1
|
Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R. Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 2005; 37:1254-68. [PMID: 15778089 DOI: 10.1016/j.biocel.2004.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 12/10/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
Glucose regulated protein-78, GRP78 has been implicated in the protection of tumor cells from cytotoxic damage and apoptosis. When protein profiles of colon cell lines were investigated we found remarkably high GRP78 expression in two cell lines. These cell lines express elevated levels of the transcription factor c-Myb due to genomic amplification of the c-myb locus and we hypothesized that c-Myb regulates GRP78 expression in colon cancer cells. The promoters of human and murine GRP78 and the related family member GRP94 were examined and potential c-Myb binding sites were identified and characterized. DNA binding studies with recombinant c-Myb and nuclear extracts together with ChIP assays on colon cell lines validated these sites. Endogenous GRP78 expression was further induced in these colon cells in response to Thapsigargin treatment, a potent inducer of the unfolded protein response. Transactivation studies with the human GRP78 promoter in colon cell lines showed reporter activity was dependent upon the presence of a conserved c-Myb binding site independent of sequences associated with the unfolded protein response. Finally, over-expression of c-Myb induced the endogenous GRP78 gene. These data suggest that amplification of c-myb in tumor cells may lead to robust GRP78 gene induction, which may in turn assist cells in survival under conditions of oxygen deprivation and nutrient stress.
Collapse
Affiliation(s)
- Robert G Ramsay
- Differentiation and Transcription Laboratory, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne 3002, Australia.
| | | | | | | | | |
Collapse
|
2
|
Allen RD, Kim HK, Sarafova SD, Siu G. Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol Cell Biol 2001; 21:3071-82. [PMID: 11287612 PMCID: PMC86935 DOI: 10.1128/mcb.21.9.3071-3082.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the CD4 gene is tightly controlled throughout thymopoiesis. The downregulation of CD4 gene expression in CD4(-) CD8(-) and CD4(-) CD8(+) T lymphocytes is controlled by a transcriptional silencer located in the first intron of the CD4 locus. Here, we determine that the c-Myb transcription factor binds to a functional site in the CD4 silencer. As c-Myb is also required for CD4 promoter function, these data indicate that depending on the context, c-Myb plays both positive and negative roles in the control of CD4 gene expression. Interestingly, a second CD4 silencer-binding factor, HES-1, binds to c-Myb in vivo and induces it to become a transcriptional repressor. We propose that the recruitment of HES-1 and c-Myb to the silencer leads to the formation of a multifactor complex that induces silencer function and repression of CD4 gene expression.
Collapse
Affiliation(s)
- R D Allen
- Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
3
|
Coffman JA, Kirchhamer CV, Harrington MG, Davidson EH. SpMyb functions as an intramodular repressor to regulate spatial expression of CyIIIa in sea urchin embryos. Development 1997; 124:4717-27. [PMID: 9428408 DOI: 10.1242/dev.124.23.4717] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CyIIIa actin gene of Strongylocentrotus purpuratus is transcribed exclusively in the embryonic aboral ectoderm, under the control of 2.3 kb cis-regulatory domain that contains a proximal module that controls expression in early embryogenesis, and a middle module that controls expression in later embryogenesis. Previous studies demonstrated that the SpRunt-1 target site within the middle module is required for the sharp increase in CyIIIa transcription which accompanies differentiation of the aboral ectoderm, and that a negative regulatory region near the SpRunt-1 target site is required to prevent ectopic transcription in the oral ectoderm and skeletogenic mesenchyme. This negative regulatory region contains a consensus binding site for the myb family of transcription factors. In vitro DNA-binding experiments reveal that a protein in blastula-stage nuclei interacts specifically with the myb target site. Gene transfer experiments utilizing CyIIIa reporter constructs containing oligonucleotide substitutions indicate that this site is both necessary and sufficient to prevent ectopic expression of CyIIIa. Synthetic oligonucleotides containing the myb target site were used to purify a protein from sea urchin embryo nuclear extracts by affinity chromatography. This protein is immunoprecipitated by antibodies specific to the evolutionarily conserved myb domain, and amino acid sequences obtained from the purified protein were found to be identical to sequences within the myb domain. Sequence information was used to obtain cDNA clones of SpMyb, the S. purpuratus member of the myb family of transcription factors. Through interactions within the middle module, SpMyb functions to repress activation of CyIIIa in the oral ectoderm and skeletogenic mesenchyme.
Collapse
Affiliation(s)
- J A Coffman
- Stowers Institute for Medical Research, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
4
|
Ishiguro N, Ohzono T, Shinagawa T, Horiuchi M, Shinagawa M. A spontaneous internal deletion of the c-myb protooncogene enhances transcriptional activation in bovine T lymphoma cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47093-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
5
|
Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 1994; 13:128-37. [PMID: 8306956 PMCID: PMC394786 DOI: 10.1002/j.1460-2075.1994.tb06242.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid biosynthetic genes and implicated in expression in flowers. These binding activities were inhibited by antibodies raised against Myb305, a flower-specific Myb protein previously cloned from Antirrhinum by sequence homology. Myb305 bound to the same element and formed a DNA-protein complex with the same mobility as the Antirrhinum petal protein in electrophoretic mobility shift experiments. Myb305 activated expression from its binding site in yeast and in tobacco protoplasts. In protoplasts, activation also required a G-box-like element, suggesting co-operation with other elements and factors. The results strongly suggest a role for Myb305-related proteins in the activation of phenylpropanoid biosynthetic genes in flowers. This is consistent with the genetically demonstrated role of plant Myb proteins in the regulation of genes involved in flavonoid synthesis.
Collapse
Affiliation(s)
- R W Sablowski
- Molecular Genetics Department John Innes Centre, Norwich, UK
| | | | | | | | | | | |
Collapse
|
6
|
Differential transcriptional activation by v-myb and c-myb in animal cells and Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8321242 DOI: 10.1128/mcb.13.7.4423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The v-myb oncogene and its cellular homolog c-myb encode sequence-specific DNA-binding proteins which regulate transcription from promoters containing Myb-binding sites in animal cells. We have developed a Saccharomyces cerevisiae system to assay transcriptional activation by v-Myb and c-Myb. In yeast strains containing integrated reporter genes, activation was strictly dependent upon both the Myb DNA-binding domain and the Myb recognition element. BAS1, an endogenous Myb-related yeast protein, was not required for transactivation by animal Myb proteins and by itself had no detectable effect on a Myb reporter gene. Deletion analyses demonstrated that a domain of v-Myb C terminal to the previously mapped Myb transcriptional activation domain was required for transactivation in animal cells but not in S. cerevisiae. The same domain is also required for the efficient transformation of myeloid cells by v-Myb. In contrast to results in animal cells, in S. cerevisiae the full-length c-Myb was a much stronger transactivator than a protein bearing the oncogenic N- and C-terminal truncations of v-Myb. These results imply that negative regulation of c-Myb by its own termini requires an additional animal cell protein or small molecule that is not present in S. cerevisiae.
Collapse
|
7
|
Chen RH, Lipsick JS. Differential transcriptional activation by v-myb and c-myb in animal cells and Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:4423-31. [PMID: 8321242 PMCID: PMC360011 DOI: 10.1128/mcb.13.7.4423-4431.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The v-myb oncogene and its cellular homolog c-myb encode sequence-specific DNA-binding proteins which regulate transcription from promoters containing Myb-binding sites in animal cells. We have developed a Saccharomyces cerevisiae system to assay transcriptional activation by v-Myb and c-Myb. In yeast strains containing integrated reporter genes, activation was strictly dependent upon both the Myb DNA-binding domain and the Myb recognition element. BAS1, an endogenous Myb-related yeast protein, was not required for transactivation by animal Myb proteins and by itself had no detectable effect on a Myb reporter gene. Deletion analyses demonstrated that a domain of v-Myb C terminal to the previously mapped Myb transcriptional activation domain was required for transactivation in animal cells but not in S. cerevisiae. The same domain is also required for the efficient transformation of myeloid cells by v-Myb. In contrast to results in animal cells, in S. cerevisiae the full-length c-Myb was a much stronger transactivator than a protein bearing the oncogenic N- and C-terminal truncations of v-Myb. These results imply that negative regulation of c-Myb by its own termini requires an additional animal cell protein or small molecule that is not present in S. cerevisiae.
Collapse
Affiliation(s)
- R H Chen
- Department of Microbiology, State University of New York, Stony Brook 11794-5222
| | | |
Collapse
|
8
|
Simons M, Morgan K, Parker C, Collins E, Rosenberg R. The proto-oncogene c-myb mediates an intracellular calcium rise during the late G1 phase of the cell cycle. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54197-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Mukhopadhyaya R, Wolff L. New sites of proviral integration associated with murine promonocytic leukemias and evidence for alternate modes of c-myb activation. J Virol 1992; 66:6035-44. [PMID: 1527851 PMCID: PMC241481 DOI: 10.1128/jvi.66.10.6035-6044.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Murine promonocytic leukemias involving insertional mutagenesis of the c-myb locus can be induced by replication-competent retroviruses. In previously studied promonocytic leukemic cells induced by Moloney murine leukemia virus (called MML), the provirus has been invariably integrated upstream of exons 3 or 4 and the leukemic cells expressed aberrant RNAs with fused virus-myb sequences. Furthermore, Myb expressed by these cells has been shown to be truncated by 47 or 71 amino acids. The present report examines the mechanisms of myb activation in leukemias induced by two other retroviruses, amphotropic virus 4070A and Friend strain FB29 (the leukemias are called AMPH-ML and FB-ML, respectively). This study revealed two additional c-myb proviral insertion sites in these promonocytic leukemias. One FB-ML had a proviral integration in exon 9, and expressed a C-terminally truncated Myb protein of 47 kDa similar to that previously demonstrated to be expressed in the myelomonocytic cell lines NFS60 and VFL-2. However, a sequence of reverse-transcribed and amplified RNA from this leukemia demonstrated that the truncation involved a loss of 248 amino acids compared with a loss of 240 amino acids in the myelomonocytic cell lines. Another leukemia had a provirus integrated in the 5' end of c-myb upstream of exon 2 (in the first intron) and produced a Myb protein that was indistinguishable on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from normal Myb. This latter leukemia (FB-ML R1-4-10) expressed Myb with the smallest N-terminal truncation observed so far in promonocytic leukemias; translation begins at an ATG within c-myb exon 2, leading to loss of only 20 amino acids from the N terminus. Unlike the proteins produced in Moloney murine leukemia virus-induced promonocytic leukemias (MML) that have larger truncations, this protein has an intact DNA binding region and does not contain N-terminal amino acids encoded by gag. However, this protein is similar to all N-terminally truncated Mybs so far studied, in that the truncation resulted in deletion of a casein kinase II phosphorylation site which has been proposed to be involved in regulation of DNA binding.
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
10
|
Siu G, Wurster AL, Lipsick JS, Hedrick SM. Expression of the CD4 gene requires a Myb transcription factor. Mol Cell Biol 1992; 12:1592-604. [PMID: 1347906 PMCID: PMC369602 DOI: 10.1128/mcb.12.4.1592-1604.1992] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes.
Collapse
Affiliation(s)
- G Siu
- Department of Biology, University of California, San Diego, La Jolla 92093-0063
| | | | | | | |
Collapse
|
11
|
Abstract
We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes.
Collapse
|
12
|
Dudek H, Tantravahi RV, Rao VN, Reddy ES, Reddy EP. Myb and Ets proteins cooperate in transcriptional activation of the mim-1 promoter. Proc Natl Acad Sci U S A 1992; 89:1291-5. [PMID: 1741383 PMCID: PMC48435 DOI: 10.1073/pnas.89.4.1291] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the generation of the acutely transforming avian retrovirus E26, both myb and ets genes have been transduced, leading to the production of a Gag-Myb-Ets fusion protein. This co-occurrence of v-myb and v-ets oncogenes suggests that the two might have a functional relationship. To look for such a relationship, we tested the transcriptional activation activity of Myb alone or with coexpressed Ets-1 or Ets-2. Using the promoter of the v-Myb-inducible mim-1 gene as a target, we found that full-length c-Myb gene products were poor activators of transcription, while an oncogenic (truncated) form of this protein was a strong trans-activator. However, coexpression of Ets-2 with full-length or truncated forms of Myb greatly increased trans-activation. Coexpression of Ets-1, Fos, Jun, or Myc with Myb did not increase trans-activation of the mim-1 promoter. The ability of Myb and Ets-2 to transactivate was cooperative, since Ets-2 alone gave little or no activation. Bacterially synthesized Ets-2 protein was found to bind specifically to the mim-1 promoter, suggesting that it may be a target for both Myb and Ets proteins. Thus, Myb and Ets proteins can cooperate in transcriptional activation, and their co-occurrence in the E26 virus may reflect a functional relationship between these two oncoproteins. Truncated forms of Myb may have a reduced need for cooperating factors such as Ets-2, and this might constitute an important mechanism associated with oncogenic activation.
Collapse
Affiliation(s)
- H Dudek
- Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
13
|
The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells. Mol Cell Biol 1992. [PMID: 1309587 DOI: 10.1128/mcb.12.1.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of replicative functions in the Epstein-Barr virus (EBV) genome is mediated through activation of a virally encoded transcription factor, Z (BZLF1). We have shown that the Z gene product, which binds to AP-1 sites as a homodimer and has sequence similarity to c-Fos, can efficiently activate the EBV early promoter, BMRF1, in certain cell types (i.e., HeLa cells) but not others (i.e., Jurkat cells). Here we demonstrate that the c-myb proto-oncogene product, which is itself a DNA-binding protein and transcriptional transactivator, can interact synergistically with Z in activating the BMRF1 promoter in Jurkat cells (a T-cell line) or Raji cells (an EBV-positive B-cell), whereas the c-myb gene product by itself has little effect. The simian virus 40 early promoter is also synergistically activated by the Z/c-myb combination. Synergistic transactivation of the BMRF1 promoter by the Z/c-myb combination appears to involve direct binding by the Z protein but not the c-myb protein. A 30-bp sequence in the BMRF1 promoter which contains a Z binding site (a consensus AP-1 site) is sufficient to transfer high-level lymphoid-specific responsiveness to the Z/c-myb combination to a heterologous promoter. That the c-myb oncogene product can interact synergistically with an EBV-encoded member of the leucine zipper protein family suggests c-myb is likely to engage in similar interactions with cellularly encoded transcription factors.
Collapse
|
14
|
Garrido C, Leprince D, Lipsick JS, Stehelin D, Gospodarowicz D, Saule S. Definition of functional domains in P135gag-myb-ets and p48v-myb proteins required to maintain the response of neuroretina cells to basic fibroblast growth factor. J Virol 1992; 66:160-6. [PMID: 1727478 PMCID: PMC238271 DOI: 10.1128/jvi.66.1.160-166.1992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The v-myb- and v-ets-containing E26 retrovirus induces the proliferation of chicken neuroretina (CNR) cells in minimal medium. Proliferation of E26 CNR cells is strongly stimulated by basic fibroblast growth factor (bFGF). The v-myb-containing avian myeloblastosis virus also induces the proliferation of infected CNR cells stimulated by bFGF. Both E26 CNR and avian myeloblastosis virus CNR cells are able to form colonies in soft agar in the presence of bFGF. This suggests that the v-myb product, a nuclear sequence-specific DNA-binding protein which activates gene expression in transient transfection assays, plays a role in the proliferative response of the infected CNR cells. To determine the structure-function relationships of P135gag-myb-ets and p48v-myb, we have used deletion mutants expressed in retroviral vectors and have analyzed their effect on CNR cell proliferation as well as their effect on the CNR cell response to bFGF. We show that v-ets is not required for bFGF stimulation but increases the proliferation of CNR cells in minimal medium. In the v-myb mutants, the gag sequences derived from the helper virus increase the potency of the myb gene. The carboxyl-terminal domain required for the growth and transformation of myeloid cells and needed for maximal trans-activation in transient DNA transfection assays in fibroblasts was not required for the growth and bFGF response of CNR cells. In contrast, the domain encompassing amino acids 240 to 301 (containing part of the transcriptional activation domain of v-myb) was absolutely required for the response of CNR cells to bFGF and could be functionally replaced by the carboxyl-terminal transcriptional activation domain of the VP16 protein of herpes simplex virus.
Collapse
Affiliation(s)
- C Garrido
- Cancer Research Institute, University of California Medical Center, San Francisco 94143-0128
| | | | | | | | | | | |
Collapse
|
15
|
Kenney SC, Holley-Guthrie E, Quinlivan EB, Gutsch D, Zhang Q, Bender T, Giot JF, Sergeant A. The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells. Mol Cell Biol 1992; 12:136-46. [PMID: 1309587 PMCID: PMC364077 DOI: 10.1128/mcb.12.1.136-146.1992] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulation of replicative functions in the Epstein-Barr virus (EBV) genome is mediated through activation of a virally encoded transcription factor, Z (BZLF1). We have shown that the Z gene product, which binds to AP-1 sites as a homodimer and has sequence similarity to c-Fos, can efficiently activate the EBV early promoter, BMRF1, in certain cell types (i.e., HeLa cells) but not others (i.e., Jurkat cells). Here we demonstrate that the c-myb proto-oncogene product, which is itself a DNA-binding protein and transcriptional transactivator, can interact synergistically with Z in activating the BMRF1 promoter in Jurkat cells (a T-cell line) or Raji cells (an EBV-positive B-cell), whereas the c-myb gene product by itself has little effect. The simian virus 40 early promoter is also synergistically activated by the Z/c-myb combination. Synergistic transactivation of the BMRF1 promoter by the Z/c-myb combination appears to involve direct binding by the Z protein but not the c-myb protein. A 30-bp sequence in the BMRF1 promoter which contains a Z binding site (a consensus AP-1 site) is sufficient to transfer high-level lymphoid-specific responsiveness to the Z/c-myb combination to a heterologous promoter. That the c-myb oncogene product can interact synergistically with an EBV-encoded member of the leucine zipper protein family suggests c-myb is likely to engage in similar interactions with cellularly encoded transcription factors.
Collapse
Affiliation(s)
- S C Kenney
- Department of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The protein product of the v-myb oncogene of avian myeloblastosis virus, v-Myb, differs from its normal cellular counterpart, c-Myb, by (i) expression under the control of a strong viral long terminal repeat, (ii) truncation of both its amino and carboxyl termini, (iii) replacement of these termini by virally encoded residues, and (iv) substitution of 11 amino acid residues. We had previously shown that neither the virally encoded termini nor the amino acid substitutions are required for transformation by v-Myb. We have now constructed avian retroviruses that express full-length or singly truncated forms of c-Myb and have tested them for the transformation of chicken bone marrow cells. We conclude that truncation of either the amino or carboxyl terminus of c-Myb is sufficient for transformation. In contrast, the overexpression of full-length c-Myb does not result in transformation. We have also shown that the amino acid substitutions of v-Myb by themselves are not sufficient for the activation of c-Myb. Rather, the presence of either the normal amino or carboxyl terminus of c-Myb can suppress transformation when fused to v-Myb. Cells transformed by c-Myb proteins truncated at either their amino or carboxyl terminus appear to be granulated promyelocytes that express the Mim-1 protein. Cells transformed by a doubly truncated c-Myb protein are not granulated but do express the Mim-1 protein, in contrast to monoblasts transformed by v-Myb that neither contain granules nor express Mim-1. These results suggest that various alterations of c-Myb itself may determine the lineage of differentiating hematopoietic cells.
Collapse
|
17
|
Grässer FA, Graf T, Lipsick JS. Protein truncation is required for the activation of the c-myb proto-oncogene. Mol Cell Biol 1991; 11:3987-96. [PMID: 2072904 PMCID: PMC361198 DOI: 10.1128/mcb.11.8.3987-3996.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The protein product of the v-myb oncogene of avian myeloblastosis virus, v-Myb, differs from its normal cellular counterpart, c-Myb, by (i) expression under the control of a strong viral long terminal repeat, (ii) truncation of both its amino and carboxyl termini, (iii) replacement of these termini by virally encoded residues, and (iv) substitution of 11 amino acid residues. We had previously shown that neither the virally encoded termini nor the amino acid substitutions are required for transformation by v-Myb. We have now constructed avian retroviruses that express full-length or singly truncated forms of c-Myb and have tested them for the transformation of chicken bone marrow cells. We conclude that truncation of either the amino or carboxyl terminus of c-Myb is sufficient for transformation. In contrast, the overexpression of full-length c-Myb does not result in transformation. We have also shown that the amino acid substitutions of v-Myb by themselves are not sufficient for the activation of c-Myb. Rather, the presence of either the normal amino or carboxyl terminus of c-Myb can suppress transformation when fused to v-Myb. Cells transformed by c-Myb proteins truncated at either their amino or carboxyl terminus appear to be granulated promyelocytes that express the Mim-1 protein. Cells transformed by a doubly truncated c-Myb protein are not granulated but do express the Mim-1 protein, in contrast to monoblasts transformed by v-Myb that neither contain granules nor express Mim-1. These results suggest that various alterations of c-Myb itself may determine the lineage of differentiating hematopoietic cells.
Collapse
Affiliation(s)
- F A Grässer
- Institut für Medizinische Mikrobiologie und Hygiene, Abteilung Virologie, Universitätskliniken des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
18
|
Wolff L, Koller R, Davidson W. Acute myeloid leukemia induction by amphotropic murine retrovirus (4070A): clonal integrations involve c-myb in some but not all leukemias. J Virol 1991; 65:3607-16. [PMID: 1645785 PMCID: PMC241365 DOI: 10.1128/jvi.65.7.3607-3616.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Amphotropic murine retrovirus 4070A was demonstrated to be highly leukemogenic when inoculated intravenously into adult DBA/2 mice that were undergoing an intense chronic inflammatory response, but was nonleukemogenic in the absence of inflammation. The virus-induced promoonocytic leukemias, designated AMPH-ML, are similar morphologically and in cell surface marker expression to monocytic leukemias, called MML and MF-ML, previously shown to be induced by Moloney murine leukemia virus and MF-3 virus (a recombinant between Friend murine leukemia virus and Moloney murine leukemia virus) and resemble certain mature acute monocytic leukemias in humans (AML subtype M5). Approximately two-thirds of the AMPH-MLs (subgroup I) were demonstrated to have alterations in the 5' end of the c-myb locus, an event which occurs in 100% of MML and MF-ML. Data indicate that proviral insertions in AMPH-ML subgroup I resulted in aberrant c-myb mRNA expression and truncation of its translation product at the amino terminus. Approximately one-third of the AMPH-MLs (subgroup II) had not undergone any DNA rearrangements at the c-myb locus. In addition, their transcripts and protein products were of normal size. These latter leukemias also had not undergone DNA rearrangements in c-myc, although retroviruses expressing myc have previously been shown to induce monocyte-macrophage tumors in mice undergoing a chronic inflammation. That subgroup II leukemias had at least one clonal viral insertion suggests that there may be other sites in the cellular genome that can be activated by insertional mutagenesis in these murine acute monocytic leukemias.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Cell Transformation, Viral
- Clone Cells
- DNA, Neoplasm/genetics
- Gene Expression
- Gene Rearrangement
- Leukemia Virus, Murine/pathogenicity
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/microbiology
- Mice
- Mice, Inbred DBA
- Precipitin Tests
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-myb
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogenes
- RNA, Messenger/genetics
- Restriction Mapping
Collapse
Affiliation(s)
- L Wolff
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
19
|
Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Dev 1991; 5:298-309. [PMID: 1995419 DOI: 10.1101/gad.5.2.298] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genes encoding fusions between the maize regulatory protein C1 and the yeast transcriptional activator GAL4 and mutant C1 proteins were assayed for their ability to trans-activate anthocyanin biosynthetic genes in intact maize tissues. The putative DNA-binding region of C1 fused to the transcriptional activation domain of GAL4 activated transcription of anthocyanin structural gene promoters in c1 aleurones, c1 Rscm2 embryos, and c1 r embryogenic callus. Cells receiving these constructs accumulated purple anthocyanin pigments. The C1 acidic region fused to the GAL4 DNA-binding domain activated transcription of a GAL4-regulated promoter. An internal deletion of C1 also induced pigmentation; however, frameshifts in either the amino-terminal basic or carboxy-terminal acidic region blocked trans-activation, and the latter generated a dominant inhibitory protein. Fusion constructs between the wild-type C1 cDNA and the dominant inhibitor allele C1-I cDNA were used to identify the amino acid changes in C1 responsible for the C1-I inhibitory phenotype. Results from these studies establish that amino acids within the myb-homologous domain are critical for transcriptional activation.
Collapse
|
20
|
cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 1991. [PMID: 2174105 DOI: 10.1128/mcb.10.12.6316] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human epithelial (HeLa) cDNA library was screened with degenerate oligonucleotides designed to hybridize to highly conserved regions of protein-tyrosine kinases. One cDNA from this screen was shown to contain a putative protein-tyrosine kinase catalytic domain and subsequently used to isolate another cDNA from a human keratinocyte library that encompasses the entire coding region of a 976-amino-acid polypeptide. The predicted protein has an external domain of 534 amino acids with a presumptive N-terminal signal peptide, a transmembrane domain, and a cytoplasmic domain of 418 amino acids that includes a canonical protein-tyrosine kinase catalytic domain. Molecular phylogeny indicates that this protein kinase is closely related to eph and elk and that this receptor family is more closely related to the non-receptor protein-tyrosine kinase families than to other receptor protein-tyrosine kinases. Antibodies raised against a TrpE fusion protein immunoprecipitated a 130-kDa protein that became phosphorylated on tyrosine in immune complex kinase assays, indicating that this protein is a bona fide protein-tyrosine kinase. Analysis of RNA from 13 adult rat organs showed that the eck gene is expressed most highly in tissues that contain a high proportion of epithelial cells, e.g., skin, intestine, lung, and ovary. Several cell lines of epithelial origin were found to express the eck protein kinase at the protein and RNA levels. Immunohistochemical analysis of several rat organs also showed staining in epithelial cells. These observations prompted us to name this protein kinase eck, for epithelial cell kinase.
Collapse
|
21
|
Functional analysis of c-Myb protein in T-lymphocytic cell lines shows that it trans-activates the c-myc promoter. Mol Cell Biol 1990. [PMID: 2233716 DOI: 10.1128/mcb.10.11.5747] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The function of c-Myb protein was revealed by transfecting an expression vector containing the entire c-Myb protein-coding sequence into the murine CTLL-2 T-cell line. Expressions of high levels of c-Myb protein did not alter the expression of several T-cell markers, c-fos mRNA expression, responses to interleukin-2, and growth characteristics of these cells. Interestingly, expression of the c-myc gene was drastically increased in this clone. Further, the c-myb expression plasmid, but not a frameshift mutant of c-myb, enhanced the expression of a hybrid construct of c-myc promoter linked to a reporter gene by 8- to 14-fold. These results demonstrate a role of c-Myb protein in c-myc gene expression.
Collapse
|
22
|
Lindberg RA, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol 1990; 10:6316-24. [PMID: 2174105 PMCID: PMC362907 DOI: 10.1128/mcb.10.12.6316-6324.1990] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A human epithelial (HeLa) cDNA library was screened with degenerate oligonucleotides designed to hybridize to highly conserved regions of protein-tyrosine kinases. One cDNA from this screen was shown to contain a putative protein-tyrosine kinase catalytic domain and subsequently used to isolate another cDNA from a human keratinocyte library that encompasses the entire coding region of a 976-amino-acid polypeptide. The predicted protein has an external domain of 534 amino acids with a presumptive N-terminal signal peptide, a transmembrane domain, and a cytoplasmic domain of 418 amino acids that includes a canonical protein-tyrosine kinase catalytic domain. Molecular phylogeny indicates that this protein kinase is closely related to eph and elk and that this receptor family is more closely related to the non-receptor protein-tyrosine kinase families than to other receptor protein-tyrosine kinases. Antibodies raised against a TrpE fusion protein immunoprecipitated a 130-kDa protein that became phosphorylated on tyrosine in immune complex kinase assays, indicating that this protein is a bona fide protein-tyrosine kinase. Analysis of RNA from 13 adult rat organs showed that the eck gene is expressed most highly in tissues that contain a high proportion of epithelial cells, e.g., skin, intestine, lung, and ovary. Several cell lines of epithelial origin were found to express the eck protein kinase at the protein and RNA levels. Immunohistochemical analysis of several rat organs also showed staining in epithelial cells. These observations prompted us to name this protein kinase eck, for epithelial cell kinase.
Collapse
Affiliation(s)
- R A Lindberg
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, San Diego, California 92186-5800
| | | |
Collapse
|
23
|
Evans JL, Moore TL, Kuehl WM, Bender T, Ting JP. Functional analysis of c-Myb protein in T-lymphocytic cell lines shows that it trans-activates the c-myc promoter. Mol Cell Biol 1990; 10:5747-52. [PMID: 2233716 PMCID: PMC361348 DOI: 10.1128/mcb.10.11.5747-5752.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The function of c-Myb protein was revealed by transfecting an expression vector containing the entire c-Myb protein-coding sequence into the murine CTLL-2 T-cell line. Expressions of high levels of c-Myb protein did not alter the expression of several T-cell markers, c-fos mRNA expression, responses to interleukin-2, and growth characteristics of these cells. Interestingly, expression of the c-myc gene was drastically increased in this clone. Further, the c-myb expression plasmid, but not a frameshift mutant of c-myb, enhanced the expression of a hybrid construct of c-myc promoter linked to a reporter gene by 8- to 14-fold. These results demonstrate a role of c-Myb protein in c-myc gene expression.
Collapse
Affiliation(s)
- J L Evans
- Lineberger Cancer Research Center, Department of Microbiology-Immunology, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | | | |
Collapse
|
24
|
Enhanced translation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells. Mol Cell Biol 1990. [PMID: 2196440 DOI: 10.1128/mcb.10.8.3952] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether regulation of c-myc proteins occurs during the differentiation of murine erythroleukemia cells, we examined c-myc protein synthesis and accumulation throughout dimethyl sulfoxide (DMSO)- or hypoxanthine-induced differentiation. c-myc protein expression exhibited an overall biphasic reduction, with an initial concomitant decrease in c-myc RNA, protein synthesis, and protein accumulation early during the commitment phase. However, as the mRNA and protein levels recovered, c-myc protein synthesis levels dissociated from the levels of c-myc mRNA and protein accumulation. This dissociation appears to result from unusual translational and posttranslational regulation during differentiation. Translational enhancement was suggested by the observation that relatively high levels of c-myc proteins were synthesized from relatively moderate levels of c-myc RNA. This translational enhancement was not observed with c-myb. Under certain culture conditions, we also observed a change in the relative synthesis ratio of the two independently initiated c-myc proteins. Posttranslational regulation was evidenced by a dramatic postcommitment decrease in the accumulated c-myc protein levels despite relatively high levels of c-myc protein synthesis. This decrease corresponded with a twofold increase in the turnover of c-myc proteins. The consequence of this regulation was that the most substantial decrease in c-myc protein accumulation occurred during the postcommitment phase of differentiation. This result supports the hypothesis that the reduction in c-myc at relatively late times is most important for completion of murine erythroleukemia cell terminal differentiation.
Collapse
|
25
|
Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77420-6] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Spotts GD, Hann SR. Enhanced translation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells. Mol Cell Biol 1990; 10:3952-64. [PMID: 2196440 PMCID: PMC360906 DOI: 10.1128/mcb.10.8.3952-3964.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To determine whether regulation of c-myc proteins occurs during the differentiation of murine erythroleukemia cells, we examined c-myc protein synthesis and accumulation throughout dimethyl sulfoxide (DMSO)- or hypoxanthine-induced differentiation. c-myc protein expression exhibited an overall biphasic reduction, with an initial concomitant decrease in c-myc RNA, protein synthesis, and protein accumulation early during the commitment phase. However, as the mRNA and protein levels recovered, c-myc protein synthesis levels dissociated from the levels of c-myc mRNA and protein accumulation. This dissociation appears to result from unusual translational and posttranslational regulation during differentiation. Translational enhancement was suggested by the observation that relatively high levels of c-myc proteins were synthesized from relatively moderate levels of c-myc RNA. This translational enhancement was not observed with c-myb. Under certain culture conditions, we also observed a change in the relative synthesis ratio of the two independently initiated c-myc proteins. Posttranslational regulation was evidenced by a dramatic postcommitment decrease in the accumulated c-myc protein levels despite relatively high levels of c-myc protein synthesis. This decrease corresponded with a twofold increase in the turnover of c-myc proteins. The consequence of this regulation was that the most substantial decrease in c-myc protein accumulation occurred during the postcommitment phase of differentiation. This result supports the hypothesis that the reduction in c-myc at relatively late times is most important for completion of murine erythroleukemia cell terminal differentiation.
Collapse
Affiliation(s)
- G D Spotts
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| | | |
Collapse
|
27
|
Lüscher B, Christenson E, Litchfield DW, Krebs EG, Eisenman RN. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 1990; 344:517-22. [PMID: 2157164 DOI: 10.1038/344517a0] [Citation(s) in RCA: 295] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The c-Myb nuclear oncoprotein is phosphorylated in vitro and in vivo at an N-terminal site near its DNA-binding domain by casein kinase II (CK-II) or a CK-II-like activity. This in vitro phosphorylation reversibly inhibits the sequence-specific binding of c-Myb to DNA. The site of this phosphorylation is deleted in nearly all oncogenically activated Myb proteins, resulting in DNA-binding that is independent of CK-II. Because CK-II activity is modulated by growth factors, loss of the site could uncouple c-Myb from its normal physiological regulator.
Collapse
Affiliation(s)
- B Lüscher
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | | | | | |
Collapse
|
28
|
Howe KM, Reakes CF, Watson RJ. Characterization of the sequence-specific interaction of mouse c-myb protein with DNA. EMBO J 1990. [PMID: 2403925 PMCID: PMC551642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have examined parameters that affect sequence-specific interactions of the mouse c-myb protein with DNA oligomers containing the Myb-binding motif (CA/CGTTPu). Complexes formed between these oligomers and in vitro translated c-myb proteins were analysed by electrophoresis on non-denaturing polyacrylamide gels using the mobility-shift assay. By progressive truncation of c-myb coding sequences it was demonstrated that amino acids downstream of a region of three imperfect 51-52 residue repeats (designated R1, R2 and R3), which are located close to the amino terminus of the protein, had no qualitative or quantitative effect on the ability to interact specifically with this DNA motif. However, removal of only five amino acids of the R3 repeat completely abolished this activity. The contribution of individual DNA-binding domain repeats to this interaction was investigated by precisely deleting each individually: it was demonstrated that a combination of R2 and R3 was absolutely required for complex formation while the R1 repeat was completely dispensible. c-myb proteins showed quantitatively greater interaction with oligomers containing duplicated rather than single Myb-binding motif, in particular where these were arranged in tandem. Moreover, it was observed that c-myb protein interacted with these tandem motifs as a monomer. These findings imply that a single protein subunit straddles adjacent binding sites and the implications for c-myb activity are discussed.
Collapse
|
29
|
Howe KM, Reakes CF, Watson RJ. Characterization of the sequence-specific interaction of mouse c-myb protein with DNA. EMBO J 1990; 9:161-169. [PMID: 2403925 PMCID: PMC551642 DOI: 10.1002/j.1460-2075.1990.tb08092.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
We have examined parameters that affect sequence-specific interactions of the mouse c-myb protein with DNA oligomers containing the Myb-binding motif (CA/CGTTPu). Complexes formed between these oligomers and in vitro translated c-myb proteins were analysed by electrophoresis on non-denaturing polyacrylamide gels using the mobility-shift assay. By progressive truncation of c-myb coding sequences it was demonstrated that amino acids downstream of a region of three imperfect 51-52 residue repeats (designated R1, R2 and R3), which are located close to the amino terminus of the protein, had no qualitative or quantitative effect on the ability to interact specifically with this DNA motif. However, removal of only five amino acids of the R3 repeat completely abolished this activity. The contribution of individual DNA-binding domain repeats to this interaction was investigated by precisely deleting each individually: it was demonstrated that a combination of R2 and R3 was absolutely required for complex formation while the R1 repeat was completely dispensible. c-myb proteins showed quantitatively greater interaction with oligomers containing duplicated rather than single Myb-binding motif, in particular where these were arranged in tandem. Moreover, it was observed that c-myb protein interacted with these tandem motifs as a monomer. These findings imply that a single protein subunit straddles adjacent binding sites and the implications for c-myb activity are discussed.
Collapse
Affiliation(s)
- K M Howe
- Imperial Cancer Research Fund Laboratories, St Bartholomew's Hospital, London, UK
| | | | | |
Collapse
|
30
|
Lai CC, Lee WH. Human retinoblastoma susceptibility gene. GENETIC ENGINEERING 1990; 12:21-35. [PMID: 1366702 DOI: 10.1007/978-1-4613-0641-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
It is clear that the RB-deficient tumor cells lost their tumorigenicity in nude mice after regaining the RB gene expression. However, the mechanism of tumor suppression by the RB gene is still unknown. More studies on the biological activities of RB protein, pp110RB, are necessary to answer this question. Recent studies have shown that several oncogenic viral proteins, such as SV40 large T antigen (47) and adenoviral E1A protein (48), bind to RB protein. The significance of these bindings remains unclear; nevertheless, they suggest that depletion of functional RB protein by viral proteins may provide another mechanism of RB inactivation. Continued study of naturally occurring as well as engineered RB mutants may give us some information on the biological activity of RB protein, and its roles in oncogenesis, differentiation, development and gene regulation. Additionally, direct detection of RB gene mutations would have great clinical utility. Probes for the RB gene and gene product will be useful for genetic diagnosis of cancer susceptibility in affected families. Therefore, antibodies to the RB protein will be excellent tools for diagnostic and/or prognostic application in clinical medicine.
Collapse
Affiliation(s)
- C C Lai
- Department of Pathology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
31
|
Tice-Baldwin K, Fink GR, Arndt KT. BAS1 has a Myb motif and activates HIS4 transcription only in combination with BAS2. Science 1989; 246:931-5. [PMID: 2683089 DOI: 10.1126/science.2683089] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The BAS1 and BAS2 proteins are both required for activation of GCN4-independent (basal) HIS4 transcription in yeast. BAS1 has an NH2-terminal region similar to those of the myb proto-oncogene family. BAS1 and BAS2, which contains a homeo box, bound to adjacent sites on the HIS4 promoter. The joint requirement of BAS1 and BAS2 for activation is probably not due to cooperative binding or the transcriptional control of one of the genes by the other. Although BAS1 and BAS2 were both required for activation of HIS4 transcription, BAS1 was not required for BAS2-dependent expression of the secreted acid phosphatases. The transcriptional activators of HIS4 have DNA binding domains that are conserved in evolution (BAS1 = Myb, BAS2 = homeo box, GCN4 = Jun). Their interactions, therefore, may be relevant to the control of gene expression in more complex systems.
Collapse
|
32
|
Hematopoietic lineage-specific heterogeneity in the 5'-terminal region of the chicken proto-myb transcript. Mol Cell Biol 1989. [PMID: 2550801 DOI: 10.1128/mcb.9.9.3771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comparison of the nucleotide sequence of the upstream c-myb exon UE3 with the sequences of a thymus c-myb cDNA and of a B-lymphoma c-myb cDNA suggested the existence of T- and B-cell-specific heterogeneity in the 5'-terminal region of the c-myb coding sequence. This possibility was investigated with T-cell-specific and B-cell-specific DNA probes in a Northern (RNA) blot analysis of mRNAs from different hematopoietic cell types and from chicken embryo fibroblasts. The hematopoietic tissues analyzed were bone marrow, bursa of Fabricius, and thymus from 1-day-old chicks, 13-day yolk sac, and spleen from 16-day embryos. At least three different c-myb mRNA species were found to have 5'-terminal heterogeneity that was specific for either B cells, T cells, or the other hematopoietic cells and chicken embryo fibroblasts. This lineage-specific heterogeneity in the c-myb transcript was found to be expressed in the bone marrow precursors of B and T cells before they migrated to their definitive differentiation sites. S1 nuclease protection analysis of the UE3 exon, part of which appeared to be coding sequences for thymic c-myb mRNA, revealed that this exon is utilized either in its entirety or partially in a cell-lineage-specific manner by all six tissues analyzed. Also, the 5'-terminal exon(s) present in the thymus cDNA was absent in c-myb mRNAs from the other cell types analyzed.
Collapse
|
33
|
Dyson PJ, Poirier F, Watson RJ. Expression of c-myb in embryonal carcinoma cells and embryonal stem cells. Differentiation 1989; 42:24-7. [PMID: 2482820 DOI: 10.1111/j.1432-0436.1989.tb00603.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mouse c-myb has been implicated in the regulation of differentiation and proliferation of haematopoietic cells. Analysis of the chromatin structure of the promoter region of c-myb in embryonal carcinoma (EC) cells and embryonal stem (ES) cells reveals a DNAse I-hypersensitive site coincident with a site found in c-myb-expressing haematopoietic cells, but absent in murine fibroblasts (which do not express c-myb). EC and ES cells were found to express c-myb mRNA, albeit at a level lower than found in haematopoietic cells. Differentiation of ES cells into embryoid bodies resulted in an elevated level of c-myb expression.
Collapse
Affiliation(s)
- P J Dyson
- Department of Genetics, University of Cambridge, UK
| | | | | |
Collapse
|
34
|
Reddy CD, Reddy EP. Differential binding of nuclear factors to the intron 1 sequences containing the transcriptional pause site correlates with c-myb expression. Proc Natl Acad Sci U S A 1989; 86:7326-30. [PMID: 2678098 PMCID: PMC298054 DOI: 10.1073/pnas.86.19.7326] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular mechanisms that modulate c-myb mRNA levels in hematopoietic cells appear to involve premature termination of transcription in the first intron of the gene. We have examined the DNA-protein interactions within the first intron of the c-myb gene and identified a 1.0-kilobase region that could be responsible for its transcriptional regulation. Using the mobility-shift assay, we show a direct correlation between the extent of sequence-specific protein binding to intron 1 DNA fragments, and c-myb mRNA levels in different cell types. During dimethyl sulfoxide-induced differentiation of mouse erythroleukemic cells, there was a dramatic decrease in these nuclear factors that correlated with the decrease in the levels of c-myb mRNA. Nucleotide sequence analysis and DNase I footprinting revealed the presence of putative regulatory elements that are implicated in the binding of these nuclear factors. We propose that binding of nuclear factors to the site of transcriptional pause could play an important role in the regulation of c-myb transcription.
Collapse
Affiliation(s)
- C D Reddy
- Wistar Institute, Philadelphia, PA 19104
| | | |
Collapse
|
35
|
Kim WK, Baluda MA. Hematopoietic lineage-specific heterogeneity in the 5'-terminal region of the chicken proto-myb transcript. Mol Cell Biol 1989; 9:3771-6. [PMID: 2550801 PMCID: PMC362438 DOI: 10.1128/mcb.9.9.3771-3776.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Comparison of the nucleotide sequence of the upstream c-myb exon UE3 with the sequences of a thymus c-myb cDNA and of a B-lymphoma c-myb cDNA suggested the existence of T- and B-cell-specific heterogeneity in the 5'-terminal region of the c-myb coding sequence. This possibility was investigated with T-cell-specific and B-cell-specific DNA probes in a Northern (RNA) blot analysis of mRNAs from different hematopoietic cell types and from chicken embryo fibroblasts. The hematopoietic tissues analyzed were bone marrow, bursa of Fabricius, and thymus from 1-day-old chicks, 13-day yolk sac, and spleen from 16-day embryos. At least three different c-myb mRNA species were found to have 5'-terminal heterogeneity that was specific for either B cells, T cells, or the other hematopoietic cells and chicken embryo fibroblasts. This lineage-specific heterogeneity in the c-myb transcript was found to be expressed in the bone marrow precursors of B and T cells before they migrated to their definitive differentiation sites. S1 nuclease protection analysis of the UE3 exon, part of which appeared to be coding sequences for thymic c-myb mRNA, revealed that this exon is utilized either in its entirety or partially in a cell-lineage-specific manner by all six tissues analyzed. Also, the 5'-terminal exon(s) present in the thymus cDNA was absent in c-myb mRNAs from the other cell types analyzed.
Collapse
Affiliation(s)
- W K Kim
- Department of Pathology, School of Medicine, University of California, Los Angeles 90024
| | | |
Collapse
|
36
|
Dvorák M, Urbánek P, Bartůnĕk P, Paces V, Vlach J, Pecenka V, Arnold L, Trávnicek M, Ríman J. Transcription of the chicken myb proto-oncogene starts within a CpG island. Nucleic Acids Res 1989; 17:5651-64. [PMID: 2548166 PMCID: PMC318186 DOI: 10.1093/nar/17.14.5651] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nucleotide sequence of an 8.2-kb DNA fragment from the 5' proximal part of the chicken myb proto-oncogene spanning 1761 nucleotides upstream and 6436 nucleotides downstream from a presumed c-myb initiation codon was determined. A 3.3-kb G + C-rich region found in this sequence had also other features characterizing CpG islands, i.e. no CpG underrepresentation and lack of CpG methylation. In haematopoietic tissues c-myb mRNA synthesis starts in two major regions of the CpG island, namely 98 to 108 and 143 to 145 nucleotides upstream from the c-myb initiation codon. These two regions are in or close to the 124-bp evolutionarily conserved element located in the middle part of the CpG island. No alternative splicing of the 5' end of c-myb mRNA suggested earlier (1,2) was observed. The c-myb promoter contains neither TATA nor CAAT box-like structures at the usual positions. Instead, numerous potential Sp1 factor binding sites were found both upstream and downstream from the transcription initiation sites. Moreover, consensus v-myb protein DNA-binding sites were revealed in the promoter region and in sequences downstream from it.
Collapse
Affiliation(s)
- M Dvorák
- Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shen-Ong GL. Alternate forms of myb: consequences of virus insertion in myeloid tumorigenesis and alternative splicing in normal development. Curr Top Microbiol Immunol 1989; 149:71-6. [PMID: 2659283 DOI: 10.1007/978-3-642-74623-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Urbánek P, Dvorák M, Bartunĕk P, Pecenka V, Paces V, Trávnícek M. Nucleotide sequence of chicken myb proto-oncogene promoter region: detection of an evolutionarily conserved element. Nucleic Acids Res 1988; 16:11521-30. [PMID: 3145493 PMCID: PMC339063 DOI: 10.1093/nar/16.24.11521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The nucleotide sequence of the chicken myb proto-oncogene putative promoter region was determined and compared with the corresponding sequence of the mouse c-myb gene (1). 118 bp upstream from the initiation codon suggested by Gerondakis and Bishop (2) for the chicken c-myb protein, a 124-bp-long conserved element was found (92% identity in chicken and mouse sequences). Sequences homologous to this element were detected on Southern blots of restricted genomic DNAs from mouse, man, lizard, frog, and carp. No hybridization was observed with Drosophila, yeast, or Escherichia coli DNA. In human DNA, sequences homologous to this element were located at the 5' end of the c-myb gene, i.e. in the same position as in the chicken and mouse genes. Several lines of evidence suggest that the element is not a coding exon of a gene overlapping the c-myb gene. It may be of importance that one of the DNase I-sensitive sites and several c-myb mRNA cap sites localized recently in the mouse c-myb gene (3,4) lie within this region. It is suggested that this evolutionarily conserved element is involved in the regulation of myb proto-oncogene expression in vertebrates.
Collapse
Affiliation(s)
- P Urbánek
- Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| | | | | | | | | | | |
Collapse
|
39
|
Ibanez CE, Garcia A, Stober-Grässer U, Lipsick JS. DNA-binding activity associated with the v-myb oncogene product is not sufficient for transformation. J Virol 1988; 62:4398-402. [PMID: 2845150 PMCID: PMC253882 DOI: 10.1128/jvi.62.11.4398-4402.1988] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The product of the v-myb oncogene of avian myeloblastosis virus is a nuclear protein with an associated DNA-binding activity. We demonstrated that the highly conserved amino-terminal domain of p48v-myb is required for its associated DNA-binding activity. This activity is not required for the nuclear localization of p48v-myb. Furthermore, the associated DNA-binding activity and nuclear localization of p48v-myb together are not sufficient for transformation.
Collapse
Affiliation(s)
- C E Ibanez
- Department of Pathology, University of California, San Diego, La Jolla 92093-0612
| | | | | | | |
Collapse
|
40
|
Abstract
The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.
Collapse
|
41
|
Ibanez CE, Lipsick JS. Structural and functional domains of the myb oncogene: requirements for nuclear transport, myeloid transformation, and colony formation. J Virol 1988; 62:1981-8. [PMID: 2835503 PMCID: PMC253282 DOI: 10.1128/jvi.62.6.1981-1988.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The v-myb oncogene of avian myeloblastosis virus causes acute myelomonocytic leukemia in vivo and transforms only myeloid cells in vitro. Its product, p48v-myb, is a nuclear protein of unknown function. To determine structure-function relationships for this protein, we constructed a series of deletion mutants of v-myb, expressed them in retroviral vectors, and studied their biochemical and biological properties. We used these mutants to identify two separate domains of p48v-myb which had distinct roles in its accumulation in the cell nucleus. We showed that the viral sequences which normally encode both termini of p48v-myb were dispensible for transformation. In contrast, both copies of the highly conserved v-myb amino-terminal repeat were required for transformation. We also identified a carboxyl-terminal domain of p48v-myb which was required for the growth of v-myb-transformed myeloblasts in soft agar but not for morphological transformation.
Collapse
Affiliation(s)
- C E Ibanez
- Department of Pathology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
42
|
Lüscher B, Eisenman RN. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 1988; 8:2504-12. [PMID: 3043180 PMCID: PMC363451 DOI: 10.1128/mcb.8.6.2504-2512.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The proteins encoded by both viral and cellular forms of the c-myc oncogene have been previously demonstrated to have exceptionally short in vivo half-lives. In this paper we report a comparative study on the parameters affecting turnover of nuclear oncoproteins c-myc, c-myb, and the rapidly metabolized cytoplasmic enzyme ornithine decarboxylase. The degradation of all three proteins required metabolic energy, did not result in production of cleavage intermediates, and did not involve lysosomes or ubiquitin. A five- to eightfold increase in the half-life of c-myc proteins, and a twofold increase in the half-life of c-myb proteins was detected after heat-shock treatment at 46 degrees C. In contrast, heat shock had no effect on the turnover of ornithine decarboxylase. Heat shock also had the effect of increasing the rate of c-myc protein synthesis twofold, whereas c-myb protein synthesis was decreased nearly fourfold. The increased stability and synthesis of c-myc proteins led to an overall increase in the total level of c-myc proteins in response to heat-shock treatment. Furthermore, treatments which reduced c-myc and c-myb protein turnover, such as heat shock and exposure to inhibitors of metabolic energy production, resulted in reduced detergent solubility of both proteins. The recovery from heat shock, as measured by increased turnover and solubility, was energy dependent and considerably more rapid in thermotolerant cells.
Collapse
Affiliation(s)
- B Lüscher
- Viral Oncology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
43
|
Stober-Grässer U, Lipsick JS. Specific amino acid substitutions are not required for transformation by v-myb of avian myeloblastosis virus. J Virol 1988; 62:1093-6. [PMID: 2828660 PMCID: PMC253675 DOI: 10.1128/jvi.62.3.1093-1096.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protein product of the v-myb oncogene of avian myeloblastosis virus, p48v-myb, differs structurally in several ways from its normal cellular homolog, p75c-myb. We demonstrated that the 11 specific amino acid substitutions found in two independent molecular clones of this virus were not required for the transformation of myeloblasts by v-myb.
Collapse
Affiliation(s)
- U Stober-Grässer
- Department of Pathology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
44
|
Abstract
The expression of p80c-myb was examined during the activation of resting human T lymphocytes. Before activation, no detectable p80c-myb was present. Synthesis of p80c-myb was observed only after initiation of the S phase of the cell cycle.
Collapse
|
45
|
Subnuclear associations of the v-myb oncogene product and actin are dependent on ionic strength during nuclear isolation. Mol Cell Biol 1987. [PMID: 3670313 DOI: 10.1128/mcb.7.9.3345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The method used to isolate nuclei has a direct effect on the subnuclear association of the v-myb product, p48v-myb, and nuclear actin. Analysis of nuclei subjected to various isolation procedures showed that disruption of native nuclear structure during hypotonic treatment resulted in dissociation of p48v-myb from the nuclear matrix.
Collapse
|
46
|
Lee WH, Shew JY, Hong FD, Sery TW, Donoso LA, Young LJ, Bookstein R, Lee EY. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 1987; 329:642-5. [PMID: 3657987 DOI: 10.1038/329642a0] [Citation(s) in RCA: 468] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human gene (RB) that determines susceptibility to hereditary retinoblastoma has been identified recently by molecular genetic techniques. Previous results indicate that complete inactivation of the RB gene is required for tumour formation. As a 'cancer suppressor' gene, RB thus functions in a manner opposite to that of most other oncogenes. Sequence analysis of RB complementary DNA clones demonstrated a long open reading frame encoding a hypothetical protein with features suggestive of a DNA-binding function. To further substantiate and identify the RB protein, we have prepared rabbit antisera against a trypE-RB fusion protein. The purified anti-RB IgG immunoprecipitates a protein doublet with apparent relative molecular mass (Mr) of 110,000-114,000. The specific protein(s) are present in all cell lines expressing normal RB mRNA, but are not detected in five retinoblastoma cell lines examined. The RB protein can be metabolically labelled with 32P-phosphoric acid, indicating that it is a phosphoprotein. Biochemical fractionation and immunofluorescence studies demonstrate that the majority of the protein is located within the nucleus. Furthermore, the protein can be retained by and eluted from DNA-cellulose columns, suggesting that it is associated with DNA binding activity. Taken together, these results imply that the RB gene product may function in regulating other genes within the cell.
Collapse
Affiliation(s)
- W H Lee
- Department of Pathology, University of California San Diego, School of Medicine, La Jolla 92093
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The v-myb oncogene of avian myeloblastosis virus transforms myeloid cells exclusively, both in vivo and in vitro. The c-myb proto-oncogene from which v-myb arose is expressed at relatively high levels in immature hematopoietic cells of the lymphoid, erythroid, and myeloid lineages but not in myeloblasts transformed by v-myb. This finding suggested that the nuclear v-myb gene product p48v-myb might act directly to inhibit the normal expression of the c-myb gene. I have therefore used a selectable avian retroviral vector to express p48v-myb in avian erythroblasts which normally express high levels of the c-myb gene product p75c-myb. The results demonstrate that p48v-myb and p75c-myb can be coexpressed in the nuclei of cloned cells. Therefore, p48v-myb does not invariably prevent the expression of p75c-myb.
Collapse
|
48
|
Boyle WJ, Baluda MA. Subnuclear associations of the v-myb oncogene product and actin are dependent on ionic strength during nuclear isolation. Mol Cell Biol 1987; 7:3345-8. [PMID: 3670313 PMCID: PMC367976 DOI: 10.1128/mcb.7.9.3345-3348.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The method used to isolate nuclei has a direct effect on the subnuclear association of the v-myb product, p48v-myb, and nuclear actin. Analysis of nuclei subjected to various isolation procedures showed that disruption of native nuclear structure during hypotonic treatment resulted in dissociation of p48v-myb from the nuclear matrix.
Collapse
Affiliation(s)
- W J Boyle
- Department of Pathology, School of Medicine, University of California, Los Angeles 90024
| | | |
Collapse
|
49
|
Abstract
The expression of p80c-myb was examined during the activation of resting human T lymphocytes. Before activation, no detectable p80c-myb was present. Synthesis of p80c-myb was observed only after initiation of the S phase of the cell cycle.
Collapse
Affiliation(s)
- J S Lipsick
- Research Division, Veteran's Administration Medical Center, San Diego, California 92161
| | | |
Collapse
|
50
|
Abstract
The v-myb oncogene of avian myeloblastosis virus induces acute myeloblastic leukemia in chickens and transforms avian myeloid cells in vitro. The protein product of this oncogene, p48v-myb, is partially encoded by the retroviral gag and env genes. We demonstrated that the env-encoded carboxyl terminus of p48v-myb is not required for transformation. Our results showed, in addition, that a coding region of c-myb which is not essential for transformation was transduced by avian myeloblastosis virus.
Collapse
|