER and the activation of the NO pathway.
Collapse
Affiliation(s)
- Marisa J Sandoval
- Departamento de Biología, Bioquímica y Farmacia, Cátedra de Bioquímica Clínica II, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
9
|
Huang G, Liu Y, Chang H, Zhang X, Ren D, Wilson JX, Cao X. Effects of genistein on oxidative injury in endothelial cells. J Nutr Sci Vitaminol (Tokyo) 2009; 54:402-8. [PMID: 19001773 DOI: 10.3177/jnsv.54.402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to test the hypothesis that genistein protects vascular endothelial cells against the pro-atherosclerotic stressor, oxidized low-density lipoprotein (ox-LDL), by inducing antioxidant enzymes and preventing apoptosis. Human umbilical cord-derived endothelial cells (ECV 304) were incubated with genistein (10-100 micromol/L), the radical scavenging antioxidant vitamin E (alpha-tocopherol, 50 micromol/L), or vehicle for 24 h and then were incubated with ox-LDL for an additional 24 h. Subsequently, antioxidant enzyme activities, lipid peroxidation, adhesion to monocytes, cell morphology, viability and apoptotic index were assessed. Ox-LDL decreased superoxide dismutase and glutathione peroxidase activities in endothelial cells and caused lipid peroxidation, adhesion to monocytes, morphological injury and apoptosis (p<0.05). These effects were prevented by vitamin E and dose-dependently by genistein (p<0.05). Further, this effect of genistein is associated with maintenance of antioxidant enzyme activities and inhibition of lipid peroxidation.
Collapse
Affiliation(s)
- Guowei Huang
- Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Rezaie-Majd A, Prager GW, Bucek RA, Schernthaner GH, Maca T, Kress HG, Valent P, Binder BR, Minar E, Baghestanian M. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2003; 23:397-403. [PMID: 12615677 DOI: 10.1161/01.atv.0000059384.34874.f0] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The intercellular adhesion molecule-1 (ICAM-1/CD54) and its ligand, CD11a/CD18, mediate endothelial adhesion of leukocytes and their consecutive transmigration. Anti-inflammatory effects of statins are considered to be exerted in part through inhibition of leukocyte-endothelial interactions. We investigated the in vivo effects of simvastatin treatment in hypercholesterolemic patients and the influence of various statins on expression of cellular adhesion molecules in vitro. METHODS AND RESULTS A total number of 107 hypercholesterolemic patients were treated with 20 mg (n=52) or 40 mg (n=55) of simvastatin daily. After 6 weeks of treatment, peripheral blood mononuclear cells (PBMCs) expressed lower amounts of CD54-, CD18-, and CD11a-mRNA compared with pretreatment values. Surface expression of CD54 and CD18/CD11a on CD14+-monocytes also decreased significantly in both groups of patients. Moreover, simvastatin, atorvastatin, and cerivastatin were found to downregulate tumor necrosis factor (TNF)-alpha-induced expression of CD54 and CD18/CD11a in isolated PBMCs obtained from normal donors as well as TNF-alpha-dependent expression of these CAMs in cultured human umbilical vein endothelial cells (HUVECs). Furthermore, all three statins were found to reduce the binding of PBMCs to TNF-alpha-stimulated HUVECs in vitro. CONCLUSIONS Statin-induced inhibition of expression of CD54 and CD18/CD11a in PBMCs and HUVECs with consecutive loss of adhesive function may contribute to the anti-inflammatory effects of these drugs and some of their beneficial clinical activities.
Collapse
Affiliation(s)
- Abdolreza Rezaie-Majd
- Clinic of Internal Medicine II, Department of Angiology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamashita T, Kawashima S, Ozaki M, Namiki M, Inoue N, Hirata KI, Yokoyama M. Propagermanium reduces atherosclerosis in apolipoprotein E knockout mice via inhibition of macrophage infiltration. Arterioscler Thromb Vasc Biol 2002; 22:969-74. [PMID: 12067906 DOI: 10.1161/01.atv.0000019051.88366.9c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1), which binds to C-C chemokine receptor 2, has been implicated as the primary source of monocyte chemoattractant function in the early stages of atherosclerosis. Recently, propagermanium, a drug used clinically for the treatment of chronic hepatitis in Japan, has been shown to inhibit C-C chemokine receptor 2 function and suppress monocyte/macrophage infiltration in vitro and in vivo. Given the importance of monocyte infiltration in atherogenesis, the inhibition of it by propagermanium might prevent atherosclerosis. Apolipoprotein E knockout (apoE-KO) mice were fed an atherogenic high cholesterol diet with or without 0.005% propagermanium for 8 or 12 weeks. Although the plasma lipid levels were unchanged by the drug treatment, atherosclerotic lesion area in the aortic root was reduced by 50% in the drug-treated apoE-KO mice compared with the nontreated apoE-KO mice after 8 weeks of cholesterol feeding (0.62+/-0.12 versus 1.27+/-0.07 mm2, respectively; P<0.01). Moreover, the accumulation of macrophages in the lesions was markedly reduced in the drug-treated group (macrophage positive area, 0.23+/-0.06 mm2 [drug-treated group] versus 0.67+/-0.07 mm2 [control group]; P<0.01). After 12 weeks of cholesterol feeding, atherosclerotic lesion formation in the aortic root and in the descending thoracic aorta was significantly reduced in the drug-treated group. Inhibition of macrophage infiltration by propagermanium prevented the formation of atherosclerotic lesions in apoE-KO mice. This drug may serve as a therapeutic tool for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Tomoya Yamashita
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Oh GT, Choi JH, Hong JJ, Kim DY, Lee SB, Kim JR, Lee CH, Hyun BH, Oh SR, Bok SH, Jeong TS. Dietary hematein ameliorates fatty streak lesions in the rabbit by the possible mechanism of reducing VCAM-1 and MCP-1 expression. Atherosclerosis 2001; 159:17-26. [PMID: 11689202 DOI: 10.1016/s0021-9150(01)00464-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hematein is a compound isolated from Caesalpinia sappan that has been used in oriental medicine as both an analgesic and an anti-inflammatory agent. In this study, we examined the anti-atherogenic potential of hematein using cholesterol-fed New Zealand White (NZW) rabbits. NZW rabbits were divided into a hematein-supplemented (0.05% in diet) group (n=6), a probucol-supplemented (0.25% in diet) group (n=6), and a control group (n=6). After 8 weeks of treatments, the extent of the atherosclerotic lesions was significantly reduced in the hematein-supplemented group and the probucol-supplemented group without changing plasma lipoprotein levels. Hematein and probucol prevented the up-regulation of the vascular cell adhesion molecule-1 (VCAM-1) expression on the descending aorta induced by cholesterol diet. In culture, hematein also significantly inhibited the secretion of soluble VCAM-1 and of monocyte chemotactic protein-1 (MCP-1) respectively induced by tumor necrotic factor alpha (TNF-alpha) and mildly oxidized low density lipoprotein in human umbilical vein endothelial cell (HUVEC) culture. Also, hematein inhibited monocyte adhesion to endothelial cell and the activation of NF-kappaB in HUVECs stimulated with TNF-alpha. The results of the present study suggest that the anti-atherogenic effect of hematein is not related to control of the plasma lipid profile but probably related to the inhibition of VCAM-1 and MCP-1 expression resulting in an amelioration of lesion development in the rabbit.
Collapse
MESH Headings
- Animals
- Anticholesteremic Agents/pharmacology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Blotting, Northern
- Caesalpinia
- Cell Adhesion/drug effects
- Cell Line
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/pharmacology
- Electrophoretic Mobility Shift Assay
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Hematoxylin/administration & dosage
- Hematoxylin/analogs & derivatives
- Hematoxylin/pharmacology
- Lipids/blood
- Lipoproteins, LDL/blood
- Male
- Monocytes/drug effects
- Monocytes/pathology
- NF-kappa B/metabolism
- Oxidation-Reduction
- Plant Extracts/administration & dosage
- Plant Extracts/pharmacology
- Polymerase Chain Reaction
- Probucol/pharmacology
- Rabbits
- Transcriptional Activation/drug effects
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Cell Adhesion Molecule-1/biosynthesis
Collapse
Affiliation(s)
- G T Oh
- Genetic Resources Center, Korea Research Institute of Bioscience and Biotechnology, Yusong P.O. Box 115, 305-600, Taejon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hedrick CC, Castellani LW, Wong H, Lusis AJ. In vivo interactions of apoA-II, apoA-I, and hepatic lipase contributing to HDL structure and antiatherogenic functions. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31165-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Manduteanu I, Voinea M, Serban G, Simionescu M. High glucose induces enhanced monocyte adhesion to valvular endothelial cells via a mechanism involving ICAM-1, VCAM-1 and CD18. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2000; 6:315-24. [PMID: 10475094 DOI: 10.3109/10623329909078498] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Upon induction of experimental hyperglycemia (i.e. diabetes) pathological modifications are early detected (approximately 7 days) at the level of the cardiac valves leading rapidly to the development of valvular atheroma. Monocyte adhesion to the vascular endothelium is one of the initial event at the onset of atherosclerosis. We questioned whether high glucose enhances monocyte adhesion to the valvular endothelial cells (VEC) so as to explain, in part, the accelerated atheroma formation that occur in diabetic conditions. To this purpose we compared the adhesion of monocytes to VEC cultured in 5.5 mM (normal) glucose (NG) or in 33 mM (high) glucose (HG) or in high mannitol (HM) (27.5 mM mannitol plus 5.5 mM glucose), a concentration known to simulate the hyperosmolar effect of high glucose. After incubation for 30 min at 37 degrees C, the adhesion of monocyte cell line (U937 cells) to VEC was quantitated by a fluorimetric assay or by direct counting. Statistical data showed a significant increased adhesion of monocytes to VEC grown in HG (up to 4 fold) or in HM (up to 2.7) when compared to normal conditions. Using a battery of specific monoclonal antibodies molecules it was found that the increased adhesion of monocytes to VEC grown in high glucose was specifically inhibited (p < 0.05) by anti-ICAM-1, anti-VCAM-1 and anti-CD18 monoclonal antibodies. Together, the results indicate that high glucose induces enhanced monocyte adhesion to VEC via a mechanism involving in part an osmotic effect and mainly the cell adhesion molecules: ICAM-1, VCAM-1 and CD18.
Collapse
Affiliation(s)
- I Manduteanu
- Institute for Cellular Biology and Pathology N. Simionescu, Bucharest, Romania
| | | | | | | |
Collapse
|
15
|
Shih PT, Elices MJ, Fang ZT, Ugarova TP, Strahl D, Territo MC, Frank JS, Kovach NL, Cabanas C, Berliner JA, Vora DK. Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating beta1 integrin. J Clin Invest 1999; 103:613-25. [PMID: 10074478 PMCID: PMC479707 DOI: 10.1172/jci5710] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have shown previously that treatment of human aortic endothelial cells (HAECs) with minimally modified low-density lipoprotein (MM-LDL) induces monocyte but not neutrophil binding. This monocyte binding was not mediated by endothelial E-selectin, P-selectin, vascular cell adhesion molecule-I, or intercellular adhesion molecule-I, suggesting an alternative monocyte-specific adhesion molecule. We now show that moncytic alpha4beta1 integrins mediate binding to MM-LDL-treated endothelial cells. We present data suggesting that the expression of the connecting segment-1 (CS-1) domain of fibronectin (FN) is induced on the apical surface of HAEC by MM-LDL and is the endothelial alpha4beta1 ligand in MM-LDL-treated cells. Although the levels of CS-1 mRNA and protein were not increased, we show that MM-LDL treatment causes deposition of FN on the apical surface by activation of beta1integrins, particularly those associated with alpha5 integrins. Activation of beta1 by antibody 8A2 also induced CS-1-mediated monocyte binding. Confocal microscopy demonstrated the activated beta1 and CS-1colocalize in concentrated filamentous patches on the apical surface of HAEC. Both anti-CS-1 and an antibody to activated beta1 showed increased staining on the luminal endothelium of human coronary lesions with active monocyte entry. These results suggest the importance of these integrin ligand interactions in human atherosclerosis.
Collapse
Affiliation(s)
- P T Shih
- Department of Pathology, University of California-Los Angeles, California 90095-1732, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Thrombin-Activated Human Endothelial Cells Support Monocyte Adhesion In Vitro Following Expression of Intercellular Adhesion Molecule-1 (ICAM-1; CD54) and Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106). Blood 1998. [DOI: 10.1182/blood.v92.4.1259] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThrombin, a central molecule in coagulation, is also involved in inflammation. Notably, thrombin induces endothelial neutrophil adhesion, P- and E-selectin expression, and chemokine production. We show here that thrombin induces expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106) on human umbilical vein endothelial cells (HUVECs) associated with increased adhesion of monocytes. Thrombin increased mRNA steady-state levels and expression of ICAM-1 over 24 hours. Thrombin-induced VCAM-1 expression exhibited unusual kinetics, reaching maximum levels after 6 to 12 hours, but decreasing to near baseline after 24 hours. Thrombin activity on HUVECs was mediated through interaction with its specific receptor, because ICAM-1 and VCAM-1 expression were similarly induced by the 14-amino acid thrombin receptor-activating peptide. Thrombin-induced ICAM-1 and VCAM-1 expression was significantly inhibited by hirudin, but not by interleukin-1 receptor antagonist or anti-tumor necrosis factor monoclonal antibody (MoAb). Thrombin-activated HUVECs significantly increased greater numbers of adhering THP-1 macrophagic cells, peripheral blood mononuclear cells, or purified monocytes than unstimulated HUVECs. This adhesion was inhibited by anti-CD18 and anti-CD49d MoAb, demonstrating that thrombin-induced ICAM-1 and VCAM-1 were functional. These results show that, in addition to selectins, thrombin directly induces a cytokine-independent expression of adhesion molecules of the Ig superfamily on HUVECs that may support firm leukocyte attachment during inflammation.© 1998 by The American Society of Hematology.
Collapse
|
17
|
Thrombin-Activated Human Endothelial Cells Support Monocyte Adhesion In Vitro Following Expression of Intercellular Adhesion Molecule-1 (ICAM-1; CD54) and Vascular Cell Adhesion Molecule-1 (VCAM-1; CD106). Blood 1998. [DOI: 10.1182/blood.v92.4.1259.416k11_1259_1267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombin, a central molecule in coagulation, is also involved in inflammation. Notably, thrombin induces endothelial neutrophil adhesion, P- and E-selectin expression, and chemokine production. We show here that thrombin induces expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106) on human umbilical vein endothelial cells (HUVECs) associated with increased adhesion of monocytes. Thrombin increased mRNA steady-state levels and expression of ICAM-1 over 24 hours. Thrombin-induced VCAM-1 expression exhibited unusual kinetics, reaching maximum levels after 6 to 12 hours, but decreasing to near baseline after 24 hours. Thrombin activity on HUVECs was mediated through interaction with its specific receptor, because ICAM-1 and VCAM-1 expression were similarly induced by the 14-amino acid thrombin receptor-activating peptide. Thrombin-induced ICAM-1 and VCAM-1 expression was significantly inhibited by hirudin, but not by interleukin-1 receptor antagonist or anti-tumor necrosis factor monoclonal antibody (MoAb). Thrombin-activated HUVECs significantly increased greater numbers of adhering THP-1 macrophagic cells, peripheral blood mononuclear cells, or purified monocytes than unstimulated HUVECs. This adhesion was inhibited by anti-CD18 and anti-CD49d MoAb, demonstrating that thrombin-induced ICAM-1 and VCAM-1 were functional. These results show that, in addition to selectins, thrombin directly induces a cytokine-independent expression of adhesion molecules of the Ig superfamily on HUVECs that may support firm leukocyte attachment during inflammation.© 1998 by The American Society of Hematology.
Collapse
|
18
|
Shau H, Kim AT, Hedrick CC, Lusis AJ, Tompkins C, Finney R, Leung DW, Paglia DE. Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Radic Biol Med 1997; 22:497-507. [PMID: 8981042 DOI: 10.1016/s0891-5849(96)00372-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natural killer-enhancing factor (NKEF) was identified and cloned on the basis of its ability to increase NK cytotoxicity. Two genes, NKEF-A and -B, encode NKEF proteins and sequence analysis presented suggests that each belongs to a highly conserved family of antioxidants. To examine the antioxidant potential of NKEF, we transfected the coding region of NKEF-B cDNA into the human endothelial cell line ECV304. The stable transfectant, B/1, was found to overexpress NKEF-B gene transcript and protein. We subjected B/1 to oxidative stress by either culturing them with glucose oxidase (GO), which continuously generates hydrogen peroxide, or by direct addition of hydrogen peroxide. We found that B/1 cells were more resistant than control cell lines. Resistance to hydrogen peroxide was originally thought to be mediated mainly by catalase and the glutathione cycle. Therefore, we used inhibitors to block the two pathways and found that B/1 cells were more resistant to oxidative stress than control cells when we used inhibitors to preblock either pathway. We also examined the cellular inflammatory responses to oxidized low-density lipoprotein (LDL) and bacterial lipopolysaccharide (LPS) by measuring monocyte adhesion to endothelial cells in vitro and found that B/1 cells were resistant to such responses. Lastly, we found that B/1 cells were more resistant to a novel chemotherapeutic agent CT-2584, which appears to kill tumor cells by stimulating production of reactive oxygen intermediates in mitochondria. These results demonstrate that the NKEF-B is an antioxidant that protects cells from oxidative stress, chemotherapy agents, and inflammation-induced monocyte adhesion. Furthermore, its expression may mediate cellular responses to proinflammatory molecules.
Collapse
Affiliation(s)
- H Shau
- Division of Surgical Oncology, UCLA Medical Center 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cobb RR, Molony JL. Interleukin-1beta expression is induced by adherence and is enhanced by Fc-receptor binding to immune complex in THP-1 cells. FEBS Lett 1996; 394:241-6. [PMID: 8830651 DOI: 10.1016/0014-5793(96)00960-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adherence of monocytes to endothelial cells and subsequently to basement membrane represents the initial steps in monocyte migration from the vasculature to the interstitium. We investigated the role of adhesion to endothelial cells and basement membrane in the induction of the cytokine IL-1beta. We demonstrated that mRNA for IL-1beta is induced in adherent THP-1 cells, but not in a matrix-specific manner. Adherence to fibrinogen, however, causes an increase in mRNA for IL-1beta. A background level of IL-1beta mRNA induction was observed in cells adherent to all matrices, including the non-specific human serum albumin substrate, as compared to non-adherent cells cultured in teflon troughs. In addition, antibodies to CD11a, CD11b, beta1 integrin, VLA4, (alpha)v(beta)3 (VNR), and ICAM-1 did not induce significant IL-1beta mRNA when THP-1 cells were adherent to those immunoglobulins. THP-1 cells adherent to immune complexes of anti-CD11a, anti-CD11b, anti-VLA4, anti-VNR, and anti-ICAM-1 showed greater mRNA induction than cells adherent to primary antibodies alone. THP-1 cells adherent to non-specific immune complexes gave the highest level of mRNA induction. Secretion of IL-1beta protein, measured by ELISA at 24 h, was greatest when cells were adherent to immobilized immune complexes or to fibrinogen. Our results demonstrate that a general adherence-induced increase in IL-1beta gene expression is greatly enhanced by the presence of immune complex.
Collapse
Affiliation(s)
- R R Cobb
- Department of Biology, Tanabe Research Laboratories, San Diego, CA 92121, USA
| | | |
Collapse
|
20
|
Devaraj S, Li D, Jialal I. The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium. J Clin Invest 1996; 98:756-63. [PMID: 8698868 PMCID: PMC507486 DOI: 10.1172/jci118848] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Low levels of alpha tocopherol are related to a higher incidence of cardiovascular disease and increased intake appears to afford protection against cardiovascular disease. In addition to decreasing LDL oxidation, alpha tocopherol may exert intracellular effects on cells crucial in atherogenesis, such as monocytes. Hence, the aim of this study was to test the effect of alpha tocopherol supplementation on monocyte function relevant to atherogenesis. Monocyte function was assessed in 21 healthy subjects at baseline, after 8 wk of supplementation with d-alpha tocopherol (1,200 IU/d) and after a 6-wk washout phase. The release of reactive oxygen species (superoxide anion, hydrogen peroxide), lipid oxidation, release of the potentially atherogenic cytokine, interleukin 1 beta, and monocyte-endothelial adhesion were studied in the resting state and after activation of the monocytes with lipopolysaccharide at 0, 8, and 14 wk. There was a 2.5-fold increase in plasma lipid-standardized and monocyte alpha tocopherol levels in the supplemented phase. After alpha tocopherol supplementation, there were significant decreases in release of reactive oxygen species, lipid oxidation, IL-1 beta secretion, and monocyte-endothelial cell adhesion, both in resting and activated cells compared with baseline and washout phases. Studies with the protein kinase C inhibitor, Calphostin C, suggest that the inhibition of reactive oxygen species release and lipid oxidation is due to an inhibition of protein kinase C activity by alpha tocopherol. Thus, this study provides novel evidence for an intracellular effect of alpha tocopherol in monocytes that is antiatherogenic.
Collapse
Affiliation(s)
- S Devaraj
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-9052, USA
| | | | | |
Collapse
|
21
|
Barker K, Fan H, Carroll C, Kaplan G, Barker J, Hellmann W, Cohn ZA. Nonadherent cultures of human monocytes kill Mycobacterium smegmatis, but adherent cultures do not. Infect Immun 1996; 64:428-33. [PMID: 8550187 PMCID: PMC173781 DOI: 10.1128/iai.64.2.428-433.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human peripheral blood monocytes are permissive for the growth of Mycobacterium tuberculosis, but the fate of nonpathogenic Mycobacterium smegmatis in these cells is not known. Since M. smegmatis may be used as a host with which to express and screen for M. tuberculosis genes needed for survival in monocytes, we determined whether human peripheral blood monocytes could restrict the growth of Mycobacterium smegmatis. Adherent human peripheral blood monocytes were permissive for the growth of M. smegmatis, as measured by ex vivo [3H]uracil uptake. However, human peripheral blood monocytes which were cultured nonadherently in Teflon wells were able to restrict the growth of M. smegmatis while remaining permissive for the growth of M. tuberculosis H37Ra. The loss of viability of M. smegmatis in nonadherent cells was correlated with an increase in nonspacious phagocytic vacuoles. The killing of M. smegmatis was not blocked by NG-monomethyl-L-arginine, suggesting that it was not due to the production of reactive nitrogen intermediates. Incubation of the monocytes for 1 to 7 days before infection had no effect on the fate of M. smegmatis, suggesting that adherence versus nonadherence, and not differentiation, was the key determinant for the difference in functional ability. Nonadherent human peripheral blood monocytes may be a more appropriate model than adherent cells for the study of factors employed by bacterial to survive within monocytes and for selection screening of bacterial genes needed for intracellular survival.
Collapse
Affiliation(s)
- K Barker
- Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Reddy VY, Zhang QY, Weiss SJ. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepsins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci U S A 1995; 92:3849-53. [PMID: 7731994 PMCID: PMC42059 DOI: 10.1073/pnas.92.9.3849] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human macrophages are believed to damage host tissues in chronic inflammatory disease states, but these cells have been reported to express only modest degradative activity in vitro. However, while examining the ability of human monocytes to degrade the extracellular matrix component elastin, we identified culture conditions under which the cells matured into a macrophage population that displayed a degradative phenotype hundreds of times more destructive than that previously ascribed to any other cell population. The monocyte-derived macrophages synthesized elastinolytic matrix metalloproteinases (i.e., gelatinase B and matrilysin) as well as cysteine proteinases (i.e., cathepsins B, L, and S), but only the cathepsins were detected in the extracellular milieu as fully processed, mature enzymes by either vital fluorescence or active-site labeling. Consistent with these observations, macrophage-mediated elastinolytic activity was not affected by matrix metalloproteinase inhibitors but could be almost completely abrogated by inhibiting cathepsins L and S. These data demonstrate that human macrophages mobilize cysteine proteinases to arm themselves with a powerful effector mechanism that can participate in the pathophysiologic remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- V Y Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|
23
|
Bannon PG, Dean RT, Dawes J. Isolation and maintenance of nonadherent quiescent human monocytes for studies of adhesion and migration. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf00981886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Luscinskas FW, Kansas GS, Ding H, Pizcueta P, Schleiffenbaum BE, Tedder TF, Gimbrone MA. Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, beta 1-integrins, and beta 2-integrins. J Cell Biol 1994; 125:1417-27. [PMID: 7515891 PMCID: PMC2290931 DOI: 10.1083/jcb.125.6.1417] [Citation(s) in RCA: 311] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leukocyte interactions with vascular endothelium at sites of inflammation can be dynamically regulated by activation-dependent adhesion molecules. Current models, primarily based on studies with polymorphonuclear leukocytes, suggest the involvement of multiple members of the selectin, integrin, and immunoglobulin gene families, sequentially, in the process of initial attachment (rolling), stable adhesion (arrest), spreading and ultimate diapedesis. In the current study, IL-4-activated human umbilical vein endothelium, which selectively expresses VCAM-1 and an L-selectin ligand but not E-selectin, and appropriate function blocking monoclonal antibodies, were used to study monocyte-endothelial interactions in an in vitro model that mimics microcirculatory flow conditions. In this system, L-selectin mediates monocyte rolling and also facilitates alpha 4 beta 1-integrin-dependent arrest, whereas beta 2-integrins are required for spreading of firmly attached monocytes on the endothelial cell surface but not their arrest. These findings provide the first in vitro evidence for human monocyte rolling on cytokine-activated endothelium, and suggest a sequential requirement for both beta 1- and beta 2-integrin-dependent adhesive mechanisms in monocyte-endothelial interactions.
Collapse
Affiliation(s)
- F W Luscinskas
- Vascular Research Division, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Zanvil Alexander Cohn, an editor of this Journal since 1973, died suddenly on June 28, 1993. Cohn is best known as the father of the current era of macrophage biology. Many of his scientific accomplishments are recounted here, beginning with seminal studies on the granules of phagocytes that were performed with his close colleague and former editor of this Journal, James Hirsch. Cohn and Hirsch identified the granules as lysosomes that discharged their contents of digestive enzymes into vacuoles containing phagocytosed microbes. These findings were part of the formative era of cell biology and initiated the modern study of endocytosis and cell-mediated resistance to infection. Cohn further explored the endocytic apparatus in pioneering studies of the mouse peritoneal macrophage in culture. He described vesicular inputs from the cell surface and Golgi apparatus and documented the thoroughness of substrate digestion within lysosomal vacuoles that would only permit the egress of monosaccharides and amino acids. These discoveries created a vigorous environment for graduate students, postdoctoral fellows, and junior and visiting faculty. Some of the major findings that emerged from Cohn's collaborations included the radioiodination of the plasma membrane for studies of composition and turnover; membrane recycling during endocytosis; the origin of the mononuclear phagocyte system in situ; the discovery of the dendritic cell system of antigen-presenting cells; the macrophage as a secretory cell, including the release of proteases and large amounts of prostaglandins and leukotrienes; several defined parameters of macrophage activation, especially the ability of T cell-derived lymphokines to enhance killing of tumor cells and intracellular protozoa; the granule discharge mechanism whereby cytotoxic lymphocytes release the pore-forming protein perforin; the signaling of macrophages via myristoylated substrates of protein kinase C; and a tissue culture model in which monocytes emigrate across tight endothelial junctions. In 1983, Cohn turned to a long-standing goal of exploring host resistance directly in humans. He studied leprosy, focusing on the disease site, the parasitized macrophages of the skin. He injected recombinant lymphokines into the skin and found that these molecules elicited several cell-mediated responses. Seeing this potential to enhance host defense in patients, Cohn was extending his clinical studies to AIDS and tuberculosis. Zanvil Cohn was a consummate physician-scientist who nurtured the relationship between cell biology and infectious disease.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
27
|
Ginis I, Mentzer SJ, Faller DV. Oxygen tension regulates neutrophil adhesion to human endothelial cells via an LFA-1-dependent mechanism. J Cell Physiol 1993; 157:569-78. [PMID: 8253869 DOI: 10.1002/jcp.1041570317] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Extravasation of leukocytes at the sites of ischemia-reperfusion is thought to exacerbate the tissue injury. It has been proposed that leukocyte accumulation is a secondary effect of the ischemic damage, mediated by inflammatory cytokines. We have recently demonstrated that physiologically low levels of oxygen tension alone can have a direct effect on the adhesive characteristics of mesenchymal cells for lymphocytes. We now report that decrease of oxygen tension in the environment induces the adhesion of neutrophils to human endothelial cells in culture. Adhesion of human neutrophils to human umbilical vein, bovine aortic, and mouse microvascular endothelial cell monolayers, which had been incubated at pO2 of 50 torr for 3 hours, increased 2.5-fold, 2-, and 1.5-fold, respectively. The effects of decreased oxygen concentration on adhesion were not mediated by a soluble factor elaborated by the hypoxic cells. Low oxygen tension upregulates a saturable, endothelial cell-associated adhesion mechanism, capable of withstanding centrifugation forces greater than 160g. Hypoxia-induced adhesion was inhibited by LFA-1-specific (CD11a/CD18 integrin) antibodies, but not by antibodies directed against the ICAM-1 ligand for the LFA-1 receptor. These studies demonstrate that decreases in oxygen tension alone increase the adhesive properties of endothelial cells for leukocytes. In addition, they provide evidence for the existence of a new ligand for the LFA-1 molecule on endothelial cells which can be affected by hypoxic environments.
Collapse
Affiliation(s)
- I Ginis
- Cancer Research Center, Boston University School of Medicine, Massachusetts
| | | | | |
Collapse
|
28
|
Couffinhal T, Duplàa C, Labat L, Lamaziere JM, Moreau C, Printseva O, Bonnet J. Tumor necrosis factor-alpha stimulates ICAM-1 expression in human vascular smooth muscle cells. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1993; 13:407-14. [PMID: 8095156 DOI: 10.1161/01.atv.13.3.407] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human atherosclerotic plaques contain numerous smooth muscle cells (SMCs) that express intercellular adhesion molecule-1 (ICAM-1). Expression of ICAM-1 in different cells is known to be regulated by tumor necrosis factor-alpha (TNF-alpha), which has recently been found to be present in the intimal thickening of human arteries. Therefore, we studied the effect of TNF-alpha on ICAM-1 mRNA content and surface expression in cultured human aortic SMCs by using the methods of Northern blotting and immunofluorescence flow cytometry. Under basal conditions of cultivation, ICAM-1 mRNA was not revealed in SMCs. However, treatment of the cells with recombinant human TNF-alpha induced substantial levels of ICAM-1 mRNA. The content of ICAM-1 on the surface of SMCs also increased in a dose- and time-dependent manner after incubation with TNF-alpha. Twenty-four hours of treatment with 10 ng/mL TNF-alpha led to an approximately 10-fold increase in ICAM-1 surface expression in the SMCs. Under the same conditions, pretreatment of SMCs with TNF-alpha resulted in a twofold increase of their adhesiveness for monocytes. In the presence of anti-ICAM-1 monoclonal antibody 10F3, monocyte adhesion to TNF-alpha-pretreated SMCs was significantly inhibited, suggesting that the observed monocyte-SMC interaction involved the ICAM-1 expressed on SMC surfaces as a result of TNF-alpha stimulation. These results led us to propose that TNF-alpha may act a regulator of functional ICAM-1 expression on the SMC surface and thus can increase the possibility of interactions between mononuclear cells and SMCs in atherosclerotic plaques.
Collapse
Affiliation(s)
- T Couffinhal
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 8 de Cardiologie, Pessac, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Ginis I, Mentzer SJ, Faller DV. Hypoxia induces lymphocyte adhesion to human mesenchymal cells via an LFA-1-dependent mechanism. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C617-24. [PMID: 7681624 DOI: 10.1152/ajpcell.1993.264.3.c617] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We and others have previously reported that mesenchymal cells, including endothelial and muscle cells, sense oxygen tension and respond in a specific way during exposure to hypoxic environment. We have examined the interactions of human muscle and endothelial cells, which have been exposed to hypoxic environments, with T and B lymphoid cell lines and peripheral blood lymphocytes (PBL), not subjected to hypoxia. The adhesion of B lymphocyte cell line (JY) and the adhesion of T lymphocyte cell line (Jurkat) to muscle cell monolayers that had been incubated at PO2 of 50 Torr for 3 h increased more than four- and twofold, respectively. Hypoxia appears to upregulate a saturable muscle cell-associated adhesion mechanism, which is capable of withstanding distraction forces greater than 45 g, and is inhibitable by LFA-1-specific monoclonal antibodies (MAbs). Hypoxia also induced a reciprocal decrease in lymphocyte-muscle cell adhesion mechanisms inhibitable by VCAM-1- or VLA-4-specific MAbs. Cultured human endothelial cells when subjected to hypoxic conditions also increased their adhesion for lymphoid cells and cell lines. This induction of adhesion could again be attenuated by anti-LFA-1, but not by anti-ICAM-1 MAb, suggesting that hypoxia activates an adhesion molecule on human mesenchymal cells that is likely to be a new ligand for LFA-1. This report is the first demonstration of a direct induction of cell adhesion mechanisms by hypoxic environments.
Collapse
Affiliation(s)
- I Ginis
- Cancer Research Center, Boston University School of Medicine, Massachusetts
| | | | | |
Collapse
|
30
|
Polacek D, Lal R, Volin MV, Davies PF. Gap junctional communication between vascular cells. Induction of connexin43 messenger RNA in macrophage foam cells of atherosclerotic lesions. THE AMERICAN JOURNAL OF PATHOLOGY 1993; 142:593-606. [PMID: 8382009 PMCID: PMC1886737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The structure and function of blood vessels depend on the ability of vascular cells to receive and transduce signals and to communicate with each other. One means by which vascular cells have been shown to communicate is via gap junctions, specifically connexin43. In atherosclerosis, the normal physical patterns of communication are disrupted by the subendothelial infiltration and accumulation of blood monocytes, which in turn can differentiate into resident foam cells. In this paper we report that neither freshly isolated human peripheral blood monocytes nor differentiated monocytes/macrophages exhibit functional gap junctional dye transfer in homo-cellular culture or in co-culture with endothelial cells or smooth muscle cells. By Northern analysis, neither freshly isolated blood monocytes nor pure cultures of differentiated monocyte/macrophages expressed gap junction messenger RNA. However, immunohistochemical staining followed by in situ hybridization on sections of human atherosclerotic carotid arteries revealed strong expression of gap junction connexin43 messenger RNA by macrophage foam cells. These results suggest that tissue-specific conditions present in atherosclerotic arteries induce expression of connexin43 messenger RNA in monocyte/macrophages.
Collapse
Affiliation(s)
- D Polacek
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Illinois
| | | | | | | |
Collapse
|
31
|
|
32
|
Yamada T, Fan J, Shimokama T, Tokunaga O, Watanabe T. Induction of fatty streak-like lesions in vitro using a culture model system simulating arterial intima. THE AMERICAN JOURNAL OF PATHOLOGY 1992; 141:1435-44. [PMID: 1466401 PMCID: PMC1886768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study a two-compartment culture model of arterial intima was used for the in vitro induction of fatty streaklike lesions. The apparatus consisted of upper and lower compartments separated by a human amnion membrane stretched between them. Human umbilical vein endothelial cells (HUVECs) were cultured to confluence on the stromal surface of the amnion membrane. Maximal migration of blood mononuclear cells (MCs) through the HUVEC monolayer in response to a f-Met-Leu-Phe gradient was observed at 10(-8) mol/l; the migration was 3.29 times greater than that observed under the condition of random migration (control). In the study of MC transformation into lipid-laden cells in the amnion membrane (foam cell formation in 'arterial intima'), 10(6) MCs were incubated, in the presence of freshly prepared low-density lipoprotein (LDL; 100 microgram/ml). The lipid loading of MCs was time dependent. After 12 hours' incubation, 39% of the MCs that migrated into the amnion membrane contained a small number of lipid droplets, whereas the remaining 61% showed no lipid droplets. Only 1.7% of the cells contained a high number of lipid droplets in the cytoplasm and took on the appearance of foam cells. With time, the number of lipid-laden cells and the amounts of intracytoplasmic lipid droplets gradually increased. At 72 hours after incubation, 65.4% of the MCs were loaded with lipid droplets, and 20.9% of them, an eightfold increase over 12 hours of incubation, showed a foamy cell appearance. Because MCs consist of 70% monocytes and 30% lymphocytes, about 93% of the monocytes were filled with lipid after a 72-hour incubation. Ultrastructural examination showed that lipid-laden cells took on macrophage characteristics, such as wide and heterogeneous cytoplasm, indented nuclei, and abundant lysosomes. A minority of the MCs in the amnion were considered lymphocytes; they had scanty cytoplasm, round nuclei with abundant heterochromatin, no lysosomes, and no lipid vacuoles. In conclusion, the formation of an in vitro fatty streaklike lesion is demonstrated, and this is reminiscent of in vivo human atherogenesis.
Collapse
Affiliation(s)
- T Yamada
- Department of Pathology, Saga Medical School, Japan
| | | | | | | | | |
Collapse
|
33
|
Muller WA, Weigl SA. Monocyte-selective transendothelial migration: dissection of the binding and transmigration phases by an in vitro assay. J Exp Med 1992; 176:819-28. [PMID: 1512545 PMCID: PMC2119361 DOI: 10.1084/jem.176.3.819] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We describe a quantitative assay of transendothelial migration (TEM) that allows us to selectively study the interaction of monocytes with confluent human endothelial cell (HEC) monolayers. The HEC are grown on hydrated collagen gels; the monocytes need not be purified. 100% of monocytes transmigrated the monolayer within 1 h at 37 degrees C and accumulated in the subendothelial collagen; TEM of lymphocytes was not detected within this time. Migration of neutrophils from the same donor was much slower and incomplete, with only 14% of PMN transmigrating in 2 h. This rapid TEM occurs in the absence of exogenous chemoattractants, and HEC in this system do not express cytokine-inducible leukocyte adhesion molecules. A slight modification of the TEM assay allowed us to separate binding to the apical HEC surface from TEM. We found that tight apical surface binding was the rate-limiting step for TEM. Two-thirds of this binding and TEM could be blocked by a monoclonal antibody against the leukocyte beta 2 integrin chain CD18. This assay will allow us to dissect the mechanisms of both the binding and transmigration stages of diapedesis.
Collapse
Affiliation(s)
- W A Muller
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
34
|
Spertini O, Luscinskas FW, Gimbrone MA, Tedder TF. Monocyte attachment to activated human vascular endothelium in vitro is mediated by leukocyte adhesion molecule-1 (L-selectin) under nonstatic conditions. J Exp Med 1992; 175:1789-92. [PMID: 1375271 PMCID: PMC2119244 DOI: 10.1084/jem.175.6.1789] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The receptors that mediate monocyte adhesion to cytokine-stimulated endothelial monolayers were assessed using a nonstatic (rotating) cell-attachment assay. In this system, leukocyte adhesion molecule-1 (LAM-1) (L-selectin) mediated a major portion (87 +/- 15% at 37 degrees C) of monocyte attachment to activated endothelium. mAb blocking of endothelial leukocyte adhesion molecule-1 (41% inhibition), CD18 (36%), and vascular cell adhesion molecule-1 (25%) function had lesser effects on attachment. These results suggest that LAM-1 may serve an important role in monocyte attachment to endothelium at sites of inflammation.
Collapse
Affiliation(s)
- O Spertini
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | |
Collapse
|
35
|
Hakkert BC, Rentenaar JM, Van Aken WG, Roos D, Van Mourik JA. A three-dimensional model system to study the interactions between human leukocytes and endothelial cells. Eur J Immunol 1990; 20:2775-81. [PMID: 1980113 DOI: 10.1002/eji.1830201236] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leukocyte adhesion to endothelial cells and migration into the subendothelial matrix was studied with a three-dimensional model system, consisting of human endothelial cells cultured on a loose collagen matrix. We developed a new method to separate the endothelial cell monolayer and adhering leukocytes, from the subendothelial matrix, allowing simultaneous analysis of leukocyte adhesion and transendothelial migration. Monocytes adhered more avidly to untreated endothelial cells than did neutrophils (2.5 +/- 0.3 vs. 1.0 +/- 0.2 leukocytes per endothelial cell). Only a small fraction (10%-20%) of these leukocytes migrated into the subendothelium. Pretreatment of endothelial cells with interleukin 1 (IL 1) enhanced adhesion (20%), but not migration of monocytes. In contrast, neutrophil adhesion was markedly and in a time-dependent manner increased by IL 1 treatment (i.e. 200% after 6 h and 110% after 24 h of IL 1 treatment). Moreover, IL 1 pretreatment enhanced neutrophil migration twofold. Activation of leukocytes with formyl-methionyl-leucyl-phenylalanine (fMLP) enhanced both monocyte and neutrophil adhesion, but did not affect leukocyte migration. Under all conditions, monocyte adhesion was only partly (30%-40%) inhibited by monoclonal antibodies (mAb) against the common beta subunit of the leukocyte-cell adhesion molecules (LeuCAM: CD18) and 25%-30% by mAb against the alpha subunit of LFA-1 (CD11a). In contrast, mAb against the alpha subunits of Mac-1 (CD11b) and p150.95 (CD11c) were hardly effective. fMLP-mediated neutrophil adhesion was reduced to below baseline levels by anti-LeuCAM (CD18) mAb, whereas the LeuCAM contribution in IL 1-mediated neutrophil adhesion was less pronounced and varied in time. IL 1-mediated neutrophil migration, however, was completely blocked by anti-LeuCAM mAb. fMLP-mediated neutrophil adhesion was inhibited by mAb against the alpha subunits of Mac, while mAb against the alpha subunits of LFA-1 and Mac-1 both reduced IL 1-mediated adherence. In summary, we describe a novel leukocyte adhesion/migration method and demonstrate that the contribution of the LeuCAM complex in leukocyte-endothelium interaction varies depending on cell type and stimulus used.
Collapse
Affiliation(s)
- B C Hakkert
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdam
| | | | | | | | | |
Collapse
|
36
|
Detmers PA, Lo SK, Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1990; 171:1155-62. [PMID: 1969919 PMCID: PMC2187826 DOI: 10.1084/jem.171.4.1155] [Citation(s) in RCA: 334] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cytokine NAP-1/IL-8 is produced by a variety of different cells in response to inflammatory stimuli and elicits several biological responses from PMN. Experiments presented here demonstrate that PMN exposed to NAP-1/IL-8 expressed increased amounts of CD11b/CD18, as well as CD11c/CD18 and CR1, on their cell surface, while expression of Fc gamma RIII and HLA-A,B,C remained essentially unchanged. Increased CD11b/CD18 and CD11c/CD18 appears to correspond with the release of specific granules by NAP-1/IL-8. NAP-1/IL-8 was also a potent stimulator of several of the binding activities of CD11b/CD18. Ligation of EC3bi by CD11b/CD18 was rapidly enhanced by NAP-1/IL-8, but phagocytosis of the ligated particles was not induced by the agonist. In addition, enhanced binding of EC3bi was observed in the absence of an increase in receptor expression as shown with PMN cytoplasts. NAP-1/IL-8 promoted additional adhesive interactions between CD11b/CD18 and the biosynthetic precursor of LPS, lipid IVa, fibrinogen, and endothelial cells, suggesting that NAP-1/IL-8 may promote leukocyte adhesion in vivo that could lead to recruitment of PMN to sites of tissue inflammation.
Collapse
Affiliation(s)
- P A Detmers
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
37
|
Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990; 85:1260-6. [PMID: 2318980 PMCID: PMC296561 DOI: 10.1172/jci114562] [Citation(s) in RCA: 698] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The effect of minimally modified LDL (MM-LDL) on the ability of large vessel endothelial cells (EC) to interact with monocytes and neutrophils was examined. These LDL preparations, obtained by storage or by mild iron oxidation, were indistinguishable from native LDL to the LDL receptor and were not recognized by the scavenger receptor. Treatment of EC with as little as 0.12 micrograms/ml MM-LDL caused a significant increase in the production of chemotactic factor for monocytes (sevenfold) and increased monocyte binding (three- to fivefold). Monocyte binding was maximal after 4 h of EC exposure to MM-LDL, persisted for 48 h, and was inhibited by cycloheximide. In contrast, neutrophil binding was not increased after 1-24 h of exposure. Activity in the MM-LDL preparations was found primarily in the polar lipid fraction. MM-LDL was toxic for EC from one rabbit but not toxic for the cells from another rabbit or any human umbilical vein EC. The resistant cells became sensitive when incubated with lipoprotein in the presence of cycloheximide, whereas the sensitive strain became resistant when preincubated with sublethal concentrations of MM-LDL. We conclude that exposure of EC to sublethal levels of MM-LDL enhances monocyte endothelial interactions and induces resistance to the toxic effects of MM-LDL.
Collapse
Affiliation(s)
- J A Berliner
- Department of Pathology, University of California, School of Medicine, Los Angeles 90024-1732
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Territo MC, Berliner JA, Almada L, Ramirez R, Fogelman AM. Beta-very low density lipoprotein pretreatment of endothelial monolayers increases monocyte adhesion. ARTERIOSCLEROSIS (DALLAS, TEX.) 1989; 9:824-8. [PMID: 2686605 DOI: 10.1161/01.atv.9.6.824] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Treatment of rabbit aortic endothelial cells or human umbilical vein cells for as little as 1 day with 25 micrograms/ml of beta-migrating very low density lipoprotein (beta-VLDL), but not low density lipoprotein (LDL), caused an increased binding of human peripheral blood monocytes to the endothelium. This increase was maximal by 24 hours but was not significant at 4 hours of pre-incubation with beta-VLDL. Neutrophil binding was not significantly stimulated by beta-VLDL treatment of endothelial cells, while endotoxin (LPS) treatment of endothelial cells stimulated both neutrophil and monocyte binding. Antibody to leukocyte function-associated-antigen-1 and to Mo2 inhibited binding to both beta-VLDL-stimulated and LPS-stimulated cells by 25%. The fact that both rabbit and human cells were stimulated by beta-VLDL to bind human monocytes suggests that some mechanisms regulating binding are conserved between species. These studies suggest that beta-VLDL acts like a chronic inflammatory mediator to cause a sustained increase in binding of monocytes to the endothelium.
Collapse
Affiliation(s)
- M C Territo
- Department of Medicine, University of California Los Angeles School of Medicine 90024
| | | | | | | | | |
Collapse
|
39
|
Gamble JR, Elliott MJ, Jaipargas E, Lopez AF, Vadas MA. Regulation of human monocyte adherence by granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci U S A 1989; 86:7169-73. [PMID: 2674950 PMCID: PMC298017 DOI: 10.1073/pnas.86.18.7169] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) was found to increase the adherence of purified peripheral blood monocytes to plastic surfaces and to monolayers of human umbilical vein endothelial cells. With plastic surfaces as a model 9-hr culture with GM-CSF was necessary for enhancement, and maximum levels were obtained after 24-hr stimulation. GM-CSF-stimulated adherence must require new RNA and protein synthesis because actinomycin D and cycloheximide abolished existing adherence and prevented further monocyte attachment. Interestingly, shorter incubations (1-2 hr) with cycloheximide increased adherence, suggesting a labile inhibitor. Formaldehyde fixation of monocytes but not of human vein endothelial cells abolished adherence, indicating the need for actively metabolizing monocytes. Thus, a hemopoietic growth factor, responsible for the proliferation and differentiation of monocytes, can also alter their adhesive characteristics. These observations may have important implications in pathological situations and in the in vivo use of GM-CSF.
Collapse
Affiliation(s)
- J R Gamble
- Division of Human Immunology, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | | | | | | | | |
Collapse
|
40
|
Watanabe T, Tokunaga O, Fan JL, Shimokama T. Atherosclerosis and macrophages. ACTA PATHOLOGICA JAPONICA 1989; 39:473-86. [PMID: 2683576 DOI: 10.1111/j.1440-1827.1989.tb01513.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Atherosclerosis is undoubtedly a disease of many facets and in this review we have merely touched one angle of this issue. The best-established cause of the disease is hypercholesterolemia. Since the important role of macrophages in lipoprotein metabolism has been confirmed, current interest is focused on the role of macrophages in atherosclerosis. The origin and tissue distribution of foam cells have been discussed in detail, because they are the principal cells in the earliest lesions, the so-called fatty streaks. Once thought to be derived exclusively from smooth muscle cells, foam cells are now known to originate largely from monocytes that enter the intima and become transformed into macrophages. Exactly how monocytes are recruited and retained in the artery wall is not fully understood, but it is certain that the initial event involves adhesion to the endothelial surface followed by penetration under the influence of a chemotactic factor(s). Hypercholesterolemia contributes much to this phenomenon by affecting both monocyte-macrophages and endothelial cells. Intensive current research is increasing our understanding of the dynamic interaction between macrophages and both lipoproteins and vascular cells, and its immediate relevance to lesion formation. Closer scrutiny of the biology and molecular mechanism of the process of atherosclerosis may ultimately permit intervention in and slowing of the progress of this catastrophic human disease using new modalities.
Collapse
Affiliation(s)
- T Watanabe
- Department of Pathology, Saga Medical School, Japan
| | | | | | | |
Collapse
|
41
|
Merke J, Milde P, Lewicka S, Hügel U, Klaus G, Mangelsdorf DJ, Haussler MR, Rauterberg EW, Ritz E. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 1989; 83:1903-15. [PMID: 2542376 PMCID: PMC303911 DOI: 10.1172/jci114097] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been shown to play roles in both proliferation and differentiation of novel target cells, the potential expression of 1,25(OH)2D3 receptor (VDR) activity was investigated in cultured bovine aortic endothelial cells (BAEC). Receptor binding assays performed on nuclear extracts of BAEC revealed a single class of specific, high-affinity VDR that displayed a 4.5-fold increase in maximal ligand binding (Nmax) in rapidly proliferating BAEC compared with confluent, density-arrested cells. When confluent BAEC were incubated with activators of protein kinase C (PKC), Nmax increased 2.5-fold within 6-24 h and this upregulation was prevented by sphingosine, an inhibitor of PKC, as well as by actinomycin D or cycloheximide. Immunohistochemical visualization using a specific MAb disclosed nuclear localized VDR in venular and capillary endothelial cells of human skin biopsies, documenting the expression of VDR, in vivo, and validating the BAEC model. Finally, additional experiments indicated that BAEC formed the 1,25(OH)2D3 hormonal metabolite from 25(OH)D3 substrate, in vitro, and growth curves of BAEC maintained in the presence of 10(-8) M 1,25(OH)2D3 showed a 36% decrease in saturation density. These data provide evidence for the presence of a vitamin D microendocrine system in endothelial cells, consisting of the VDR and a 1 alpha-hydroxylase enzyme capable of producing 1,25(OH)2D3. That both components of this system are coordinately regulated, and that BAEC respond to the 1,25(OH)2D3 hormone by modulating growth kinetics, suggests the existence of a vitamin D autocrine loop in endothelium that may play a role in the development and/or functions of this pathophysiologically significant cell population.
Collapse
Affiliation(s)
- J Merke
- Department of Internal Medicine, University of Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Fluorescently labeled polymorphonuclear leukocytes (PMN) were used to measure adhesion to human umbilical vein endothelial cells (EC) cultured in vitro. Stimulation of PMN with phorbol dibutyrate (PDB), TNF, or C5a caused an increase in adhesion followed by a return to prestimulation levels of adhesion of longer times of incubation. Maximal adhesion of PMN to EC occurred rapidly in response to C5a (5 min) and more slowly with TNF or PDB (15 min). PMN stimulated to adhere with C5a detached from EC by 15 min. PMN from CD11/CD18-deficient patients and PMN incubated with anti-CD18 mAbs failed to bind to EC despite maximal stimulation. Anti-CD11a/CD18 and anti-CD11b/CD18 each partially inhibited adhesion, and a combination of these two reagents completely blocked adhesion. The adhesion we measured was therefore completely dependent on CD11/CD18, and CD11a/CD18 and CD11b/CD18 each contributed to adhesion. Stimuli that enhanced adhesion of PMN to EC also enhanced expression of CD11b/CD18 on the cell surface, but the time course of expression correlated poorly with changes in adhesivity. To determine if changes in the expression of CD11b/CD18 are necessary for the changes in adhesivity, we used enucleate cytoplasts that did not increase expression of CD11b/CD18. Cytoplasts showed a normal rise and fall in adhesivity in response to PDB. We conclude that the transient adhesion of stimulated PMN to naive EC is regulated by changes in the nature of existing CD11/CD18 molecules on the PMN surface. Changes in expression of CD11b/CD18 may contribute to enhancement of adhesivity, but a definite role for this phenomenon has yet to be established.
Collapse
Affiliation(s)
- S K Lo
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
43
|
Teitel JM, Shore A, McBarron J, Schiavone A. Enhanced T-cell-activation due to combined stimulation by both endothelial cells and monocytes. Scand J Immunol 1989; 29:165-73. [PMID: 2784221 DOI: 10.1111/j.1365-3083.1989.tb01113.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitogen-induced interleukin 2 (IL-2) secretion by T cells was greatly enhanced by the combined presence of endothelial cells (EC) and monocytes (AC). EC also altered the time course of IL-2 secretion by peripheral blood mononuclear cells (PBM) in response to mitogens. The response to EC did not require expression of HLA-DR antigen and occurred equally well in response to autologous EC. At least one live accessory cell was required to induce T cells to secrete IL-2. When added to T cells plus live AC, both fixed EC and EC supernatant partially reproduced the enhancing effect of EC. Surface membrane IL-1 was present on both live and fixed EC. However, active EC supernatant contained no detectable IL-1 activity. Anti-IL-1 abolished the enhancement of T-cell responses by fixed but not live EC.
Collapse
Affiliation(s)
- J M Teitel
- Department of Medicine, St Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Navab M, Hough GP, Stevenson LW, Drinkwater DC, Laks H, Fogelman AM. Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. J Clin Invest 1988; 82:1853-63. [PMID: 3198759 PMCID: PMC442764 DOI: 10.1172/jci113802] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aortic endothelial cells (EC) and smooth muscle cells (SMC) were isolated and used to form a multilayer of EC-SMC separated by a layer of collagen. SMC and/or collagen layers exerted minimal effects on Na+ transport but impeded the transport of LDL. The presence of an endothelial monolayer markedly reduced the transport of Na+ and LDL. When monocytes were presented to the complete coculture, in the absence of added chemoattractant, one monocyte entered the subendothelial space for every one to three EC present. In contrast, neither collagen nor SMC plus collagen nor EC plus collagen induced comparable monocyte migration. Despite massive migration of monocytes into the coculture, no significant alteration in Na+ transport was observed. LDL transport into the preparation during massive monocyte migration increased modestly, but this was far less than the amount of LDL transported in the absence of an endothelial monolayer. We conclude that (a) the endothelial monolayer was the principal permeability barrier, (b) a substantial migration of monocytes occurred in the absence of added chemoattractant when both EC and SMC were present in the coculture, (c) endothelial barrier function was largely maintained after monocyte migration; and (d) these experiments indicate the need to study all three cell types (monocytes, EC, and SMC) together to understand the complex interactions that occur between these cells.
Collapse
Affiliation(s)
- M Navab
- Department of Medicine, University of California, Los Angeles School of Medicine 90024
| | | | | | | | | | | |
Collapse
|
45
|
Arnaout MA, Lanier LL, Faller DV. Relative contribution of the leukocyte molecules Mo1, LFA-1, and p150,95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium is tissue- and stimulus-specific. J Cell Physiol 1988; 137:305-9. [PMID: 3056960 DOI: 10.1002/jcp.1041370214] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adhesion of human monocytes and granulocytes to vascular endothelium plays an important role in migration of these cells to inflammatory sites in tissues. A family of three human leukocyte heterodimeric surface molecules named Mo1, LFA-1, and p150,95 (LeuM5) has been shown to mediate leukocyte adhesion to confluent monolayers of human umbilical vein endothelial cells (HUVE). The relative contribution of each of the three molecules in leukocyte endothelial adhesion was studied using a variety of stimuli. Purified human granulocytes and monocytes were radiolabelled and incubated with HUVE for 45 minutes in a 37 degrees C humidified 5% CO2 incubator in the presence or absence of subunit-specific monoclonal antibodies (MAbs). Adhesion was assessed by quantitation of endothelial cell-associated radioactivity and confirmed by microscopic evaluation. MAbs directed against the alpha subunit of LFA-1 as well as to the beta subunit common to all three antigens significantly inhibited unstimulated monocyte adhesion to HUVE. Small but significant inhibiton was also observed using MAbs directed against Mo1a and p150. Phorbol myristate acetate (PMA)-induced grranulocyte adhesion to HUVE was significantly inhibited by anti-Mo1a and anti-beta, but not by anti-LFA-1a or anti-p150. When HUVE were prestimulated by recombinant IL-1, a different pattern of antigen utilization by granulocytes was observed. MAbs directed against each of the three alpha subunits as well as the common beta subunit all inhibited granulocyte adhesion to HUVE. Furthermore the effect of the three anti-alpha subunit MAbs on granulocyte-HUVE adhesion was additive. These studies show that relative contribution of Mo1, LFA-1, and p150,95 to leukocyte endothelial adhesion varies depending on the cell type and the stimulus used. These studies also reveal a novel role for p150,95 in promoting monocyte and granulocyte adhesion to HUVE.
Collapse
Affiliation(s)
- M A Arnaout
- Renal Division, Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
46
|
Pawlowski NA, Kaplan G, Abraham E, Cohn ZA. The selective binding and transmigration of monocytes through the junctional complexes of human endothelium. J Exp Med 1988; 168:1865-82. [PMID: 3183575 PMCID: PMC2189117 DOI: 10.1084/jem.168.5.1865] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human monocytes show a high affinity for vascular endothelium both in vitro and in vivo. To explore monocyte-endothelial interaction in greater detail, we have developed a new in vitro model for growth of human endothelial cells (EC). Human umbilical vein EC (HUVEC) cultured upon collagen gels form confluent monolayers of EC that bind silver at their intercellular border similar to cells in situ. Intercellular junctional structures, both adherens and tight junctions, were identified. In contrast, HUVEC grown on plastic surfaces did not stain with silver. The silver-staining characteristic of EC-collagen monolayers was reversible and related to their in vitro maturation and senescence. Silver staining of EC borders provided a grid by which the location of monocyte binding to the luminal surface of individual EC could be assessed. Using this technique, we found that monocytes preferentially bound to the margins of EC, in approximation to the silver-staining junctions. These results suggest that EC determinants recognized by monocytes occur in a unique topographical distribution on the apical face of EC. After binding, monocytes migrated through the EC monolayers at high basal rates. The lack of penetration of collagen gels in the absence of an EC monolayer suggested the generation of EC-specific chemotactic signal(s). Monocytes were observed to pass between EC without evidence of disruption of the monolayer. Silver stain remained present during all phases of migration, and under transmission electron microscopy, junctional complexes were found proximal to monocytes that had just completed their passage through the monolayer. After orientation to the basal surface of the EC monolayer, monocytes migrated randomly into the underlying collagen gel. Monocyte adherence, penetration, migration, and long term survival can be studied under these conditions.
Collapse
Affiliation(s)
- N A Pawlowski
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
47
|
Subendothelial extracellular-matrix heparan sulfate proteoglycan-degrading activity of human monocyte macrophages. Heart Vessels 1987; 3:175-81. [PMID: 2969381 DOI: 10.1007/bf02058308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
At the early stage of atherogenesis, circulating monocyte macrophages appear to adhere to the endothelial cell surface and migrate subendothelially to become foam cells. The mechanism of these macrophage-endothelial cell interactions was investigated. Adherent macrophages isolated from human blood were plated on [35S]O4-prelabeled extracellular matrix-coated dishes prepared from cultured porcine aortic endothelial cells. During incubation for 2-3 days at pH 7.4 either in the presence or absence of serum, macrophages solubilized the labeled extracellular matrix to a lower molecular weight component (Kav approximately equal to 0.5) than the materials (Kav = 0) released into the medium containing no cells. The degrading activity was not stored intracellularly but instead was found pericellularly, requiring continuous cell-matrix contact. Heparin (10 micrograms/ml) inhibited this degrading activity of macrophages. Degradation products were precipitated with cetylpyridinium chloride and were resistant to further digestion with alkali, pronase, or chondroitinase ABC, but were converted to further lower molecular weight fragments (Kav = 0.84) after nitrous acid digestion or heparitinase treatment. The intact glycosaminoglycan side chains determined by subjecting the extracellular matrix to cleavage with alkali or pronase were larger (Kav congruent to 0.20) than those of degradation products released by macrophages. These results suggest that the attachment and subsequent invasion of endothelial cells by monocyte macrophages may involve the production of extracellular-matrix heparan sulfate proteoglycan-degrading activity by these cells.
Collapse
|
48
|
Muzykantov VR, Sakharov DV, Domogatsky SP, Goncharov NV, Danilov SM. Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide. THE AMERICAN JOURNAL OF PATHOLOGY 1987; 128:276-85. [PMID: 3618728 PMCID: PMC1899616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Red blood cells bearing anti-mouse IgG antibody on their surface (immunoerythrocytes) may provide for local protection of endothelial cells from the action of hydrogen peroxide. Subconfluent cultures of human umbilical vein endothelial cells responded sharply to increasing concentrations of hydrogen peroxide. Permeabilization of cellular membrane occurred at doses of hydrogen peroxide of from 1 to 3 mM, and was assured by incorporation of trypan blue stain immediately after treatment. Latent damage of cells produced by much lower doses of hydrogen peroxide (0.2-0.4 mM) could be observed after 24-hour incubation of treated cells in the normal culture medium with no hydrogen peroxide. The apparently dead cells differed from intact cells in morphology, were poorly attached to the substrate, and were readily incorporated by trypan blue, thus permitting easy visualization. Immunoerythrocytes bound to the antigen-coated surface enzymatically decreased the concentration of hydrogen peroxide in their microenvironment at least fivefold with respect to the total hydrogen peroxide concentration. Erythrocytes deposited on a part of the endothelial monolayer locally protected it from the damage at hydrogen peroxide concentrations ranging from 0.4 to 1.2 mM. Localization of protected zones corresponded precisely to the geometry of the erythrocyte coating. Immunoerythrocytes targeted to the endothelial cells by means of mouse anti-endothelial antiserum did not impair their viability and protected the endothelium from being killed at 0.3-1.2 mM hydrogen peroxide. This approach might be useful for a cell selection in mixed cell populations. The problem of local protection of cells involved in the inflammation focus are discussed.
Collapse
|
49
|
te Velde AA, Keizer GD, Figdor CG. Differential function of LFA-1 family molecules (CD11 and CD18) in adhesion of human monocytes to melanoma and endothelial cells. Immunology 1987; 61:261-7. [PMID: 3301632 PMCID: PMC1453405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human peripheral blood monocytes from normal, healthy donors express the leucocyte function-associated antigen (LFA)-1, CR3 and p150,95. These heterodimeric antigens are members of a glycoprotein family sharing a common beta subunit but endowed with distinct alpha chains. They have been shown to play an important role in cell-cell interactions. In the present study we have investigated the role of these molecules in the interaction of monocytes with endothelial cells and melanoma (tumour) cells. Heterotypic cell-cell interactions were studied in single cell conjugate assays and by adhesion of monocytes to monolayers of cells. The results demonstrate that monoclonal antibodies directed against LFA-1 alpha, CR3 alpha, p150,95 alpha and the common beta chain strongly reduce the number of conjugates (71, 50, 60 and 89% inhibition, respectively), formed between monocytes and melanoma or endothelial cells in a single cell assay. In contrast, adhesion of monocytes to monolayers of the same cells seems only to depend on p150,95, since only antibodies directed to the alpha chain of this molecule and to the common beta chain inhibited adhesion. Interestingly, the number of conjugates formed with melanoma cells in single cell assays was at least twice the number of conjugates formed between monocytes and endothelial cells, whereas no differences were observed in the adhesion of monocytes to monolayers of these cells. However, the basis for this phenomenon is not yet clear. These results indicate that not only LFA-1 but also CR3 and p150,95 can mediate adhesion to target cells in suspension, but that monocyte adhesion to monolayers is caused by a different mechanism in which the p150,95 molecule seems to play a prominent role.
Collapse
|
50
|
Migliorisi G, Folkes E, Pawlowski N, Cramer EB. In vitro studies of human monocyte migration across endothelium in response to leukotriene B4 and f-Met-Leu-Phe. THE AMERICAN JOURNAL OF PATHOLOGY 1987; 127:157-67. [PMID: 3031985 PMCID: PMC1899584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Relatively little is known about monocyte emigration from the vasculature or about the factors that regulate this process. In this study, a human in vitro model of a blood vessel wall was used for examination of monocyte transendothelial migration. Umbilical vein endothelial cells were grown to confluency on amnion connective tissue, and human monocytes were stimulated to cross the monolayer in response to the chemoattractants leukotriene B4 or f-Met-Leu-Phe. The pattern and time course of monocyte migration were similar for the two chemotactic factors. In both cases, approximately 40-50% of the adherent monocytes extended single or multiple pseudopods into the apical endothelial surface. This indenting behavior was also observed in the absence of chemotactic factors. It was not affected by the medium (M199 or Gey's) or method of monocyte isolation. Neutrophils also displayed this behavior, but only about half as many neutrophils as monocytes indented the endothelial surface. The integrity of the endothelium remained intact as the monocytes traversed the monolayer. When the monocytes reached the basal surface of the endothelium, they frequently wedged themselves between the basal surface of the endothelium and its basal lamina. The monocytes then invaded the basal lamina and accumulated in the connective tissue. In response to both f-Met-Leu-Phe and leukotriene B4, monocyte migration across the endothelium began as early as 10 minutes. The average rate of accumulation in the connective tissue peaked at 30 minutes; and by 60 minutes, 25-35% of the monocytes had traversed the monolayer. Approximately two to three times as many monocytes traversed the endothelium under conditions of chemotaxis as under conditions of chemokinesis or random migration. These studies provide the basis for understanding the process of monocyte migration out of the bloodstream and lay the foundation for the study of their differentiation into macrophages in the connective tissue.
Collapse
|