1
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
2
|
Adkar-Purushothama CR, Bolduc F, Bru P, Perreault JP. Insights Into Potato Spindle Tuber Viroid Quasi-Species From Infection to Disease. Front Microbiol 2020; 11:1235. [PMID: 32719659 PMCID: PMC7349936 DOI: 10.3389/fmicb.2020.01235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-coding RNA plant pathogens that are characterized by their possession of a high mutation level. Although the sequence heterogeneity in viroid infected plants is well understood, shifts in viroid population dynamics due to mutations over the course of infection remain poorly understood. In this study, the ten most abundant sequence variants of potato spindle tuber viroid RG1 (PSTVd) expressed at different time intervals in PSTVd infected tomato plants were identified by high-throughput sequencing. The sequence variants, forming a quasi-species, were subjected to both the identification of the regions favoring mutations and the effect of the mutations on viroid secondary structure and viroid derived small RNAs (vd-sRNA). At week 1 of PSTVd infection, 25% of the sequence variants were similar to the "master" sequence (i.e., the sequence used for inoculation). The frequency of the master sequence within the population increased to 70% at week 2 after PSTVd infection, and then stabilized for the rest of the disease cycle (i.e., weeks 3 and 4). While some sequence variants were abundant at week 1 after PSTVd infection, they tended to decrease in frequency over time. For example, the variants with insertions at positions 253 or 254, positions that could affect the Loop E as well as the metastable hairpin I structure that has been shown important during replication and viroid infectivity, resulted in decreased frequency. Data obtained by in silico analysis of the viroid derived small RNAs (vd-sRNA) was also analyzed. A few mutants had the potential of positively affecting the viroid's accumulation by inducing the RNA silencing of the host's defense related genes. Variants with mutations that could negatively affect viroid abundance were also identified because their derived vd-sRNA were no longer capable of targeting any host mRNA or of changing its target sequence from a host defense gene to some other non-important host gene. Together, these findings open avenues into understanding the biological role of sequence variants, this viroid's interaction with host components, stable and metastable structures generated by mutants during the course of infection, and the influence of sequence variants on stabilizing viroid population dynamics.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Bolduc
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrick Bru
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Tangkanchanapas P, Haegeman A, Ruttink T, Höfte M, De Jonghe K. Whole-Genome Deep Sequencing Reveals Host-Driven in-planta Evolution of Columnea Latent Viroid (CLVd) Quasi-Species Populations. Int J Mol Sci 2020; 21:ijms21093262. [PMID: 32380694 PMCID: PMC7246631 DOI: 10.3390/ijms21093262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 01/06/2023] Open
Abstract
Columnea latent viroid (CLVd) is one of the most serious tomato diseases. In general, viroids have high mutation rates. This generates a population of variants (so-called quasi-species) that co-exist in their host and exhibit a huge level of genetic diversity. To study the population of CLVd in individual host plants, we used amplicon sequencing using specific CLVd primers linked with a sample-specific index sequence to amplify libraries. An infectious clone of a CLVd isolate Chaipayon-1 was inoculated on different solanaceous host plants. Six replicates of the amplicon sequencing results showed very high reproducibility. On average, we obtained 133,449 CLVd reads per PCR-replicate and 79 to 561 viroid sequence variants, depending on the plant species. We identified 19 major variants (>1.0% mean relative abundance) in which a total of 16 single-nucleotide polymorphisms (SNPs) and two single nucleotide insertions were observed. All major variants contained a combination of 4 to 6 SNPs. Secondary structure prediction clustered all major variants into a tomato/bolo maka group with four loops (I, II, IV and V), and a chili pepper group with four loops (I, III, IV and V) at the terminal right domain, compared to the CLVd Chaipayon-1 which consists of five loops (I, II, III, IV and V).
Collapse
Affiliation(s)
- Parichate Tangkanchanapas
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium;
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
| | - Monica Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
- Correspondence: ; Tel.: +32-329-2722-448
| |
Collapse
|
4
|
Viability and genetic stability of potato spindle tuber viroid mutants with indels in specific loops of the rod-like secondary structure. Virus Res 2017; 240:94-100. [PMID: 28778395 DOI: 10.1016/j.virusres.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of the rod-like structure of potato spindle tuber viroid (PSTVd), which contains over 20 loops and bulges between double-stranded helices, is important for viroid biology. To study tolerance to modifications of the stem-loop structures and PSTVd capacity for mutation repair, we have created 6 mutants carrying 3-4 nucleotides deletions or insertions at three unique restriction sites, EagI, StyI and AvaII. Differences in the infectivity of these in vitro generated PSTVd mutants can result from where the mutations map, as well as from the extent to which the secondary structure of the molecule is affected. Deletion or insertion of 4 nucleotides at the EagI and StyI sites led to loss of infectivity. However, mutants with deletion (PSTVd-Ava-del) or insertion (PSTVd-Ava-in) of 3 nucleotides (221GAC223), at the AvaII site (loop 20) were viable but not genetically stable. In all analyzed plants, reversion to the wild type PSTVd-S23 sequence was observed for the PSTVd-Ava-in mutant a few weeks after agroinfiltration. Analysis of PSTVd-Ava-del progeny allowed the identification of 10 new sequence variants carrying various modifications, some of them having retained the original three nucleotide deletion at the AvaII site. Interestingly, other variants gained three nucleotides in the deletion site but did not revert to the original wild type sequence. The genetic stability of the progeny PSTVd-Ava-del sequence variants was evaluated in tomato leaves (early infection) and in both leaves and roots (late infection), respectively.
Collapse
|
5
|
Avina-Padilla K, Martinez de la Vega O, Rivera-Bustamante R, Martinez-Soriano JP, Owens RA, Hammond RW, Vielle-Calzada JP. In silico prediction and validation of potential gene targets for pospiviroid-derived small RNAs during tomato infection. Gene 2015; 564:197-205. [DOI: 10.1016/j.gene.2015.03.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/13/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
|
6
|
Yoon JY, Palukaitis P. Sequence comparisons of global chrysanthemum stunt viroid variants: multiple polymorphic positions scattered through the viroid genome. Virus Genes 2012; 46:97-104. [PMID: 22961404 DOI: 10.1007/s11262-012-0811-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Ju-Yeon Yoon
- Department of Horticultural Sciences, Seoul Women's University, Seoul, Republic of Korea
| | | |
Collapse
|
7
|
Bojić T, Beeharry Y, Zhang DJ, Pelchat M. Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 2012; 93:1591-1600. [PMID: 22422064 DOI: 10.1099/vir.0.041574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (-) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.
Collapse
Affiliation(s)
- Teodora Bojić
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yasnee Beeharry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Da Jiang Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
8
|
Ding B. Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:362-75. [PMID: 21956936 DOI: 10.1002/wrna.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viroids are small, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic from cell to cell and from organ to organ to establish systemic infection. Viroids achieve nearly all of the biological functions by directly interacting with host cellular factors. Viroid replication, together with replication of human hepatitis delta virus, demonstrates the biological novelty and significance of RNA-dependent RNA polymerase activities of DNA-dependent RNA polymerases. Viroid systemic infection uncovers a new biological principle--the role of three-dimensional RNA structural motifs mediating RNA trafficking between specific cells. Viroid diseases are virtually the consequences of host gene regulation by noncoding RNAs. A viroid RNA has the highest in vivo mutation rate among all known nucleic acid replicons. The host range of many viroids is expanding, essentially as a result of continuing and fast evolution of noncoding sequences/structures to gain new biological functions. Here, I discuss recent progress in these areas, emphasizing the broad significance of viroid research to the discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Center for RNA Biology, and Molecular, Cellular and Developmental Biology Program, The Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Hajeri S, Ramadugu C, Manjunath K, Ng J, Lee R, Vidalakis G. In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity. Virology 2011; 417:400-9. [DOI: 10.1016/j.virol.2011.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023]
|
10
|
Wiesyk A, Candresse T, Zagorski W, Gora-Sochacka A. Use of randomly mutagenized genomic cDNA banks of potato spindle tuber viroid to screen for viable versions of the viroid genome. J Gen Virol 2010; 92:457-66. [DOI: 10.1099/vir.0.026286-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Abraitiene A, Zhao Y, Hammond R. Nuclear targeting by fragmentation of the potato spindle tuber viroid genome. Biochem Biophys Res Commun 2008; 368:470-5. [PMID: 18211806 DOI: 10.1016/j.bbrc.2008.01.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Transient expression of engineered reporter RNAs encoding an intron-containing green fluorescent protein (GFP) from a Potato virus X-based expression vector previously demonstrated the nuclear targeting capability of the 359 nucleotide Potato spindle tuber viroid (PSTVd) RNA genome. To further delimit the putative nuclear-targeting signal, PSTVd subgenomic fragments were embedded within the intron, and recombinant reporter RNAs were inoculated onto Nicotiana benthamiana plants. Appearance of green fluorescence in leaf tissue inoculated with PSTVd-fragment-containing constructs indicated shuttling of the RNA into the nucleus by fragments as short as 80 nucleotides in length. Plant-to-plant variation in the timing of intron removal and subsequent GFP fluorescence was observed; however, earliest and most abundant GFP expression was obtained with constructs containing the conserved hairpin I palindrome structure and embedded upper central conserved region. Our results suggest that this conserved sequence and/or the stem-loop structure it forms is sufficient for import of PSTVd into the nucleus.
Collapse
Affiliation(s)
- Asta Abraitiene
- Eukaryote Genetic Engineering Laboratory, Institute of Biotechnology, Vilnius, Lithuania
| | | | | |
Collapse
|
12
|
Zhong X, Archual AJ, Amin AA, Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. THE PLANT CELL 2008; 20:35-47. [PMID: 18178767 PMCID: PMC2254921 DOI: 10.1105/tpc.107.056606] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 05/19/2023]
Abstract
RNA replication and systemic trafficking play significant roles in developmental regulation and host-pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
13
|
Owens RA. Potato spindle tuber viroid: the simplicity paradox resolved? MOLECULAR PLANT PATHOLOGY 2007; 8:549-560. [PMID: 20507521 DOI: 10.1111/j.1364-3703.2007.00418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
TAXONOMY Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. PHYSICAL PROPERTIES Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro. Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt. HOSTS AND SYMPTOMS: The natural host range of PSTVd-cultivated potato, certain other Solanum spp., and avocado-appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture/Agricultural Research Service-Beltsville, MD 20705, USA.
| |
Collapse
|
14
|
Zhong X, Tao X, Stombaugh J, Leontis N, Ding B. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 2007; 26:3836-46. [PMID: 17660743 PMCID: PMC1952227 DOI: 10.1038/sj.emboj.7601812] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 07/02/2007] [Indexed: 11/08/2022] Open
Abstract
Vascular entry is a decisive step for the initiation of long-distance movement of infectious and endogenous RNAs, silencing signals and developmental/defense signals in plants. However, the mechanisms remain poorly understood. We used Potato spindle tuber viroid (PSTVd) as a model to investigate the direct role of the RNA itself in vascular entry. We report here the identification of an RNA motif that is required for PSTVd to traffic from nonvascular into the vascular tissue phloem to initiate systemic infection. This motif consists of nucleotides U/C that form a water-inserted cis Watson-Crick/Watson-Crick base pair flanked by short helices that comprise canonical Watson-Crick/Watson-Crick base pairs. This tertiary structural model was inferred by comparison with X-ray crystal structures of similar motifs in rRNAs and is supported by combined mutagenesis and covariation analyses. Hydration pattern analysis suggests that water insertion induces a widened minor groove conducive to protein and/or RNA interactions. Our model and approaches have broad implications to investigate the RNA structural motifs in other RNAs for vascular entry and to study the basic principles of RNA structure-function relationships.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| | - Xiaorong Tao
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| | - Jesse Stombaugh
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Neocles Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Ding B, Itaya A. Viroid: a useful model for studying the basic principles of infection and RNA biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:7-20. [PMID: 17249418 DOI: 10.1094/mpmi-20-0007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus 43210, USA.
| | | |
Collapse
|
16
|
Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80:8566-81. [PMID: 16912306 PMCID: PMC1563885 DOI: 10.1128/jvi.00837-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 06/19/2006] [Indexed: 02/07/2023] Open
Abstract
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhong X, Itaya A, Ding B. Transfecting protoplasts by electroporation to study viroid replication. CURRENT PROTOCOLS IN MICROBIOLOGY 2005; Chapter 16:Unit 16D.4. [PMID: 18770558 DOI: 10.1002/9780471729259.mc16d04s00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protoplasts have been extensively used to study replication of plant viruses at the cellular level. However, their use in studying viroid replication has been very limited because of various technical barriers. As a result, mechanisms of viroid replication remain poorly understood. The electroporation protocol presented in this unit offers a simple, fast and reproducible method to inoculate protoplasts derived from cultured cells of tobacco (Nicotiana tabacum) and the related species Nicotiana benthamiana to study viroid replication. The protocol has proven to be useful in characterizing sequence/structural features of potato spindle tuber viroid (PSTVd) that are important for replication at the cellular level, and may be adapted to study the replication of other viroids.
Collapse
|
18
|
Qi Y, Ding B. Replication of Potato spindle tuber viroid in cultured cells of tobacco and Nicotiana benthamiana: the role of specific nucleotides in determining replication levels for host adaptation. Virology 2002; 302:445-56. [PMID: 12441088 DOI: 10.1006/viro.2002.1662] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an electroporation protocol to inoculate cultured cells of tobacco and Nicotiana benthamiana with in vitro transcripts of Potato spindle tuber viroid (PSTVd) to characterize viroid structural features that determine replication efficiency at the cellular level. Both (+)- and (-)-strands of PSTVd were detected by Northern blots as early as 6 h postinoculation (h.p.i.). Accumulation of the (+)-circular PSTVd increased very rapidly starting at 24 h.p.i. and continued beyond 6 days postinoculation. Viroid accumulation in individual cells was visualized by in situ hybridization, which showed that 60-70% of the cells were infected. Previous work showed that C259 --> U substitution converted tomato isolate PSTVd(KF440-2) into a strain that is infectious on tobacco (M. Wassenegger, R. L. Spieker, S. Thalmeir, F.-U. Gast, L. Riedel, and H. L. Sänger, 1996. Virology 226, 191-197). Similarly, C259 --> U or U257 --> A substitution in the Intermediate strain (PSTVd(Int)) conferred infectivity in tobacco (Y. Zhu, Y. Qi, Y. Xun, R. Owens, and B. Ding, 2002. Plant Physiol. 130, 138-146). Our replication assays in tobacco-cultured cells demonstrated that U257 --> A and C259 --> U substitutions each enhanced PSTVd replication by 5- to 10-fold. Replacement of U257 with C, but not with G, also led to enhanced replication in tobacco cells. Replacement of C259 with nucleotide A or G did not enhance replication. Elevated accumulation of the (-)- and (+)-strands of these mutants was in part due to enhanced transcription. Interestingly, all of the nucleotide changes did not alter PSTVd replication levels in N. benthamiana cells. These results provide insights about PSTVd structures that modulate replication efficiency in adapting to a specific host.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Biology and Plant Biotechnology Center, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
19
|
Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B. Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:990-999. [PMID: 12437296 DOI: 10.1094/mpmi.2002.15.10.990] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroids are the smallest plant pathogens. These RNAs do not encode proteins and are not encapsidated, and yet they can replicate autonomously, move systemically, and cause diseases in infected plants. Notably, strains of a viroid with subtle differences in nucleotide sequences can cause dramatically different symptoms in infected plants. These features make viroids unique probes to investigate the role of a pathogenic RNA genome in triggering host responses. We conducted a comprehensive analysis of the differential gene expression patterns of tomato plants at various stages of infection by a mild and severe strain of Potato spindle tuber viroid (PSTVd). We also compared tomato gene expression altered by the PSTVd strains with that altered by Tobacco mosaic virus (TMV). Our analyses revealed that the two PSTVd strains altered expression of both common and unique tomato genes. These genes encode products involved in defense/stress response, cell wall structure, chloroplast function, protein metabolism, and other diverse functions. Five genes have unknown functions. Four genes are novel. The expression of some but not all of these genes was also altered by TMV infection. Our results indicate that viroids, although structurally simple, can trigger complex host responses. Further characterization of viroid-altered gene expression in a host plant should help understand viroid pathogenicity and, potentially, the mechanisms of RNA-mediated regulation of plant gene expression.
Collapse
Affiliation(s)
- Asuka Itaya
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
20
|
Zhu Y, Qi Y, Xun Y, Owens R, Ding B. Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. PLANT PHYSIOLOGY 2002; 130:138-46. [PMID: 12226494 PMCID: PMC166547 DOI: 10.1104/pp.006403] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 04/18/2002] [Accepted: 04/26/2002] [Indexed: 05/17/2023]
Abstract
Increasing evidence indicates that the phloem mediates traffic of selective RNAs within a plant. How an RNA enters, moves in, and exits the phloem is poorly understood. Potato spindle tuber viroid (PSTVd) is a pathogenic RNA that does not encode proteins and is not encapsidated, and yet it replicates autonomously and traffics systemically within an infected plant. The viroid RNA genome must interact directly with cellular factors to accomplish these functions and is, therefore, an excellent probe to study mechanisms that regulate RNA traffic. Our analyses of PSTVd traffic in Nicotiana benthamiana yielded evidence that PSTVd movement within sieve tubes does not simply follow mass flow from source to sink organs. Rather, this RNA is transported into selective sink organs. Furthermore, two PSTVd mutants can enter the phloem to spread systemically but cannot exit the phloem in systemic leaves of tobacco (Nicotiana tabacum). A viroid most likely has evolved structural motifs that mimic endogenous plant RNA motifs so that they are recognized by cellular factors for traffic. Thus, analysis of PSTVd traffic functions may provide insights about endogenous mechanisms that control phloem entry, transport, and exit of RNAs.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
21
|
Zhao Y, Owens RA, Hammond RW. Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid. J Gen Virol 2001; 82:1491-1497. [PMID: 11369895 DOI: 10.1099/0022-1317-82-6-1491] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a covalently closed circular RNA molecule of 359 nucleotides that replicates within the nucleus of host cells. To determine how this small, highly structured RNA enters the nucleus, we have developed a virus-based, whole plant in vivo assay that uses green fluorescent protein (GFP) as the reporter molecule. The coding region of GFP was interrupted by insertion of an intron derived from the intervening sequence 2 of the potato ST-LS1 gene. A cDNA copy of the complete PSTVd genome was, in turn, embedded within the intron, and this construct was delivered into Nicotiana benthamiana plants via a vector based on Potato virus X. The intron-containing GFP subgenomic RNA synthesized during virus infection cannot produce a functional GFP unless the RNA is imported into the nucleus, where the intron can be removed and the spliced RNA returned to the cytoplasm. The appearance of green fluorescence in leaf tissues inoculated with constructs containing a full-length PSTVd molecule embedded in the intron indicates that nuclear import and RNA splicing events did occur.
Collapse
Affiliation(s)
- Yan Zhao
- US Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland 20705, USA1
| | - Robert A Owens
- US Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland 20705, USA1
| | - Rosemarie W Hammond
- US Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland 20705, USA1
| |
Collapse
|
22
|
Candresse T, Góra-Sochacka A, Zagórski W. Restoration of secondary hairpin II is associated with restoration of infectivity of a non-viable recombinant viroid. Virus Res 2001; 75:29-34. [PMID: 11311425 DOI: 10.1016/s0168-1702(00)00255-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutagenesis and/or construction of recombinants by exchange of genomic regions between parental molecules constitute powerful tools for the study of viroids. However, a large proportion of such modifications results in molecules, which have lost their infectivity. Such is the case for a recombinant viroid named CECS, obtained by replacing the right half of a citrus exocortis viroid (CEVd) by the same region from chrysanthemum stunt viroid (CSVd). In an effort to recover viable infectious progeny from this recombinant, tomato plants were inoculated with an Agrobacterium strain carrying a dimer of the CECS viroid in positive orientation under the control of the CaMV 35S promoter. About 20% of the plants treated in this way were found to be infected with a replicating viroid, which was further propagated. Sequence analysis of six cloned full-length cDNAs derived from progeny molecules revealed the presence of mutations as compared with the parental CECS sequence. However, only two types of mutations were consistently recovered in all progeny molecules, the addition of a G in a string of four at positions 70-73, a mutation frequently observed in CEVd isolates and mutations leading to the restoration of the correct base pairing in secondary hairpin II. These results show that agro-infection is a suitable technique for the recovery of viable molecules from non-infectious viroid mutants and confirm that the ability to form secondary hairpin II is a prerequisite for viroid infectivity.
Collapse
Affiliation(s)
- T Candresse
- Equipe de Virologie, UMR GD2P, IBVM, INRA, BP81, 33883 Cedex, Villenave d'Ornon, France.
| | | | | |
Collapse
|
23
|
Hammond RW, Zhao Y. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:903-10. [PMID: 10975647 DOI: 10.1094/mpmi.2000.13.9.903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases.
Collapse
Affiliation(s)
- R W Hammond
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | | |
Collapse
|
24
|
Ambrós S, Hernández C, Flores R. Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J Gen Virol 1999; 80 ( Pt 8):2239-2252. [PMID: 10466824 DOI: 10.1099/0022-1317-80-8-2239] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viroids, small single-stranded circular RNAs endowed with autonomous replication, are unique systems to conduct evolutionary studies of complete RNA genomes. The primary structure of 36 progeny variants of peach latent mosaic viroid (PLMVd), evolved from inoculations of the peach indicator GF-305 with four individual PLMVd cDNAs differing in their pathogenicity, has been determined. Most progeny variants had unique sequences, revealing that the extremely heterogeneous character of PLMVd natural isolates most probably results from the intrinsic ability of this RNA to accumulate changes, rather than from repeated inoculations of the same individual trees under field conditions. The structure of the populations derived from single PLMVd sequences differed according to the observed phenotype. Variant gds6 induced a reproducible symptomatic infection and gave rise to a more uniform progeny that preserves some parental features, whereas variant gds15, which induced a variable phenotype, showed a more complex behaviour, generating two distinct progenies in symptomatic and asymptomatic individual plants. Progenies derived from variants esc10 and Is11, which incited latent infections, followed a similar evolutionary pattern, leading to a population structure consisting of two main groups of variants, one of which was formed by variants closely related to the parental sequence. The evolution rate exhibited by PLMVd, considerably higher than that reported for potato spindle tuber viroid, may contribute to the fluctuating symptomatology of the severe PLMVd natural isolates. However, the polymorphism observed in PLMVd progenies does preserve some structural and functional elements previously proposed for this viroid, supporting the fact that they act as constraints limiting the genetic divergence of PLMVd quasispecies generated de novo.
Collapse
Affiliation(s)
- S Ambrós
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| | - C Hernández
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| | - R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| |
Collapse
|
25
|
Ambrós S, Flores R. In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Res 1998; 26:1877-83. [PMID: 9518479 PMCID: PMC147498 DOI: 10.1093/nar/26.8.1877] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peach latent mosaic viroid (PLMVd) can adopt hammerhead structures in both polarity strands. In the course of a study on the variability of this viroid a natural sequence variant has been characterized in which the hammerhead structure of the plus polarity strand has the sequence CCGA instead of the conserved uridine turn motif CUGA present in the catalytic pocket of all natural hammerhead structures. The viroid RNA containing this mutant hammerhead structure, but not those with the two other possible substitutions, U-->A and U-->G, in the same position of the catalytic pocket, showed significant self-cleavage activity during in vitro transcription. Moreover, the corresponding full-length PLMVd cDNA was infectious and the mutation was retained in a fraction of the viroid progeny. These results indicate that the sequence flexibility of the hammerhead structure, acting in vitro and in vivo , is higher than anticipated and provide relevant data for a deeper insight into the catalytic mechanism of this class of ribozymes and into the structure of the uridine turn motif.
Collapse
Affiliation(s)
- S Ambrós
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, 46022 Valencia, Spain
| | | |
Collapse
|
26
|
Sano T, Ishiguro A. Viability and pathogenicity of intersubgroup viroid chimeras suggest possible involvement of the terminal right region in replication. Virology 1998; 240:238-44. [PMID: 9454697 DOI: 10.1006/viro.1997.8899] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the structural determinants regulating viroid replication and pathogenicity, we have examined the biological properties of four chimeric viroids containing sequences derived from hop stunt (HSVd) and citrus exocortis (CEVd) viroids. The viability of each chimera--CEHS (CEVd left half + HSVd right half), HSCE (HSVd left half + CEVd right half), CE/HS-TR (CEVd + HSVd right terminal loop), and HS/CE-TR (HSVd + CEVd right terminal loop)--was tested by inoculation onto cucumber and tomato seedlings. Chimeras CEHS and HSCE were not infectious, but CE/HS-TR and HS/CE-TR replicated stably and produced disease symptoms when inoculated onto tomato or cucumber, respectively. Progeny accumulation was reduced 10-fold or more compared to that of CEVd in tomato or HSVd in cucumber. The results suggested that the TR, like the TL and P regions, forms a relatively independent structural unit that contributes to the total function of a viroid. The effect of sequences in the right terminal loop on pathogenicity appears to be indirect, modulating the efficiency of viroid replication (or accumulation) efficiency rather than symptom expression per se.
Collapse
Affiliation(s)
- T Sano
- Laboratory of Phytopathology, Faculty of Agriculture, Hirosaki University, Japan.
| | | |
Collapse
|
27
|
Góra-Sochacka A, Kierzek A, Candresse T, Zagórski W. The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA (NEW YORK, N.Y.) 1997; 3:68-74. [PMID: 8990400 PMCID: PMC1369463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA viruses propagate as a population of genetically related entities composing a quasi-species. Specific representatives are the result of both a high mutation rate during replication and competition between the continuously arising sequence variants. Similar to other RNA pathogens, potato spindle tuber viroid (PSTVd) propagates as a population of similar but nonidentical sequences. The sequence of progeny molecules derived from cloned molecular variants of PSTVd were studied after one and six consecutive plant passages. Although the severe parental sequence S23 was found to be genetically stable, all five other parental sequences analyzed, irrespective of their pathogenicity, led to the appearance of complex populations. Divergence of the progeny was observed at the sequence level, but also, more surprisingly, at the level of the pathogenicity of individual progeny molecules. In two cases, the parental sequence was retained in the progeny population. In the other cases, it was completely out-competed and eliminated, sometimes in as little as one plant passage. Although it has been observed previously that artificially mutated PSTVd molecules may revert rapidly to the wild-type sequence, this study presents direct evidence for the rapid evolution of naturally occurring PSTVd sequence variants.
Collapse
Affiliation(s)
- A Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | |
Collapse
|
28
|
Bussière F, Lafontaine D, Perreault JP. Compilation and analysis of viroid and viroid-like RNA sequences. Nucleic Acids Res 1996; 24:1793-8. [PMID: 8657556 PMCID: PMC145882 DOI: 10.1093/nar/24.10.1793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have created a catalogue comprising all viroid and viroid-like RNA sequences which to our knowledge have been either published or were available from on-line sequence libraries as of October 1, 1995. In the development of this catalogue nomenclature ambiguities were removed, the likely ancestral sequence of most species was determined and the most stable secondary structures of these sequences were predicted using the MulFold package. Only viroids of PSTVd-type possessed a rod-like secondary structure, while most other viroids adopted branched secondary structures. Several viroids have predicted secondary structures that include either a Y or cruciform structure reminiscent of the tRNA-like end of virus genomes at an extremity. However, it remains unknown whether or not these predicted structures are adopted in solution, and if they serve a particular function in vivo. Additional information such as the position of the self-catalytic domains are included in the catalogue. An analysis of the data compilated in the catalogue is included. The catalogue will be available on the world wide web (http://www.callistro.si.usherb.ca/jpperra), on computer disk and in printed form. It should provide an excellent reference point for further studies.
Collapse
Affiliation(s)
- F Bussière
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
29
|
Wassenegger M, Heimes S, Sänger HL. An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J 1994; 13:6172-7. [PMID: 7813454 PMCID: PMC395597 DOI: 10.1002/j.1460-2075.1994.tb06964.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 359 nucleotides (nt) long potato spindle tuber prototype viroid (PSTVd) is sensitive to experimentally introduced mutations as the substitution or deletion of a single nucleotide usually abolishes its infectivity, although certain sequence alterations are tolerated. This is illustrated by the fact that viroid progeny can evolve in planta upon inoculation with substitution mutants generated in vitro, and by the existence of genetically stable 356-360 nt long PSTVd field isolates. However, to date, no viable in vitro-generated deletion mutant of PSTVd has been reported. We have now found a 341 nt long infectious PSTVd RNA replicon that evolved in agrotransformed plants transformed with the dimeric form of an in vitro-deleted, non-infectious 350 bp long PSTVd cDNA unit by an additional complementary deletion of 9 nt in vivo. This is the first report that the deletion-abolished infectivity of a viroid is restored by an additional deletion that concurrently restabilized its perturbed secondary structure by abandoning an internal segment of the rod-like molecule. The fact that approximately 5% of the total PSTVd RNA genome was deleted demonstrates that the maintenance of this viroid-specific rod-like structure is not only essential for nuclease protection but also for the infectivity, i.e. transmissibility, replicability, processibility and pathogenicity of these minimal infectious agents.
Collapse
Affiliation(s)
- M Wassenegger
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, Martinsried, Germany
| | | | | |
Collapse
|
30
|
Lakshman DK, Tavantzis SM. Primary and secondary structure of a 360-nucleotide isolate of potato spindle tuber viroid. Arch Virol 1993; 128:319-31. [PMID: 8435045 DOI: 10.1007/bf01309442] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Full-length complementary DNAs (cDNA) of a mild (KF5) and a severe (S-PSTVd) isolate of potato spindle tuber viroid (PSTVd) were constructed. DNA sequencing of four KF5 cDNA clones (M3, M4, M5, and M7) revealed that KF5 is comprised of 360 nucleotides. By comparison, all three cDNA clones (S2, S9, and S10) of S-PSTVd possess 359 nucleotides. Sequence microheterogeneity was observed among the KF5 cDNA clones. Clone M5 differs from mild PSTVd isolate KF6 by a U-to-A transversion at position 303 followed by an A addition at the lower half of the "virulence-modulating" (VM) region. These changes modified the PSTVd consensus sequence of the VM region from 5' UCUAUCU 3' to 5' UCAAAUCU 3'. Additionally, clones M4 and M7 have a G-to-A transition at position 65 of the pathogenic domain, and M3 has a G-to-A transition at position 133 of the variable domain. The sequence of the three cDNA clones of S-PSTVd was identical to that of PSTVd isolate 440-1. An improved computer program was used to predict the secondary structure of the above two sequence variants as well as that of other PSTVd variants of which the structure has been reported previously. The data provides support for the hypothesis that increasing thermodynamic instability of the VM region is correlated with increasing virulence of the respective naturally occurring PSTVd isolate.
Collapse
Affiliation(s)
- D K Lakshman
- Department of Plant Biology and Pathology, University of Maine, Orono
| | | |
Collapse
|
31
|
Sano T, Candresse T, Hammond RW, Diener TO, Owens RA. Identification of multiple structural domains regulating viroid pathogenicity. Proc Natl Acad Sci U S A 1992; 89:10104-8. [PMID: 1332029 PMCID: PMC50286 DOI: 10.1073/pnas.89.21.10104] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the role of individual structural domains in viroid pathogenicity and replication, a series of interspecific chimeras was constructed by exchanging the terminal left (TL) and/or pathogenicity (P) domains between tomato apical stunt (TASVd) and citrus exocortis (CEVd) viroids. All six chimeras tested were replicated stably in tomato, and the symptoms exhibited by infected plants were intermediate between those induced by the parental viroids. Quantitative comparisons of symptom development and progeny accumulation revealed that: (i) the TL domain of TASVd contains a determinant required for appearance of severe veinal necrosis in tomato, (ii) the severe epinasty and stunting characteristic of TASVd requires the presence of its TL and P domains, and (iii) the variable (V) and terminal right (TR) domains comprising the right side of the native structure also play an important role in viroid pathogenicity. Chimeras containing the right side of TASVd accumulated to higher levels early in infection, and infected plants developed more severe symptoms than those whose right halves were derived from CEVd. Although the individual contributions of the TL and P domains to symptom induction could not be completely separated from that of viroid titer, the TL domain appears to exert a greater effect upon symptom severity than does the P domain. The TL, P, V, and TR domains of TASVd and CEVd contain three discrete regions of sequence and/or structural variability that may correspond to the pathogenicity determinants uncovered by our genetic analysis.
Collapse
Affiliation(s)
- T Sano
- Microbiology and Plant Pathology Laboratory, Plant Science Institute, U.S. Department of Agriculture, Beltsville, MD 20705
| | | | | | | | | |
Collapse
|
32
|
Rezaian MA. Australian grapevine viroid--evidence for extensive recombination between viroids. Nucleic Acids Res 1990; 18:1813-8. [PMID: 2336357 PMCID: PMC330600 DOI: 10.1093/nar/18.7.1813] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Australian grapevine viroid (AGV, 369 residues) is a novel viroid with less than 50% sequence similarity with any known viroid. Nevertheless its entire sequence can be divided into regions, each with a high sequence similarity with segments from one of citrus exocortis, potato spindle tuber, apple scar skin, and grapevine yellow speckle viroids. AGV contains the entire central conserved region of the apple scar skin viroid group and is proposed as a member of this group. AGV appears to have originated from extensive RNA recombination involving other viroids. The vegetatively propagated grapevines which have been exposed to multiple viroid infections during their long history of cultivation may have allowed such recombination.
Collapse
Affiliation(s)
- M A Rezaian
- CSIRO Division of Horticulture, Adelaide, Australia
| |
Collapse
|
33
|
Riesner D, Steger G, Zimmat R, Owens RA, Wagenhöfer M, Hillen W, Vollbach S, Henco K. Temperature-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis 1989; 10:377-89. [PMID: 2475340 DOI: 10.1002/elps.1150100516] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Temperature-gradient gel electrophoresis (TGGE) is applied to analyze conformational transitions and sequence variations of nucleic acids and protein-nucleic acid interactions. A linear and highly reproducible temperature-gradient is established perpendicular or parallel to the direction of the electrophoresis. The instrument consists of an electrically insulated metal plate, which is heated at one edge and cooled at the other edge by two thermostating baths and is used as an ancillary device for commercial horizontal gel electrophoresis instruments. Biopolymers are separated in TGGE according to size, shape and thermal stability of their conformational transitions. If the temperature-gradient is established perpendicular to the electrophoresis, monomolecular conformational transitions of nucleic acids show up as continuous transition curves; strand-separation leads to discontinuous transitions. In the studies on viroid RNA it was shown that natural circular viroid RNA undergoes one highly cooperative transition detected by TGGE as a drastic retardation in mobility. Oligomeric replication intermediates of viroids exhibit coexisting structures which could not be detected by any other technique. Double-stranded satellite RNA from cucumber mosaic virus is a mixture of sequence variants, all of which have the identical length of 335 nucleotides. In TGGE six different strains were resolved. Sequence variants of viroids were analyzed by hybridizing viroid RNA to (-)strand viroid RNA transcripts from viroid cDNA clones. Sequence variations lead to mismatches in the double strands and thereby to a shift of the transition curve to lower temperature. Mutations in plasmids, particularly in cloned inserts, were detected by mixing plasmids of two different clones, linearizing, denaturing, renaturing, and searching for shifts in the transition curves, which are generated by mismatch-formation during the renaturation of (+)- and (-)strands from different clones. Examples are given for different viroid clones and HIV-clones from one and the same patient. In another example, clones with point mutations from site-directed mutagenesis are analyzed and selected by TGGE. TGGE is also applied to study the effect of amino acid exchanges in the Tet repressor from E. coli on the thermal stability of the repressor and on the mode of binding of the repressor to the operator DNA. The results are discussed under the aspect that TGGE may be applied as routine analytical laboratory procedure.
Collapse
Affiliation(s)
- D Riesner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Diener TO. Subviral pathogens of plants: the viroids. LA RICERCA IN CLINICA E IN LABORATORIO 1989; 19:105-28. [PMID: 2672273 DOI: 10.1007/bf02871800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Research during the last 15 years has conclusively shown that viroids are not only fundamentally different from viruses at the molecular level, but that they are most likely not directly related to viruses in an evolutionary sense. Today, viroids are among the most thoroughly studied biological macromolecules. Their molecular structures have been elucidated to a large extent, but much needs to be learned regarding the correlation between molecular structure and biological function. The availability of the tools of recombinant DNA technology in viroid research promises rapid progress in these areas of inquiry.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park
| |
Collapse
|
35
|
Puchta H, Sänger HL. An improved procedure for the rapid one-step-cloning of full-length viroid cDNA. Arch Virol 1988; 101:137-40. [PMID: 2843147 DOI: 10.1007/bf01314659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficiency of viroid cloning can be increased by three to four orders of magnitude when the synthesis of viroid cDNA is primed in such a way that it carries identical sticky ends on both termini and when the multi-ion transformation is applied.
Collapse
Affiliation(s)
- H Puchta
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, Martinsried bei München, Federal Republic of Germany
| | | |
Collapse
|