1
|
Li H, Rodrat M, Al-Salmani MK, Veselu DF, Han ST, Raraigh KS, Cutting GR, Sheppard DN. Two rare variants that affect the same amino acid in CFTR have distinct responses to ivacaftor. J Physiol 2024; 602:333-354. [PMID: 38186087 PMCID: PMC10872379 DOI: 10.1113/jp285727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 μM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.
Collapse
Affiliation(s)
- Hongyu Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Majid K Al-Salmani
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Sultanate of Oman
| | | | - Sangwoo T Han
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen S Raraigh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Kim J, Kim JC, Sang MK. Identification of isomeric cyclo(leu-pro) produced by Pseudomonas sesami BC42 and its differential antifungal activities against Colletotrichum orbiculare. Front Microbiol 2023; 14:1230345. [PMID: 37637119 PMCID: PMC10448827 DOI: 10.3389/fmicb.2023.1230345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas spp. produce various antimicrobial substances, including cyclic peptides, which have been shown to suppress fungal pathogens. In a previous study, Pseudomonas sesami BC42 was selected to control anthracnose caused by Colletotrichum orbiculare in cucumber plants, and the bioactive extract of strain BC42 inhibited fungal growth and development. In this work, preparative thin-layer chromatography was conducted to identify the antifungal compounds in the extract of strain BC42, and the portion of the extract that exhibited antifungal activity was further analyzed by gas chromatography-mass spectrometry. Three different isomers of the cyclic dipeptide, cyclo(Leu-Pro), were identified: cyclo(l-Leu-l-Pro), cyclo(d-Leu-d-Pro), and cyclo(d-Leu-l-Pro). Among these, 100 μg/mL of cyclo(l-Leu-l-Pro) significantly and more effectively inhibited the germination of conidia and appressorium formation and reduced leaf lesion size caused by C. orbiculare, relative to the control; cyclo(d-Leu-d-Pro) significantly reduced conidia germination and lesion occurrence, however, cyclo(d-Leu-l-Pro) did not exhibit antifungal activity. Therefore, the cyclo(l-Leu-l-Pro) and cyclo(d-Leu-d-Pro) derived from P. sesami BC42 may be a promising candidate for biocontrol applications in agriculture.
Collapse
Affiliation(s)
- Jiwon Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
- Department of Agricultural Biology, College of Agricultural and Life Sciences, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
3
|
Jin Z, Vighi A, Dong Y, Bureau JA, Ignea C. Engineering membrane architecture for biotechnological applications. Biotechnol Adv 2023; 64:108118. [PMID: 36773706 DOI: 10.1016/j.biotechadv.2023.108118] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cellular membranes, predominantly described as a dynamic bilayer, are composed of different lipids, transmembrane proteins, and carbohydrates. Most research on biological membranes focuses on the identification, characterization, and mechanistic aspects of their different components. These studies provide a fundamental understanding of membrane structure, function, and dynamics, establishing a basis for the development of membrane engineering strategies. To date, approaches in this field concentrate on membrane adaptation to harsh conditions during industrial fermentation, which can be caused by temperature, osmotic, or organic solvent stress. With advances in the field of metabolic engineering and synthetic biology, recent breakthroughs include proof of concept microbial production of essential medicines, such as cannabinoids and vinblastine. However, long pathways, low yields, and host adaptation continue to pose challenges to the efficient scale up production of many important compounds. The lipid bilayer is profoundly linked to the activity of heterologous membrane-bound enzymes and transport of metabolites. Therefore, strategies for improving enzyme performance, facilitating pathway reconstruction, and enabling storage of products to increase the yields directly involve cellular membranes. At the forefront of membrane engineering research are re-emerging approaches in lipid research and synthetic biology that manipulate membrane size and composition and target lipid profiles across species. This review summarizes engineering strategies applied to cellular membranes and discusses the challenges and future perspectives, particularly with regards to their applications in host engineering and bioproduction.
Collapse
Affiliation(s)
- Zimo Jin
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Asia Vighi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada.
| |
Collapse
|
4
|
Hoshino Y, Uchida T. Prolyl Isomerase, Pin1, Controls Meiotic Progression in Mouse Oocytes. Cells 2022; 11:cells11233772. [PMID: 36497033 PMCID: PMC9739419 DOI: 10.3390/cells11233772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During meiotic maturation, accurate progression of meiosis is ensured by multiple protein kinases and by signal transduction pathways they are involved in. However, the mechanisms regulating the functions of phosphorylated proteins are unclear. Herein, we investigated the role of Pin1, a peptidyl-prolyl cis-trans isomerase family member that regulates protein functions by altering the structure of the peptide bond of proline in phosphorylated proteins in meiosis. First, we analyzed changes in the expression of Pin1 during meiotic maturation and found that although its levels were constant, its localization was dynamic in different stages of meiosis. Furthermore, we confirmed that the spindle rotates near the cortex when Pin1 is inhibited by juglone during meiotic maturation, resulting in an error in the extrusion of the first polar body. In Pin1-/- mice, frequent polar body extrusion errors were observed in ovulation, providing insights into the mechanism underlying the errors in the extrusion of the polar body. Although multiple factors and mechanisms might be involved, Pin1 functions in meiosis progression via actin- and microtubule-associated phosphorylated protein targets. Our results show that functional regulation of Pin1 is indispensable in oocyte production and should be considered while developing oocyte culture technologies for reproductive medicine and animal breeding.
Collapse
Affiliation(s)
- Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima 739-8528, Japan
- Laboratory of Reproductive Biology, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan
- Correspondence:
| | - Takafumi Uchida
- Laboratory of Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| |
Collapse
|
5
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
6
|
Isolation, Characterization and Chemical Synthesis of Large Spectrum Antimicrobial Cyclic Dipeptide (l-leu-l-pro) from Streptomyces misionensisV16R3Y1 Bacteria Extracts. A Novel 1H NMR Metabolomic Approach. Antibiotics (Basel) 2020; 9:antibiotics9050270. [PMID: 32455784 PMCID: PMC7277807 DOI: 10.3390/antibiotics9050270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 12/01/2022] Open
Abstract
Streptomyces is the most frequently described genus of Actinomycetes, a producer of biologically active secondary metabolites. Indeed, the Streptomyces species produces about 70% of antibiotics and 60% of antifungal molecules used in agriculture. Our study was carried out with the goal of isolating and identifying antimicrobial secondary metabolites from Streptomyces misionensis V16R3Y1 isolated from the date palm rhizosphere (southern Tunisia). This strain presented a broad range of antifungal activity against Fusarium oxysporum, Aspergillus flavus, Penicillium expansum, Aspergillus niger, Candida albicans, Candida metapsilosis, and Candida parapsilosis and antibacterial activity against human pathogenic bacteria, including Escherichia fergusonii, Staphylococcus aureus, Salmonella enterica, Enterococcus faecalis, Bacillus cereus and Pseudomonas aeruginosa. The purification procedure entailed ethyl acetate extract, silica gel column, and thin layer chromatography. Based on 1H NMR metabolomic procedure application, also supported by the GC-MS analysis, cyclic dipeptide (l-Leucyl-l-Proline) was identified as the major compound in the bioactive fraction. In order to confirm the identity of the active compound and to have a large quantity thereof, a chemical synthesis of the cyclic dipeptide was performed. The synthetic compound was obtained with a very good yield (50%) and presented almost the same effect compared to the extracted fraction. This study indicates for the first time that Streptomyces misionensis V16R3Y1 exhibits a broad spectrum of antimicrobial activities, produced cyclic dipeptide (l-Leucyl-l-Proline) and might have potential use as a natural agent for pharmaceutical and agri-food applications.
Collapse
|
7
|
Shaik S, Pandey H, Thirumalasetti SK, Nakamura N. Characteristics and Functions of the Yip1 Domain Family (YIPF), Multi-Span Transmembrane Proteins Mainly Localized to the Golgi Apparatus. Front Cell Dev Biol 2019; 7:130. [PMID: 31417902 PMCID: PMC6682643 DOI: 10.3389/fcell.2019.00130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Yip1 domain family (YIPF) proteins are multi-span, transmembrane proteins mainly localized in the Golgi apparatus. YIPF proteins have been found in virtually all eukaryotes, suggesting that they have essential function(s). Saccharomyces cerevisiae contains four YIPFs: Yip1p, Yif1p, Yip4p, and Yip5p. Early analyses in S. cerevisiae indicated that Yip1p and Yif1p bind to each other and play a role in budding of transport vesicles and/or fusion of vesicles to target membranes. However, the molecular basis of their functions remains unclear. Analysis of YIPF proteins in mammalian cells has yielded significant clues about the function of these proteins. Human cells have nine family members that appear to have overlapping functions. These YIPF proteins are divided into two sub-families: YIPFα/Yip1p and YIPFβ/Yif1p. A YIPFα molecule forms a complex with a specific partner YIPFβ molecule. In the most broadly hypothesized scenario, a basic tetramer complex is formed from two molecules of each partner YIPF protein, and this tetramer forms a higher order oligomer. Three distinct YIPF protein complexes are formed from pairs of YIPFα and YIPFβ proteins. These are differently localized in either the early, middle, or late compartments of the Golgi apparatus and are recycled between adjacent compartments. Because a YIPF protein is predicted to have five transmembrane segments, a YIPF tetramer complex is predicted to have 20 transmembrane segments. This high number of transmembrane segments suggests that YIPF complexes function as channels, transporters, or transmembrane receptors. Here, the evidence from functional studies of YIPF proteins obtained during the last two decades is summarized and discussed.
Collapse
Affiliation(s)
- Shaheena Shaik
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Himani Pandey
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Satish Kumar Thirumalasetti
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Department of Biotechnology, Vignan's University, Guntur, India
| | - Nobuhiro Nakamura
- Graduate School of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
8
|
Verhoork SJM, Killoran PM, Coxon CR. Fluorinated Prolines as Conformational Tools and Reporters for Peptide and Protein Chemistry. Biochemistry 2018; 57:6132-6143. [DOI: 10.1021/acs.biochem.8b00787] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sanne J. M. Verhoork
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| | - Patrick M. Killoran
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street Campus, Liverpool L3 3AF, U.K
| |
Collapse
|
9
|
Sanganna Gari RR, Seelheim P, Marsh B, Kiessling V, Creutz CE, Tamm LK. Quaternary structure of the small amino acid transporter OprG from Pseudomonas aeruginosa. J Biol Chem 2018; 293:17267-17277. [PMID: 30237175 DOI: 10.1074/jbc.ra118.004461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that causes nosocomial infections. The P. aeruginosa outer membrane contains specific porins that enable substrate uptake, with the outer membrane protein OprG facilitating transport of small, uncharged amino acids. However, the pore size of an eight-stranded β-barrel monomer of OprG is too narrow to accommodate even the smallest transported amino acid, glycine, raising the question of how OprG facilitates amino acid uptake. Pro-92 of OprG is critically important for amino acid transport, with a P92A substitution inhibiting transport and the NMR structure of this variant revealing that this substitution produces structural changes in the barrel rim and restricts loop motions. OprG may assemble into oligomers in the outer membrane (OM) whose subunit interfaces could form a transport channel. Here, we explored the contributions of the oligomeric state and the extracellular loops to OprG's function. Using chemical cross-linking to determine the oligomeric structures of both WT and P92A OprG in native outer membranes and atomic force microscopy, and single-molecule fluorescence of the purified proteins reconstituted into lipid bilayers, we found that both protein variants form oligomers, supporting the notion that subunit interfaces in the oligomer could provide a pathway for amino acid transport. Furthermore, performing transport assays with loop-deleted OprG variants, we found that these variants also can transport small amino acids, indicating that the loops are not solely responsible for substrate transport. We propose that OprG functions as an oligomer and that conformational changes in the barrel-loop region might be crucial for its activity.
Collapse
Affiliation(s)
| | - Patrick Seelheim
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Brendan Marsh
- the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 OWA, United Kingdom
| | - Volker Kiessling
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| | - Carl E Creutz
- the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Lukas K Tamm
- From the Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology and
| |
Collapse
|
10
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Rajasekaran G, Shin SY. Fowlicidin-3 Analog with Improved Cell Selectivity Synthesized by Shifting a PXXP Motif from the N-Terminus to a Central Position. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ganesan Rajasekaran
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine; School of Medicine, Chosun University; Gwangju 501-759 Republic of Korea
| |
Collapse
|
12
|
Khare H, Dey D, Madhu C, Senapati D, Raghothama S, Govindaraju T, Ramakumar S. Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats. MOLECULAR BIOSYSTEMS 2017; 13:2531-2544. [PMID: 29104984 DOI: 10.1039/c7mb00412e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cationic terminal extension or tail is a common feature of many DNA-binding proteins. We show that a particular type of tail rich in proline, alanine and lysine belongs to the class of 'flexible disorder' and consists of characteristic pentapeptide repeats. Our designed peptides, (AAKKA)1-4 and (PAKKA)1-4, represent the tails of several bacterial DNA-binding proteins. Enhanced conformational sampling of these representative peptides using accelerated molecular dynamic simulations supported by circular dichroism spectroscopy and nuclear magnetic resonance studies demonstrates the role of frequent and interspersed prolines in augmenting conformational heterogeneity of the peptide backbone. Analysis of circular variance of backbone dihedral angles indicates alternating regions of relative rigidity and flexibility along the peptide sequence due to prolines. Preferred placement of lysines in the regions of higher backbone flexibility might improve DNA-binding by conformational selection. Our results could be relevant for rational de novo design of disordered peptides.
Collapse
Affiliation(s)
- Harshavardhan Khare
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cahill J, Rajaure M, O'Leary C, Sloan J, Marrufo A, Holt A, Kulkarni A, Hernandez O, Young R. Genetic Analysis of the Lambda Spanins Rz and Rz1: Identification of Functional Domains. G3 (BETHESDA, MD.) 2017; 7:741-753. [PMID: 28040784 PMCID: PMC5295617 DOI: 10.1534/g3.116.037192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022]
Abstract
Coliphage lambda proteins Rz and Rz1 are the inner membrane and outer membrane subunits of the spanin complex-a heterotetramer that bridges the periplasm and is essential for the disruption of the outer membrane during phage lysis. Recent evidence suggests the spanin complex functions by fusing the inner and outer membrane. Here, we use a genetics approach to investigate and characterize determinants of spanin function. Because Rz1 is entirely embedded in the +1 reading frame of Rz, the genes were disembedded before using random mutagenesis to construct a library of lysis-defective alleles for both genes. Surprisingly, most of the lysis-defective missense mutants exhibited normal accumulation or localization in vivo, and also were found to be normal for complex formation in vitro Analysis of the distribution and nature of single missense mutations revealed subdomains that resemble key motifs in established membrane-fusion systems, i.e., two coiled-coil domains in Rz, a proline-rich region of Rz1, and flexible linkers in both proteins. When coding sequences are aligned respective to the embedded genetic architecture of Rz1 within Rz, genetically silent domains of Rz1 correspond to mutationally sensitive domains in Rz, and vice versa, suggesting that the modular structure of the two subunits facilitated the evolutionary compression that resulted in the unique embedded gene architecture.
Collapse
Affiliation(s)
- Jesse Cahill
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Manoj Rajaure
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Chandler O'Leary
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Jordan Sloan
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Armando Marrufo
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Ashley Holt
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Aneesha Kulkarni
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Oscar Hernandez
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Ry Young
- Center for Phage Technology and Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
14
|
Steindorf D, Schneider D. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:245-256. [DOI: 10.1016/j.bbamem.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
15
|
Fowler PW, Sansom MSP, Reithmeier RAF. Effect of the Southeast Asian Ovalocytosis Deletion on the Conformational Dynamics of Signal-Anchor Transmembrane Segment 1 of Red Cell Anion Exchanger 1 (AE1, Band 3, or SLC4A1). Biochemistry 2017; 56:712-722. [PMID: 28068080 PMCID: PMC5299548 DOI: 10.1021/acs.biochem.6b00966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first transmembrane (TM1) helix in the red cell anion exchanger (AE1, Band 3, or SLC4A1) acts as an internal signal anchor that binds the signal recognition particle and directs the nascent polypeptide chain to the endoplasmic reticulum (ER) membrane where it moves from the translocon laterally into the lipid bilayer. The sequence N-terminal to TM1 forms an amphipathic helix that lies at the membrane interface and is connected to TM1 by a bend at Pro403. Southeast Asian ovalocytosis (SAO) is a red cell abnormality caused by a nine-amino acid deletion (Ala400-Ala408) at the N-terminus of TM1. Here we demonstrate, by extensive (∼4.5 μs) molecular dynamics simulations of TM1 in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane, that the isolated TM1 peptide is highly dynamic and samples the structure of TM1 seen in the crystal structure of the membrane domain of AE1. The SAO deletion not only removes the proline-induced bend but also causes a "pulling in" of the part of the amphipathic helix into the hydrophobic phase of the bilayer, as well as the C-terminal of the peptide. The dynamics of the SAO peptide very infrequently resembles the structure of TM1 in AE1, demonstrating the disruptive effect the SAO deletion has on AE1 folding. These results provide a precise molecular view of the disposition and dynamics of wild-type and SAO TM1 in a lipid bilayer, an important early biosynthetic intermediate in the insertion of AE1 into the ER membrane, and extend earlier results of cell-free translation experiments.
Collapse
Affiliation(s)
- Philip W Fowler
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Reinhart A F Reithmeier
- Department of Biochemistry, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
16
|
Brown PMGE, Aurousseau MRP, Musgaard M, Biggin PC, Bowie D. Kainate receptor pore-forming and auxiliary subunits regulate channel block by a novel mechanism. J Physiol 2016; 594:1821-40. [PMID: 26682513 PMCID: PMC4818602 DOI: 10.1113/jp271690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism. Our findings have broad implications for work on polyamine block of other cation-selective ion channels. ABSTRACT Channel block and permeation by cytoplasmic polyamines is a common feature of many cation-selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α-helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation-selective ion channels.
Collapse
Affiliation(s)
- Patricia M G E Brown
- Integrated Program in Neurosciences, McGill University, Montréal, Québec, Canada, H3G 0B1
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| | - Mark R P Aurousseau
- Graduate Program in Pharmacology, McGill University, Montréal, Québec, Canada, H3G 0B1
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| | - Maria Musgaard
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada, H3G 0B1
| |
Collapse
|
17
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Siebler C, Maryasin B, Kuemin M, Erdmann RS, Rigling C, Grünenfelder C, Ochsenfeld C, Wennemers H. Importance of dipole moments and ambient polarity for the conformation of Xaa-Pro moieties - a combined experimental and theoretical study. Chem Sci 2015; 6:6725-6730. [PMID: 30154996 PMCID: PMC6090429 DOI: 10.1039/c5sc02211h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
NMR spectroscopic studies with a series of proline derivatives revealed that the polarity of the environment has a significant effect on the trans : cis isomer ratio of Xaa-Pro bonds. Computational studies showed that this effect is due to differences in the overall dipole moments of trans and cis conformers. Comparisons between the conformational properties of amide and ester derivatives revealed an intricate balance between polarity effects and n → π* interactions of adjacent carbonyl groups. The findings have important implications for protein folding and signaling as well as the performance of proline-based stereoselective catalysts.
Collapse
Affiliation(s)
- Christiane Siebler
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Boris Maryasin
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Michael Kuemin
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Roman S Erdmann
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Carla Rigling
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Claudio Grünenfelder
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| |
Collapse
|
19
|
Prabhu G, Nagendra G, Sagar NR, Pal R, Guru Row TN, Sureshbabu VV. A Facile Synthesis of 1,5-Disubstituted Tetrazole Peptidomimetics by Desulfurization/Electrocyclization of Thiopeptides. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Prabhu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Govindappa Nagendra
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - N. R. Sagar
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| | - Rumpa Pal
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit; Indian Institute of Science; Bangalore 560 012 India
| | - Vommina V. Sureshbabu
- #109, Peptide Research Laboratory; Department of Studies in Chemistry; Central College Campus, Dr. B. R. Ambedkar Veedhi; Bangalore University; Bangalore 560001 India
| |
Collapse
|
20
|
Gkikas M, Haataja JS, Ruokolainen J, Iatrou H, Houbenov N. Complexation-Driven Mutarotation in Poly(L-proline) Block Copolypeptides. Biomacromolecules 2015; 16:3686-93. [PMID: 26461162 DOI: 10.1021/acs.biomac.5b01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel poly(L-lysine)-block-poly(L-proline) (PLL-b-PLP)-based materials with all PLP helical conformers, i.e., PLP II and the rare PLP I are here reported. Electrostatic supramolecular complexation of the adjacent cationic PLL with anionic molecules bearing DNA analogue H-bonding functionalities, such as deoxyguanosine monophosphate (dGMP), preserves the extended PLP II helix, and the complexed molecule is locked and held in position by orthogonal shape-persistent hydrogen-bonded dGMP ribbons and their extended π-stacking. The branched anionic surfactant dodecylbenzenesulfonic acid (DBSA) on the other hand, introduces periodicity frustration and interlayer plasticization, leading to a reversed mutarotation to the more compact PLP I helix by complexation, without external stimuli, and is here reported for the first time. We foresee that our findings can be used as a platform for novel molecularly adaptive functional materials, and could possibly give insight in many proline-related transmembrane biological functions.
Collapse
Affiliation(s)
- Manos Gkikas
- Chemistry Department, University of Athens , Panepistimiopolis, Zografou, 15771, Athens, Greece.,Molecular Materials, Department of Applied Physics, Aalto University School of Science and Technology (previously Helsinki University of Technology), FIN-00076 Aalto, Espoo, Finland
| | - Johannes S Haataja
- Molecular Materials, Department of Applied Physics, Aalto University School of Science and Technology (previously Helsinki University of Technology), FIN-00076 Aalto, Espoo, Finland.,Nanomicroscopy Center, Aalto University School of Science and Technology , FIN-00076 Aalto, Espoo, Finland
| | - Janne Ruokolainen
- Molecular Materials, Department of Applied Physics, Aalto University School of Science and Technology (previously Helsinki University of Technology), FIN-00076 Aalto, Espoo, Finland.,Nanomicroscopy Center, Aalto University School of Science and Technology , FIN-00076 Aalto, Espoo, Finland
| | - Hermis Iatrou
- Chemistry Department, University of Athens , Panepistimiopolis, Zografou, 15771, Athens, Greece
| | - Nikolay Houbenov
- Molecular Materials, Department of Applied Physics, Aalto University School of Science and Technology (previously Helsinki University of Technology), FIN-00076 Aalto, Espoo, Finland.,Nanomicroscopy Center, Aalto University School of Science and Technology , FIN-00076 Aalto, Espoo, Finland
| |
Collapse
|
21
|
Mayfield JE, Fan S, Wei S, Zhang M, Li B, Ellington AD, Etzkorn FA, Zhang YJ. Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II. ACS Chem Biol 2015; 10:2405-14. [PMID: 26332362 DOI: 10.1021/acschembio.5b00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proline isomerization greatly impacts biological signaling but is subtle and difficult to detect in proteins. We characterize this poorly understood regulatory mechanism for RNA polymerase II carboxyl terminal domain (CTD) phosphorylation state using novel, direct, and quantitative chemical tools. We determine the proline isomeric preference of three CTD phosphatases: Ssu72 as cis-proline specific, Scp1 and Fcp1 as strongly trans-preferred. Due to this inherent characteristic, these phosphatases respond differently to enzymes that catalyze the isomerization of proline, like Ess1/Pin1. We demonstrate that this selective regulation of RNA polymerase II phosphorylation state exists within human cells, consistent with in vitro assays. These results support a model in which, instead of a global enhancement of downstream enzymatic activities, proline isomerases selectively boost the activity of a subset of CTD regulatory factors specific for cis-proline. This leads to diversified phosphorylation states of CTD in vitro and in cells. We provide the chemical tools to investigate proline isomerization and its ability to selectively enhance signaling in transcription and other biological contexts.
Collapse
Affiliation(s)
- Joshua E. Mayfield
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuang Fan
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shuo Wei
- 1 Cancer
Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department
of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mengmeng Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bing Li
- Department
of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines
Boulevard, Dallas, Texas 75390, United States
| | - Andrew D. Ellington
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yan Jessie Zhang
- Department
of Molecular Biosciences and Institute for Cellular and Molecular
Biology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta Gen Subj 2015; 1850:2077-86. [PMID: 25766872 DOI: 10.1016/j.bbagen.2015.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
23
|
Fowler PW, Orwick-Rydmark M, Radestock S, Solcan N, Dijkman PM, Lyons JA, Kwok J, Caffrey M, Watts A, Forrest LR, Newstead S. Gating topology of the proton-coupled oligopeptide symporters. Structure 2015; 23:290-301. [PMID: 25651061 PMCID: PMC4321885 DOI: 10.1016/j.str.2014.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 01/10/2023]
Abstract
Proton-coupled oligopeptide transporters belong to the major facilitator superfamily (MFS) of membrane transporters. Recent crystal structures suggest the MFS fold facilitates transport through rearrangement of their two six-helix bundles around a central ligand binding site; how this is achieved, however, is poorly understood. Using modeling, molecular dynamics, crystallography, functional assays, and site-directed spin labeling combined with double electron-electron resonance (DEER) spectroscopy, we present a detailed study of the transport dynamics of two bacterial oligopeptide transporters, PepTSo and PepTSt. Our results identify several salt bridges that stabilize outward-facing conformations and we show that, for all the current structures of MFS transporters, the first two helices of each of the four inverted-topology repeat units form half of either the periplasmic or cytoplasmic gate and that these function cooperatively in a scissor-like motion to control access to the peptide binding site during transport.
Collapse
Affiliation(s)
- Philip W Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | - Sebastian Radestock
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, Germany
| | - Nicolae Solcan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Patricia M Dijkman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Joseph A Lyons
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Jane Kwok
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Martin Caffrey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Lucy R Forrest
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, Frankfurt am Main, Germany
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
24
|
Cunningham P, Naftalin RJ. Reptation-induced coalescence of tunnels and cavities in Escherichia Coli XylE transporter conformers accounts for facilitated diffusion. J Membr Biol 2014; 247:1161-79. [PMID: 25163893 PMCID: PMC4207944 DOI: 10.1007/s00232-014-9711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (Ki 4–20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (Ki 12–50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-μs time domain accommodate diffusive ligand flow between adjacent sites with association–dissociation rates in the μs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport.
Collapse
Affiliation(s)
- Philip Cunningham
- Department of Bioinformatics, School of Medicine, King’s College London, Waterloo Campus, Franklin–Wilkins Building, London, SE1 9NH UK
| | - Richard J. Naftalin
- Department of Physiology, School of Medicine, King’s College London, Waterloo Campus, Franklin–Wilkins Building, London, SE1 9NH UK
- BHF Centre of Research Excellence, School of Medicine, King’s College London, Waterloo Campus, Franklin–Wilkins Building, London, SE1 9NH UK
| |
Collapse
|
25
|
Joseph PRB, Poluri KM, Gangavarapu P, Rajagopalan L, Raghuwanshi S, Richardson RM, Garofalo RP, Rajarathnam K. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. Biophys J 2014; 105:1491-501. [PMID: 24048001 DOI: 10.1016/j.bpj.2013.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline's unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.
Collapse
Affiliation(s)
- Prem Raj B Joseph
- Departments of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Biochim Biophys Acta Gen Subj 2014; 1840:993-1003. [DOI: 10.1016/j.bbagen.2013.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/23/2023]
|
27
|
Morimoto YV, Minamino T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 2014; 4:217-34. [PMID: 24970213 PMCID: PMC4030992 DOI: 10.3390/biom4010217] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 01/02/2023] Open
Abstract
The bacterial flagellum is a locomotive organelle that propels the bacterial cell body in liquid environments. The flagellum is a supramolecular complex composed of about 30 different proteins and consists of at least three parts: a rotary motor, a universal joint, and a helical filament. The flagellar motor of Escherichia coli and Salmonella enterica is powered by an inward-directed electrochemical potential difference of protons across the cytoplasmic membrane. The flagellar motor consists of a rotor made of FliF, FliG, FliM and FliN and a dozen stators consisting of MotA and MotB. FliG, FliM and FliN also act as a molecular switch, enabling the motor to spin in both counterclockwise and clockwise directions. Each stator is anchored to the peptidoglycan layer through the C-terminal periplasmic domain of MotB and acts as a proton channel to couple the proton flow through the channel with torque generation. Highly conserved charged residues at the rotor–stator interface are required not only for torque generation but also for stator assembly around the rotor. In this review, we will summarize our current understanding of the structure and function of the proton-driven bacterial flagellar motor.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Chataigneau T, Lemoine D, Grutter T. Exploring the ATP-binding site of P2X receptors. Front Cell Neurosci 2013; 7:273. [PMID: 24415999 PMCID: PMC3874471 DOI: 10.3389/fncel.2013.00273] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/07/2013] [Indexed: 02/05/2023] Open
Abstract
P2X receptors are ATP-gated non-selective cation channels involved in many different physiological processes, such as synaptic transmission, inflammation, and neuropathic pain. They form homo- or heterotrimeric complexes and contain three ATP-binding sites in their extracellular domain. The recent determination of X-ray structures of a P2X receptor solved in two states, a resting closed state and an ATP-bound, open-channel state, has provided unprecedented information not only regarding the three-dimensional shape of the receptor, but also on putative conformational changes that couple ATP binding to channel opening. These data provide a structural template for interpreting the huge amount of functional, mutagenesis, and biochemical data collected during more than fifteen years. In particular, the interfacial location of the ATP binding site and ATP orientation have been successfully confirmed by these structural studies. It appears that ATP binds to inter-subunit cavities shaped like open jaws, whose tightening induces the opening of the ion channel. These structural data thus represent a firm basis for understanding the activation mechanism of P2X receptors.
Collapse
Affiliation(s)
- Thierry Chataigneau
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Damien Lemoine
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| | - Thomas Grutter
- Equipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, UMR 7199 CNRS, Université de Strasbourg Illkirch, France
| |
Collapse
|
29
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
30
|
Liaw SH, Chuang LM. Cu2+-ATPases: Sequence Analyses and Implications in the Wilson Disease. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199900099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Nash A, Soheili A, Tambar UK. Stereoselective Synthesis of Functionalized Cyclic Amino Acid Derivatives via a [2,3]-Stevens Rearrangement and Ring-Closing Metathesis. Org Lett 2013; 15:4770-3. [DOI: 10.1021/ol402129h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aaron Nash
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Arash Soheili
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
32
|
Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS, Park Y. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS One 2013; 8:e67597. [PMID: 23935838 PMCID: PMC3720801 DOI: 10.1371/journal.pone.0067597] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/20/2013] [Indexed: 12/03/2022] Open
Abstract
HP (2-20) is a 19-aa, amphipathic, α-helical peptide with antimicrobial properties that was derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously showed that increasing the net hydrophobicity of HP (2-20) by substituting Trp for Gln(17) and Asp(19) (Anal 3) increased the peptide's antimicrobial activity. In hydrophobic medium, Anal 3 forms an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and an extended helical region (residues 6-20). To investigate the structure-activity relationship of Anal 3, we substituted Pro for Glu(9) (Anal 3-Pro) and then examined the new peptide's three-dimensional structure, antimicrobial activity and mechanism of action. Anal 3-Pro had an α-helical structure in the presence of trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS). NMR spectroscopic analysis of Anal 3-Pro's tertiary structure in SDS micelles confirmed that the kink potential introduced by Pro(10) was responsible for the helix distortion. We also found that Anal 3-Pro exhibited about 4 times greater antimicrobial activity than Anal 3. Fluorescence activated flow cytometry and confocal fluorescence microscopy showed that incorporating a Pro-hinge into Anal 3 markedly reduced its membrane permeability so that it accumulated in the cytoplasm without remaining in the cell membrane. To investigate the translocation mechanism, we assessed its ability to release of FITC-dextran. The result showed Anal 3-Pro created a pore <1.8 nm in diameter, which is similar to buforin II. Notably, scanning electron microscopic observation of Candida albicans revealed that Anal 3-Pro and buforin II exert similar effects on cell membranes, whereas magainin 2 exerts a different, more damaging, effect. In addition, Anal 3-Pro assumed a helix-hinge-helix structure in the presence of biological membranes and formed micropores in both bacterial and fungal membranes, through which it entered the cytoplasm and tightly bound to DNA. These results indicate that the bending region of Anal 3- Pro peptide is prerequisite for effective antibiotic activity and may facilitate easy penetration of the lipid bilayers of the cell membrane.
Collapse
Affiliation(s)
- Jong Kook Lee
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Ramamourthy Gopal
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Seong-Cheol Park
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Hyun Sook Ko
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Kyung-Soo Hahm
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
| | - Yoonkyung Park
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Kwangju, Korea
- Department of Biotechnology, Chosun University, Kwangju, Korea
| |
Collapse
|
33
|
Craveur P, Joseph AP, Poulain P, de Brevern AG, Rebehmed J. Cis-trans isomerization of omega dihedrals in proteins. Amino Acids 2013; 45:279-89. [PMID: 23728840 DOI: 10.1007/s00726-013-1511-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/09/2013] [Indexed: 01/24/2023]
Abstract
Peptide bonds in protein structures are mainly found in trans conformation with a torsion angle ω close to 180°. Only a very low proportion is observed in cis conformation with ω angle around 0°. Cis-trans isomerization leads to local conformation changes which play an important role in many biological processes. In this paper, we reviewed the recent discoveries and research achievements in this field. First, we presented some interesting cases of biological processes in which cis-trans isomerization is directly implicated. It is involved in protein folding and various aspect of protein function like dimerization interfaces, autoinhibition control, channel gating, membrane binding. Then we reviewed conservation studies of cis peptide bonds which emphasized evolution constraints in term of sequence and local conformation. Finally we made an overview of the numerous molecular dynamics studies and prediction methodologies already developed to take into account this structural feature in the research area of protein modeling. Many cis peptide bonds have not been recognized as such due to the limited resolution of the data and to the refinement protocol used. Cis-trans proline isomerization reactions represents a vast and promising research area that still needs to be further explored for a better understanding of isomerization mechanism and improvement of cis peptide bond predictions.
Collapse
Affiliation(s)
- Pierrick Craveur
- INSERM UMR-S 665, Dynamique des Structures et Interactions des Macromolécules Biologiques, Université Denis Diderot-Paris 7, INTS, 6, rue Alexandre Cabanel, 75739 Paris cedex 15, France
| | | | | | | | | |
Collapse
|
34
|
Graf R, Spiess HW, Floudas G, Butt HJ, Gkikas M, Iatrou H. Conformational Transitions of Poly(l-proline) in Copolypeptides with Poly(γ-benzyl-l-glutamate) Induced by Packing. Macromolecules 2012. [DOI: 10.1021/ma301906m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Graf
- Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
| | - H. W. Spiess
- Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
| | - G. Floudas
- Department
of Physics, University of Ioannina, P.O.
Box 1186, GR-45110 Ioannina,
Greece
- Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
| | - H.-J. Butt
- Max-Planck-Institut für Polymerforschung, D-55021 Mainz, Germany
| | - M. Gkikas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou,
GR-15771 Athens, Greece
| | - H. Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou,
GR-15771 Athens, Greece
| |
Collapse
|
35
|
Weber M, Tome L, Otzen D, Schneider D. A Ser residue influences the structure and stability of a Pro-kinked transmembrane helix dimer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2103-7. [PMID: 22525600 DOI: 10.1016/j.bbamem.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
When localized adjacent to a Pro-kink, Thr and Ser residues can form hydrogen bonds between their polar hydroxyl group and a backbone carbonyl oxygen and thereby modulate the actual bending angle of a distorted transmembrane α-helix. We have used the homo-dimeric transmembrane cytochrome b(559)' to analyze the potential role of a highly conserved Ser residue for assembly and stabilization of transmembrane proteins. Mutation of the conserved Ser residue to Ala resulted in altered heme binding properties and in increased stability of the holo-protein, most likely by tolerating subtle structural rearrangements upon heme binding. The results suggest a crucial impact of an intrahelical Ser hydrogen bond in defining the structure of a Pro-kinked transmembrane helix dimer.
Collapse
Affiliation(s)
- Mathias Weber
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becher-Weg 30, Mainz, Germany
| | | | | | | |
Collapse
|
36
|
Caballero-Rivera D, Cruz-Nieves OA, Oyola-Cintrón J, Torres-Nunez DA, Otero-Cruz JD, Lasalde-Dominicci JA. Tryptophan scanning mutagenesis reveals distortions in the helical structure of the δM4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Channels (Austin) 2012; 6:111-23. [PMID: 22622285 DOI: 10.4161/chan.19540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The lipid-protein interface is an important domain of the nicotinic acetylcholine receptor (nAChR) that has recently garnered increased relevance. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, there is still a need to gain insight into the mechanism by which lipid-protein interactions regulate the function and conformational transitions of the nAChR. In this study, we extended the tryptophan scanning mutagenesis (TrpScanM) approach to dissect secondary structure and monitor the conformational changes experienced by the δM4 transmembrane domain (TMD) of the Torpedo californica nAChR, and to identify which positions on this domain are potentially linked to the regulation of ion channel kinetics. The difference in oscillation patterns between the closed- and open-channel states suggests a substantial conformational change along this domain as a consequence of channel activation. Furthermore, TrpScanM revealed distortions along the helical structure of this TMD that are not present on current models of the nAChR. Our results show that a Thr-Pro motif at positions 462-463 markedly bends the helical structure of the TMD, consistent with the recent crystallographic structure of the GluCl Cys-loop receptor which reveals a highly bent TMD4 in each subunit. This Thr-Pro motif acts as a molecular hinge that delineates two gating blocks in the δM4 TMD. These results suggest a model in which a hinge-bending motion that tilts the helical structure is combined with a spring-like motion during transition between the closed- and open-channel states of the δM4 TMD.
Collapse
Affiliation(s)
- Daniel Caballero-Rivera
- Department of Chemistry; University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
37
|
Hartley MD, Imperiali B. At the membrane frontier: a prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch Biochem Biophys 2012; 517:83-97. [PMID: 22093697 PMCID: PMC3253937 DOI: 10.1016/j.abb.2011.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/20/2022]
Abstract
Long-chain polyprenols and polyprenyl-phosphates are ubiquitous and essential components of cellular membranes throughout all domains of life. Polyprenyl-phosphates, which include undecaprenyl-phosphate in bacteria and the dolichyl-phosphates in archaea and eukaryotes, serve as specific membrane-bound carriers in glycan biosynthetic pathways responsible for the production of cellular structures such as N-linked protein glycans and bacterial peptidoglycan. Polyprenyl-phosphates are the only form of polyprenols with a biochemically-defined role; however, unmodified or esterified polyprenols often comprise significant percentages of the cellular polyprenol pool. The strong evolutionary conservation of unmodified polyprenols as membrane constituents and polyprenyl-phosphates as preferred glycan carriers in biosynthetic pathways is poorly understood. This review surveys the available research to explore why unmodified polyprenols have been conserved in evolution and why polyprenyl-phosphates are universally and specifically utilized for membrane-bound glycan assembly.
Collapse
Affiliation(s)
- Meredith D. Hartley
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
38
|
Chung KM, Huang CH, Cheng JH, Tsai CH, Suen CS, Hwang MJ, Chen X. Proline in transmembrane domain of type II protein DPP-IV governs its translocation behavior through endoplasmic reticulum. Biochemistry 2011; 50:7909-18. [PMID: 21834515 DOI: 10.1021/bi200605h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transmembrane domain (TMD) at the N-terminus of a membrane protein is a signal sequence that targets the protein to the endoplasmic reticulum (ER) membrane. Proline is found more frequently in TM helices compared to water-soluble helices. To investigate the effects of proline on protein translocation and integration in mammalian cells, we made proline substitutions throughout the TMD of dipeptidyl peptidase IV, a type II membrane protease with a single TMD at its N-terminus. The proteins were expressed and their capacities for targeting and integrating into the membrane were measured in both mammalian cells and in vitro translation systems. Three proline substitutions in the central region of the TMD resulted in various defects in membrane targeting and/or integration. The replacement of proline with other amino acids of similar hydrophobicity rescued both the translocation and anchoring defects of all three proline mutants, indicating that conformational change caused by proline is a determining factor. Increasing hydrophobicity of the TMD by replacing other residues with more hydrophobic residues also effectively reversed the translocation and integration defects. Intriguingly, increasing hydrophobicity at the C-terminal end of the TMD rescued much more effectively than it did at the N-terminal end. Thus, the effect of proline on translocation and integration of the TMD is not determined solely by its conformation and hydrophobicity, but also by the location of proline in the TMD, the location of highly hydrophobic residues, and the relative position of the proline to other proline residues in the TMD.
Collapse
Affiliation(s)
- Kuei-Min Chung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
39
|
Fox-Clipsham LY, Carter SD, Goodhead I, Hall N, Knottenbelt DC, May PDF, Ollier WE, Swinburne JE. Identification of a mutation associated with fatal Foal Immunodeficiency Syndrome in the Fell and Dales pony. PLoS Genet 2011; 7:e1002133. [PMID: 21750681 PMCID: PMC3131283 DOI: 10.1371/journal.pgen.1002133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/03/2011] [Indexed: 11/25/2022] Open
Abstract
The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS–affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 – 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding. Foal Immunodeficiency Syndrome (FIS) is a genetic disease that affects two related British pony breeds, namely the Fell and the Dales. Foals with FIS appear to be normal at birth but within a few weeks develop evidence of infection such as diarrhoea, pneumonia, etc. The infections are resistant to treatment, and the foals die or are euthanized before three months of age. The foals also suffer from a severe progressive anemia. Being a recessive condition, the disease is difficult to control without a diagnostic DNA test to identify symptom-free carrier parents. Within the last few years the horse genome has been sequenced, and this has allowed the development of tools to identify genetic mutations in the horse at high resolution. In this article we demonstrate the use of these new tools to identify the location of the FIS mutation. The presumptive causal lesion was then identified by sequencing this region. This has enabled us to develop a test that can be used to identify carrier ponies, allowing breeders to avoid FIS in their foal crop.
Collapse
Affiliation(s)
| | - Stuart D. Carter
- Department of Infection Biology, School of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Ian Goodhead
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Neil Hall
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Derek C. Knottenbelt
- Department of Veterinary Clinical Science, Equine Hospital, University of Liverpool, Liverpool, United Kingdom
| | - Paul D. F. May
- Townhead Veterinary Centre, Townhead Farm, Penrith, United Kingdom
| | - William E. Ollier
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
40
|
Liu H, Wu G, Zhou B, Chen B. Structure and function of cholesteryl ester transfer protein in the tree shrew. Lipids 2011; 46:607-16. [PMID: 21455733 DOI: 10.1007/s11745-011-3552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
Abstract
Cholesteryl ester transfer protein (CETP) plays an important role in reverse cholesterol transport (RCT). To study on the structure and function of CETP in the tree shrew, a kind of animal resistant to atherosclerosis, we completed the cloning of the full-length tree-shrew CETP cDNA sequence based on the reported partial sequence. The full-length cDNA of tree shrew CETP was 1,704 bp and the deduced protein of the cDNA showed a sequence identity of 81, 80 and 74%, respectively, with the human, monkey and rabbit CETP. The level of CETP mRNA in the liver was much more abundant than that in the other tissues. A mutant protein with a substitution of Asn at position 110 by Gln was found to possess an impaired secretion property compared with the wild-type tree shrew CETP. The mutant proteins, respectively, with a substitution of Pro at position 344 by Ser and a substitution of Gln at position 452 by Arg displayed similar secretion ability, but a decreased cholesteryl ester transfer capability compared with the wild type (48 and 26% lower, respectively). These findings demonstrate that liver is the main tissue synthesizing CETP in the tree shrew. Asn at position 110 plays an important role in the secretion of tree shrew CETP. The residues at position 344 and 452 play essential roles in cholesteryl ester transferring process.
Collapse
Affiliation(s)
- Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
41
|
Cappon JJ, van der Walle GAM, Verdegem PJE, Raap J, Lugtenburg J. Synthesis of specifically stable-isotope-labeled l-proline via L-glutamic acid. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19921111204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Courville P, Quick M, Reimer RJ. Structure-function studies of the SLC17 transporter sialin identify crucial residues and substrate-induced conformational changes. J Biol Chem 2010; 285:19316-23. [PMID: 20424173 PMCID: PMC2885210 DOI: 10.1074/jbc.m110.130716] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/26/2010] [Indexed: 11/06/2022] Open
Abstract
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H(+)-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members.
Collapse
Affiliation(s)
- Pascal Courville
- From the Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305 and
| | - Matthias Quick
- the Center for Molecular Recognition, Department of Psychiatry, Columbia University College of Physicians and Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Richard J. Reimer
- From the Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305 and
| |
Collapse
|
43
|
Neogi S, Roy A, Naskar D. One-Pot Synthesis of New Fused 4,5-Bridged 1,2,5-Triazepine-3,6-diones, 1,2,5-Triazepine-3,7-diones Heterocycles by Petasis Reaction. ACTA ACUST UNITED AC 2009; 12:75-83. [DOI: 10.1021/cc900092x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subhasish Neogi
- Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Amrita Roy
- Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| | - Dinabandhu Naskar
- Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
| |
Collapse
|
44
|
Hussainzada N, Claro Da Silva T, Swaan PW. The cytosolic half of helix III forms the substrate exit route during permeation events of the sodium/bile acid cotransporter ASBT. Biochemistry 2009; 48:8528-39. [PMID: 19653651 DOI: 10.1021/bi900616w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed alkylation of consecutively introduced cysteines was employed to probe the solvent-accessible profile of highly conserved transmembrane helix 3 (TM3), spanning residues V127-T149 of the apical sodium-dependent bile acid transporter (ASBT), a key membrane protein involved in cholesterol homeostasis. Sequence alignment of SLC10 family members has previously identified a signature motif (ALGMMPL) localized to TM3 of ASBT with as yet undetermined function. Cysteine mutagenesis of this motif resulted in severe decreases in uptake activity only for mutants M141C and P142C. Additional conservative and nonconservative replacement of P142 suggests its structural and functional importance during the ASBT transport cycle. Significant decreases in transport activity were also observed for three cysteine mutants clustered along the exofacial half of the helix (M129C, T130C, S133C) and five mutants consecutively lining the cytosolic half of TM3 (L145C-T149C). Measurable surface expression was detected for all TM3 mutants. Using physicochemically different alkylating reagents, sites predominantly lining the cytosolic half of the TM3 helix were found to be solvent accessible (i.e., S128C, L143C-T149C). Analysis of substrate kinetics for select TM3 mutants demonstrates significant loss of taurocholic acid affinity for mutants S128C and L145C-T149C. Overall, we conclude (i) the functional and structural importance of P142 during the transport cycle and (ii) the presence of a large hydrophilic cleft region lining the cytosolic half of TM3 that may form portions of the substrate exit route during permeation. Our studies provide unique insight into molecular mechanisms guiding the ASBT transport cycle with respect to substrate binding and translocation events.
Collapse
Affiliation(s)
- Naissan Hussainzada
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
45
|
Aliev AE, Bhandal S, Courtier-Murias D. Quantum Mechanical and NMR Studies of Ring Puckering and cis/trans-Rotameric Interconversion in Prolines and Hydroxyprolines. J Phys Chem A 2009; 113:10858-65. [DOI: 10.1021/jp906006w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abil E. Aliev
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Simrath Bhandal
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Denis Courtier-Murias
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
46
|
Nakamura S, Morimoto YV, Kami-ike N, Minamino T, Namba K. Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella. J Mol Biol 2009; 393:300-7. [PMID: 19683537 DOI: 10.1016/j.jmb.2009.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 11/16/2022]
Abstract
The MotA/B complex acts as the stator of the proton-driven bacterial flagellar motor. Proton translocation through the stator complex is efficiently coupled with torque generation by the stator-rotor interactions. In Salmonella enterica serovar Typhimurium, the highly conserved Pro173 residue of MotA is close to the absolutely conserved Asp33 residue of MotB, which is believed to be a proton-binding site. Pro173 is postulated to be involved in coupling proton influx to torque generation. However, it remains unknown what critical function Pro173 carries out. Here, we characterize the motility and the torque-speed relation of the flagellar motor of the slow motile motA(P173A) mutant of Salmonella. Stall torque produced by the mutant motor was at the wild-type level, indicating that neither the number of stators in the motor nor the rotor-stator interaction is affected by the P173A substitution. In agreement with this, the motA(P173A) allele exerted a strong dominant-negative effect on wild-type motility. In contrast, high-speed rotation at low load was significantly impaired by the mutation, suggesting that the maximum rate of torque generation cycle is severely limited. Simulation of the torque-speed curve by a simple kinetic model indicated that the mutation reduces the rate of conformational changes of the MotA/B complex that switches the exposure of Asp33 to the outside and the inside of the cell, thereby slowing down the mechanochemical reaction cycle. Based on these results, we propose that Pro173 plays an important role in facilitating the conformational dynamics of the stator complex for rapid proton translocation and torque generation cycle.
Collapse
|
47
|
D'rozario RSG, Sansom MSP. Helix dynamics in a membrane transport protein: comparative simulations of the glycerol-3-phosphate transporter and its constituent helices. Mol Membr Biol 2009; 25:571-83. [DOI: 10.1080/09687680802549113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Trujillo C, Ratts R, Tamayo A, Harrison R, Murphy JR. Trojan horse or proton force: Finding the right partner(s) for toxin translocation. Neurotox Res 2009; 9:63-71. [PMID: 16785102 DOI: 10.1007/bf03033924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Much is known about the structure function relationships of a large number of bacterial protein toxins, the nature of their cell surface receptors, and their enzymatic activities which lead to the inactivation of their respective cytosolic targets. Despite this wealth of knowledge a detailed understanding of the mechanisms which underlie translocation of the catalytic domain across the eukaryotic cell membrane to the cytosol, the penultimate event in the intoxication process, have been slow in developing. In the case of diphtheria toxin, two prominent hypotheses have been advanced to explain how the catalytic domain is translocated from the lumen of endocytic vesicles to the target cell cytosol. We discuss each of these hypotheses and provide an overview of recent observations that tend to favor a mechanism employing a Cytosolic Translocation Factor complex in the entry process. This facilitated mechanism of translocation appears to rely upon protein-protein interactions between conserved domains within the transmembrane domain of diphtheria toxin with host cell factors to effect delivery of the enzymatic moiety. We have recently identified a 10 amino acid motif in the transmembrane domain of diphtheria toxin that is conserved in anthrax Lethal and Edema Factors, as well as in botulinum neurotoxins A, C and D. Stable eukaryotic cell transfectants that express a peptide containing this motif become resistant to the toxin, and sensitivity is completely restored by co-expression of siRNA which inhibits peptide expression. Data obtained from use of the protein fusion toxin DAB(389)IL-2 in cytotoxicity assays using susceptible Hut 102/6TG and resistant transfectant Hut102/6TG-T1 cells, as well as pull down assays have led to the formulation of a working model of facilitated delivery of the diphtheria toxin catalytic domain to the cytosol of target cells which is discussed in detail.
Collapse
Affiliation(s)
- C Trujillo
- Section of Molecular Medicine, Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | |
Collapse
|
49
|
Kim EA, Price-Carter M, Carlquist WC, Blair DF. Membrane segment organization in the stator complex of the flagellar motor: implications for proton flow and proton-induced conformational change. Biochemistry 2008; 47:11332-9. [PMID: 18834143 DOI: 10.1021/bi801347a] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MotA and MotB are membrane proteins that form the stator of the bacterial flagellar motor. Each motor contains several MotA 4MotB 2 complexes, which function independently to conduct protons across the membrane and couple proton flow to rotation. The mechanism of rotation is not understood in detail but is thought to involve conformational changes in the stator complexes driven by proton association/dissociation at a critical Asp residue of MotB (Asp 32 in the protein of Escherichia coli). MotA has four membrane segments and MotB has one. Previous studies using targeted disulfide cross-linking showed that the membrane segments of the two MotB subunits are together at the center of the complex, surrounded by the TM3 and TM4 segments of the four MotA subunits. Here, the cross-linking studies are extended to TM1 and TM2 of MotA, using Cys residues introduced in several positions in the segments. The observed patterns of disulfide cross-linking indicate that the TM2 segment is positioned between segments TM3 and TM4 of the same subunit, where it could contribute to the proton-channel-forming part of the structure. TM1 is at the interface between TM4 of its own subunit and the TM3 segment of another subunit, where it could stabilize the complex. A structural model based on the cross-linking results shows unobstructed pathways reaching from the periplasm to the Asp 32 residues near the inner ends of the MotB segments. The model indicates a close proximity for certain conserved, functionally important residues. The results are used to develop an explicit model for the proton-induced conformational change in the stator.
Collapse
Affiliation(s)
- Eun A Kim
- Department of Biology, UniVersity of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
50
|
Wang X, Ye L, McKinney CC, Feng M, Maloney PC. Cysteine scanning mutagenesis of TM5 reveals conformational changes in OxlT, the oxalate transporter of Oxalobacter formigenes. Biochemistry 2008; 47:5709-17. [PMID: 18452311 DOI: 10.1021/bi8001314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We constructed a single-cysteine panel encompassing TM5 of the oxalate transporter, OxlT. The 25 positions encompassed by TM5 were largely tolerant of mutagenesis, and functional product was recovered for 21 of the derived variants. For these derivatives, thiol-directed MTS-linked agents (MTSEA, MTSCE, and MTSES) were used as probes of transporter function, yielding 11 mutants that responded to probe treatment, as indicated by effects on oxalate transport. Further study identified three biochemical phenotypes among these responders. Group 1 included seven mutants, exemplified by G151C, displaying substrate protection against probe inhibition. Group 2 was comprised of a single mutant, P156C, which had unexpected behavior. In this case, we observed increased activity if weak acid/base or neutral probes were used, while exposure to probes introducing a fixed charge led to decreased function. In both instances, the presence of substrate prevented the observed response. Group 3 contained three mutants (e.g., S143C) in which probe sensitivity was increased by the presence of substrate. The finding of substrate-protectable probe modification in groups 1 and 2 suggests that TM5 lies on the permeation pathway, as do its structural counterparts, TM2, TM8, and TM11. In addition, we speculate that substrate binding facilitates TM5 conformational changes that allow new regions to become accessible to MTS-linked probes (group 3). These biochemical data are consistent with the recently developed OxlT homology model.
Collapse
Affiliation(s)
- Xicheng Wang
- Department of Physiology, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|