1
|
Qu JM, Wen SJ, Lin YK, Lu HX, Huang KQ, Maansson CT, Lee CS, Araki T. Retrospective clinical study analysis of skin adverse reactions related to epidermal growth factor receptor inhibitors. Transl Cancer Res 2024; 13:3016-3030. [PMID: 38988913 PMCID: PMC11231804 DOI: 10.21037/tcr-24-486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Background Epidermal growth factor receptor inhibitors (EGFRIs) represent a cornerstone in the targeted therapy of malignant tumors. While effective, dermatological adverse events (dAEs) associated with EGFRIs pose a significant challenge, often necessitating treatment discontinuation due to their severity and potential to impede the continuity of cancer therapy. Despite extensive research, the specific mechanisms and predictors of these adverse events remain poorly understood, particularly in diverse populations. This gap in knowledge underscores the need for targeted studies to better predict and manage these events, enhancing patient outcomes and adherence to life-saving therapies. Methods This observational study was conducted at The First Affiliated Hospital of Guangxi Medical University, covering cancer patients treated with EGFRIs from 2020 to 2022. We analyzed clinical data including patient demographics, treatment specifics, and the development and timing of dAEs. The study employed SPSS 26.0 software for data analysis, focusing on the incidence of dAEs and factors influencing their occurrence. We used Kaplan-Meier and Cox regression methods to establish a predictive model for dAEs, tracking their onset and impact on treatment continuity. Results In our study of 120 patients treated with EGFR inhibitors at The First Affiliated Hospital of Guangxi Medical University, we found a high prevalence of dAEs, with 84.2% of patients experiencing such effects. The most common manifestations were papulopustular rashes, observed as pustules in 52.5% and papules in 57.4% of cases, followed by nail lesions in 62.4% of patients, oral or other mucosal ulcers in 34.7%, and hair changes in 26.7%. The median incubation time (MIT) for dAEs was 5 weeks. We identified drug type, ethnicity, and occupation as statistically significant risk factors (P<0.05 for all) that influenced the MIT, which the Cox regression model further identified as protective factors. Nomograms were developed to assess the risk of dAEs, although it is important to note that these models have only been internally validated, lacking external validation data at this stage. Conclusions The study highlights the high incidence of EGFRIs-associated dAEs, with specific dermatological manifestations posing significant challenges in cancer therapy. The identification of drug type, ethnicity, and occupation as influential factors on the MIT for dAEs informs clinical decisions. Our prediction model serves as a practical tool for evaluating the risk of developing dAEs over time, aiming to optimize patient management and mitigate treatment interruptions.
Collapse
Affiliation(s)
- Jin-Ming Qu
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Jian Wen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You-Kun Lin
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Xiang Lu
- Center for Disease Control and Prevention of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kun-Qian Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | - Chung-Shien Lee
- Department of Clinical Health Professions, St. John’s University, College of Pharmacy and Health Sciences, Queens, NY, USA
| | - Taisuke Araki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
2
|
Zhang Y. Targeting Epidermal Growth Factor Receptor for Cancer Treatment: Abolishing Both Kinase-Dependent and Kinase-Independent Functions of the Receptor. Pharmacol Rev 2023; 75:1218-1232. [PMID: 37339882 PMCID: PMC10595022 DOI: 10.1124/pharmrev.123.000906] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is activated by ligand binding, overexpression, or mutation. It is well known for its tyrosine kinase-dependent oncogenic activities in a variety of human cancers. A large number of EGFR inhibitors have been developed for cancer treatment, including monoclonal antibodies, tyrosine kinase inhibitors, and a vaccine. The EGFR inhibitors are aimed at inhibiting the activation or the activity of EGFR tyrosine kinase. However, these agents have shown efficacy in only a few types of cancers. Drug resistance, both intrinsic and acquired, is common even in cancers where the inhibitors have shown efficacy. The drug resistance mechanism is complex and not fully known. The key vulnerability of cancer cells that are resistant to EGFR inhibitors has not been identified. Nevertheless, it has been increasingly recognized in recent years that EGFR also possesses kinase-independent oncogenic functions and that these noncanonical functions may play a crucial role in cancer resistance to EGFR inhibitors. In this review, both kinase-dependent and -independent activities of EGFR are discussed. Also discussed are the mechanisms of actions and therapeutic activities of clinically used EGFR inhibitors and sustained EGFR overexpression and EGFR interaction with other receptor tyrosine kinases to counter the EGFR inhibitors. Moreover, this review discusses emerging experimental therapeutics that have shown potential for overcoming the limitation of the current EGFR inhibitors in preclinical studies. The findings underscore the importance and feasibility of targeting both kinase-dependent and -independent functions of EGFR to enhance therapeutic efficacy and minimize drug resistance. SIGNIFICANCE STATEMENT: EGFR is a major oncogenic driver and therapeutic target, but cancer resistance to current EGFR inhibitors remains a significant unmet clinical problem. This article reviews the cancer biology of EGFR as well as the mechanisms of actions and the therapeutic efficacies of current and emerging EGFR inhibitors. The findings could potentially lead to development of more effective treatments for EGFR-positive cancers.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Pharmacology and Toxicology, School of Medicine, and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Pilus NSM, Muhamad A, Shahidan MA, Yusof NYM. Potential of Epidermal Growth Factor-like Peptide from the Sea Cucumber Stichopus horrens to Increase the Growth of Human Cells: In Silico Molecular Docking Approach. Mar Drugs 2022; 20:md20100596. [PMID: 36286420 PMCID: PMC9605497 DOI: 10.3390/md20100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber is prominent as a traditional remedy among Asians for wound healing due to its high capacity for regeneration after expulsion of its internal organs. A short peptide consisting of 45 amino acids from transcriptome data of Stichopus horrens (Sh-EGFl-1) shows a convincing capability to promote the growth of human melanoma cells. Molecular docking of Sh-EGFl-1 peptide with human epidermal growth factor receptor (hEGFR) exhibited a favorable intermolecular interaction, where most of the Sh-EGFl-1 residues interacted with calcium binding-like domains. A superimposed image of the docked structure against a human EGF–EGFR crystal model also gave an acceptable root mean square deviation (RMSD) value of less than 1.5 Å. Human cell growth was significantly improved by Sh-EGFl-1 peptide at a lower concentration in a cell proliferation assay. Gene expression profiling of the cells indicated that Sh-EGFl-1 has activates hEGFR through five epidermal growth factor signaling pathways; phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase C gamma (PLC-gamma), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras homologous (Rho) pathways. All these pathways triggered cells’ proliferation, differentiation, survival and re-organization of the actin cytoskeleton. Overall, this marine-derived, bioactive peptide has the capability to promote proliferation and could be further explored as a cell-growth-promoting agent for biomedical and bioprocessing applications.
Collapse
Affiliation(s)
- Nur Shazwani Mohd Pilus
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| | - Azira Muhamad
- Department of Structural Biology and Functional Omics, Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Kajang 43000, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| |
Collapse
|
4
|
Negrón-Vega L, Cora EM, Pérez-Torres M, Tang SC, Maihle NJ, Ryu JS. Expression of EGFR isoform D is regulated by HER receptor activators in breast cancer cells. Biochem Biophys Rep 2022; 31:101326. [PMID: 36039113 PMCID: PMC9418195 DOI: 10.1016/j.bbrep.2022.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor isoform D (EGFR; isoform D) is a soluble protein from a 3 kb alternate mRNA transcript that arises from the human EGFR gene. Several studies have identified this circulating isoform of EGFR as a potential diagnostic biomarker for the detection of early stage of cancers. While the expression of the full-length EGFR (isoform A) is regulated by its cognate ligand, EGF, as well as by phorbol myristate acetate (PMA), no studies have examined the factors regulating the expression of EGFR isoform D. In this study, using breast cancer cell lines, we show that the HER receptor ligands, EGF and neuregulin (NRG-1β), as well as the phorbol ester, PMA, can increase the expression of EGFR isoform D, as well as isoform A. Our results, based on measurement of mRNA levels, suggest that EGF induced expression of both isoform A and isoform D occur through a mitogen activated protein kinase (MAPK)-dependent mechanism, and also suggest that protein kinase C is involved in PMA-induced regulation of both isoforms. We also demonstrate that NRG-1β increases isoform A and isoform D expression via the MAPK-dependent pathway, but this regulation occurs independently of phosphatidylinositol 3-kinase/Akt activation. These results suggest that regulation of EGFR isoform A and isoform D expression occur using similar mechanisms. Despite commonalities in the transcriptional regulation of these two EGFR isoforms, the half-lives of these two transcripts is quite different. Moreover, EGFR isoform D, unlike isoform A, is not post-transcriptionally modulated by EGFR activators in the breast cancer cell line MDA-MB-468.
Collapse
Affiliation(s)
- Lisandra Negrón-Vega
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Elsa M. Cora
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Marianela Pérez-Torres
- School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Shou-Ching Tang
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nita J. Maihle
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jung Su Ryu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
5
|
Ramírez Moreno M, Bulgakova NA. The Cross-Talk Between EGFR and E-Cadherin. Front Cell Dev Biol 2022; 9:828673. [PMID: 35127732 PMCID: PMC8811214 DOI: 10.3389/fcell.2021.828673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins. On the one hand, EGFR can destabilize E-cadherin adhesion by increasing E-cadherin endocytosis, modifying its interactions with cytoskeleton and decreasing its expression, thus promoting tumorigenesis. On the other hand, E-cadherin regulates EGFR localization and tunes its activity. As a result, loss and mutations of E-cadherin promote cancer cell invasion due to uncontrolled activation of EGFR, which displays enhanced surface motility and changes in endocytosis. In this minireview, we discuss the molecular and cellular mechanisms of the cross-talk between E-cadherin and EGFR, highlighting emerging evidence for the role of endocytosis in this feedback, as well as its relevance to tissue morphogenesis, homeostasis and cancer progression.
Collapse
Affiliation(s)
| | - Natalia A. Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
7
|
Ho SR, Lin WC. RNF144A sustains EGFR signaling to promote EGF-dependent cell proliferation. J Biol Chem 2018; 293:16307-16323. [PMID: 30171075 DOI: 10.1074/jbc.ra118.002887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Indexed: 11/06/2022] Open
Abstract
RNF144A is a single-pass transmembrane RBR E3 ligase that interacts with and degrades cytoplasmic DNA-PKcs, which is an epidermal growth factor receptor (EGFR)-interacting partner. Interestingly, RNF144A expression is positively correlated with EGFR mRNA and protein levels in several types of cancer. However, the relationship between RNF144A and EGFR is poorly understood. This study reports an unexpected role for RNF144A in the regulation of EGF/EGFR signaling and EGF-dependent cell proliferation. EGFR ligands, but not DNA-damaging agents, induce a DNA-PKcs-independent interaction between RNF144A and EGFR. RNF144A promotes EGFR ubiquitination, maintains EGFR protein, and prolongs EGF/EGFR signaling during EGF stimulation. Moreover, depletion of RNF144A by multiple independent approaches results in a decrease in EGFR expression and EGF/EGFR signaling. RNF144A knockout cells also fail to mount an immediate response to EGF for activation of G1/S progression genes. Consequently, depletion of RNF144A reduces EGF-dependent cell proliferation. These defects may be at least in part due to a role for RNF144A in regulating EGFR transport in the intracellular vesicles during EGF treatment.
Collapse
Affiliation(s)
- Shiuh-Rong Ho
- From the Section of Hematology/Oncology, Department of Medicine
| | - Weei-Chin Lin
- From the Section of Hematology/Oncology, Department of Medicine, .,the Department of Molecular and Cellular Biology, and.,the Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
8
|
Gebhardt F, Bürger H, Brandt B. Modulation of EGFR Gene Transcription by a Polymorphic Repetitive Sequence – a Link between Genetics and Epigenetics. Int J Biol Markers 2018; 15:105-10. [PMID: 10763151 DOI: 10.1177/172460080001500120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays a crucial role in growth, differentiation and motility of normal as well as tumor cells. The transduction of extracellular signals to the cytoplasm via the receptor not only depends on ligand binding, but is also determined by the receptor density on the cell surface. Therefore, with regard to cancer diagnosis and therapeutic approaches targeting EGFR it is important to know how the expression level of EGFR is controlled. We found that transcription activity declines with increasing numbers of CA dinucleotides of a highly polymorphic CA repeat in the first intron of the epidermal growth factor receptor gene. In vivo data from cultured cell lines support these findings, although other regulation mechanisms can compensate this effect. In addition, we showed that RNA elongation terminates at a site closely downstream of the simple sequence repeat (SSR) and that there are two separate major transcription start sites. Model calculations for the helical DNA conformation revealed a high bendability in the EGFR polymorphic region, especially if the CA stretch is extended. These data suggest that the CA-SSR can act like a joint, bringing the promoter in proximity to a putative repressor protein bound downstream of the CA-SSR. The data indicate that this polymorphism may be a marker for cancer, linking genetic and epigenetic risk factors. Furthermore, in breast cancer, heterozygous tumors with short CA-SSR showed an elevated EGFR-expression in contrast to tumours with longer CA-SSR. Tumours with loss of heterozygosity in intron 1 of egfr revealed an increased EGFR expression if the longer allele was lost. Moreover, decreased EGFR gene levels were significantly correlated with poor prognosis in breast cancer.
Collapse
Affiliation(s)
- F Gebhardt
- Institute for Clinical Chemistry, University of Münster, Germany
| | | | | |
Collapse
|
9
|
EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun 2017; 8:2035. [PMID: 29229958 PMCID: PMC5725448 DOI: 10.1038/s41467-017-02185-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/09/2017] [Indexed: 12/15/2022] Open
Abstract
Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.
Collapse
|
10
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
11
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1049] [Impact Index Per Article: 149.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
13
|
Zhang X, Dong T, Li Q, Liu X, Li L, Chen S, Lei X. Second Generation TQ-Ligation for Cell Organelle Imaging. ACS Chem Biol 2015; 10:1676-83. [PMID: 25901763 DOI: 10.1021/acschembio.5b00193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioorthogonal ligations play a crucial role in labeling diverse types of biomolecules in living systems. Herein, we describe a novel class of ortho-quinolinone quinone methide (oQQM) precursors that show a faster kinetic rate in the "click cycloaddition" with thio-vinyl ether (TV) than the first generation TQ-ligation in both chemical and biological settings. We further demonstrate that the second generation TQ-ligation is also orthogonal to the widely used strain-promoted azide-alkyne cycloaddition (SPAAC) both in vitro and in vivo, revealing that these two types of bioorthogonal ligations could be used as an ideal reaction pair for the simultaneous tracking of multiple elements within a single system. Remarkably, the second generation TQ-ligation and SPAAC are effective for selective and simultaneous imaging of two different cell organelles in live cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Ting Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Qiang Li
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaohui Liu
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaoguang Lei
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer. J Cancer Res Clin Oncol 2013; 139:1221-8. [DOI: 10.1007/s00432-013-1428-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/25/2013] [Indexed: 12/19/2022]
|
15
|
Balaji K, Mooser C, Janson CM, Bliss JM, Hojjat H, Colicelli J. RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR. J Cell Sci 2012; 125:5887-96. [PMID: 22976291 DOI: 10.1242/jcs.113688] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stimulation of epidermal growth factor receptor (EGFR) initiates RAS signaling simultaneously with EGFR internalization. Endocytosed EGFR is then either recycled or degraded. EGFR fate is determined in part by the RAS effector RIN1, a guanine nucleotide exchange factor (GEF) for RAB5 GTPases. EGFR degradation was slowed by RIN1 silencing, enhanced by RIN1 overexpression and accelerated by RIN1 localization to the plasma membrane. RIN1 also directly activates ABL tyrosine kinases, which regulate actin remodeling, a function not previously connected to endocytosis. We report that RIN1-RAB5 signaling favors EGFR downregulation over EGFR recycling, whereas RIN1-ABL signaling stabilizes EGFR and inhibits macropinocytosis. RIN1(QM), a mutant that blocks ABL activation, caused EGF-stimulated membrane ruffling, actin remodeling, dextran uptake and EGFR degradation. An ABL kinase inhibitor phenocopied these effects in cells overexpressing RIN1. EGFR activation also promotes RIN1 interaction with BIN1, a membrane bending protein. These findings suggest that RIN1 orchestrates RAB5 activation, ABL kinase activation and BIN1 recruitment to determine EGFR fate.
Collapse
Affiliation(s)
- Kavitha Balaji
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center and Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
16
|
Froudarakis ME. Pleural Effusion in Lung Cancer: More Questions than Answers. Respiration 2012; 83:367-76. [DOI: 10.1159/000338169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Concurrent inhibition of TGF-β and mitogen driven signaling cascades in Dupuytren's disease - non-surgical treatment strategies from a signaling point of view. Med Hypotheses 2011; 78:385-8. [PMID: 22196988 DOI: 10.1016/j.mehy.2011.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/27/2011] [Indexed: 11/23/2022]
Abstract
Dupuytren's disease (DD) is a benign progressive fibro-proliferative disorder of the fascia palmaris of the hand. Currently, treatment consists of surgical excision with a relatively high recurrence rate and risk of complications. To improve long-term outcome of DD treatment, research focus has shifted towards molecular targets for DD as an alternative to surgery. Therefore, complete and exact understanding of the cause of DD is needed. Transforming growth factor (TGF)-β is considered a key player in DD. We recently showed that increased TGF-β expression in DD correlates not only with elevated expression and activation of downstream Smad effectors, but also with overactive ERK1/2 MAP kinase signaling. Both TGF-β/Smad and non-Smad signaling pathways increase expression of key fibrotic markers and contractility of Dupuytren's myofibroblasts. What is not yet known is whether these two signaling cascades each accelerate DD autonomously, successively or in conjunction. Elucidation of this mechanism will help develop new potential non-surgical treatments. We hypothesize that TGF-β-induced short-term activation of the MAPK pathway leads to an autonomous non-Smad driven fibrosis. Therefore, successful treatment strategies will target not only TGF-β/Smad, but also intracellular MAPK signaling. In this review we discuss possible scenarios in which such a drift from TGF-β induced Smad signaling to autonomous non-Smad signaling could be observed in DD. The potential therapeutic effects of small cytokine signaling cascades inhibitors, such as TGF-β type I receptor-, (pan-) tyrosine- or ERK1/2 MAP-kinase inhibitor will be highlighted. To abrogate the fibrotic trait and the recurrence of DD, we speculate on sequential and co-application of such molecules in order to provide possible new non-operative strategies for DD.
Collapse
|
18
|
O'Dea RD, King JR. Continuum limits of pattern formation in hexagonal-cell monolayers. J Math Biol 2011; 64:579-610. [PMID: 21597954 DOI: 10.1007/s00285-011-0427-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Intercellular signalling is key in determining cell fate. In closely packed tissues such as epithelia, juxtacrine signalling is thought to be a mechanism for the generation of fine-grained spatial patterns in cell differentiation commonly observed in early development. Theoretical studies of such signalling processes have shown that negative feedback between receptor activation and ligand production is a robust mechanism for fine-grained pattern generation and that cell shape is an important factor in the resulting pattern type. It has previously been assumed that such patterns can be analysed only with discrete models since significant variation occurs over a lengthscale concomitant with an individual cell; however, considering a generic juxtacrine signalling model in square cells, in O'Dea and King (Math Biosci 231(2):172-185 2011), a systematic method for the derivation of a continuum model capturing such phenomena due to variations in a model parameter associated with signalling feedback strength was presented. Here, we extend this work to derive continuum models of the more complex fine-grained patterning in hexagonal cells, constructing individual models for the generation of patterns from the homogeneous state and for the transition between patterning modes. In addition, by considering patterning behaviour under the influence of simultaneous variation of feedback parameters, we construct a more general continuum representation, capturing the emergence of the patterning bifurcation structure. Comparison with the steady-state and dynamic behaviour of the underlying discrete system is made; in particular, we consider pattern-generating travelling waves and the competition between various stable patterning modes, through which we highlight an important deficiency in the ability of continuum representations to accommodate certain dynamics associated with discrete systems.
Collapse
Affiliation(s)
- R D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | |
Collapse
|
19
|
Dahal BK, Cornitescu T, Tretyn A, Pullamsetti SS, Kosanovic D, Dumitrascu R, Ghofrani HA, Weissmann N, Voswinckel R, Banat GA, Seeger W, Grimminger F, Schermuly RT. Role of Epidermal Growth Factor Inhibition in Experimental Pulmonary Hypertension. Am J Respir Crit Care Med 2010; 181:158-67. [DOI: 10.1164/rccm.200811-1682oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Jain N, Xu J, Kanojia RM, Du F, Jian-Zhong G, Pacia E, Lai MT, Musto A, Allan G, Reuman M, Li X, Hahn D, Cousineau M, Peng S, Ritchie D, Russell R, Lundeen S, Sui Z. Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J Med Chem 2009; 52:7544-69. [PMID: 19366247 DOI: 10.1021/jm900146e] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As part of a program aimed at the development of selective estrogen receptor modulators (SERMs), novel chromene scaffolds, benzopyranobenzoxapanes, were discovered. Many compounds showed binding affinity as low as 1.6-200 nM, displayed antagonist behaviors in the MCF-7 human breast adenocarcinoma cell line as well in Ishikawa cell line with IC(50) values in the range 0.2-360 nM. On the basis of the side chain substitution, various compounds demonstrated strong inhibitory activity in anti-uterotropic assay. Compound 7-(R) and its major metabolites 5-(R) and 6-(R) were evaluated in several in vivo models of estrogen action. Relative to a full estrogen agonist (ethynyl estradiol) and the SERM raloxifene, 7-(R) was found to be a potent SERM that behaved as antagonist in the uterus and exhibited estrogen agonistic activity on bone, plasma lipids, hot flush, and vagina. The overall pharmacokinetic profile and stability were significantly improved compared to those of the phase 2 development compound 9-(R).
Collapse
Affiliation(s)
- Nareshkumar Jain
- Johnson & Johnson Pharmaceutical Research & Development LLC, 665 Stockton Drive, Exton, Pennsylvania 19341, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, Hüttemann M, Douglas R, Haddad G, Parsons SJ. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem 2009; 284:36592-36604. [PMID: 19840943 DOI: 10.1074/jbc.m109.000760] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.
Collapse
Affiliation(s)
- Michelle L Demory
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Julie L Boerner
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908; Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Department of Pharmacology, Wayne State University, Detroit, Michigan 48201
| | - Robert Davidson
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - William Faust
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Tsuyoshi Miyake
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908
| | - Icksoo Lee
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Maik Hüttemann
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201
| | - Robert Douglas
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093; Department of Neuroscience, University of California, San Diego, La Jolla, California 92093
| | - Sarah J Parsons
- Department of Microbiology and the Cancer Center, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
22
|
Yadav AK, Renfrow JJ, Scholtens DM, Xie H, Duran GE, Bredel C, Vogel H, Chandler JP, Chakravarti A, Robe PA, Das S, Scheck AC, Kessler JA, Soares MB, Sikic BI, Harsh GR, Bredel M. Monosomy of chromosome 10 associated with dysregulation of epidermal growth factor signaling in glioblastomas. JAMA 2009; 302:276-89. [PMID: 19602687 PMCID: PMC3089898 DOI: 10.1001/jama.2009.1022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONTEXT Glioblastomas--uniformly fatal brain tumors--often have both monosomy of chromosome 10 and gains of the epidermal growth factor receptor (EGFR) gene locus on chromosome 7, an association for which the mechanism is poorly understood. OBJECTIVES To assess whether coselection of EGFR gains on 7p12 and monosomy 10 in glioblastomas promotes tumorigenic epidermal growth factor (EGF) signaling through loss of the annexin A7 (ANXA7) gene on 10q21.1-q21.2 and whether ANXA7 acts as a tumor suppressor gene by regulating EGFR in glioblastomas. DESIGN, SETTING, AND PATIENTS Multidimensional analysis of gene, coding sequence, promoter methylation, messenger RNA (mRNA) transcript, protein data for ANXA7 (and EGFR), and clinical patient data profiles of 543 high-grade gliomas from US medical centers and The Cancer Genome Atlas pilot project (made public 2006-2008; and unpublished, tumors collected 2001-2008). Functional analyses using LN229 and U87 glioblastoma cells. MAIN OUTCOME MEASURES Associations among ANXA7 gene dosage, coding sequence, promoter methylation, mRNA transcript, and protein expression. Effect of ANXA7 haploinsufficiency on EGFR signaling and patient survival. Joint effects of loss of ANXA7 and gain of EGFR expression on tumorigenesis. RESULTS Heterozygous ANXA7 gene deletion is associated with significant loss of ANXA7 mRNA transcript expression (P = 1 x 10(-15); linear regression) and a reduction (mean [SEM]) of 91.5% (2.3%) of ANXA7 protein expression compared with ANXA7 wild-type glioblastomas (P = .004; unpaired t test). ANXA7 loss of function stabilizes the EGFR protein (72%-744% increase in EGFR protein abundance) and augments EGFR transforming signaling in glioblastoma cells. ANXA7 haploinsufficiency doubles tumorigenic potential of glioblastoma cells, and combined ANXA7 knockdown and EGFR overexpression promotes tumorigenicity synergistically. The heterozygous loss of ANXA7 in approximately 75% of glioblastomas in the The Cancer Genome Atlas plus infrequency of ANXA7 mutation (approximately 6% of tumors) indicates its role as a haploinsufficiency gene. ANXA7 mRNA transcript expression, dichotomized at the median, associates with patient survival in 191 glioblastomas (log-rank P = .008; hazard ratio [HR], 0.667; 95% confidence interval [CI], 0.493-0.902; 46.9 vs 74.8 deaths/100 person-years for high vs low ANXA7 mRNA expression) and with a separate group of 180 high-grade gliomas (log-rank P = .00003; HR, 0.476; 95% CI, 0.333-0.680; 21.8 vs 50.0 deaths/100 person-years for high vs low ANXA7 mRNA expression). Deletion of the ANXA7 gene associates with poor patient survival in 189 glioblastomas (log-rank P = .042; HR, 0.686; 95% CI, 0.476-0.989; 54.0 vs 80.1 deaths/100 person-years for wild-type ANXA7 vs ANXA7 deletion). CONCLUSION Haploinsufficiency of the tumor suppressor ANXA7 due to monosomy of chromosome 10 provides a clinically relevant mechanism to augment EGFR signaling in glioblastomas beyond that resulting from amplification of the EGFR gene.
Collapse
MESH Headings
- Annexin A7/genetics
- Annexin A7/metabolism
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- Brain Neoplasms/mortality
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 10/genetics
- Chromosomes, Human, Pair 7
- Epidermal Growth Factor/metabolism
- Epigenesis, Genetic
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Gene Deletion
- Gene Dosage
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Genes, Tumor Suppressor
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Glioblastoma/mortality
- Humans
- Loss of Heterozygosity
- Male
- Middle Aged
- Monosomy
- Mutation
- PTEN Phosphohydrolase/genetics
- RNA, Messenger/analysis
- Signal Transduction
- Survival Analysis
Collapse
Affiliation(s)
- Ajay K Yadav
- Department of Neurological Surgery, Northwestern Brain Tumor Institute, Lurie Center for Cancer Genetics Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3015, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- R Dreicer
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City 52242
| | | |
Collapse
|
24
|
Hammoud L, Burger DE, Lu X, Feng Q. Tissue inhibitor of metalloproteinase-3 inhibits neonatal mouse cardiomyocyte proliferation via EGFR/JNK/SP-1 signaling. Am J Physiol Cell Physiol 2009; 296:C735-45. [DOI: 10.1152/ajpcell.00246.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently demonstrated that tissue inhibitor of metalloproteinase-3 (TIMP-3) decreases neonatal cardiomyocyte proliferation (Hammoud L, Xiang F, Lu X, Brunner F, Leco K, Feng Q. Cardiovasc Res 75: 359–368, 2007). The aim of the present study was to delineate a pathway through which TIMP-3 exerts its antiproliferative effect. Experiments were conducted on neonatal cardiomyocyte cultures and heart tissues isolated from wild-type (WT) and TIMP-3−/− mice. Deficiency in TIMP-3 decreased p27 expression and increased cardiomyocyte proliferation in cardiomyocytes and neonatal hearts. A TIMP-3/epidermal growth factor (EGF) receptor (EGFR)/c-Jun NH2-terminal kinase (JNK)/SP-1/p27 pathway was investigated. JNK phosphorylation and EGFR protein levels were increased in TIMP-3−/− cardiomyocytes and heart tissues. Treatment with recombinant TIMP-3 decreased JNK phosphorylation and EGFR expression/phosphorylation. Inhibition of JNK activity using SP-600125 decreased SP-1 phosphorylation, increased p27 expression, and decreased cardiomyocyte proliferation. Furthermore, treatment with the EGFR specific inhibitor PD-168393 or the EGF-neutralizing antibody decreased cardiomyocyte proliferation as well as phosphorylation of JNK and SP-1 in both WT and TIMP-3−/− cardiomyocytes. We conclude that TIMP-3 inhibits neonatal mouse cardiomyocyte proliferation by upregulating p27 expression. The effects of TIMP-3 are mediated via inhibition of EGFR expression/phosphorylation, and decreases in JNK and SP-1 signaling.
Collapse
|
25
|
Effects of intrinsic and extrinsic noise can accelerate juxtacrine pattern formation. Bull Math Biol 2008; 70:971-91. [PMID: 18338214 DOI: 10.1007/s11538-007-9286-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Epithelial pattern formation is an important phenomenon that, for example, has roles in embryogenesis, development and wound-healing. The ligand Epithelial Growth Factor (EGF) and its receptor EGF-R, constitute a system that forms lateral induction patterns by juxtacrine signalling-binding of membrane-bound ligands to receptors on neighbouring cells. Owen et al. developed a generic ordinary differential equation model of juxtacrine lateral induction that exhibits stable patterning under some conditions. The model predicts relatively slow pattern formation. We examine here the effects of both intrinsic and extrinsic cellular noise arising from the stochastic treatment of this model, and show that this noise could have an accelerating effect on the patterning process.
Collapse
|
26
|
Magnusson PU, Looman C, Ahgren A, Wu Y, Claesson-Welsh L, Heuchel RL. Platelet-Derived Growth Factor Receptor-β Constitutive Activity Promotes Angiogenesis In Vivo and In Vitro. Arterioscler Thromb Vasc Biol 2007; 27:2142-9. [PMID: 17656670 DOI: 10.1161/01.atv.0000282198.60701.94] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Knockout studies have demonstrated crucial roles for the platelet-derived growth factor-B and its cognate receptor, platelet-derived growth factor receptor-beta (PDGFR-beta), in blood vessel maturation, that is, the coverage of newly formed vessels with mural cells/pericytes. This study describes the consequences of a constitutively activating mutation of the PDGFR-beta (Pdgfrb(D849V)) introduced into embryonic stem cells with respect to vasculogenesis/angiogenesis in vitro and in vivo. METHODS AND RESULTS Embryonic stem cells were induced to either form teratomas in vivo or embryoid bodies, an in vitro model for mouse embryogenesis. Western blotting studies on embryoid bodies showed that expression of a single allele of the mutant Pdgfrb led to increased levels of PDGFR-beta tyrosine phosphorylation and augmented downstream signal transduction. This was accompanied by enhanced vascular development, followed by exaggerated angiogenic sprouting with abundant pericyte coating as shown by immunohistochemistry/immunofluorescence. Pdgfrb(D849V/+) embryoid bodies were characterized by increased expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor-2; neutralizing antibodies against VEGF-A/VEGF receptor-2 blocked vasculogenesis and angiogenesis in mutant embryoid bodies. Moreover, Pdgfrb(D849V/+) embryonic stem cell-derived teratomas in nude mice were more densely vascularized than wild-type teratomas. CONCLUSIONS Increased PDGFR-beta kinase activity is associated with elevated expression of VEGF-A and VEGF receptor-2, acting directly on endothelial cells and resulting in increased vessel formation.
Collapse
Affiliation(s)
- Peetra U Magnusson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Zhao D, Zhan Y, Zeng H, Koon HW, Moyer MP, Pothoulakis C. Neurotensin stimulates expression of early growth response gene-1 and EGF receptor through MAP kinase activation in human colonic epithelial cells. Int J Cancer 2007; 120:1652-6. [PMID: 17230532 PMCID: PMC3685406 DOI: 10.1002/ijc.22407] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neurotensin (NT) is a highly expressed gastrointestinal (GI) neuropeptide, which modulates GI motility, secretion and cell growth as well as intestinal inflammation. Since EGF receptor is highly expressed in human colon cancer cells, we sought to examine whether NT stimulation contributes to the EGFR overexpression using nontransformed colonocyte NCM460 cells. The results show that NT treatment caused a significant increase in EGFR protein expression and gene transcription. Pretreatment with MAP kinase pathway inhibitor PD98059 blocked NT-induced EGFR expression. As the EGFR promoter has a functional Egr-1 site, previously shown to mediate its transcription in response to hypoxia, we examined the role of Egr-1 in the NT response. We first show that NT stimulated Egr-1 expression, which can be inhibited by PD98059. We also determined whether NT increases Egr-1 binding to its site within the EGFR promoter. The data indicate that NT enhanced the amount of Egr-1 binding to the EGFR Egr-1 site and that this binding was significantly decreased by PD98059. To verify that Egr-1 mediated NT-induced EGFR transcription, Egr-1 siRNA was used to knock down its expression. The data show that transfection of Egr-1 siRNA significantly inhibited NT-stimulated EGFR transcription. Together, our results suggest that NT can stimulate MAP kinase-mediated Egr-1 and EGFR gene expression in human colonocytes. Our results may be relevant to the mechanisms by which NT participates in the development of colon cancer.
Collapse
Affiliation(s)
- Dezheng Zhao
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Szabad G, Kormos B, Pivarcsi A, Széll M, Kis K, Kenderessy Szabó A, Dobozy A, Kemény L, Bata-Csörgo Z. Human adult epidermal melanocytes cultured without chemical mitogens express the EGF receptor and respond to EGF. Arch Dermatol Res 2007; 299:191-200. [PMID: 17334773 DOI: 10.1007/s00403-007-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 01/23/2023]
Abstract
We describe a novel chemical mitogen-free in vitro culture technique for obtaining pure melanocyte cultures using normal human adult epidermis as a source. The culture medium consists equal parts of the commercially available Keratinocyte Basal and AIM-V media (both from Gibco), as basal medium, which is supplemented with fetal bovine serum, bovine pituitary extract and recombinant human epidermal growth factor (EGF). Melanocytes harvested from human adult skin proliferate extensively and can be passaged serially up to 10-15 times using this medium. We have verified the identity of the cultured cells by tyrosinase mRNA expression and TRP-1 protein staining. Moreover, we showed that autologous human serum alone, without additional supplements is able to provide sufficient growth support for the cultured cells in the basal medium, making this culture technique suitable for autologous melanocyte transplantation. In this culture system normal human adult melanocytes expressed both EGF receptor (EGFR) mRNA and protein and EGF showed a dose dependent mitogenic effect on the cells. EGF itself had no significant influence on EGFR mRNA expression.
Collapse
Affiliation(s)
- Gábor Szabad
- Faculty of Medicine, Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Korányi fasor 6, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kroll MH, Srisawasdi P. The clearance of BNP modeled using the NT-proBNP–BNP relationship. Biosystems 2007; 88:147-55. [PMID: 16860926 DOI: 10.1016/j.biosystems.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND The ventricular myocardium simultaneously secretes two natriuretic peptides useful in the evaluation of heart failure: BNP, hormonally active, and NT-proBNP, the N-terminal end, non-hormonally active, but ultimately their concentrations differ and their clearance patterns are poorly defined. METHODS We measured NT-proBNP and BNP in patients with and without heart failure and compared their concentrations using regression analysis. RESULTS The relationship between NT-proBNP with BNP is nonlinear. Between 45 and 70 pmol of BNP/L (class II heart failure) the slope is much higher than in other ranges and the NT-proBNP/BNP ratio reaches its maximum in patients with class II NYHA heart failure. CONCLUSIONS The difference in concentration for NT-proBNP and BNP can be related to the diffusion across the renal basement membrane. Their ratio is nonlinear because BNP is cleared faster than in patients with class II heart failure than other classes or normal, suggesting a change in a non-renal mode of clearance.
Collapse
Affiliation(s)
- Martin H Kroll
- North Texas Veterans Affairs Medical Center, Pathology and Laboratory Medicine, 4500 S. Lancaster Road 113, Dallas, TX 75216, USA.
| | | |
Collapse
|
30
|
Walker D, Wood S, Southgate J, Holcombe M, Smallwood R. An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. J Theor Biol 2006; 242:774-89. [PMID: 16765384 DOI: 10.1016/j.jtbi.2006.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/06/2006] [Accepted: 04/18/2006] [Indexed: 11/18/2022]
Abstract
We have previously developed Epitheliome, a software agent representation of the growth and repair characteristics of epithelial cell populations, where cell behaviour is governed by a number of simple rules. In this paper, we describe how this model has been extended to incorporate an example of a molecular 'mechanism' behind a rule-in this case, how signalling by both endogenous and exogenous ligands of the epidermal growth factor receptor (EGFR) can impact on the proliferation of cell agents. We have developed a mathematical model representing release of endogenous ligand by cells, three-dimensional diffusion of the secreted molecules through a volume of cell culture medium, ligand-receptor binding, and bound receptor internalization and trafficking. Information relating to quantities of molecular species associated with each cell agent is frequently exchanged between the agent and signalling models, and the ratio of bound to free receptors determines cell cycle progression and hence the proliferative behaviour of the cell agents. We have applied this integrated model to examine the effect of plating density on tissue growth via autocrine/paracrine signalling. This predicts that cell growth is dependent on the concentration of exogenous ligand, but where this is limited, then growth becomes dependent on cell density and the availability of endogenous ligand. We have further modified the calcium concentration of the medium to modulate the formation of intercellular bonds between cells and shown that the increased propensity for cells to form colonies in physiological calcium does not result in significantly different patterns of receptor occupancy. In conclusion, our approach demonstrates that by combining agent-based and mathematical modelling paradigms, it is possible to probe the complex feedback relationship between the behaviour of individual cells and their interaction with one another and their environment.
Collapse
Affiliation(s)
- Dawn Walker
- Department of Computer Science, Kroto Institute, North Campus, Broad Lane, Sheffield S3 7HQ, UK.
| | | | | | | | | |
Collapse
|
31
|
Cozzolino M, Lu Y, Sato T, Yang J, Suarez IG, Brancaccio D, Slatopolsky E, Dusso AS. A critical role for enhanced TGF-α and EGFR expression in the initiation of parathyroid hyperplasia in experimental kidney disease. Am J Physiol Renal Physiol 2005; 289:F1096-102. [PMID: 15998841 DOI: 10.1152/ajprenal.00167.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The parathyroid hyperplasia secondary to kidney disease is associated with enhanced expression of the growth promoter transforming growth factor-α (TGF-α). TGF-α stimulates growth through activation of its receptor, the epidermal growth factor receptor (EGFR), normally expressed in the parathyroid glands. Because enhanced coexpression of TGF-α and EGFR causes aggressive cellular growth, these studies utilized highly specific inhibitors of EGFR tyrosine kinase, a step mandatory for TGF-α-induced EGFR activation, to assess the contribution of growth signals from enhanced expression of TGF-α exclusively or both TGF-α and EGFR to the rapid parathyroid growth induced by kidney disease and exacerbated by high-phosphorus (P) and low-calcium (Ca) diets in rats. The enhancement in parathyroid gland weight and proliferating activity (proliferating cell nuclear antigen/Ki67) induced by kidney disease and aggravated by either high P or low Ca intake, within the first week after 5/6 nephrectomy, in rats, coincided with simultaneous increases (2- to 3-fold) in TGF-α and EGFR content. Conversely, prevention of the increases in both TGF-α and EGFR paralleled the efficacy of either P restriction or high-Ca intake in ameliorating uremia-induced parathyroid hyperplasia. More importantly, suppression of TGF-α/EGFR signaling, through prophylactic administration of potent and highly selective inhibitors of ligand-induced EGFR activation, completely prevented both high-P- and low-Ca-induced parathyroid hyperplasia as well as TGF-α self-upregulation. Thus enhanced parathyroid TGF-α/EGFR expression, self-upregulation, and growth signals occur early in kidney disease, are aggravated by low-Ca and high-P intake, and constitute the main pathogenic mechanism of the severity of parathyroid hyperplasia.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Dept. of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Webb SD, Owen MR. Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J Theor Biol 2004; 230:99-117. [PMID: 15276004 DOI: 10.1016/j.jtbi.2004.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 11/16/2022]
Abstract
A key problem in developmental biology is how pattern and planar polarity are transmitted in epithelial structures. Examples include Drosophila neuronal differentiation, ommatidia formation in the compound eye, and wing hair polarization. A key component for the generation of such patterns is direct cell-cell signalling by transmembrane ligands, called juxtacrine signalling. Previous models for this mode of communication have considered homogeneous distributions in the cell membrane, and the role of polarity has been largely ignored. In this paper we determine the role of inhomogeneous protein and receptor distributions in juxtacrine signalling. We explicitly include individual membrane segments, diffusive transport of proteins and receptors between these segments, and production terms with a combination of local and global responses to ligand binding. Our analysis shows that intra-membrane ligand transport is vital for the generation of long wavelength patterns. Moreover, with no ligand transport, there is no pattern formation for lateral induction, a process in which receptor activation up-regulates ligand production. Biased production of ligand also modulates patterning bifurcations and predicted wavelengths. In addition, biased ligand and receptor trafficking can lead to regular polarity across a lattice, in which each cell has the same orientation-directly analogous to patterns of hairs in the Drosophila wing. We confirm the trends in pattern wavelengths previously observed for patterns with cellular homogeneity-lateral inhibition tends to give short-range patterns, while lateral induction can give patterns with much longer wavelengths. Moreover, the original model can be recovered if intra-membrane bound receptor diffusion is included and rapid equilibriation between the sides is considered. Finally, we consider the role of irregular cell shapes and waves in such networks, including wave propagation past clones of non-signalling cells.
Collapse
Affiliation(s)
- Steven D Webb
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | | |
Collapse
|
33
|
Abstract
The ability of human cytomegalovirus (HCMV) to infect an extensive range of cell types has complicated efforts to identify cellular receptors for this significant pathogen. Recent findings demonstrate that epidermal growth factor receptor (EGFR) serves also as a receptor for HCMV. Additional evidence has shown that HCMV entry occurs in concert with immune detection through toll-like receptors. Here, the implications of EGFR activation, the existence of other receptors and the coordination of entry with the innate sensing are discussed.
Collapse
Affiliation(s)
- Teresa Compton
- McArdle Laboratory for Cancer Research, 1400 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
34
|
McGaffin KR, Acktinson LE, Chrysogelos SA. Growth and EGFR Regulation in Breast Cancer Cells by Vitamin D and Retinoid Compounds. Breast Cancer Res Treat 2004; 86:55-73. [PMID: 15218361 DOI: 10.1023/b:brea.0000032923.66250.92] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of 1,25-dihydroxyvitamin D(3), analog C (1,25-(OH)(2)-16-en-23-yn-26,27-F(6)-vitamin D(3)), 9-cis retinoic acid, and all-trans retinoic acid on the growth and expression of EGFR in MCF7, T47D, BT474, and BT549 breast cancer cells was examined. Significant growth inhibition was noted in MCF7, T47D, and BT474 cells by 8 days of treatment, while BT549 cells showed none. MCF7, T47D, and BT549 cells treated with 1,25-dihydroxyvitamin D(3) demonstrated a 50% decrease in EGFR mRNA within 2 h which was sustained to 72 h, while BT474 cells demonstrated a 200-500% increase. EGFR protein levels correlated with these mRNA changes in BT474 and BT549 cells. Measurement of mRNA stability in vitamin D treated BT474 cells indicated that there was no change in EGFR mRNA half-life. Transfection of an EGFR promoter containing reporter plasmid demonstrated vitamin D induced changes in reporter gene activity that paralleled the changes observed in EGFR mRNA and protein. Electrophoretic mobility shift assays using a putative vitamin D response element within this region of the EGFR promoter demonstrated specific VDR binding. These results indicate that the vitamin D effect on EGFR expression in breast cancer cells has a transcriptional component likely mediated through a vitamin D responsive promoter sequence. They also suggest that growth inhibition and EGFR down-regulation by vitamin D and retinoids may be related events in some breast cancer cells, but not in all.
Collapse
Affiliation(s)
- Kenneth R McGaffin
- Department of Biochemistry and Molecular Biology, Lombardi Cancer Center, Georgetown University, Washington, DC, USA.
| | | | | |
Collapse
|
35
|
Dusso A, Cozzolino M, Lu Y, Sato T, Slatopolsky E. 1,25-Dihydroxyvitamin D downregulation of TGFalpha/EGFR expression and growth signaling: a mechanism for the antiproliferative actions of the sterol in parathyroid hyperplasia of renal failure. J Steroid Biochem Mol Biol 2004; 89-90:507-11. [PMID: 15225829 DOI: 10.1016/j.jsbmb.2004.03.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Elevated serum levels of parathyroid hormone (PTH) contribute to the increased morbidity and mortality in renal failure patients. Parathyroid gland hyperplasia is a major cause of high serum PTH. The present studies used the rat model of renal failure to address the mechanisms underlying uremia-induced parathyroid hyperplasia and the antiproliferative properties of vitamin D therapy (1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)) or its less calcemic analogs). Enhanced TGFalpha/EGFR co-expression is the major mitogenic signal in uremic parathyroid glands. At early stages of renal failure, vitamin D therapy efficiently counteracts uremia- and high phosphorus-induced hyperplasia by inhibiting the increases in parathyroid-TGFalpha/EGFR co-expression. In established hyperparathyroidism, characterized by highly enhanced-TGFalpha/EGFR co-expression, vitamin D therapy arrests growth by suppressing EGFR-growth signals from the plasma membrane and nuclear EGFR actions as a transactivator of the cyclin D1 gene, an important contributor to parathyroid hyperplasia in humans. In advanced renal failure, reduced-parathyroid vitamin D receptor levels limits the antiproliferative efficacy of vitamin D therapy. However, non-antiproliferative doses of 1,25-dihydroxyvitamin D enhance the anti-EGFR actions of EGFR-tyrosine kinase inhibitors (TKI). In fact, combined 1,25-dihydroxyvitamin D/TKI therapy inhibits parathyroid hyperplasia more efficiently than phosphorus restriction, the most powerful promoter of parathyroid growth arrest available at present.
Collapse
Affiliation(s)
- Adriana Dusso
- Renal Division, Washington University School of Medicine, Campus Box 8126, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
36
|
Loukovaara M, Leinonen P, Teramo K, Andersson S, Alfthan H, Stenman UH. Diabetic pregnancy associated with increased epidermal growth factor in cord serum at term. Obstet Gynecol 2004; 103:240-4. [PMID: 14754690 DOI: 10.1097/01.aog.0000110545.64874.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Epidermal growth factor is a ubiquitous mitogen that also possesses insulin-like properties. Fetal mal-growth is associated with altered epidermal growth factor levels. Maternal diabetes is frequently complicated by macrosomia, but the effect of maternal diabetes on fetal epidermal growth factor levels is not known. We studied cord serum epidermal growth factor concentrations in pregnancies complicated by diabetes and in normal pregnancies. METHODS Cord serum epidermal growth factor concentrations were measured at birth by a sandwich-type time-resolved immunofluorometric assay in 63 pregnancies complicated by insulin-dependent diabetes mellitus, in 25 pregnancies complicated by insulin-treated gestational diabetes, and in 56 normal pregnancies. RESULTS Cord serum epidermal growth factor correlated positively with the duration of pregnancy in diabetic and normal pregnancies. In a subgroup of women at similar gestational ages (38-39 weeks), cord serum epidermal growth factor concentrations were higher in pregnancies complicated by insulin-dependent diabetes mellitus (962 +/- 211 ng/L, P =.047; n = 9) and in pregnancies complicated by gestational diabetes (1133 +/- 115 ng/L, P =.001; n = 9) than in controls (564 +/- 75 ng/L; n = 22). In multiple regression analysis, only umbilical artery hemoglobin in diabetic pregnancies and vaginal delivery in normal pregnancies were associated with cord serum epidermal growth factor. CONCLUSION Epidermal growth factor concentrations are higher than normal in fetuses of diabetic mothers at term. Pregnancy complications, such as hypertensive disorders, fetal hypoxia and fetal malgrowth, may not explain the rise in epidermal growth factor levels. We hypothesize that the rise in epidermal growth factor levels is a metabolic response of the fetoplacental unit to diabetes-related hyperglycemia. LEVEL OF EVIDENCE III
Collapse
Affiliation(s)
- Mikko Loukovaara
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Haartmaninkatu 2, 00290 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
37
|
Webb SD, Owen MR. Oscillations and patterns in spatially discrete models for developmental intercellular signalling. J Math Biol 2003; 48:444-76. [PMID: 15052506 DOI: 10.1007/s00285-003-0247-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 08/27/2003] [Indexed: 10/26/2022]
Abstract
We extend previous models for nearest neighbour ligand-receptor binding to include both lateral induction and inhibition of ligand and receptor production, and different geometries (strings of cells and hexagonal arrays, in addition to square arrays). We demonstrate the possibility of lateral inhibition giving patterns with a characteristic length scale of many cell diameters, when receptor production is included. In contrast, lateral induction combined with inhibition of receptor synthesis cannot give rise to a patterning instability under any circumstances. Interesting new dynamics include the analytical prediction and consequent numerical observation of spatiotemporal oscillations, this depends crucially on the production terms and on the relationship between the decay rates of ligand and free receptor. Our approach allows for a detailed comparison with the model for Delta-Notch interactions of Collier et al. [4], and we find that a formal reduction may be made only when the ligand receptor binding kinetics are very slow. Without such very slow receptor kinetics, spatial pattern formation via lateral inhibition in hexagonal cellular arrays requires significant activation of receptor production, a feature that is not apparent from previous analyses.
Collapse
Affiliation(s)
- Steven D Webb
- Department of Mathematical Science, Loughborough University, Loughborough, LE11 3TU, UK.
| | | |
Collapse
|
38
|
Fujino M, Osumi N, Ninomiya Y, Iseki S, Shibasaki Y, Eto K. Disappearance of epidermal growth factor receptor is essential in the fusion of the nasal epithelium. Anat Sci Int 2003; 78:25-35. [PMID: 12680467 DOI: 10.1046/j.0022-7722.2003.00036.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract Epidermal growth factor (EGF) and receptor (-R) signaling pathway is required for epithelial cell growth and differentiation such as the degeneration of the medial edge epithelial cells during the fusion process of secondary palate formation. As epithelial fusion takes place during primary palate formation, we investigated the involvement of the EGF-R in fusion of the medial (MNP) and lateral (LNP) nasal prominences of the mouse embryo was examined. Immunoreactivity of EGF-R was investigated in embryonic day 10 embryos (32-37 somite stages). The EGF-R immunoreactivity was observed in the nasal epithelia of the presumptive fusion area before fusion. It became undetectable just prior to the fusion and faintly reappeared at the time of the fusion. In contrast, the non-fusing epithelial cells of the nasal groove maintained the immunoreactivity throughout these stages. In order to elucidate whether the EGF/EGF-R signaling pathway was involved in nasal epithelial fusion, EGF solution was injected into the exocoelum of explanted mouse embryos, and the embryos were cultured for 18-24 h by whole embryo culture (WEC). This exogenous EGF inhibited fusion of nasal prominences in 66.7-81.5% of the embryos. Treatment with EGF for 4-14 h showed that exogenous EGF disturbed the EGF-R disappearance and normal alteration of epithelial cell morphology in the fusion area. These results suggest that temporal disappearance of the EGF/EGF-R signaling from presumptive fusion of the nasal prominences is required for morphological change of the epithelial cells leading to the fusion of MNP and LNP.
Collapse
Affiliation(s)
- Masako Fujino
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y. Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 2003; 13:297-307. [PMID: 12593795 DOI: 10.1016/s0960-9822(03)00053-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Growth factors and their receptor tyrosine kinases play pivotal roles in development, normal physiology, and pathology. Signal transduction is regulated primarily by receptor endocytosis and degradation in lysosomes ("receptor downregulation"). c-Cbl is an adaptor that modulates this process by recruiting binding partners, such as ubiquitin-conjugating enzymes. The role of another group of adaptors, Sprouty proteins, is less understood; although, studies in insects implicated the founder protein in the negative regulation of several receptor tyrosine kinases. RESULTS By utilizing transfection of living cells, as well as reconstituted in vitro systems, we identified a dual regulatory mechanism that combines human Sprouty2 and c-Cbl. Upon activation of the receptor for the epidermal growth factor (EGFR), Sprouty2 undergoes phosphorylation at a conserved tyrosine that recruits the Src homology 2 domain of c-Cbl. Subsequently, the flanking RING finger of c-Cbl mediates poly-ubiquitination of Sprouty2, which is followed by proteasomal degradation. Because phosphorylated Sprouty2 sequesters active c-Cbl molecules, it impedes receptor ubiquitination, downregulation, and degradation in lysosomes. This competitive interplay occurs in endosomes, and it regulates the amplitude and longevity of intracellular signals. CONCLUSIONS Sprouty2 emerges as an inducible antagonist of c-Cbl, and together they set a time window for receptor activation. When incorporated in signaling networks, the coupling of positive (Sprouty) to negative (Cbl) feedback loops can greatly enhance output diversification.
Collapse
Affiliation(s)
- Chanan Rubin
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Beutler T, Höflich C, Stevens PA, Krüger DH, Prösch S. Downregulation of the epidermal growth factor receptor by human cytomegalovirus infection in human fetal lung fibroblasts. Am J Respir Cell Mol Biol 2003; 28:86-94. [PMID: 12495936 DOI: 10.1165/rcmb.4881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epidermal growth factor plays a key role in late fetal lung development and differentiation as well as in regulating surfactant protein A synthesis, which is involved in innate immunity of the lung. Here we show that human cytomegalovirus (HCMV), a known lung pathogen in connatal and postnatal infection of neonates as well as transplant recipients, completely down-regulates EGF receptor (EGF-R) on the surface of human fetal lung fibroblasts. Inhibition of EGF-R synthesis occurs on the transcriptional rather than on the posttranscriptional level. The effect essentially depends on expression of viral immediate early and/or early genes, as binding of ultraviolet light-inactivated virus to the cells had no effect on EGF-R expression. Furthermore, the anti-HCMV drug ganciclovir, which blocks HCMV DNA replication and late gene expression, cannot overcome HCMV-mediated inhibition of EGF-R, suggesting that immediate early or early gene products may be responsible for down-regulation of EGF-R. Interestingly, the glucocorticoid dexamethasone, which is used for its antiinflammatory action to prevent chronic lung disease in preterm infants, promotes HCMV-associated downregulation of the EGF-R by stimulation of viral gene expression. From these data it can be hypothesized that the pathogenesis of HCMV lung infection involves down-regulation of EGF-R and that congenital HCMV infection may cause retardation in lung maturation and surfactant protein synthesis.
Collapse
Affiliation(s)
- Thomas Beutler
- Institute of Virology and Department of Neonatology, University Hospital Charité, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Montesano M, Kõiv V, Mäe A, Palva ET. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato. MOLECULAR PLANT PATHOLOGY 2001; 2:339-346. [PMID: 20573023 DOI: 10.1046/j.1464-6722.2001.00083.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.
Collapse
Affiliation(s)
- M Montesano
- Department of Biosciences, Division of Genetics, University of Helsinki, Box 56, Helsinki, FIN-00014, Finland
| | | | | | | |
Collapse
|
42
|
Yarden RI, Wilson MA, Chrysogelos SA. Estrogen suppression of EGFR expression in breast cancer cells: a possible mechanism to modulate growth. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:232-46. [PMID: 11455588 DOI: 10.1002/jcb.1142] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane receptor whose overexpression in breast cancer predicts for poor prognosis and is inversely correlated with expression of estrogen receptor (ER). This study was designed to investigate whether estrogen plays an active role in suppression of EGFR expression in estrogen-responsive breast cancer cell lines expressing low levels of EGFR. Upon withdrawal of estrogen, EGFR mRNA and protein increased 3-6 fold in MCF-7, T47D, and BT474 ER+ breast cancer cells. This was reversible upon addition of estradiol back to the culture media, but only after prolonged treatment. Nuclear run-on assays and studies with the transcription inhibitor actinomycin D demonstrated that regulation is at the transcriptional level. These results indicate that in the presence of estrogen, ER+ breast cancer cells possess active mechanisms to suppress EGFR expression. Up-regulation of EGFR in response to estrogen depletion and growth inhibition could represent an attempt to rescue cell growth by utilizing an alternative pathway. Indeed, we found that estrogen-depleted breast cancer cells are more sensitive to the mitogenic effects of EGF and TGF-alpha, and simultaneous blockade of both estrogen and EGFR signaling pathways induced cell death. J. Cell. Biochem. Suppl. 36: 232-246, 2001.
Collapse
Affiliation(s)
- R I Yarden
- Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
43
|
Abounader R, Ranganathan S, Kim BY, Nichols C, Laterra J. Signaling pathways in the induction of c-met receptor expression by its ligand scatter factor/hepatocyte growth factor in human glioblastoma. J Neurochem 2001; 76:1497-508. [PMID: 11238734 DOI: 10.1046/j.1471-4159.2001.00158.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Scatter factor/hepatocyte growth factor (SF/HGF) and its tyrosine kinase receptor c-met are developmentally expressed, neuroprotective, and tumorigenic within the CNS. In the present study SF/HGF is shown to induce the expression of c-met in two human glioblastoma cell lines, U-373 MG and T98G, and the signaling pathways involved in this induction are dissected. SF/HGF activated mitogen-activated protein kinase (MAPK) and inhibition of either Ras or MAPK-kinase completely inhibited SF/HGF-mediated c-met induction. Inhibition of phospholipase-C (PLC) did not affect c-met induction in either cell line. Inhibition of phosphoinositide 3-kinase (PI3-kinase) substantially reduced c-met induction by SF/HGF in T98G cells but had no effect in U-373 MG cells. Protein kinase C (PKC) inhibition reduced c-met induction in T98G cells but not in U-373 MG cells. SF/HGF induced the expression of c-fos and c-jun mRNA and increased the levels of AP-1 transcription factor in both cells lines as determined by AP-1-luciferase reporter expression. Transfection of either cell line with TAM-67, a dominant negative for the jun transactivation domain, completely inhibited AP-1 and c-met induction by SF/HGF. These results support a model of c-met induction by SF/HGF in human glioma cells that uniformly involves Ras, MAPK, and AP-1 and additionally involves PI3-kinase and PKC in some cell lines.
Collapse
Affiliation(s)
- R Abounader
- Department of Neuroscience, Kennedy Krieger Research Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
44
|
Balmer LA, Beveridge DJ, Jazayeri JA, Thomson AM, Walker CE, Leedman PJ. Identification of a novel AU-Rich element in the 3' untranslated region of epidermal growth factor receptor mRNA that is the target for regulated RNA-binding proteins. Mol Cell Biol 2001; 21:2070-84. [PMID: 11238942 PMCID: PMC86815 DOI: 10.1128/mcb.21.6.2070-2084.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermal growth factor receptor (EGF-R) plays an important role in the growth and progression of estrogen receptor-negative human breast cancers. EGF binds with high affinity to the EGF-R and activates a variety of second messenger pathways that affect cellular proliferation. However, the underlying mechanisms involved in the regulation of EGF-R expression in breast cancer cells are yet to be described. Here we show that the EGF-induced upregulation of EGF-R mRNA in two human breast cancer cell lines that overexpress EGF-R (MDA-MB-468 and BT-20) is accompanied by stabilization (>2-fold) of EGF-R mRNA. Transient transfections using a luciferase reporter identified a novel EGF-regulated approximately 260-nucleotide (nt) cis-acting element in the 3' untranslated region (3'-UTR) of EGF-R mRNA. This cis element contains two distinct AU-rich sequences (~75 nt), EGF-R1A with two AUUUA pentamers and EGF-R2A with two AUUUUUA extended pentamers. Each independently regulated the mRNA stability of the heterologous reporter. Analysis of mutants of the EGF-R2A AU-rich sequence demonstrated a role for the 3' extended pentamer in regulating basal turnover. RNA gel shift analysis identified cytoplasmic proteins (~55 to 80 kDa) from breast cancer cells that bound specifically to the EGF-R1A and EGF-R2A cis-acting elements and whose binding activity was rapidly downregulated by EGF and phorbol esters. RNA gel shift analysis of EGF-R2A mutants identified a role for the 3' extended AU pentamer, but not the 5' extended pentamer, in binding proteins. These EGF-R mRNA-binding proteins were present in multiple human breast and prostate cancer cell lines. In summary, these data demonstrate a central role for mRNA stabilization in the control of EGF-R gene expression in breast cancer cells. EGF-R mRNA contains a novel complex AU-rich 260-nt cis-acting destabilizing element in the 3'-UTR that is bound by specific and EGF-regulated trans-acting factors. Furthermore, the 3' extended AU pentamer of EGF-R2A plays a central role in regulating EGF-R mRNA stability and the binding of specific RNA-binding proteins. These findings suggest that regulated RNA-protein interactions involving this novel cis-acting element will be a major determinant of EGF-R mRNA stability.
Collapse
Affiliation(s)
- L A Balmer
- Laboratory for Cancer Medicine, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia 6000
| | | | | | | | | | | |
Collapse
|
45
|
Pakala R, Pakala R, Sheng WL, Benedict CR. Vascular smooth muscle cells preloaded with eicosapentaenoic acid and docosahexaenoic acid fail to respond to serotonin stimulation. Atherosclerosis 2000; 153:47-57. [PMID: 11058699 DOI: 10.1016/s0021-9150(00)00392-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Epidemiological, animal and clinical studies indicate that n-3 fatty acids may benefit individuals with known history of cardiovascular disease or at risk of developing it. Though there is indirect evidence to suggest that the beneficial effects of n-3 fatty acids may be because of their ability to inhibit smooth muscle cell (SMC) proliferation, there are no studies that have examined this hypothesis. In this study, the mitogenic effect of serotonin (5HT) and platelet derived growth factor (PDGF), known mitogens for vascular SMC, on aortic SMCs preloaded with eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) is examined. 5HT and PDGF could only partially stimulate proliferation of SMC that were preloaded with EPA or DHA as compared to the control cells. gamma-Linolenic acid (LA) and oleic acid (OA) did not block the 5HT or PDGF induced 3[H]thymidine incorporation suggesting that the anti-proliferative effect was specific to n-3 fatty acids only. Further, when EPA and DHA were combined in the ratio they are present in fishoils, there was a synergistic interaction in inhibiting the proliferation of SMC. Further, SMC grown in the presence of EPA or DHA, when stimulated with 5HT, failed to show an increase in 5HT(2) receptor mRNA. One of the potential mechanism by which fish oils may prevent the development of atherosclerosis or restenosis could be inhibition of the mitogen induced SMC proliferation. Combination of EPA with DHA is likely to be more beneficial.
Collapse
MESH Headings
- Animals
- Cell Count
- Cell Division/drug effects
- Cells, Cultured
- Docosahexaenoic Acids/pharmacology
- Dogs
- Eicosapentaenoic Acid/pharmacology
- Fatty Acids, Omega-3/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Oleic Acid/pharmacology
- Platelet-Derived Growth Factor/pharmacology
- RNA, Messenger/metabolism
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin/pharmacology
- Thymidine/metabolism
- gamma-Linolenic Acid/pharmacology
Collapse
Affiliation(s)
- R Pakala
- Department of Internal Medicine, Division of Cardiology, University of Texas Health Science Center-Medical School, 6431 Fannin, MSB 6. 039, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
46
|
Kömüves LG, Feren A, Jones AL, Fodor E. Expression of epidermal growth factor and its receptor in cirrhotic liver disease. J Histochem Cytochem 2000; 48:821-30. [PMID: 10820155 DOI: 10.1177/002215540004800610] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polypeptide growth factors, including epidermal growth factor (EGF), play a central role in regulating hepatocyte growth both in vivo and in primary culture. To characterize EGF gene expression in the pathogenesis of regenerative cirrhotic fibrosis, we employed biotinylated antisense oligonucleotide probes to localize hepatic mRNA transcripts in situ. In control tissue and regenerative hepatic nodules, EGF receptor (EGFR) mRNA transcripts were expressed constitutively. In contrast, oligonucleotide probes targeting the human EGF coding region showed that EGF transcription was extremely low in control liver but was highly elevated and localized to regenerative hepatic nodules and bile duct epithelia of cirrhotic liver. To determine whether EGF mRNA accumulation accompanied a comparable increase in the EGF peptide, we performed immunohistochemistry using an antibody specific for the nonprocessed peptide aminoterminus. We observed that positive localized EGF staining paralleled its mRNA transcript. These results indicate that EGF upregulation is a characteristic of cirrhotic liver disease and suggest that persistent de novo ligand synthesis and its signaling contribute to an autocrine-mediated hepatocyte proliferation within the regenerative nodule.
Collapse
Affiliation(s)
- L G Kömüves
- Departments of Dermatology, University of California-San Francisco, San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
47
|
Bor MV, Sørensen BS, Vinter-Jensen L, Flyvbjerg A, Pedersen SB, Nexø E. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver. J Hepatol 2000; 32:645-54. [PMID: 10782914 DOI: 10.1016/s0168-8278(00)80227-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIM Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth factor I for either 3 or 7 days. The amount of epidermal growth factor receptor, transforming growth factor-alpha, and epidermal growth factor mRNA was quantitated by a calibrated user-friendly RT-PCR assay (CURT-PCR), and the expression of transforming growth factor-alpha and epidermal growth factor peptides was quantitated by ELISA. RESULTS Control liver (n=16) contained a mean (+/-SD) value of 12.7+/-7.4x10(-18) mol epidermal growth factor receptor mRNA, 3.8+/-2.0x10(-18) mol transforming growth factor-alpha mRNA and 0.8+/-0.4x10(-18) mol epidermal growth factor mRNA per microg total RNA and 9.8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well as the expression of transforming growth factor-alpha peptide. The level of epidermal growth factor receptor and transforming growth factor-alpha mRNA expression was found to correlate both in control and growth factor-treated animals, whereas the expression of epidermal growth factor receptor and epidermal growth factor showed no correlation. Marked differences were seen upon activation of the two growth factor systems, as epidermal growth factor, but not insulin-like growth factor I treatment, increased the plasma concentration of urea and decreased the concentration of insulin-like growth factor I and the liver enzymes, alanine aminotransferase and alkaline phosphatase. CONCLUSION Our results show that epidermal growth factor and insulin-like growth factor I, which belong to two different growth factor systems, both induce a correlated upregulation of transforming growth factor-alpha and epidermal growth factor receptor mRNA in rat liver. Although marked differences were observed after treatment with either epidermal growth factor or insulin-like growth factor I on the liver as reflected in the plasma concentrations of e.g. liver enzymes, a common motif in their action involves an upregulation of the expression of the epidermal growth factor system.
Collapse
Affiliation(s)
- M V Bor
- Department of Clinical Biochemistry, AKH, Aarhus University Hospital, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Kahán Z, Sun B, Schally AV, Arencibia JM, Cai RZ, Groot K, Halmos G. Inhibition of growth of MDA-MB-468 estrogen-independent human breast carcinoma by bombesin/gastrin-releasing peptide antagonists RC-3095 and RC-3940-II. Cancer 2000; 88:1384-92. [PMID: 10717621 DOI: 10.1002/(sici)1097-0142(20000315)88:6<1384::aid-cncr16>3.0.co;2-q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The growth of breast carcinoma is promoted by autocrine growth factors such as the bombesin (BN)-like peptides and epidermal growth factor (EGF). The stimulatory action of BN-like peptides can be blocked by the use of BN/gastrin-releasing peptide (GRP) antagonists. METHODS The authors investigated the effects of synthetic BN/GRP antagonists RC-3095 and RC-3940-II on tumor growth and the expression of mRNA for EGF receptors and three BN receptor subtypes in MDA-MB-468 human breast carcinoma. Athymic nude mice with xenografts of MDA-MB-468 human breast carcinoma were injected subcutaneously for 6 weeks with RC-3940-II at doses of 20 or 40 microg/day. In another study, the effects of RC-3940-II and RC-3095 were compared. RESULTS RC-3940-II caused a significant and dose-dependent growth inhibition of MDA-MB-468 tumors in nude mice; therapy with either dose of RC-3940-II significantly (P<0.01) reduced the mean final tumor volume and weight compared with controls. RC-3940-II induced a persistent regression of > 50% of all tumors. One of 3 tumors treated with 20 microg of RC-3940-II and 3 of 5 tumors treated with 40 microg were found to have regressed completely by the end of the study. When RC-3940-II and RC-3095 were compared at the dose of 20 microg/day, both powerfully suppressed growth of MDA-MB-468 tumors, with RC-3940-II causing a complete regression of 2 tumors and RC-3095 a complete regression of 1 tumor. Receptor analyses of untreated MDA-MB-468 tumors revealed an overexpression of EGF receptors and two classes of binding sites for BN/GRP. mRNAs for receptors of GRP, neuromedin B, and BN receptor subtype-3 were detected by reverse transcriptase-polymerase chain reaction. CONCLUSIONS A virtual arrest of growth or regression of MDA-MB-468 human breast carcinoma after therapy with RC-3940-II and RC-3095 indicates that these BN/GRP antagonists could provide a new treatment modality for breast tumors expressing BN and EGF receptors.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Bombesin/administration & dosage
- Bombesin/analogs & derivatives
- Bombesin/antagonists & inhibitors
- Bombesin/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Carcinoma/drug therapy
- Carcinoma/pathology
- Dose-Response Relationship, Drug
- ErbB Receptors/drug effects
- ErbB Receptors/genetics
- Female
- Gastrin-Releasing Peptide/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Injections, Subcutaneous
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Neurokinin B/analogs & derivatives
- Neurokinin B/drug effects
- Peptide Fragments/administration & dosage
- Peptide Fragments/therapeutic use
- Polymerase Chain Reaction
- RNA, Messenger/drug effects
- Receptors, Bombesin/classification
- Receptors, Bombesin/drug effects
- Receptors, Bombesin/genetics
- Remission Induction
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Z Kahán
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
de Coupade C, Gillet R, Bennoun M, Briand P, Russo-Marie F, Solito E. Annexin 1 expression and phosphorylation are upregulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice. Hepatology 2000; 31:371-80. [PMID: 10655260 DOI: 10.1002/hep.510310217] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have used a transgenic animal model, which constitutively develops hepatocarcinoma (Antithrombin III SV40 T large Antigen: ASV), to study the involvement of Annexin 1 (ANX1) in liver regeneration and malignant transformation. Primary hepatocytes isolated from normal mice did not express ANX1. In contrast, ANX1 was strongly expressed in hepatocytes of transgenic mice during constitutive development of hepatocarcinoma. In ASV transgenic mice, an elevated ANX1 level preceded the appearance of the tumor, indicating that it could be a good marker in the diagnosis of cancer. One-third hepatectomy in normal mice resulted in stimulation of ANX1 synthesis and phosphorylation. This upregulation correlated with increased synthesis of EGF and consequently with increased phosphorylation of the EGF receptor (EGF-R). Stable transfection of a hepatocyte cell line derived from ASV transgenic mice (mhAT2) with antisense complementary DNA for ANX1 reduced the proliferation rate as well as cytosolic phospholipase A(2) (cPLA(2)) activity. Thus, ANX1 expression and phosphorylation could be a factor implicated in liver regeneration and tumorigenesis, either through modulation of cPLA(2) activity or EGF-R function.
Collapse
Affiliation(s)
- C de Coupade
- Unité INSERM U-332, Institut Cochin de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
50
|
Villanueva D, McCants D, Nielsen HC. Effects of epidermal growth factor (EGF) on the development of EGF-receptor (EGF-R) binding in fetal rabbit lung organ culture. Pediatr Pulmonol 2000; 29:27-33. [PMID: 10613783 DOI: 10.1002/(sici)1099-0496(200001)29:1<27::aid-ppul5>3.0.co;2-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor (EGF) causes gender- and development-specific changes in fetal lung surfactant synthesis. We hypothesized that the effects of EGF on development of surfactant synthesis are related to effects on EGF receptor (EGF-R) expression. We prepared sex-specific fetal rabbit lung organ cultures on gestational days 21 and 24 (term = 31 days) in Waymouth's medium + 10% charcoal-stripped fetal calf serum as control or with added EGF (10 ng/mL). After 3, 5, and 7 days of culture, we measured specific EGF-R binding in fetal lung plasma membrane preparations. Analysis of variance (ANOVA) revealed significant effects of fetal gender (P = 0.0003), time in culture (P = 0.01), and EGF treatment (P = 0. 0003) on EGF specific binding. In control cultures from days 21 and 24 (both male and female), EGF specific binding tended to decrease with time in culture. Specific binding in EGF-treated female 21-day cultures was significantly higher than in controls, both after 5 days (184% of control, P = 0.007) and after 7 days (151% of control, P = 0.01; Bonferroni multiple comparisons) of treatment, whereas males exhibited no response to EGF treatment. As opposed to these effects in 21-day cultures, EGF had little effect on 24-day cultures. We conclude that EGF affects the expression of the EGF-R on EGF specific binding in the fetal lung. The development of surfactant synthesis in the fetal lung may be controlled by upregulation of the EGF-R.
Collapse
Affiliation(s)
- D Villanueva
- Hospital Infantil de México "Federico Gómez," Mexico City, Mexico
| | | | | |
Collapse
|