1
|
A multiparametric fluorescence assay for screening aptamer-protein interactions based on microbeads. Sci Rep 2022; 12:2961. [PMID: 35194086 PMCID: PMC8863788 DOI: 10.1038/s41598-022-06817-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
For improving aptamer-ligand binding we have developed a screening system that defines optimal binding buffer composition. Using multiplex assays, one buffer system is needed which guarantees the specific binding of all aptamers. We investigated nine peer-reviewed DNA aptamers. Non-specific binding of aptamers is an obstacle. To address this, we investigated 16 proteins as specificity controls bound covalently to encoded microbeads in a multiplex assay. Increasing the NaCl concentration decreased the binding for all aptamers. Changing pH values by one unit higher or lower did not influence the aptamer binding significantly. However, pH < 5 led to non-specific binding for all aptamers. The PfLDH-aptamer selected in the absence of divalent cations exhibited doubling of its binding signal by the addition of Ca2+ and Mg2+. We confirmed Ca2+ and Mg2+ dependency of the aptamers for streptavidin and thrombin by observing a 90% and 50% binding decrease, respectively. We also achieved a doubling of binding for the streptavidin aptamer when replacing Ca2+ and Mg2+ by Mn2+. A buffer suitable for all aptamers can have considerable variations in pH or ionic strength, but divalent cations (Ca2+, Mg2+, Mn2+) are essential.
Collapse
|
2
|
Green MR, Sambrook J. Hybridization of Oligonucleotide Probes in Aqueous Solutions: Washing in Buffers Containing Quaternary Ammonium Salts. Cold Spring Harb Protoc 2022; 2022:2022/1/pdb.prot100735. [PMID: 34983857 DOI: 10.1101/pdb.prot100735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this protocol, hybridization is first performed in conventional aqueous solvents at a temperature well below the melting temperature, and the hybrids are then washed at higher stringency in buffers containing quaternary alkylammonium salts. TMACl is used with probes that are 14-50 nt in length, whereas TEACl is used with oligonucleotides that are 50-200 nt in length.
Collapse
|
3
|
Green MR, Sambrook J. Preparation of Labeled DNA, RNA, and Oligonucleotide Probes. Cold Spring Harb Protoc 2022; 2022:2022/1/pdb.top100578. [PMID: 34983861 DOI: 10.1101/pdb.top100578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Labeled nucleic acids and oligonucleotides are typically generated by enzymatic methods such as end-labeling, random priming, nick translation, in vitro transcription, and variations of the polymerase chain reaction (PCR). Some of these methods place the label in specific locations within the nucleic acid (e.g., at the 5' or 3' terminus); others generate molecules that are labeled internally at multiple sites. Some methods yield labeled single-stranded products, whereas others generate double-stranded nucleic acids. Finally, some generate probes of defined length, whereas others yield a heterogeneous population of labeled molecules. Options available for generating and detecting labeled nucleic acids, as well as advice on designing oligonucleotides for use as probes, is included here.
Collapse
|
4
|
Ji C, Wei Y, Wang J, Zeng Y, Pan H, Liang G, Ma J, Gong L, Zhang W, Zhang G, Wang H. Development of a Dual Fluorescent Microsphere Immunological Assay for Detection of Pseudorabies Virus gE and gB IgG Antibodies. Viruses 2020; 12:v12090912. [PMID: 32825263 PMCID: PMC7551494 DOI: 10.3390/v12090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudorabies, also known as Aujezsky’s disease, is an acute viral infection caused by pseudorabies virus (PRV). Swine are one of the natural hosts of pseudorabies and the disease causes huge economic losses in the pig industry. The establishment of a differential diagnosis technique that can distinguish between wild-type infection and vaccinated responses and monitor vaccine-induced immunoglobulin G(IgG) is crucial for the eventual eradication of pseudorabies. The aim of this study was to develop a rapid dual detection method for PRV gE and gB protein IgG antibodies with high specificity and sensitivity. PRV gE codons at amino acid residues (aa) 52–238 and gB codons at aa 539–741 were expressed to obtain recombinant PRV gE and gB proteins via a pMAL-c5x vector. After purification with Qiagen Ni–nitrilotriacetic acid (NTA) agarose affinity chromatography, the two proteins were analyzed via SDS-PAGE and immunoblotting assays. Two single fluorescent-microsphere immunoassays (FMIAs) were established by coupling two recombinant proteins (gE and gB) to magnetic microbeads, and an effective dual FMIA was developed by integrating the two single assays. Optimal serum dilution for each assay, correlation with other common swine virus-positive sera, and comparison with ELISA for two PRV antigens were tested for validation. Compared with ELISA, the specificity and sensitivity were 99.26% and 92.3% for gE IgG antibody detection, and 95.74% and 96.3% for the gB IgG antibody detection via dual FMIA. We provide a new method for monitoring PRV protective antibodies in vaccinated pigs and differentiating wild-type PRV infection from vaccinated responses simultaneously.
Collapse
Affiliation(s)
- Chihai Ji
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Yingfang Wei
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Yuchen Zeng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Haoming Pan
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Guan Liang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Wei Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| |
Collapse
|
5
|
The genesis and evolution of bead-based multiplexing. Methods 2019; 158:2-11. [DOI: 10.1016/j.ymeth.2019.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
|
6
|
Boone M, De Koker A, Callewaert N. Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction. Nucleic Acids Res 2018; 46:2701-2721. [PMID: 29514322 PMCID: PMC5888575 DOI: 10.1093/nar/gky167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
All sequencing experiments and most functional genomics screens rely on the generation of libraries to comprehensively capture pools of targeted sequences. In the past decade especially, driven by the progress in the field of massively parallel sequencing, numerous studies have comprehensively assessed the impact of particular manipulations on library complexity and quality, and characterized the activities and specificities of several key enzymes used in library construction. Fortunately, careful protocol design and reagent choice can substantially mitigate many of these biases, and enable reliable representation of sequences in libraries. This review aims to guide the reader through the vast expanse of literature on the subject to promote informed library generation, independent of the application.
Collapse
Affiliation(s)
- Morgane Boone
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Andries De Koker
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
7
|
Tetraalkylammonium Cations Conduction through a Single Nanofluidic Diode: Experimental and Theoretical Studies. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Multianalyte quantitative competitive PCR on optically encoded microspheres for an eight-gene panel related to prostate cancer. Anal Bioanal Chem 2017; 410:971-980. [PMID: 28861591 DOI: 10.1007/s00216-017-0595-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Nucleic acid-based tests have a profound impact in every medical discipline. Because multigene tests offer higher diagnostic accuracy and lower overall cost than single assays, they are especially useful for diseases, like prostate cancer, that present variability at the molecular level and diversity of available therapeutic interventions. We have developed a quantitative competitive PCR for an eight-gene panel, related to prostate cancer, that includes five genes of the human tissue kallikrein family (KLKs), prostate-specific membrane antigen (PSMA), prostate cancer antigen 3 (PCA3), and HPRT1 as a reference gene. Using PCR as a synthetic tool, a competitor was prepared for each target sequence containing the same primer binding sites as the target but differing in a short segment to enable discrimination by hybridization. The assay involves multiplex amplification of targets and competitors followed by a multiplex hybridization assay for the 16 amplification products. The assay was performed on optically encoded microspheres with oligonucleotide probes attached to their surface. The microspheres were analyzed rapidly (1 min) by flow cytometry. The signal ratio of the target and cognate competitor is a function of the target copy number in the sample prior to amplification. The multiplexing potential of the proposed method is much higher than real-time PCR and other end-point methods since there are 100 sets of commercially available microspheres.
Collapse
|
9
|
Wang Y, Zhang Y, Guo Y, Kang XF. Fast and precise detection of DNA methylation with tetramethylammonium-filled nanopore. Sci Rep 2017; 7:183. [PMID: 28298646 PMCID: PMC5428259 DOI: 10.1038/s41598-017-00317-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
The tremendous demand for detecting methylated DNA has stimulated intensive studies on developing fast single-molecule techniques with excellent sensitivity, reliability, and selectivity. However, most of these methods cannot directly detect DNA methylation at single-molecule level, which need either special recognizing elements or chemical modification of DNA. Here, we report a tetramethylammonium-based nanopore (termed TMA-NP) sensor that can quickly and accurately detect locus-specific DNA methylation, without bisulfite conversion, chemical modification or enzyme amplification. In the TMA-NP sensor, TMA-Cl is utilized as a nanopore-filling electrolyte to record the ion current change in a single nanopore triggered by methylated DNA translocation through the pore. Because of its methyl-philic nature, TMA can insert into the methylcytosine-guanine (mC-G) bond and then effectively unfasten and reduce the mC-G strength by 2.24 times. Simultaneously, TMA can increase the stability of A-T to the same level as C-G. The abilities of TMA (removing the base pair composition dependence of DNA strands, yet highly sensing for methylated base sites) endow the TMA-NP sensor with high selectivity and high precision. Using nanopore to detect dsDNA stability, the methylated and unmethylated bases are easily distinguished. This simple single-molecule technique should be applicable to the rapid analysis in epigenetic research.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yani Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| |
Collapse
|
10
|
Madel MB, Niederstätter H, Parson W. TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts. Forensic Sci Int Genet 2016; 25:166-174. [PMID: 27613970 DOI: 10.1016/j.fsigen.2016.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 02/04/2023]
Abstract
Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research.
Collapse
Affiliation(s)
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Yang G, Jones J, Jang Y, Davis CT. Multiplex assay for subtyping avian influenza A viruses by cDNA hybridization and adapter-mediated amplification. Appl Microbiol Biotechnol 2016; 100:8809-18. [DOI: 10.1007/s00253-016-7664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
12
|
Kalvatchev Z, Draganov P. Single-Strand Conformation Polymorphism (SSCP) Analysis: A Rapid and Sensitive Method for Detection of Genetic Diversity Among Virus Population. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Polyelectrolyte effects in G-quadruplexes. Biophys Chem 2013; 184:95-100. [PMID: 24211344 DOI: 10.1016/j.bpc.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022]
Abstract
The role of counterion condensation as a dominant force governing the stability of DNA duplexes and triplexes is well established. In contrast, the effect of counterion condensation on the stability of G-quadrupex conformations is poorly understood. Unlike other ordered nucleic acid structures, G-quadruplexes exhibit a specific binding of counterions (typically, Na(+) or K(+)) which are buried inside the central cavity and coordinated to the O6 carbonyls of the guanines forming the G-quartets. While it has been known that the G-quadruplex-to-coil transition temperature, TM, increases with an increase in the concentration of the stabilizing ion, the contributions of the specific (coordination in the central cavity) and nonspecific (condensation) ion binding have not been resolved. In this work, we separate the two contributions by studying the change in TM of preformed G-quadruplexes following the addition of nonstabilizing ions Li(+), Cs(+), and TMA(+) (tetramethylammonium). In our studies, we used two G-quadruplexes formed by the human telomeric sequences which are distinct with respect to the folding topology and the identity and the number of sequestered stabilizing ions. Our data suggest that the predominant ionic contribution to G-quadruplex stability comes from the specifically bound Na(+) or K(+) ions and not from counterion condensation. We offer molecular rationalizations to the observed insensitivity of G-quadruplex stability to counterion condensation and emphasize the need to expand such studies to assess the generality of our findings.
Collapse
|
14
|
Zhao J, Kang L, Hu R, Gao S, Xin W, Chen W, Wang J. Rapid oligonucleotide suspension array-based multiplex detection of bacterial pathogens. Foodborne Pathog Dis 2013; 10:896-903. [PMID: 23947819 DOI: 10.1089/fpd.2012.1476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A gene-specific microsphere suspension array coupled with 15-plex polymerase chain reaction (PCR) was developed to screen bacterial samples rapidly for 10 strains of bacteria: Shigella spp. (S. flexneri, S. dysenteriae, and S. sonnei), Staphylococcus aureus, Vibrio cholerae (serology O1 and O139), Legionella pneumophila, and Clostridium botulinum (types A, B, and E). Fifteen sets of highly validated primers were chosen to amplify target genes simultaneously. Corresponding oligonucleotide probes directly conjugated with microsphere sets were used to specifically identify PCR amplicons. Sensitivity tests revealed that the array coupled with single PCR was able to detect purified genomic DNA at concentrations as low as 10 copies/μL, while the multiplex detection limit was 10-10⁴ copies/μL. The assay was validated using water samples artificially spiked with S. aureus and S. dysenteriae, as well as water specimens from swimming pools previously identified to contain S. aureus.
Collapse
Affiliation(s)
- Jinyin Zhao
- 1 State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences , Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B, Michelmore R. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride. PLoS One 2013; 8:e55913. [PMID: 23409088 PMCID: PMC3568094 DOI: 10.1371/journal.pone.0055913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/04/2013] [Indexed: 12/22/2022] Open
Abstract
Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.
Collapse
Affiliation(s)
- Marta Matvienko
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Alexander Kozik
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Lutz Froenicke
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Dean Lavelle
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Belinda Martineau
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Bertrand Perroud
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Richard Michelmore
- Genome Center, University of California Davis, Davis, California, United States of America
- Departments of Plant Sciences, Molecular and Cellular Biology, and Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
16
|
Abstract
During meiosis, homologous chromosomes (homologs) undergo recombinational interactions, resulting in the formation of crossovers (COs) or noncrossovers (NCOs). Both COs and NCOs are initiated by the same event: programmed double-strand DNA breaks (DSBs), which occur preferentially at hotspots throughout the genome. COs contribute to the genetic diversity of gametes and are needed to promote proper meiotic chromosome segregation. Accordingly, their formation is tightly controlled. In the mouse, the sites of preferred CO formation differ between male and female chromosomes, both on a regional level and on the level of individual hotspots. Sperm typing using (half-sided) allele-specific PCR has proven a powerful technique to characterize COs and all detectable NCOs at hotspots on male human and mouse chromosomes. In contrast, very little is known about the properties of hotspots in female meiosis. This chapter describes an adaptation of sperm typing to analyze recombinants in a hotspot, using DNA isolated from an ovary cell suspension enriched for oocytes.
Collapse
Affiliation(s)
- Esther de Boer
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
17
|
Ye F, Laosinchai-Wolf W, Labourier E. An optimized technology platform for the rapid multiplex molecular analysis of genetic alterations associated with leukemia. Cancer Genet 2012; 205:488-500. [PMID: 23026076 DOI: 10.1016/j.cancergen.2012.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022]
Abstract
Molecular methods play a critical role in the accurate diagnosis of leukemia by complementing morphologic, cytochemical, immunophenotypic, and cytogenetic analyses. We developed a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method combined with liquid bead array cytometry for the rapid detection of genetic alterations associated with leukemia. Fusion transcripts corresponding to the most common recurrent chromosomal translocations were reproducibly detected in as low as 0.1-10 ng of total RNA with an analytical sensitivity of 0.01-1%. Multiday, multilot, multioperator, and multi-instrument precision studies, for a total of 678 independent measures in 46 runs, showed a very high reproducibility with 100% agreement among replicates. Using multiplex panels for four to 20 independent targets, we demonstrate the flexibility of the method to codetect rare splicing isoforms, discriminate among multiple variants generated by unique cytogenetic abnormalities, identify distinct chromosomal partners involved with 11q23 or 17q21 rearrangements, and assess cryptic abnormalities not detectable by standard cytogenetics such as the t(12;21), del(1p32), or NPM1 mutations. Overall, three different internal control transcripts and 34 variants resulting from 18 abnormal chromosomal sites were evaluated. These results underscore the value of the multiplex assay system as a sensitive and reliable technology platform for the characterization of relevant genetic alterations in leukemia.
Collapse
Affiliation(s)
- Fei Ye
- Asuragen, Austin, TX, USA
| | | | | |
Collapse
|
18
|
Variation-tolerant capture and multiplex detection of nucleic acids: application to detection of microbes. J Clin Microbiol 2012; 50:3208-15. [PMID: 22814465 DOI: 10.1128/jcm.06382-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to ordinary PCRs, which have a limited multiplex capacity and often return false-negative results due to target variation or inhibition, our new detection strategy, VOCMA (variation-tolerant capture multiplex assay), allows variation-tolerant, target-specific capture and detection of many nucleic acids in one test. Here we demonstrate the use of a single-tube, dual-step amplification strategy that overcomes the usual limitations of PCR multiplexing, allowing at least a 22-plex format with retained sensitivity. Variation tolerance was achieved using long primers and probes designed to withstand variation at known sites and a judicious mix of degeneration and universal bases. We tested VOCMA in situations where enrichment from a large sample volume with high sensitivity and multiplexity is important (sepsis; streptococci, enterococci, and staphylococci, several enterobacteria, candida, and the most important antibiotic resistance genes) and where variation tolerance and high multiplexity is important (gastroenteritis; astrovirus, adenovirus, rotavirus, norovirus genogroups I and II, and sapovirus, as well as enteroviruses, which are not associated with gastroenteritis). Detection sensitivities of 10 to 1,000 copies per reaction were achieved for many targets. VOCMA is a highly multiplex, variation-tolerant, general purpose nucleic acid detection concept. It is a specific and sensitive method for simultaneous detection of nucleic acids from viruses, bacteria, fungi, and protozoa, as well as host nucleic acid, in the same test. It can be run on an ordinary PCR and a Luminex machine and is suitable for both clinical diagnoses and microbial surveillance.
Collapse
|
19
|
Bead-Based Suspension Arrays for the Detection and Identification of Respiratory Viruses. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2012. [PMCID: PMC7120938 DOI: 10.1007/978-1-4614-3970-7_42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The clinical signs and symptoms associated with many infectious diseases are often too nonspecific to discriminate between causative agents, and thus, definitive diagnosis requires specific laboratory tests for all of the suspected pathogens. In particular, respiratory tract infections can be caused by numerous different viral, bacterial, and fungal pathogens that are indistinguishable by clinical diagnosis. Respiratory tract infections are also among the most common infections in humans, with approximately 6−9 episodes per year in children and 2−4 episodes per year in adults [1]. These infections cause considerable morbidity and mortality as well as high healthcare costs associated with doctor visits, hospitalizations, treatment, and absences from work and school. Early diagnosis of the etiological agent in a respiratory infection permits effective antimicrobial therapy and appropriate management of the disease.
Collapse
|
20
|
Jhang T, Shasany AK. Random amplified marker technique for plants rich in polyphenols. Methods Mol Biol 2012; 862:61-74. [PMID: 22419489 DOI: 10.1007/978-1-61779-609-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
More than 10,000 publications using the random amplified polymorphic DNA (RAPD) or related arbitrary marker techniques have been published in two decades of its inception in 1990. Despite extensive use, RAPD technique has also attracted some criticisms, mainly for lack of reproducibility. In the light of its widespread applications, the objective of this chapter is to (1) provide a protocol for RAPD assay, (2) identify the potential factors affecting the optimization of the RAPD assays, and (3) provide proper statistical analysis to avoid false positives. It is suggested that after proper optimization, the RAPD is a reliable, sensitive, and reproducible assay having the potential to detect a wide range of DNA variations. Analyses of the relevant fragments generated in RAPD profile allow not only to identify some of the molecular events implicated in the genomic instability but also to discover genes playing key roles in genetic evolution and gene mapping. RAPD markers will continue to be boon for genetic studies of those organisms where yet no sequence information or scanty information is available.
Collapse
Affiliation(s)
- Tripta Jhang
- Department of Genetic Resource Management, Division of Genetics and Plant Breeding, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | |
Collapse
|
21
|
Eeles R, Knee G, Jhavar S, Mangion J, Ebbs S, Gui G, Thomas S, Coppen M, A'hern R, Gray S, Cooper C, Bartek J, Yarnold J. Multicentric breast cancer: clonality and prognostic studies. Breast Cancer Res Treat 2011; 129:703-16. [PMID: 21080063 DOI: 10.1007/s10549-010-1230-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Clonality of multicentric breast cancer has traditionally been difficult to assess. We aimed to assess this using analysis of TP53 status (expression and mutation status). These results were then incorporated into an analysis of prognostic factors in multicentric tumours in a 10-year follow up study. Clonal status of multicentric breast cancer foci (n = 88 foci) was determined by immunohistochemical and molecular studies of TP53 in a total of 40 patients. Prognostic factors from these patients were also compared with 80 age- and stage-matched controls with unicentric breast cancer from the Royal Marsden NHS Foundation Trust Breast Cancer Database. Our results indicate that multicentric breast cancer foci were polyclonal within an individual patient in at least 10 patients (25%) with respect to immunohistochemical staining and in four patients (10%) with respect to abnormal band shifts on single strand conformational polymorphism (SSCP) molecular analysis. No individual variable was predictive of multicentric or unicentric disease. However, there was a worse overall survival in the multicentric breast cancer patients in whom at least two cancer foci stained positively on TP53 immunohistochemistry compared with the matched control group (P = 0.04). In conclusion, these results suggest that a proportion of multicentric breast cancer foci are polyclonal with respect to TP53 status and that TP53 over-expression predicts for a poorer prognosis in multicentric breast cancer.
Collapse
Affiliation(s)
- R Eeles
- The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Development of a single-step subtraction method for eukaryotic 18S and 28S ribonucleic acids. J Biomed Biotechnol 2011; 2011:910369. [PMID: 21765639 PMCID: PMC3134377 DOI: 10.1155/2011/910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022] Open
Abstract
The abundance of mammalian 18S and 28S ribosomal RNA can decrease the detection sensitivity of bacterial or viral targets in complex host-pathogen mixtures. A method to capture human RNA in a single step was developed and characterized to address this issue. For this purpose, capture probes were covalently attached to magnetic microbeads using a dendrimer linker and the solid phase was tested using rat thymus RNA (mammalian components) with Escherichia coli RNA (bacterial target) as a model system. Our results indicated that random capture probes demonstrated better performance than specific ones presumably by increasing the number of possible binding sites, and the use of a tetrame-thylammonium-chloride (TMA-Cl-) based buffer for the hybridization showed a beneficial effect in the selectivity. The subtraction efficiency determined through real-time RT-PCR revealed capture-efficiencies comparable with commercially available enrichment kits. The performance of the solid phase can be further fine tuned by modifying the annealing time and temperature.
Collapse
|
23
|
Abstract
Zebrafish genome sequencing project has improved efficiency of positional cloning in zebrafish and traditional chromosome walking by isolating large insert genomic libraries has become a past. However, the genetic principles underlying the positional cloning still form the foundation for current chromosome walking using the genome sequence assemblies and related genomic sequence and clone information. This guide intends to summarize our accumulated experience in positional cloning using the current genomic resources and tools, and provide a practical guide to positional and/or candidate cloning of mutants of interest.
Collapse
Affiliation(s)
- Yi Zhou
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, Massachusetts, USA
| | | |
Collapse
|
24
|
Abstract
Homologous recombination during meiosis is critical for the formation of gametes. Recombination is initiated by programmed DNA double-strand breaks which preferentially occur at hotspots dispersed throughout the genome. These double-strand breaks are repaired from the homolog, resulting in either a crossover or noncrossover product. Multiple noncrossover events are required for homolog pairing, and at least one crossover is critical for proper chromosome segregation at the first meiotic division. Consequently, homologous recombination in meiosis occurs at high frequencies. This chapter describes how to characterize crossovers and noncrossovers at a hotspot in mice using allele-specific PCR. Amplification of recombinant products directly from sperm DNA is a powerful approach to determine recombination frequencies and map recombination breakpoints, providing insight into homologous recombination mechanisms.
Collapse
Affiliation(s)
- Francesca Cole
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
25
|
Ohrmalm C, Jobs M, Eriksson R, Golbob S, Elfaitouri A, Benachenhou F, Strømme M, Blomberg J. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm. Nucleic Acids Res 2010; 38:e195. [PMID: 20864443 PMCID: PMC2995084 DOI: 10.1093/nar/gkq777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes.
Collapse
Affiliation(s)
- Christina Ohrmalm
- Clinical Virology, Department of Medical Sciences, Uppsala University and Academic Hospital, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Duarte CAB, Foti L, Nakatani SM, Riediger IN, Poersch CO, Pavoni DP, A. Krieger M. A novel hepatitis C virus genotyping method based on liquid microarray. PLoS One 2010; 5. [PMID: 20862224 PMCID: PMC2942838 DOI: 10.1371/journal.pone.0012822] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022] Open
Abstract
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype "1" subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Collapse
Affiliation(s)
- Cesar A. B. Duarte
- Instituto Carlos Chagas-Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Brazil
| | - Leonardo Foti
- Instituto Carlos Chagas-Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Brazil
| | - Sueli M. Nakatani
- Laboratório Central do Estado (LACEN-PR), São José dos Pinhais, Brazil
- Department of Gastroenterology, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Irina N. Riediger
- Laboratório Central do Estado (LACEN-PR), São José dos Pinhais, Brazil
| | - Celina O. Poersch
- Instituto Carlos Chagas-Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Brazil
| | - Daniela P. Pavoni
- Instituto Carlos Chagas-Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Brazil
| | - Marco A. Krieger
- Instituto Carlos Chagas-Fundação Oswaldo Cruz (FIOCRUZ), Curitiba, Brazil
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Brazil
- * E-mail:
| |
Collapse
|
27
|
Lagrimini LM, Burkhart W, Moyer M, Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A 2010; 84:7542-6. [PMID: 16593885 PMCID: PMC299335 DOI: 10.1073/pnas.84.21.7542] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant peroxidases play a major role in lignin formation and wound healing and are believed to be involved in auxin catabolism and defense to pathogen attack. The function of the anionic peroxidase isozymes is best understood in tobacco. These isozymes catalyze the formation of the lignin polymer and form rigid cross-links between lignin, cellulose, and extensin in the secondary plant cell wall. We report the purification of the anionic peroxidase isozymes from tobacco and their partial amino acid sequence. An oligonucleotide probe deduced from the amino acid sequence was used to screen a tobacco leaf cDNA library and a 1200-base-pair cDNA clone was isolated and sequenced in its entirety. The predicted amino acid sequence revealed a 22-amino acid signal peptide and a 302-amino acid mature protein (M(r), 32,311). The amino acid sequence was compared to that of the cationic peroxidases from horseradish and turnip and was found to be 52% and 46% homologous, respectively. By RNA blot analysis, the messenger for the tobacco isozyme was found to be abundant in stem tissue while expressed at very low levels in leaf and root tissue. Four distinguishable copies of the gene were found on genomic DNA blots. The gene copy number may reflect the allotetraploid nature of Nicotiana tabacum.
Collapse
Affiliation(s)
- L M Lagrimini
- Ciba-Geigy Agricultural Biotechnology Unit, P.O. Box 12257, Research Triangle Park, NC 27705
| | | | | | | |
Collapse
|
28
|
Tighe PJ, Forrester JV, Liversidge J, Sewell HF. Peripheral CD25 positive T lymphocytes with biased T cell receptor Vbeta gene usage in autoimmune endogenous posterior uveitis. Mol Pathol 2010; 48:M46-50. [PMID: 16695975 PMCID: PMC407919 DOI: 10.1136/mp.48.1.m46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims-To determine T cell receptor (TCR) Vbeta gene usage in peripheral blood T lymphocytes of patients with endogenous posterior uveitis (EPU). If biased TCR variable (V) gene usage occurs in this autoimmune disease, it should be detectable in immune activated peripheral blood T cells in vivo.Methods-Relative proportions of each Vbeta gene family expressed in total peripheral blood lymphocytes (PBL) and in vivo activated (CD25+) T cells from patients with EPU and controls were determined using the anchored polymerase chain reaction (anchored PCR) in conjunction with a novel hybridisation assay. The TCR Vbeta repertoires seen in these cell populations were then compared.Results-Vbeta1 usage within the CD25+ lymphocytes of patients with EPU was substantially elevated (mean +/- SD 15 +/-9%) compared with control CD25+ cells (3.3 +/-2.4%).Conclusions-By contrasting the repertoires of these cell populations, biased TCR Vbeta gene usage was detected in patients with EPU, namely increased usage of Vbeta1 in CD25+ T cells from peripheral blood of these patients. This approach of directly analysing the activated T cells in blood, using bulk PBL as an internal control, has wide applicability where specific T cell subpopulations are thought to play an important aetiopathological role.
Collapse
Affiliation(s)
- P J Tighe
- Department of Immunology, Faculty of Medicine, University Hospital Medical School, Nottingham NG7 2UH
| | | | | | | |
Collapse
|
29
|
Kilgannon P, Novak Z, Fotedar A, Singh B. Junctional diversity prevents negative selection of an antigen-specific T cell repertoire. Mol Immunol 2009; 47:1154-60. [PMID: 19954850 DOI: 10.1016/j.molimm.2009.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/03/2009] [Indexed: 11/26/2022]
Abstract
Endogenous mouse mammary tumor proviruses (MMTV; Mtv loci) deletes Vbeta6 expressing T cells in the thymus of Mtv-7(+) DBA/2 (H2(d)) mice through negative selection. We found that in Mtv-7(-) BALB/c (H2(d)) mice, Vbeta6 is a dominant V gene used in T cell responses to an 18 amino acid long peptide antigen: EYKEYAEYAEYAEYAEYA [abbreviated as K5 or EYK(EYA)(5)]. It was therefore surprising to find that despite the deletion of Vbeta6+ T cells, vigorous K5 specific T cell responses that use Vbeta6 can be raised in DBA/2 mice. Sequence analysis of Vbeta6 junctional diversity in K5 specific T cell lines revealed that the DBA/2 K5 repertoire compensates for the loss of most Vbeta6 T cells by overusing and amplifying Vbeta6+ T cells escaping central deletion and peripheral tolerization. In order to address the inability of some Vbeta6 T cells to recognize Mtv-7(+) we analyzed a panel of BALB/c Vbeta6 expressing T cell hybridomas. This data supported the argument that certain Vbeta6 junctional sequences preclude Mtv recognition and allows their escape from central deletion in DBA/2 mice. These cells are not anergic and can be activated with cognate peptide antigen in periphery. We suggest that junctional diversity at the V region of some of the T cell receptors does not allow these cells to recognize self-superantigens with high enough affinity and thus they escape negative selection in the thymus. These results for the first time provide a molecular explanation of how the immune system compensates for "hole in the repertoire" caused by deletion of the majority of T cells carrying certain V region segments.
Collapse
Affiliation(s)
- Patrick Kilgannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Kauppi L, May CA, Jeffreys AJ. Analysis of meiotic recombination products from human sperm. Methods Mol Biol 2009; 557:323-55. [PMID: 19799191 DOI: 10.1007/978-1-59745-527-5_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Traditional methods for surveying meiotic recombination in humans are limited to pedigree and linkage disequilibrium analyses. We have developed assays that allow the direct detection of crossover and gene conversion molecules in batches of sperm DNA. To date, we have characterized 26 recombination hotspots by allele-specific PCR and selectively amplified recombinant DNA molecules from these regions. These analyses have revealed that meiotic crossover hotspots in humans are highly localized and flanked by DNA segments where recombination is suppressed. The centers of crossover hotspots are also active in noncrossover recombination, displaying short conversion tracts.
Collapse
Affiliation(s)
- Liisa Kauppi
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
31
|
Corrie S, Sova P, Lawrie G, Battersby B, Kiviat N, Trau M. Development of a multiplexed bead-based assay for detection of DNA methylation in cancer-related genes. MOLECULAR BIOSYSTEMS 2008; 5:262-8. [PMID: 19225617 DOI: 10.1039/b813077a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a method for the detection of methylated CpG dinucleotides located within CpG islands in genomic DNA using multiplexed bead-based assays and standard flow cytometry instrumentation. Four CpG "clusters" were identified in the TFPI2 and SPARC CpG islands whose methylation status was highly correlated with the incidence of invasive cervical cancer in our previous studies. Eight probes in total were designed for both the methylated and unmethylated forms of each cluster and attached to different fluorescently-encoded organosilica bead sets. Probe design was investigated by changing either the length of probes whilst keeping the melting temperature constant, or changing the melting temperature and keeping the probe length constant. Asymmetric polymerase chain reaction (PCR) methods designed without methylation-specific primers were used to prepare fluorescently-labelled targets based on bisulfite-converted genomic DNA. After investigating the specificity of the probes in a model system using fluorescently-labelled synthetic oligonucleotides, cancer cell-line DNA was analysed and the constant length probe design facilitated the correct genotyping of all clusters with respect to negative controls.
Collapse
Affiliation(s)
- Simon Corrie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Napolitano NM, Rohlfs EM, Heim RA. Simultaneous detection of multiple point mutations using allele-specific oligonucleotides. ACTA ACUST UNITED AC 2008; Chapter 9:Unit9.4. [PMID: 18428368 DOI: 10.1002/0471142905.hg0904s41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit describes high-throughput mutation analysis using hybridization with pooled allele-specific oligonucleotide (ASO) probes. The approach can be used to screen one gene for many allelic mutations or to screen several loci for several allelic mutations each. Because tetramethyl ammonium chloride (TMAC) is added to the hybridization solution, the melting temperature of each oligonucleotide is independent of G-C content and oligonucleotides of the same length can be hybridized simultaneously. The pooled probes will give a positive hybridization signal from any PCR-amplified DNA sample containing a sequence complementary to any of the ASOs in the pool of oligonucleotide sequences. If many PCR-amplified samples are spotted onto a single membrane, multiple individuals can then be screened simultaneously for many mutant sequences. This multiple ASO hybridization technique is appropriate only for circumstances when hybridization with any one of the pooled probes is expected to be uncommon.
Collapse
|
33
|
Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, Kinzler KW, Vogelstein B. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 2008; 135:489-98. [PMID: 18602395 PMCID: PMC2820386 DOI: 10.1053/j.gastro.2008.05.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/25/2008] [Accepted: 05/08/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Somatic mutations provide uniquely specific markers for the early detection of neoplasia that can be detected in DNA purified from plasma or stool of patients with colorectal cancer. The primary purpose of the present investigation was to determine the parameters that were critical for detecting mutations using a quantitative assay. A secondary purpose was to compare the results of plasma and stool DNA testing using the same technology. METHODS We examined DNA purified from the stool of 25 patients with colorectal cancers before surgery. In 16 of these cases, plasma samples also were available. Mutations in stool or plasma were assessed with an improved version of the BEAMing technology. RESULTS Of the 25 stool DNA samples analyzed, 23 (92%) contained mutations that were present in the corresponding tumors from the same patients. In contrast, only 8 of the 16 (50%) plasma DNA samples analyzed had detectable levels of mutated DNA. We found that the DNA fragments containing mutations in both stool and plasma DNA typically were smaller than 150 bases in size. The sensitivity of the new method was superior to a widely used technique for detecting mutations, using single base extension and sequencing, when assessed on the same samples (92% vs 60%; P = .008, exact McNemar test). CONCLUSIONS When assessed with sufficiently sensitive methods, mutant DNA fragments are detectable in the stool of more than 90% of colorectal cancer patients. DNA purified from stool provides a better template for mutation testing than plasma.
Collapse
Affiliation(s)
- Frank Diehl
- The Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center
| | - Kerstin Schmidt
- The Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center
| | | | | | - Steve N. Goodman
- Department of Biostatistics, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Kenneth W. Kinzler
- The Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center
| | - Bert Vogelstein
- The Ludwig Center for Cancer Genetics and Therapeutics, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center
| |
Collapse
|
34
|
Abstract
The protocols in this unit describe procedures for using mixtures of 32P-labeled oligonucleotides to screen recombinant DNA clones bound to nitrocellulose filters. A partial amino acid sequence of a protein is used to predict the nucleotide sequence of the gene that would encode it. A mixture of oligonucleotides is chosen that includes all possible nucleotide sequences encoding that amino acid sequence. This mixture of oligonucleotides is then used to screen a recombinant DNA library for the corresponding clones. In some cases however, the exact nucleotide sequence of a desired clone is known and it is possible to use a unique oligonucleotide as a probe.
Collapse
Affiliation(s)
- A Duby
- The University of Texas Health Science Center at Dallas, Dallas, Texas, USA
| | | | | |
Collapse
|
35
|
Steady-state ATPase activity of E. coli MutS modulated by its dissociation from heteroduplex DNA. Biochem Biophys Res Commun 2007; 364:264-9. [PMID: 17950245 DOI: 10.1016/j.bbrc.2007.09.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 09/28/2007] [Indexed: 11/20/2022]
Abstract
The ability of MutS to recognize mismatched DNA is required to initiate a mismatch repair (MMR) system. ATP binding and hydrolysis are essential in this process, but their role in MMR is still not fully understood. In this study, steady-state ATPase activities of MutS from Escherichia coli were investigated using the spectrophotometric method with a double end-blocked heteroduplex containing gapped bases. The ATPase activities of MutS increased as the number of gapped bases increased in a double end-blocked heteroduplex with 2-8 gapped bases in the chain, indicating that MutS dissociates from DNA when it reaches a scission during movement along the DNA. Since movement of MutS along the chain does not require extensive ATP hydrolysis and the ATPase activity is only enhanced when MutS dissociates from a heteroduplex, these results support the sliding clamp model in which ATP binding by MutS induces the formation of a hydrolysis-independent sliding clamp.
Collapse
|
36
|
Thompson RC, Deo M, Turner DL. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes. Methods 2007; 43:153-61. [PMID: 17889803 PMCID: PMC2101764 DOI: 10.1016/j.ymeth.2007.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/13/2007] [Accepted: 04/15/2007] [Indexed: 11/21/2022] Open
Abstract
In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs ( approximately 20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have described a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here, we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression.
Collapse
Affiliation(s)
- Robert C Thompson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 5062 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | | | |
Collapse
|
37
|
Bandyopadhyay K, Kellar KL, Moura I, Casaqui Carollo MC, Graczyk TK, Slemenda S, Johnston SP, da Silva AJ. Rapid microsphere assay for identification of cryptosporidium hominis and cryptosporidium parvum in stool and environmental samples. J Clin Microbiol 2007; 45:2835-40. [PMID: 17652477 PMCID: PMC2045309 DOI: 10.1128/jcm.00138-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium hominis and Cryptosporidium parvum are associated with massive disease outbreaks worldwide. Because these two species have different transmission cycles, identification of these parasites to the species level in clinical samples may provide laboratory data of crucial importance in epidemiologic investigations. To date, the most reliable way to differentiate C. hominis and C. parvum is based on DNA sequencing analysis of PCR amplicons. Although this approach is very effective for differentiation of Cryptosporidium species, it is labor-intensive and time-consuming compared with methods that do not require DNA sequencing analysis as an additional step and that have been successfully used for specific identification of a number of pathogens. In this study, we describe a novel Luminex-based assay that can differentiate C. hominis from C. parvum in a rapid and cost-effective manner. The assay was validated by testing a total of 143 DNA samples extracted from clinical specimens, environmental samples, or samples artificially spiked with Cryptosporidium oocysts. As few as 10 oocysts per 300 microl of stools could be detected with this assay. The assay format includes species-specific probes linked to carboxylated Luminex microspheres that hybridize to a Cryptosporidium microsatellite-2 region (ML-2) where C. hominis and C. parvum differ by one nucleotide substitution. The assay proved to be 100% specific when samples that had been characterized by direct fluorescent antibody test (DFA) and DNA sequencing analysis were tested. In addition, the assay was more sensitive than DFA and provided species identification, which is an advantage for epidemiologic studies.
Collapse
Affiliation(s)
- Kakali Bandyopadhyay
- Scientific Resources Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dunbar SA, Jacobson JW. Quantitative, multiplexed detection of Salmonella and other pathogens by Luminex xMAP suspension array. Methods Mol Biol 2007; 394:1-19. [PMID: 18363228 DOI: 10.1007/978-1-59745-512-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe a suspension array hybridization assay for rapid detection and identification of Salmonella and other bacterial pathogens using Luminex xMAP technology. The Luminex xMAP system allows simultaneous detection of up to 100 different targets in a single multiplexed reaction. Included in the method are the procedures for (1) design of species-specific oligonucleotide capture probes and PCR amplification primers, (2) coupling oligonucleotide capture probes to carboxylated microspheres, (3) hybridization of coupled microspheres to oligonucleotide targets, (4) production of targets from DNA samples by PCR amplification, and (5) detection of PCR-amplified targets by direct hybridization to probe-coupled microspheres. The Luminex xMAP suspension array hybridization assay is rapid, requires few sample manipulations, and provides adequate sensitivity and specificity to detect and differentiate Salmonella and nine other test organisms through direct detection of species-specific DNA sequences.
Collapse
|
39
|
Mora JR, Getts RC. Enzymatic microRNA detection in microtiter plates with DNA dendrimers. Biotechniques 2006; 41:420, 422, 424. [PMID: 17068957 DOI: 10.2144/000112270] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Deo M, Yu JY, Chung KH, Tippens M, Turner DL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 2006; 235:2538-48. [PMID: 16736490 DOI: 10.1002/dvdy.20847] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have developed an in situ hybridization procedure for the detection of microRNAs (miRNAs) in tissue sections from mouse embryos and adult organs. The method uses highly specific washing conditions for RNA oligonucleotide probes conjugated to a fluorescein hapten. We show that this method detects predominantly mature miRNAs rather than the miRNA precursors or primary transcripts. We have determined expression patterns for several miRNAs expressed in the developing and adult nervous system, including miR-124a, miR-9, miR-92, and miR-204. Whereas miR-124a is expressed in neurons, miR-9 is expressed in neural progenitors and some neurons, and miR-204 is expressed in the choroid plexus, retinal pigment epithelium, and ciliary body. miR-204 is located in an intron of the TRPM3 gene, and the TRPM3 mRNA is coexpressed with miR-204 in the choroid plexus. We also find that primary transcripts for miR-124a and miR-9 genes are expressed in patterns similar to their respective mature miRNAs. The ability to visualize expression of specific miRNAs in embryos and tissues should aid studies on miRNA function.
Collapse
Affiliation(s)
- Monika Deo
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
41
|
Sambrook J, Russell DW. Hybridization of oligonucleotide probes in aqueous solutions: washing in buffers containing quaternary ammonium salts. Cold Spring Harb Protoc 2006; 2006:2006/1/pdb.prot3883. [PMID: 22485350 DOI: 10.1101/pdb.prot3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
42
|
Ferrer-Francesch X, Caro P, Alcalde L, Armengol MP, Ashhab Y, Lucas-Martín A, Martínez-Cáceres EM, Juan M, Pujol-Borrell R. One-tube-PCR technique for CCL2, CCL3, CCL4 and CCL5 applied to fine needle aspiration biopsies shows different profiles in autoimmune and non-autoimmune thyroid disorders. J Endocrinol Invest 2006; 29:342-9. [PMID: 16699301 DOI: 10.1007/bf03344106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autoimmune thyroid diseases are characterized by lymphocytic infiltration of the thyroid gland. Chemokines are crucial in the recruitment of lymphocytes and might play an important role in the pathogenesis of autoimmune thyroid disease. The aim of this study was to test the feasibility of analysing by one-tube reverse-transcriptase polymerase chain reaction (RT-PCR) technique CC chemokine profiles in samples obtained by fine needle aspiration biopsy (FNAB). In 27 out of 35 (77%) samples, the material was sufficient for analysis and in 16 (59%) chemokines were detected, thus demonstrating the potential of this technique. Moreover, even in this small group, a statistically significant increase of CCL3 and CCL4 was found in samples from patients with autoimmune thyroid disease as compared to those with multinodular goiter. Chemokine profile measured by improved multiamplification techniques in FNAB thyroid samples may become a useful complementary tool for the management of thyroid autoimmune disease as it constitutes a source of data for research of their pathogenesis.
Collapse
Affiliation(s)
- X Ferrer-Francesch
- Immunology (Laboratory of Immunology for Research Applied to Diagnosis (LIRAD), Blood and Tissue Bank, Institute for Health Sciences Research Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
MCLoughlin § D, Delsanti M, Albouy PA, Langevin * D. Aggregates formation between short DNA fragments and cationic surfactants. Mol Phys 2005. [DOI: 10.1080/00268970500250460] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Diaz MR, Fell JW. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol 2005; 43:3662-72. [PMID: 16081894 PMCID: PMC1233893 DOI: 10.1128/jcm.43.8.3662-3672.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cryptococcus neoformans is an encapsulated fungal pathogen known to cause severe disease in immunocompromised patients. The disease, cryptococcosis, is mostly acquired by inhalation and can result in a chronic meningoencephalitis, which can be fatal. Here, we describe a molecular method to identify the varieties and genotypic groups within the C. neoformans species complex from culture-based assays. The method employs a novel flow cytometer with a dual laser system that allows the simultaneous detection of different target sequences in a multiplex and high-throughput format. The assay uses a liquid suspension hybridization format with specific oligonucleotide probes that are covalently bound to the surface of fluorescent color-coded microspheres. Biotinylated target amplicons, which hybridized to their complementary probe sequences, are quantified by the addition of the conjugate, streptavidin R-phycoerythrin. In this study we developed and validated eight probes derived from sequence analysis of the intergenic spacer region of the rRNA gene region. The assay proved to be specific and sensitive, allowed discrimination of a 1-bp mismatch with no apparent cross-reactivity, and detected 10(1) to 10(3) genome copies. The described protocol, which can be used directly with yeast cells or isolated DNA, can be undertaken in less than 1 h following PCR amplification and permits identification of species in a multiplex format. In addition to a multiplex capability, the assay allows the simultaneous detection of target sequences in a single reaction. The accuracy, speed, flexibility, and sensitivity of this technology are a few of the advantages that will make this assay useful for the diagnosis of human cryptococcal infections and other pathogenic diseases.
Collapse
Affiliation(s)
- Mara R Diaz
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | |
Collapse
|
45
|
Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2005; 363:71-82. [PMID: 16102740 PMCID: PMC7124242 DOI: 10.1016/j.cccn.2005.06.023] [Citation(s) in RCA: 416] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 06/06/2005] [Indexed: 02/07/2023]
Abstract
Background As we enter the post-genome sequencing era and begin to sift through the enormous amount of genetic information now available, the need for technologies that allow rapid, cost-effective, high-throughput detection of specific nucleic acid sequences becomes apparent. Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can greatly reduce the time, cost and labor associated with single reaction detection technologies. Methods The Luminex® xMAP™ system is a multiplexed microsphere-based suspension array platform capable of analyzing and reporting up to 100 different reactions in a single reaction vessel. This technology provides a new platform for high-throughput nucleic acid detection and is being utilized with increasing frequency. Here we review specific applications of xMAP technology for nucleic acid detection in the areas of single nucleotide polymorphism (SNP) genotyping, genetic disease screening, gene expression profiling, HLA DNA typing and microbial detection. Conclusions These studies demonstrate the speed, efficiency and utility of xMAP technology for simultaneous, rapid, sensitive and specific nucleic acid detection, and its capability to meet the current and future requirements of the molecular laboratory for high-throughput nucleic acid detection.
Collapse
|
46
|
Wallace J, Woda BA, Pihan G. Facile, comprehensive, high-throughput genotyping of human genital papillomaviruses using spectrally addressable liquid bead microarrays. J Mol Diagn 2005; 7:72-80. [PMID: 15681477 PMCID: PMC1867512 DOI: 10.1016/s1525-1578(10)60011-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Human papillomavirus (HPV) is the worldwide cause of carcinoma of the uterine cervix, a cancer that is the second most common neoplasm in women, resulting in nearly 250,000 deaths a year. The magnitude of the risk of cancer after HPV infection, however, is virus type-specific. Over 40 HPV types can infect the genital tract. Comprehensive, high-throughput typing assays for HPV, however, are not currently available. Blending multiplex PCR and multiplex hybridization using spectrally addressable liquid bead microarrays we have developed a high-throughput, fast, single-tube-typing assay capable of simultaneously typing 45 HPV. The overall incidence of HPV in 429 women tested using this new assay was 72.2% for those with squamous intraepithelial lesions, 51.5% for those with atypical squamous cells of undetermined significance and 15.4% for women with normal cytology, respectively. This compared well with the incidence of HPV detected by a parallel non-typing generic high-risk assay. The new assay detected a wide spectrum of HPV types and a high incidence of mixed infections. We believe our assay may find widespread applications in areas requiring virus type-specific information, such as in epidemiological studies, cancer screening programs, monitoring therapeutic interventions, and evaluating the efficacy of HPV vaccine trials.
Collapse
Affiliation(s)
- Jan Wallace
- Laboratory of Diagnostic Molecular Oncology, Division of Anatomic Patholog, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
47
|
Bugert P, McBride S, Smith G, Dugrillon A, Klüter H, Ouwehand WH, Metcalfe P. Microarray-based genotyping for blood groups: comparison of gene array and 5'-nuclease assay techniques with human platelet antigen as a model. Transfusion 2005; 45:654-9. [PMID: 15847651 DOI: 10.1111/j.1537-2995.2005.04318.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Most blood group alloantigens specific for red cells and platelets (PLTs) are based on single-nucleotide polymorphisms (SNPs) in genes encoding relevant membrane proteins. STUDY DESIGN AND METHODS By use of five human PLT antigen (HPA) systems as a model, the suitability of a fourth-generation microarray technique for SNP typing was investigated. The results of the former were compared with those of a parallel developed third-generation technique (TaqMan assay, Applied Biosystems). Both techniques were validated by use of a unique panel of 71 blinded DNA samples containing at least 15 aa, bb, and ab genotypes for the HPA-1, -2, -3, -5, and-15 systems. RESULTS Unambiguous and concordant results were obtained with both techniques for all samples. CONCLUSION The data presented here validate the use of microarray for large-scale SNP typing for clinically relevant blood group alloantigens.
Collapse
Affiliation(s)
- Peter Bugert
- Institute of Transfusion Medicine and Immunology, University of Heidelberg, Faculty of Clinical Medicine, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Tarr AW, Boneham SP, Grabowska AM, Ball JK. Tagged polymerase chain reaction subtractive hybridization for the enrichment of phage display random peptide libraries. Anal Biochem 2005; 339:61-8. [PMID: 15766711 DOI: 10.1016/j.ab.2004.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Indexed: 11/23/2022]
Abstract
Affinity selection of phage display peptide libraries is routinely used for isolating peptides capable of binding a range of molecules, including antibodies and receptors. This process is most successful when the selecting molecule is relatively pure, for example, a monoclonal antibody. However, isolation of peptides able to bind to target molecules present in a complex mixture is more difficult because the affinity selection process isolates peptides capable of binding to all molecules present in the mixture. Here we describe the development of a tagged polymerase chain reaction (PCR) subtractive hybridization method that is universally applicable for the targeted isolation of peptides able to bind to unique molecules within a complex mixture. We also describe a discriminatory limiting dilution PCR method that can be used to optimize hybridization conditions.
Collapse
Affiliation(s)
- Alexander W Tarr
- Institute of Infections, Immunity, and Inflammation, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
49
|
Minguillón C, Gardenyes J, Serra E, Castro LFC, Hill-Force A, Holland PW, Amemiya CT, Garcia-Fernàndez J. No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 2005; 1:19-23. [PMID: 15951846 PMCID: PMC1140354 DOI: 10.7150/ijbs.1.19] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/18/2004] [Indexed: 11/05/2022] Open
Abstract
The Hox gene cluster has been a key paradigm for a generation of developmental and evolutionary biologists. Since its discovery in the mid-1980's, the identification, genomic organization, expression, colinearity, and regulation of Hox genes have been immediate targets for study in any new model organism, and metazoan genome projects always refer to the structure of the particular Hox cluster(s). Since the early 1990's, it has been dogma that vertebrate Hox clusters are composed of thirteen paralogous groups. Nonetheless, we showed that in the otherwise prototypical cephalochordate amphioxus (Branchiostoma floridae), the Hox cluster contains a fourteenth Hox gene, and very recently, a 14th Hox paralogous group has been found in the coelacanth and the horn shark, suggesting that the amphioxus cluster was anticipating the finding of Hox 14 in some vertebrate lineages. In view of the pivotal place that amphioxus occupies in vertebrate evolution, we thought it of considerable interest to establish the limits of its Hox gene cluster, namely resolution of whether more Hox genes are present in the amphioxus cluster (e.g., Hox 15). Using two strategies, here we report the completion and characterization of the Hox gene content of the single amphioxus Hox cluster, which encompasses 650 kb from Hox1 to Evx. Our data have important implications for the primordial Hox gene cluster of chordates: the prototypical nature of the single amphioxus Hox cluster makes it unlikely that additional paralogous groups will be found in any chordate lineage. We suggest that 14 is the end.
Collapse
Affiliation(s)
- Carolina Minguillón
- 1 Departament de Genètica, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal, 645. E-08028, Barcelona, Spain
- 4 Division of Developmental Biology. National Institute for Medical Research. The Ridgeway, Mill Hill. London NW7 1AA, U.K
| | - Josep Gardenyes
- 1 Departament de Genètica, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal, 645. E-08028, Barcelona, Spain
| | - Elisa Serra
- 1 Departament de Genètica, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal, 645. E-08028, Barcelona, Spain
| | - L. Filipe C. Castro
- 2 Department of Zoology, University of Oxford. South Parks Road, Oxford, OX1 3PS, U.K
| | - Alicia Hill-Force
- 3 Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, Washington 98101, U.S.A
| | - Peter W.H. Holland
- 2 Department of Zoology, University of Oxford. South Parks Road, Oxford, OX1 3PS, U.K
| | - Chris T. Amemiya
- 3 Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, Washington 98101, U.S.A
| | - Jordi Garcia-Fernàndez
- 1 Departament de Genètica, Facultat de Biologia, Universitat de Barcelona. Av. Diagonal, 645. E-08028, Barcelona, Spain
| |
Collapse
|
50
|
Dondi D, Piccolella M, Messi E, Demissie M, Cariboni A, Selleri S, Piva F, Samara A, Consalez GG, Maggi R. Expression and differential effects of the activation of glucocorticoid receptors in mouse gonadotropin-releasing hormone neurons. Neuroendocrinology 2005; 82:151-63. [PMID: 16498266 DOI: 10.1159/000091693] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 12/12/2005] [Indexed: 12/27/2022]
Abstract
Prenatal exposure of rodents to glucocorticoids (Gc) affects the sexual development of the offspring, possibly interfering with the differentiation of the hypothalamic-pituitary-gonadal axis. Glucocorticoid receptors (GR) are present on gonadotropin-releasing hormone (GnRH) neurons in the rat hypothalamus, suggesting a direct effect of Gc in the control of the synthesis and/or release of the hormone. In this study, we demonstrate the colocalization of immunoreactive GR with GnRH in a subpopulation of mouse hypothalamic GnRH neurons, confirming the possible involvement of Gc in mouse GnRH neuronal physiology. Receptor-binding assay, RT-PCR, immunocytochemistry, and immunoblotting experiments carried out in GN11 immortalized GnRH neurons show the presence of GR even in the more immature mouse GnRH neurons and confirm the expression of GR in GT1-7 mature GnRH cells. In GN11 cells, the activation of GR with dexamethasone produces nuclear translocation, but does not lead to the inhibition of GnRH gene expression already reported in GT1-7 cells. Long-term exposure of GN11 cells to dexamethasone induces an epithelial-like phenotype with a reorganization of F-actin in stress fibers. Finally, we found that Gc treatment significantly decreases the migratory activity in vitro and the levels of phosphorylated focal adhesion kinase of GN11 immature neurons. In conclusion, these data indicate that GR are expressed in mouse hypothalamic GnRH neurons in vivo as well as in the immature GN11 GnRH neurons in vitro. Moreover, the effects of the GR activation in GN11 and in GT1-7 cells may be related to the neuronal maturational stage of the two cell lines, suggesting a differential role of Gc in neuronal development.
Collapse
Affiliation(s)
- Donatella Dondi
- Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|