1
|
Jiang L, Yan H. Cloning, expression, purification and biochemical characterization of the recombinant chitinase enzyme encoded by CTS2 in the budding yeast. Protein Expr Purif 2023; 208-209:106294. [PMID: 37150231 DOI: 10.1016/j.pep.2023.106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Chitin is a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc) and plays a central role in the assembly of the fungal cell wall. Chitinases are hydrolytic enzymes that break down glycosidic bonds in the chitin. Chitinases are classified into three categories, endochitinases, exochitinases and N-acetylglucosaminases, according to the manner in which the enzyme cleaves the chitin polymer. Saccharomyces cerevisiae has two chitinase-encoding genes, CTS1 and CTS2. However, whether Cts2p shows a chitinase activity remains unknown. In this study, we have cloned, expressed and purified the recombinant Cts2p protein from bacterial cells. We have demonstrated that Cts2p has a higher chitobiosidase (exochitinase) activity than endochitinase activity, but no N-acetylglucosaminase activity. The optimal temperature for the chitobiosidase activity of Cts2p is 37 °C.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China.
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
2
|
He B, Yang L, Yang D, Jiang M, Ling C, Chen H, Ji F, Pan L. Biochemical purification and characterization of a truncated acidic, thermostable chitinase from marine fungus for N-acetylglucosamine production. Front Bioeng Biotechnol 2022; 10:1013313. [PMID: 36267443 PMCID: PMC9578694 DOI: 10.3389/fbioe.2022.1013313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is widely used in nutritional supplement and is generally produced from chitin using chitinases. While most GlcNAc is produced from colloidal chitin, it is essential that chitinases be acidic enzymes. Herein, we characterized an acidic, highly salinity tolerance and thermostable chitinase AfChiJ, identified from the marine fungus Aspergillus fumigatus df673. Using AlphaFold2 structural prediction, a truncated Δ30AfChiJ was heterologously expressed in E. coli and successfully purified. It was also found that it is active in colloidal chitin, with an optimal temperature of 45°C, an optimal pH of 4.0, and an optimal salt concentration of 3% NaCl. Below 45°C, it was sound over a wide pH range of 2.0–6.0 and maintained high activity (≥97.96%) in 1–7% NaCl. A notable increase in chitinase activity was observed of Δ30AfChiJ by the addition of Mg2+, Ba2+, urea, and chloroform. AfChiJ first decomposed colloidal chitin to generate mainly N-acetyl chitobioase, which was successively converted to its monomer GlcNAc. This indicated that AfChiJ is a bifunctional enzyme, composed of chitobiosidase and β-N-acetylglucosaminidase. Our result suggested that AfChiJ likely has the potential to convert chitin-containing biomass into high-value added GlcNAc.
Collapse
Affiliation(s)
- Bin He
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Liyan Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Dengfeng Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Minguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Chengjin Ling
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, Guangxi, China
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| | - Feng Ji
- Guangxi Huaren Medical Technolgoy Group, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, Guangxi, China
- *Correspondence: Hailan Chen, ; Feng Ji, ; Lixia Pan,
| |
Collapse
|
3
|
Romero-Contreras YJ, Ramírez-Valdespino CA, Guzmán-Guzmán P, Macías-Segoviano JI, Villagómez-Castro JC, Olmedo-Monfil V. Tal6 From Trichoderma atroviride Is a LysM Effector Involved in Mycoparasitism and Plant Association. Front Microbiol 2019; 10:2231. [PMID: 31608044 PMCID: PMC6773873 DOI: 10.3389/fmicb.2019.02231] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
LysM effectors play a relevant role during the plant colonization by successful phytopathogenic fungi, since they enable them to avoid either the triggering of plant defense mechanisms or their attack effects. Tal6, a LysM protein from Trichoderma atroviride, is capable of binding to complex chitin. However, until now its biological function is not completely known, particularly its participation in plant–Trichoderma interactions. We obtained T. atroviride Tal6 null mutant and Tal6 overexpressing strains and determined the role played by this protein during Trichoderma-plant interaction and mycoparasitism. LysM effector Tal6 from T. atroviride protects the hyphae from chitinases by binding to chitin of the fungal cell wall, increases the fungus mycoparasitic capacity, and modulates the activation of the plant defense system. These results show that beneficial fungi also employ LysM effectors to improve their association with plants.
Collapse
Affiliation(s)
- Yordan J Romero-Contreras
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Claudia A Ramírez-Valdespino
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Paulina Guzmán-Guzmán
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | | | | | - Vianey Olmedo-Monfil
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
Affiliation(s)
- Jorge Verdín
- Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance Center, Mexico National Council for Science and Technology, Zapopan, Jalisco, Mexico
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rosa A Fajardo-Somera
- Karlsruhe Institute of Technology (KIT) South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| |
Collapse
|
5
|
Hernández‐Guzmán A, Flores‐Martínez A, Ponce‐Noyola P, Villagómez‐Castro JC. Purification and characterization of an extracellular β-glucosidase from Sporothrix schenckii. FEBS Open Bio 2016; 6:1067-1077. [PMID: 27833847 PMCID: PMC5095144 DOI: 10.1002/2211-5463.12108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023] Open
Abstract
An extracellular β-glucosidase (E.C. 3.2.1.21), induced by cellulose in the mycelial form of human pathogen fungus Sporothrix schenckii, was purified to homogeneity using hydroxyapatite (HAp) adsorption chromatography in batch and Sephacryl S200-HR size exclusion chromatography. The molecular mass of the purified enzyme was estimated to be 197 kDa by size exclusion chromatography with a subunit of 96.8 kDa determined by SDS/PAGE. The β-glucosidase exhibited optimum catalytic activity at pH 5.5/45 °C and was relatively stable for up to 24 h at 45 °C. Isoelectric focusing displayed an enzyme with a pI value of 4.0. Its activity was inhibited by Fe2+ but not by any other ions or chelating agents. Km and Vmax values of the purified enzyme were 0.012 mm and 2.56 nmol·min-1·mg-1, respectively, using 4-methylumbelliferyl β-D-glucopyranoside (4-MUG) as the substrate and 44.14 mm and 22.49 nmol·min-1·mg-1 when p-nitrophenyl β-D-glucopyranoside (p-NPG) was used. The purified β-glucosidase was active against cellobioside, laminarin, 4-MUG, and p-NPG and slightly active against 4-methylumbelliferyl β-D-cellobioside and p-nitrophenyl β-D-cellobioside but did not hydrolyze 4-methylumbelliferyl β-D-xyloside, 4-methylumbelliferyl β-D-galactopyranoside nor 4-methylumbelliferyl α-D-glucopyranoside. In addition, the enzyme showed transglycosylation activity when it was incubated along with different oligosaccharides. Whether the transglycosylation and cellulase activities function in vivo as a mechanism involved in the degradation of cellulolytic biomass in the saprophytic stage of S. schenckii remains to be determined.
Collapse
Affiliation(s)
- Alicia Hernández‐Guzmán
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | - Alberto Flores‐Martínez
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | - Patricia Ponce‐Noyola
- Departamento de BiologíaDivisión de Ciencias Naturales y ExactasUniversidad de GuanajuatoMéxico
| | | |
Collapse
|
6
|
Hirayama H, Hosomi A, Suzuki T. Physiological and molecular functions of the cytosolic peptide:N-glycanase. Semin Cell Dev Biol 2015; 41:110-20. [DOI: 10.1016/j.semcdb.2014.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
|
7
|
The Cytoplasm-to-Vacuole Targeting Pathway: A Historical Perspective. Int J Cell Biol 2012; 2012:142634. [PMID: 22481942 PMCID: PMC3296166 DOI: 10.1155/2012/142634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
From today's perspective, it is obvious that macroautophagy (hereafter autophagy) is an important pathway that is connected to a range of developmental and physiological processes. This viewpoint, however, is relatively recent, coinciding with the molecular identification of autophagy-related (Atg) components that function as the protein machinery that drives the dynamic membrane events of autophagy. It may be difficult, especially for scientists new to this area of research, to appreciate that the field of autophagy long existed as a “backwater” topic that attracted little interest or attention. Paralleling the development of the autophagy field was the identification and analysis of the cytoplasm-to-vacuole targeting (Cvt) pathway, the only characterized biosynthetic route that utilizes the Atg proteins. Here, we relate some of the initial history, including some never-before-revealed facts, of the analysis of the Cvt pathway and the convergence of those studies with autophagy.
Collapse
|
8
|
Hirayama H, Suzuki T. Metabolism of free oligosaccharides is facilitated in the och1Δ mutant of Saccharomyces cerevisiae. Glycobiology 2011; 21:1341-8. [PMID: 21622726 DOI: 10.1093/glycob/cwr073] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, it is known that N-glycans play a pivotal role in quality control of carrier proteins. Although "free" forms of oligosaccharides (fOSs) are known to be accumulated in the cytosol, the precise mechanism of their formation, degradation and biological relevance remains poorly understood. It has been shown that, in budding yeast, almost all fOSs are formed from misfolded glycoproteins. Precise structural analysis of fOSs revealed that several yeast fOSs bear a yeast-specific modification by Golgi-resident α-1,6-mannosyltransferase, Och1. In this study, structural diversity of fOSs in och1Δ cells was analyzed. To our surprise, several fOSs in och1Δ cells have unusual α-1,3-linked mannose residues at their non-reducing termini. These mannose residues were not observed in wild-type cells, suggesting that the addition of these unique mannoses occurred as a compensation of Och1 defect. A significant increase in the amount of fOSs modified by Golgi-localized mannosyltransferases was also observed in och1Δ cells. Moreover, the amount of processed fOSs and intracellular α-mannosidase (Ams1) both increased in this mutant. Up-regulation of Ams1 activity was also apparent for cells treated with cell wall perturbation reagent. These results provide an insight into a possible link between catabolism of fOSs and cell wall stress.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama 351-0198, Japan
| | | |
Collapse
|
9
|
Chen BR, Runge KW. A new Schizosaccharomyces pombe chronological lifespan assay reveals that caloric restriction promotes efficient cell cycle exit and extends longevity. Exp Gerontol 2009; 44:493-502. [PMID: 19409973 DOI: 10.1016/j.exger.2009.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 03/12/2009] [Accepted: 04/16/2009] [Indexed: 11/24/2022]
Abstract
We describe a new chronological lifespan (CLS) assay for the yeast Schizosaccharomyces pombe. Yeast CLS assays monitor the loss of cell viability in a culture over time, and this new assay shows a continuous decline in viability without detectable regrowth until all cells in the culture are dead. Thus, the survival curve is not altered by the generation of mutants that can grow during the experiments, and one can monitor the entire lifespan of a strain until the number of viable cells has decreased over 10(6)-fold. This CLS assay recapitulates the evolutionarily conserved features of lifespan shortening by over nutrition, lifespan extension by caloric restriction, increased stress resistance of calorically restricted cells and lifespan control by the AKT kinases. Both S. pombe AKT kinase orthologs regulate CLS: loss of sck1(+) extended lifespan in over nutrition conditions, loss of sck2(+) extended lifespan under both normal and over nutrition conditions, and loss of both genes showed that sck1(+) and sck2(+) control different longevity pathways. The longest-lived S. pombe cells showed the most efficient cell cycle exit, demonstrating that caloric restriction links these two processes. This new S. pombe CLS assay will provide a valuable tool for aging research.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Department of Molecular Genetics, Cleveland Clinic Lerner College of Medicine at CWRU, 9500 Euclid Avenue NE 20, Cleveland, OH 44195, USA
| | | |
Collapse
|
10
|
Chantret I, Moore SEH. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2007; 18:210-24. [DOI: 10.1093/glycob/cwn003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Abstract
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.
Collapse
Affiliation(s)
- Li Duo-Chuan
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
12
|
Abstract
An extracellular matrix composed of a layered meshwork of beta-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.
Collapse
Affiliation(s)
- Guillaume Lesage
- Department of Biology, McGill University, Montreal, PQ H3A 1B1, Canada
| | | |
Collapse
|
13
|
Spindler KD, Spindler-Barth M. Inhibition of chitinolytic enzymes fromStreptomyces griseus(bacteria),Artemia salina(crustacea), and a cell line fromChironomus tentans(insecta) by allosamidin and isoallosamidin. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780400205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Reiser J, Glumoff V, Kälin M, Ochsner U. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 43:75-102. [PMID: 2291442 DOI: 10.1007/bfb0009080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past few years, yeasts other than those belonging to the genus Saccharomyces have become increasingly important for industrial applications. Species such as Pichia pastoris, Hansenula polymorpha, Schizosaccharomyces pombe, Yarrowia lipolytica and Kluyveromyces lactis have been modified genetically and used for the production of heterologous proteins. For a number of additional yeasts such as Schwanniomyces occidentalis, Zygosaccharomyces rouxii, Trichosporon cutaneum, Pachysolen tannophilus, Pichia guilliermondii and members of the genus Candida genetic transformation systems have been worked out. Transformation was achieved using either dominant selection markers based on antibiotic resistance genes or auxotrophic markers in conjunction with cloned biosynthetic genes involved in amino acid or nucleotide metabolism.
Collapse
Affiliation(s)
- J Reiser
- Institut für Biotechnologie, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
15
|
Sakamoto Y, Minato KI, Nagai M, Mizuno M, Sato T. Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-beta-1,3-glucanase. Curr Genet 2005; 48:195-203. [PMID: 16133343 DOI: 10.1007/s00294-005-0002-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 05/24/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
Lentinan, an antitumor substance purified from Lentinula edodes, is degraded during post-harvest preservation as a result of increased glucanase activity. We isolated an exo-beta-1,3-glucanase encoding gene, exg2, from L. edodes which is a homologue of an exo-glucanase-encoding gene conserved in ascomycetous fungi. The exg2 gene was cloned as an approximately 2.4-kbp cDNA, and as a genomic sequence of 3.9-kbp. The product of the exg2 gene is predicted to contain 759 amino acids with a molecular weight of 79 kDa and a pI value of 4.6. The putative N-terminus of EXG2 is identical to the N-terminal sequences of lentinan-degrading enzymes, GNase I and II, and a custom-made anti-EXG2 peptide anti-serum cross-reacted with purified GNase I and II. Transcription and translation of exg2 was low in the gills of mature fruiting bodies, but increased after harvesting. We conclude that the exg2 gene is a lentinan-degrading enzyme-encoding-gene in L. edodes.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Conserved Sequence
- Genes, Fungal
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/isolation & purification
- Glucan 1,3-beta-Glucosidase/metabolism
- Lentinan/metabolism
- Molecular Sequence Data
- Protein Biosynthesis
- Restriction Mapping
- Sequence Analysis, DNA
- Shiitake Mushrooms/enzymology
- Shiitake Mushrooms/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate, 024-0003 Japan.
| | | | | | | | | |
Collapse
|
16
|
Acosta-Rodríguez I, Piñón-Escobedo C, Zavala-Páramo MG, López-Romero E, Cano-Camacho H. Degradation of cellulose by the bean-pathogenic fungus Colletotrichum lindemuthianum. Production of extracellular cellulolytic enzymes by cellulose induction. Antonie van Leeuwenhoek 2005; 87:301-10. [PMID: 15928983 DOI: 10.1007/s10482-004-6422-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
Colletotrichum lindemuthianum was able to grow and produce extracellular cellulolytic activity in a defined medium containing cellulose as the main carbon substrate. As measured either by the hydrolysis of 4-methylumbelliferyl-beta-D -cellotrioside or the release of glucose from carboxymethylcellulose, activity reached a peak after 13 days of incubation and then declined whereas growth markedly increased afterwards. Detection of glucose in carboxymethylcellulose hydrolysates suggested the concerted operation of endo-1,4-beta-glucanase, cellobiohydrolase (exo-1,4-beta-glucanase) and beta-glucosidase activities. The highest levels of cellulolytic activity were obtained in media supplemented with cellulose and glutamate. Other carbon and nitrogen sources markedly influenced growth and enzyme production. Oligonucleotides homologous to specific regions of the cellobiohydrolase-encoding cbhII gene from Trichoderma reesei were used to isolate a C. lindemuthianum cbhII-DNA fragment whose sequence revealed homologies of 98% and 92% with the nucleotide and the deduced amino acid sequences of the corresponding cbhII-DNA of T. reesei, respectively. RT-PCR and Southern blot analyses of total RNA samples obtained from cellulose-grown but not from glucose-grown mycelium revealed the expression of the corresponding cbhII transcript. The cbhII-cDNA fragment was cloned and sequenced.
Collapse
Affiliation(s)
- Ismael Acosta-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P.78320, México
| | | | | | | | | |
Collapse
|
17
|
Sakamoto Y, Irie T, Sato T. Isolation and characterization of a fruiting body-specific exo-beta-1,3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr Genet 2005; 47:244-52. [PMID: 15724214 DOI: 10.1007/s00294-005-0563-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/21/2004] [Accepted: 01/03/2005] [Indexed: 12/01/2022]
Abstract
An exo-beta-1,3-glucanase-encoding gene was isolated from Lentinula edodes to investigate the relationship between the cell wall lytic enzyme and mushroom morphogenesis. The deduced amino acid sequence of the protein corresponding to the exg1 gene displayed 67% identity to AbEXG1 of Agaricus bisporus and approximately 40% identity to yeast exo-beta-1,3-glucanases. Two conserved glutamic acids within the catalytic active site in yeast exo-beta-1,3-glucanases were conserved in exg1 of L. edodes. The exg1 gene was expressed in fruiting bodies, but not in vegetative mycelia. Expression was higher in the stipe than in the pileus of young fruiting bodies. The gene was additionally expressed in the gills of mature fruiting bodies. We purified a glucanase from the stipes of young fruiting bodies that had an N-terminus identical to that of the putative exg1 product. These results collectively indicate that exg1 is involved in L. edodes fruiting body development, including stipe elongation.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate 024-0003, Japan.
| | | | | |
Collapse
|
18
|
Kottom TJ, Limper AH. Pneumocystis carinii cell wall biosynthesis kinase gene CBK1 is an environmentally responsive gene that complements cell wall defects of cbk-deficient yeast. Infect Immun 2004; 72:4628-36. [PMID: 15271923 PMCID: PMC470662 DOI: 10.1128/iai.72.8.4628-4636.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis species remain an important cause of life-threatening pneumonia in immunocompromised hosts, including those with AIDS. Responses of the organism to environmental cues both within the lung and elsewhere have been poorly defined. Herein, we report the identification of a cell wall biosynthesis kinase gene (CBK1) homologue in Pneumocystis carinii, isolated by differential display PCR, that is expressed optimally at physiological pH (7 to 8) as opposed to more acidic environments. Expression of Pneumocystis CBK1 was also induced by contact with lung epithelial cells and extracellular matrix. Translation of this gene revealed extensive homology to other fungal CBK1 kinases. Pneumocystis CBK1 expression was equal in the cyst and trophic life forms of the organisms. We further demonstrate that Pneumocystis CBK1 expressed in cbk1 Delta Saccharomyces cerevisiae cells restored defective cell wall separation during proliferation. Consistent with this, Pneumocystis CBK1 expression also stimulated transcription of the CTS1 chitinase in cbk1 Delta mutant yeast cells, an event necessary for cell wall separation. In addition, Pneumocystis CBK1 cDNA supported normal mating projection formation in response to alpha-factor in the cbk1 Delta yeast cells. Site-directed mutations of serine-303 and threonine-494, potential regulatory phosphorylation sites in Pneumocystis CBK1, abolished mating projection formation, indicating a role for these amino acid residues in CBK1 activity. These findings indicate that Pneumocystis CBK1 is an environmentally responsive gene that may function in signaling pathways necessary for cell growth and mating.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
19
|
Chantret I, Frénoy JP, Moore SEH. Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide:N-glycanase (Png1p) and vacuolar mannosidase (Ams1p). Biochem J 2003; 373:901-8. [PMID: 12723970 PMCID: PMC1223533 DOI: 10.1042/bj20030384] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 04/23/2003] [Accepted: 05/01/2003] [Indexed: 11/17/2022]
Abstract
Free oligosaccharides (fOS) are generated during glycoprotein biosynthesis in mammalian cells. Here we report on the origin and fate of these structures in the yeast Saccharomyces cerevisiae. After metabolic radiolabelling with [2-(3)H]mannose ([2-(3)H]Man) for 30 min, Man(8)GlcNAc(2) was identified as the predominant fOS in this organism, and radioactivity associated with this structure was found to correspond to approximately 1% of that associated with the same structure N -linked to glycoprotein. Despite provoking a fourfold increase in radioactivity associated with lipid-linked oligosaccharide, the protein-synthesis inhibitor cycloheximide blocked [2-(3)H]Man incorporation into both endo-beta-D- N -acetylglucosamine H-sensitive N-glycans and fOS. Peptide:N-glycanase, encoded by the PNG1 gene, was found to be required for the generation of a large proportion of yeast fOS during, and soon after, protein glycosylation. Use of an ams1 Delta strain deficient in the vacuolar alpha-mannosidase revealed this enzyme to be responsible for the slow growth-associated catabolism of fOS. The present paper constitutes the first description of fOS formation in intact S. cerevisiae, and, with the demonstration that fOS are degraded by the vacuolar mannosidase, a novel function for this poorly understood enzyme has been identified.
Collapse
Affiliation(s)
- Isabelle Chantret
- Glycobiologie et Signalisation Cellulaire, INSERM U504, Bâtiment INSERM, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France
| | | | | |
Collapse
|
20
|
Baladrón V, Ufano S, Dueñas E, Martín-Cuadrado AB, del Rey F, Vázquez de Aldana CR. Eng1p, an endo-1,3-beta-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:774-86. [PMID: 12455695 PMCID: PMC126745 DOI: 10.1128/ec.1.5.774-786.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ENG1 (YNR067c), a gene encoding a new endo-1,3-beta-glucanase, was cloned by screening a genomic library with a DNA probe obtained by PCR with synthetic oligonucleotides designed according to conserved regions found between yeast exo-1,3-beta-glucanases (Exglp, Exg2p, and Ssglp). Eng1p shows strong sequence similarity to the product of the Saccharomyces cerevisiae ACF2 gene, involved in actin assembly "in vitro," and to proteins present in other yeast and fungal species. It is also related to plant glucan-binding elicitor proteins, which trigger the onset of a defense response upon fungal infection. Eng1p and Acf2p/Eng2p are glucan-hydrolyzing proteins that specifically act on 1,3-beta linkages, with an endolytic mode of action. Eng1p is an extracellular, heavily glycosylated protein, while Acf2p/Eng2p is an intracellular protein with no carbohydrate linked by N-glycosidic bonds. ENG1 transcription fluctuates periodically during the cell cycle; maximal accumulation occurs during the M/G1 transition and is dependent on the transcription factor Ace2p. Interestingly, eng1 deletion mutants show defects in cell separation, and Eng1p localizes asymmetrically to the daughter side of the septum, suggesting that this protein is involved, together with chitinase, in the dissolution of the mother-daughter septum.
Collapse
Affiliation(s)
- Victoriano Baladrón
- Instituto de Microbiologia-Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002. [PMID: 12209002 DOI: 10.1128/mmbr.66.3.506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
22
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506-77, table of contents. [PMID: 12209002 PMCID: PMC120791 DOI: 10.1128/mmbr.66.3.506-577.2002] [Citation(s) in RCA: 2338] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
23
|
McNemar MD, Fonzi WA. Conserved serine/threonine kinase encoded by CBK1 regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans. J Bacteriol 2002; 184:2058-61. [PMID: 11889116 PMCID: PMC134915 DOI: 10.1128/jb.184.7.2058-2061.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic fungal pathogen, Candida albicans, is reported to have several potential virulence factors. A potentially significant factor is the ability to undergo morphological transition from yeast to hypha. This alteration of form is accompanied by many changes within the cell, including alterations in gene expression and cell wall composition. We have isolated a gene that encodes a highly conserved serine/threonine kinase that appears to be involved in the regulation of proteins associated with the cell wall. We have assigned the designation CBK1 (cell wall biosynthesis kinase 1) to this gene. Mutants lacking CBK1 form large aggregates of round cells under all growth conditions and lack the ability to undergo morphological differentiation. Additionally, these mutants show an altered pattern of expression of several transcripts encoding proteins associated with the cell wall. The results suggest that the kinase encoded by CBK1 plays a general role in the maintenance and alteration of the cell wall of C. albicans in all morphologies.
Collapse
Affiliation(s)
- Mark D McNemar
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20007-2197, USA
| | | |
Collapse
|
24
|
Hutchins MU, Klionsky DJ. Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J Biol Chem 2001; 276:20491-8. [PMID: 11264288 PMCID: PMC2754691 DOI: 10.1074/jbc.m101150200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One challenge facing eukaryotic cells is the post-translational import of proteins into organelles. This problem is exacerbated when the proteins assemble into large complexes. Aminopeptidase I (API) is a resident hydrolase of the vacuole/lysosome in the yeast Saccharomyces cerevisiae. The precursor form of API assembles into a dodecamer in the cytosol and maintains this oligomeric form during the import process. Vacuolar delivery of the precursor form of API requires a vesicular mechanism termed the cytoplasm to vacuole targeting (Cvt) pathway. Many components of the Cvt pathway are also used in the degradative autophagy pathway. alpha-Mannosidase (Ams1) is another resident hydrolase that enters the vacuole independent of the secretory pathway; however, its mechanism of vacuolar delivery has not been established. We show vacuolar localization of Ams1 is blocked in mutants that are defective in the Cvt and autophagy pathways. We have found that Ams1 forms an oligomer in the cytoplasm. The oligomeric form of Ams1 is also detected in subvacuolar vesicles in strains that are blocked in vesicle breakdown, indicating that it retains its oligomeric form during the import process. These results identify Ams1 as a second biosynthetic cargo protein of the Cvt and autophagy pathways.
Collapse
Affiliation(s)
| | - Daniel J. Klionsky
- To whom correspondence should be addressed: Dept. of Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109. Tel.: 734-615-6556; Fax: 734-647-0884;
| |
Collapse
|
25
|
Bidlingmaier S, Weiss EL, Seidel C, Drubin DG, Snyder M. The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:2449-62. [PMID: 11259593 PMCID: PMC86877 DOI: 10.1128/mcb.21.7.2449-2462.2001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the early stages of budding, cell wall remodeling and polarized secretion are concentrated at the bud tip (apical growth). The CBK1 gene, encoding a putative serine/threonine protein kinase, was identified in a screen designed to isolate mutations that affect apical growth. Analysis of cbk1Delta cells reveals that Cbk1p is required for efficient apical growth, proper mating projection morphology, bipolar bud site selection in diploid cells, and cell separation. Epitope-tagged Cbk1p localizes to both sides of the bud neck in late anaphase, just prior to cell separation. CBK1 and another gene, HYM1, were previously identified in a screen for genes involved in transcriptional repression and proposed to function in the same pathway. Deletion of HYM1 causes phenotypes similar to those observed in cbk1Delta cells and disrupts the bud neck localization of Cbk1p. Whole-genome transcriptional analysis of cbk1Delta suggests that the kinase regulates the expression of a number of genes with cell wall-related functions, including two genes required for efficient cell separation: the chitinase-encoding gene CTS1 and the glucanase-encoding gene SCW11. The Ace2p transcription factor is required for expression of CTS1 and has been shown to physically interact with Cbk1p. Analysis of ace2Delta cells reveals that Ace2p is required for cell separation but not for polarized growth. Our results suggest that Cbk1p and Hym1p function to regulate two distinct cell morphogenesis pathways: an ACE2-independent pathway that is required for efficient apical growth and mating projection formation and an ACE2-dependent pathway that is required for efficient cell separation following cytokinesis. Cbk1p is most closely related to the Neurospora crassa Cot-1; Schizosaccharomyces pombe Orb6; Caenorhabditis elegans, Drosophila, and human Ndr; and Drosophila and mammalian WARTS/LATS kinases. Many Cbk1-related kinases have been shown to regulate cellular morphology.
Collapse
Affiliation(s)
- S Bidlingmaier
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | |
Collapse
|
26
|
Valdivieso MH, Ferrario L, Vai M, Duran A, Popolo L. Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae. J Bacteriol 2000; 182:4752-7. [PMID: 10940014 PMCID: PMC111350 DOI: 10.1128/jb.182.17.4752-4757.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of a compensatory mechanism in response to cell wall damage has been proposed in yeast cells. The increase of chitin accumulation is part of this response. In order to study the mechanism of the stress-related chitin synthesis, we tested chitin synthase I (CSI), CSII, and CSIII in vitro activities in the cell-wall-defective mutant gas1 delta. CSI activity increased twofold with respect to the control, a finding in agreement with an increase in the expression of the CHS1 gene. However, deletion of the CHS1 gene did not affect the phenotype of the gas1 delta mutant and only slightly reduced the chitin content. Interestingly, in chs1 gas1 double mutants the lysed-bud phenotype, typical of chs1 null mutant, was suppressed, although in gas1 cells there was no reduction in chitinase activity. CHS3 expression was not affected in the gas1 mutant. Deletion of the CHS3 gene severely compromised the phenotype of gas1 cells, despite the fact that CSIII activity, assayed in membrane fractions, did not change. Furthermore, in chs3 gas1 cells the chitin level was about 10% that of gas1 cells. Thus, CSIII is the enzyme responsible for the hyperaccumulation of chitin in response to cell wall stress. However, the level of enzyme or the in vitro CSIII activity does not change. This result suggests that an interaction with a regulatory molecule or a posttranslational modification, which is not preserved during membrane fractionation, could be essential in vivo for the stress-induced synthesis of chitin.
Collapse
Affiliation(s)
- M H Valdivieso
- Departamento de Microbiologia y Genética/Instituto de Microbiologia Bioquimica, Universidad de Salamanca/CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
27
|
Esteban PF, Vazquez de Aldana CR, del Rey F. Cloning and characterization of 1,3-beta-glucanase-encoding genes from non-conventional yeasts. Yeast 1999; 15:91-109. [PMID: 10029988 DOI: 10.1002/(sici)1097-0061(19990130)15:2<91::aid-yea343>3.0.co;2-#] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The molecular cloning of 1,3-beta-glucanase-encoding genes from different yeast species was achieved by screening genomic libraries with DNA probes obtained by PCR-amplification using oligonucleotides designed according to conserved regions in the EXG1, EXG2 and SSG1 genes from Saccharomyces cerevisiae. The nucleotide sequence of the KlEXG1 (Kluyveromyces lactis), HpEXG1 (Hansenula polymorpha) and SoEXG1 (Schwanniomyces occidentalis) genes was determined. K1EXG1 consists of a 1287 bp open reading frame encoding a protein of 429 amino acids (49,815 Da). HpEXG1 specifies a 435-amino acid polypeptide (49,268 Da) which contains two potential N-glycosylation sites. SoEXG1 encodes a protein of 425 residues (49,132 Da) which contains one potential site for N-linked glycosylation. Expression in S. cerevisiae of KlEXG1, SoEXG1 or HpEXG1 under control of their native promoters resulted in the secretion of active 1,3-beta-glucanases. Disruption of KlEXG1 did not result in a phenotype under laboratory conditions. Comparison of the primary translation products encoded by KlEXG1, HpEXG1 and SoEXG1 with the previously characterized exo-1,3-beta-glucanases from S. cerevisiae and C. albicans reveals that enzymes with this type of specificity constitute a family of highly conserved proteins in yeasts. KlExg1p, HpExg1p and SoExg1p contain the invariant amino acid positions which have been shown to be important in the catalytic function of family 5 glycosyl hydrolases.
Collapse
Affiliation(s)
- P F Esteban
- Departamento de Microbiología, Universidad de Salamancal/CSIC, Spain
| | | | | |
Collapse
|
28
|
Sampson MN, Gooday GW. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2189-2194. [PMID: 9720040 DOI: 10.1099/00221287-144-8-2189] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus thuringiensis subsp. israelensis IPS78 and B. thuringiensis subsp. aizawai HD133 both secreted exochitinase activity when grown in a medium containing chitin. Allosamidin, a specific chitinase inhibitor, inhibited activity from both strains, with IC50 values of about 50 microM with colloidal chitin as substrate and between 1 and 10 microM with 4-methylumbelliferyl-diacetylchitobioside and 4-methylumbelliferyl-triacetylchitotrioside as substrates. The involvement of these chitinolytic activities during pathogenesis in insects has been investigated with B. thuringiensis subsp. israelensis IPS78 against larvae of the midge Culicoides nubeculosus, and with B. thuringiensis subsp. aizawai HD133 against caterpillars of the cotton leafworm Spodoptera littoralis. Presence of 100 microM allosamidin increased the LD50 by factors of 1.3 and 1.4, respectively, demonstrating a role for bacterial chitinases in the attack on the insects. Presence of chitinase A from Serratia marcescens considerably decreased the values for LD50 confirming previous observations with different systems of the potentiation of entomopathogenesis of B. thuringiensis by exogenous chitinases. The most likely action of the endogenous chitinases of B. thuringiensis is to weaken the insects' peritrophic membranes, allowing more ready access of the bacterial toxins to the gut epithelia. Addition of exogenous chitinases will then increase this effect. Complementary cross-infection experiments, strain HD133 against midge larvae and strain IPS78 against caterpillars, were performed to investigate the pathogen/host specificities of the effects. Results showed that much higher concentrations of bacteria were required to achieve even low mortalities, and addition of chitinase A gave no increase in death rate.
Collapse
Affiliation(s)
- Mark N Sampson
- Department of Molecular and Cell Biology, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZDUK
| | - Graham W Gooday
- Department of Molecular and Cell Biology, Institute of Medical SciencesForesterhill, Aberdeen AB25 2ZDUK
| |
Collapse
|
29
|
Bryant NJ, Stevens TH. Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 1998; 62:230-47. [PMID: 9529893 PMCID: PMC98912 DOI: 10.1128/mmbr.62.1.230-247.1998] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Delivery of proteins to the vacuole of the yeast Saccharomyces cerevisiae provides an excellent model system in which to study vacuole and lysosome biogenesis and membrane traffic. This organelle receives proteins from a number of different routes, including proteins sorted away from the secretory pathway at the Golgi apparatus and endocytic traffic arising from the plasma membrane. Genetic analysis has revealed at least 60 genes involved in vacuolar protein sorting, numerous components of a novel cytoplasm-to-vacuole transport pathway, and a large number of proteins required for autophagy. Cell biological and biochemical studies have provided important molecular insights into the various protein delivery pathways to the yeast vacuole. This review describes the various pathways to the vacuole and illustrates how they are related to one another in the vacuolar network of S. cerevisiae.
Collapse
Affiliation(s)
- N J Bryant
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
30
|
Abstract
Saccharomyces cerevisiae produces several beta-1,3-glucanases, but lacks the multicomponent cellulase complexes that hydrolyse the beta-1,4-linked glucose polymers present in cellulose-rich biomass as well as in haze-forming glucans in certain wines and beers. We have introduced into S. cerevisiae a functional cellulase complex for efficient cellulose degradation by cloning the Endomyces fibuliger cellobiase (BGL1) gene and co-expressing it with the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase (END1), the Phanerochaete chrysosporium cellobiohydrolase (CBH1) and the Ruminococcus flavefacies cellodextrinase (CEL1) gene constructs in this yeast. The END1, CBH1 and CEL1 genes were inserted into yeast expression/secretion cassettes. Expression of END1, CBH1 and CEL1 was directed by the promoter sequences derived from the alcohol dehydrogenase II (ADH2), the phosphoglycerate kinase I (PKG1) and the alcohol dehydrogenase I (ADH1) genes, respectively. In contrast, BGL1 was expressed under the control of its native promoter. Secretion of End1p and Cel1p was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1), whereas Cbh1p and Bgl1p were secreted using their authentic leader peptides. The construction of a fur1 ura3 S. cerevisiae strain allowed for the autoselection of this multicopy URA3-based plasmid in rich medium. S. cerevisiae transformants secreting biologically active endo-beta-1,4-glucanase, cellobiohydrolase, cellodextrinase and cellobiase were able to degrade various substrates including carboxymethylcellulose, hydroxyethylcellulose, laminarin, barley glucan, cellobiose, polypectate, birchwood xylan and methyl-beta-D-glucopyranoside. This study could lead to the development of industrial strains of S. cerevisiae capable of converting cellulose in a one-step process into commercially important commodities.
Collapse
Affiliation(s)
- P Van Rensburg
- Institute for Wine Biotechnology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
31
|
Neiman AM. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 1998; 140:29-37. [PMID: 9425151 PMCID: PMC2132592 DOI: 10.1083/jcb.140.1.29] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1997] [Revised: 11/03/1997] [Indexed: 02/05/2023] Open
Abstract
Spore formation in yeast is an unusual form of cell division in which the daughter cells are formed within the mother cell cytoplasm. This division requires the de novo synthesis of a membrane compartment, termed the prospore membrane, which engulfs the daughter nuclei. The effect of mutations in late-acting genes on sporulation was investigated. Mutation of SEC1, SEC4, or SEC8 blocked spore formation, and electron microscopic analysis of the sec4-8 mutant indicated that this inability to produce spores was caused by a failure to form the prospore membrane. The soluble NSF attachment protein 25 (SNAP-25) homologue SEC9, by contrast, was not required for sporulation. The absence of a requirement for SEC9 was shown to be due to the sporulation-specific induction of a second, previously undescribed, SNAP-25 homologue, termed SPO20. These results define a developmentally regulated branch of the secretory pathway and suggest that spore morphogenesis in yeast proceeds by the targeting and fusion of secretory vesicles to form new plasma membranes in the interior of the mother cell. Consistent with this model, the extracellular proteins Gas1p and Cts1p were localized to an internal compartment in sporulating cells. Spore formation in yeast may be a useful model for understanding secretion-driven cell division events in a variety of plant and animal systems.
Collapse
Affiliation(s)
- A M Neiman
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
32
|
Del Mar González M, Díez-Orejas R, Molero G, Álvarez AM, Pla J, Pla J, Nombela C, Sánchez-PéArez M. Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):3023-3032. [PMID: 9308184 DOI: 10.1099/00221287-143-9-3023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Both alleles of the XOG1 gene of Candida albicans, which encodes a protein with exoglucanase activity, were sequentially disrupted. Enzymic analysis of either cell extracts or culture supernatants of disrupted strains revealed that this gene is responsible for the major exoglucanase activity in C. albicans, although residual exoglucanase activity could still be detected. xog1 null mutants showed similar growth rates in both rich and minimal liquid medium as compared to the wild-type strain, indicating that the enzyme is not essential for C. albicans growth. In addition, no differences were observed between wild-type and xog1 null mutants with respect to their ability to undergo dimorphic transition. However, small but repeatable differences were found between the wild-type and the null mutant with respect to susceptibility to chitin and glucan synthesis inhibitors. Using a murine model of experimental infection, no significant differences in virulence were observed. The xog1 null strain is thus a suitable recipient for studying Candida gene expression using the exoglucanase as a reporter gene.
Collapse
Affiliation(s)
- María Del Mar González
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Gloria Molero
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alberto M Álvarez
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - CéAsar Nombela
- Department of Microbiology II, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Miguel Sánchez-PéArez
- Flow and Confocal Cytometry Unit (CCF), Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| |
Collapse
|
33
|
van Rensburg P, van Zyl WH, Pretorius IS. Over-expression of the Saccharomyces cerevisiae exo-beta-1,3-glucanase gene together with the Bacillus subtilis endo-beta-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in yeast. J Biotechnol 1997; 55:43-53. [PMID: 9226961 DOI: 10.1016/s0168-1656(97)00059-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The EXG1 gene encoding the main Saccharomyces cerevisiae exo-beta-1,3-glucanase was cloned and over-expressed in yeast. The Bacillus subtilis endo-1,3-1,4-beta-glucanase gene (beg1) and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene (end1) were fused to the secretion signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S) and inserted between the yeast alcohol dehydrogenase II gene promoter (ADH2P) and terminator (ADH2T). Constructs ADH2P-MF alpha 1S-beg1-ADH2T and ADH2P-MF alpha 1S-end 1-ADH2T designated BEG1 and END1, respectively, were expressed separately and jointly with EXG1 in S. cerevisiae. The construction of fur 1 ura3 S. cerevisiae strains allowed for the autoselection of these multicopy URA3-based plasmids in rich medium. Enzyme assays confirmed that co-expression of EXG1, BEG1 and END1 enhanced glucan degradation by S. cerevisiae.
Collapse
Affiliation(s)
- P van Rensburg
- Institute for Wine Biotechnology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
34
|
de la Vega H, Specht CA, Semino CE, Robbins PW, Eichinger D, Caplivski D, Ghosh S, Samuelson J. Cloning and expression of chitinases of Entamoebae. Mol Biochem Parasitol 1997; 85:139-47. [PMID: 9106188 DOI: 10.1016/s0166-6851(96)02817-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Entamoeba histolytica (Eh) and Entamoeba dispar (Ed) are protozoan parasites that infect hundreds of millions of persons. In the colonic lumen, amebae form chitin-walled cysts, the infectious stage of the parasite. Entamoeba invadens (Ei), which infects reptiles and is a model for amebic encystation, produces chitin synthase and chitinase during encystation. Ei cysts formation is blocked by the chitinase-inhibitor allosamidin. Here molecular cloning techniques were used to identify homologous genes of Eh, Ed, and Ei that encode chitinases (EC 3.2.1.14). The Eh gene (Eh cht1) predicts a 507-amino acid (aa) enzyme, which has 93 and 74% positional identities with Ed and Ei chitinases, respectively. The Entamoeba chitinases have signal sequences, followed by acidic and hydrophilic sequences composed of multiple tandemly arranged 7-aa repeats (Eh and Ed) or repeats varying in length (Ei). The aa compositions of the chitinase repeats are similar to those of the repeats of the Eh and Ed Ser-rich proteins. The COOH-terminus of each chitinase has a catalytic domain, which resembles those of Brugia malayi (33% positional identity) and Manduca sexta (29%). Recombinant entamoeba chitinases are precipitated by chitin and show chitinase activity with chitooligosacharide substrates. Consistent with previous biochemical data, chitinase mRNAs are absent in Ei trophozoites and accumulate to maximal levels in Ei encysting for 48 h.
Collapse
Affiliation(s)
- H de la Vega
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Winterhalter P, Skouroumounis GK. Glycoconjugated aroma compounds: occurrence, role and biotechnological transformation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 55:73-105. [PMID: 9017925 DOI: 10.1007/bfb0102063] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present paper reviews the occurrence of glycosidically bound aroma compounds in the plant kingdom and discusses different hypotheses concerning their role in plants. Emphasis is on biotechnological methods for flavor release and flavor enhancement through enzymatic hydrolysis of glycoconjugated aroma substances.
Collapse
Affiliation(s)
- P Winterhalter
- Inst. für Pharmazie und Lebensmittelchemie, Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
36
|
Keyhani NO, Roseman S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J Biol Chem 1996; 271:33414-24. [PMID: 8969204 DOI: 10.1074/jbc.271.52.33414] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chitin catabolism in Vibrio furnissii comprises several signal transducing systems and many proteins. Two of these enzymes are periplasmic and convert chitin oligosaccharides to GlcNAc and (GlcNAc)2. One of these unique enzymes, a chitodextrinase, designated EndoI, is described here. The protein, isolated from a recombinant Escherichia coli clone, exhibited (via SDS-polyacrylamide gel electrophoresis) two enzymatically active, close running bands ( approximately mass of 120 kDa) with identical N-terminal sequences. The chitodextrinase rapidly cleaved chitin oligosaccharides, (GlcNAc)4 to (GlcNAc)2, and (GlcNAc)5,6 to (GlcNAc)2 and (GlcNAc)3. EndoI was substrate inhibited in the millimolar range and was inactive with chitin, glucosamine oligosaccharides, glycoproteins, and glycopeptides containing (GlcNAc)2. The sequence of the cloned gene indicates that it encodes a 112,690-kDa protein (1046 amino acids). Both proteins lacked the predicted N-terminal 31 amino acids, corresponding to a consensus prokaryotic signal peptide. Thus, E. coli recognizes and processes this V. furnissii signal sequence. Although inactive with chitin, the predicted amino acid sequence of EndoI displayed similarities to many chitinases, with 8 amino acids completely conserved in 10 or more of the homologous proteins. There was, however, no "consensus" chitin-binding domain in EndoI.
Collapse
Affiliation(s)
- N O Keyhani
- Department of Biology and the McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
37
|
Schaeffer GW, Sharpe FT, Dudley JT. Export of β-1,3-glucanase from mutant rice cells rechallenged and stressed with lysine plus threonine. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1996; 92:255-262. [PMID: 24166174 DOI: 10.1007/bf00223382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/1995] [Accepted: 07/14/1995] [Indexed: 06/02/2023]
Abstract
Mutant rice cells (Oryza sativa L.) grown in liquid suspension cultures exported greater quantities of protein and β-glucanases than controls. These mutants were isolated from anther calli resistant to 1 mM lysine plus threonine (LT), regenerated and reestablished as cell suspension cultures from seeds. Cellular protein levels are genetically conditioned, and the levels of extracellular proteins and enzyme activities are inversely related to that of the cellular portions. The rechallenge of cells with 1 mM LT inhibited the expression of both β-1,3-glucanases and β-1,4-glucosidases but had no significant effect upon the levels of chitinase activity. Mutant cells were more sensitive than controls to stress caused by exogenous LT. In general, under exogenous LT stress the mutant/control ratio for extracellular glucanases increased as the assay conditions were changed from a basic to an acidic pH. The specific activity of βglucanases was highest in media and lowest in cells. Both the mutant and control cells exported β-glucanases into the suspension medium, but the level of activity in media was greater in that in which the mutant was suspended. The export was probably modulated by the internal protein levels which were highest in mutant cells without LT. Seedlings from mutants with enhanced lysine also had enhanced acidic β-glucanase activity.
Collapse
Affiliation(s)
- G W Schaeffer
- USDA, ARS, Plant Sciences Institute, Plant Molecular Biology Lab, 10300 Baltimore Ave, 20705-2350, Beltsville, MD, USA
| | | | | |
Collapse
|
38
|
Cid VJ, Durán A, del Rey F, Snyder MP, Nombela C, Sánchez M. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 1995; 59:345-86. [PMID: 7565410 PMCID: PMC239365 DOI: 10.1128/mr.59.3.345-386.1995] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle.
Collapse
Affiliation(s)
- V J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
van Rensburg P, van Zyl WH, Pretorius IS. Expression of the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene together with the Erwinia pectate lyase and polygalacturonase genes in Saccharomyces cerevisiae. Curr Genet 1994; 27:17-22. [PMID: 7750141 DOI: 10.1007/bf00326573] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recombinant Saccharomyces cerevisiae strains capable of simultaneous secretion of bacterial glucanase and pectinase enzymes have been developed. The Butyrivibrio fibrrisolvens endo-beta-1,4-glucanase gene (end1), the Erwinia chrysanthemi pectate lyase gene (pelE) and E. carotovora polygalacturonase gene (peh1) were each inserted between a yeast expression-secretion cassette and yeast gene terminator, and cloned into yeast-centromeric shuttle vectors. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of glucanase and pectinases was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1S). These YCplac111-based constructs, designated END1, PEL5, AND PEH1, respectively, were transformed into S. cerevisiae. The END1, PEL5 and PEH1 constructs were co-expressed in laboratory strains of S. cerevisiae as well as in wine and distillers' yeasts. DNA-RNA hybridization analysis showed the presence of END1, PEL5 and PEH1 transcripts. Carboxymethylcellulose and polypectate agarose assays revealed the production of biologically active endo-beta-1,4-glucanase, pectate lyase and polygalacturonase by the S. cerevisiae transformants. Interestingly, although the same expression-secretion cassette was used in all three constructs, time-course assays indicated that the pectinases were secreted before the glucanase. It is tempting to speculate that the bulkiness of the END1-encoded protein and the five alternating repeats of Pro-Asp-Pro-Thr(Gln)-Pro-Val-Asp within the glucanase moiety could be involved in the delayed secretion of the glucanase.
Collapse
Affiliation(s)
- P van Rensburg
- Department of Microbiology, University of Stellenbosch, South Africa
| | | | | |
Collapse
|
40
|
Brurberg MB, Haandrikman AJ, Leenhouts KJ, Venema G, Nes IF. Expression of a chitinase gene from Serratia marcescens in Lactococcus lactis and Lactobacillus plantarum. Appl Microbiol Biotechnol 1994; 42:108-15. [PMID: 7765812 DOI: 10.1007/bf00170232] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A chitinase gene from the Gram-negative bacterium Serratia marcescens BJL200 was cloned in Lactococcus lactis subsp. lactis MG1363 and in the silage inoculum strain Lactobacillus plantarum E19b. The chitinase gene was expressed as an active enzyme at a low level in Lactococcus lactis, when cloned in the same transcriptional orientation as the gene specifying the replication protein of the vector pIL253. Using the expression vectors pMG36e and pGKV259 with lactococcal promoter fragments p32 and p59, the expression in L. lactis was increased nine- and 27-fold, respectively. An additional twofold increase was obtained after cloning the gene under the control of p59 in the high-copy number replicon pIL253. In Lactobacillus plantarum, chitinase activity was expressed from p32, and the activity was at the same level as under p32 control in L. lactis.
Collapse
Affiliation(s)
- M B Brurberg
- Laboratory of Microbial Gene Technology, Agricultural University of Norway
| | | | | | | | | |
Collapse
|
41
|
Grard T, Saint-Pol A, Haeuw JF, Alonso C, Wieruszeski JM, Strecker G, Michalski JC. Soluble forms of alpha-D-mannosidases from rat liver. Separation and characterization of two enzymic forms with different substrate specificities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:99-106. [PMID: 8033914 DOI: 10.1111/j.1432-1033.1994.tb18970.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously reported the substrate specificity of the rat liver cytosolic alpha-D-mannosidase [Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J. & Michalski, J.-C. (1991) Eur. J. Biochem. 202, 1257-1268]. Here, we report the characterization and the purification of this alpha-D-mannosidase and the presence of two soluble forms of alpha-D-mannosidases from rat liver. The cytosolic alpha-D-mannosidase was purified nearly 660-fold with 2.66% recovery to a state approaching homogeneity using: (a) (NH4)2SO4 precipitation; (b) concanavalin-A-Sepharose chromatography; (c) affinity chromatography on a cobalt-chelating Sepharose column; (d) ion-exchange (DEAE-trisacryl M) column chromatography; (e) molecular-size chromatography (Sephacryl S 200). The enzyme was eluted from the final column at an apparent molecular mass of 113 kDa. SDS/PAGE analysis yielded a major protein band at 108 kDa. Moreover, the purification allowed to distinguish two mannosidase activities with different kinetic properties. The first cytosolic activity retained on the cobalt-chelating column was optimally active at neutral pH, was activated by Co2+, was strongly inhibited by swainsonine (Ki = 3.7 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.072 mM). Man9GlcNAc was hydrolysed by the purified enzyme down to a Man5GlcNAc structure, i.e. Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4) GlcNA c, which represents the Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The second activity not retained on the cobalt-chelating column was optimally active at neutral pH, was inhibited by swainsonine (Ki = 28.4 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.633 mM). Man9GlcNAc was broken by this enzymic activity down to Man8GlcNAc and Man7GlcNAc structures. Similitaries with endoplasmic reticulum alpha-D-mannosidase exist and this enzyme could be the cytosolic form of the endoplasmic reticulum alpha-D-mannosidase.
Collapse
Affiliation(s)
- T Grard
- Laboratoire de Chimie Biologique, (Unité mixte de Recherche du Centre National de la Recherche Scientifique no. 111), Université des Sciences et Technologies de Lille, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Chambers RS, Walden AR, Brooke GS, Cutfield JF, Sullivan PA. Identification of a putative active site residue in the exo-beta-(1,3)-glucanase of Candida albicans. FEBS Lett 1993; 327:366-9. [PMID: 8348966 DOI: 10.1016/0014-5793(93)81022-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recombinant exo-beta-(1,3)-glucanase from Candida albicans was expressed in Saccharomyces cerevisiae and purified. The enzyme contains a number of short blocks of sequence homology with several genes for cellulases of the family A glucanases including the conserved sequence motif NEP which has previously been shown to be important in the catalytic function of several cellulases. Site directed mutagenesis of this glutamic acid residue in the 1,3 glucanase (E230D, E230Q) decreased the enzymatic activity 15,000- and 400-fold, respectively. This suggests that the E of the NEP participates in catalysis of the exoglucanase and other related glucanases.
Collapse
Affiliation(s)
- R S Chambers
- Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
43
|
Mrsa V, Klebl F, Tanner W. Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. J Bacteriol 1993; 175:2102-6. [PMID: 8458852 PMCID: PMC204315 DOI: 10.1128/jb.175.7.2102-2106.1993] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
One of the major proteins of the Saccharomyces cerevisiae cell wall, a beta-glucanase (BGL2 gene product), has been isolated and purified to homogeneity under conditions for preserving enzyme activity. The study of enzyme properties of the protein revealed that it is an endo-beta-1,3-glucanase and not an exoglucanase as reported previously (F. Klebl and W. Tanner, J. Bacteriol. 171:6259-6264, 1989). The examination of the glucanase structure showed that the lower apparent molecular mass of the protein (29 kDa) compared with what was calculated from the amino acid sequence of the enzyme (33.5 kDa) is due to anomalous migration in sodium dodecyl sulfate gels and not to posttranslational processing of the polypeptide chain. Of two potential N glycosylation sites at Asn-202 and Asn-284, only the latter site is glycosylated. The overproduction of the beta-glucanase from the high-copy-number plasmid brought about a significant decrease in the growth rate of transformed yeast cells.
Collapse
Affiliation(s)
- V Mrsa
- Lehrstuhl für Zellbiologie, Universität Regensburg, Germany
| | | | | |
Collapse
|
44
|
Basco RD, Muñoz MD, Hernández LM, Vazquez de Aldana C, Larriba G. Reduced efficiency in the glycosylation of the first sequon of Saccharomyces cerevisiae exoglucanase leads to the synthesis and secretion of a new glycoform of the molecule. Yeast 1993; 9:221-34. [PMID: 8488724 DOI: 10.1002/yea.320090303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In addition to exoglucanases (EXGs) I and II, old cultures of Saccharomyces cerevisiae secreted into the culture medium a new immunologically-related material that exhibited exoglucanase activity. The new exoglucanase (EXGII1/2) was purified from stationary-phase cultures. It turned out to be a glycoprotein whose protein portion was identical to that of the other two isoenzymes in terms of ionic properties, size, amino acid composition and NH2-terminal sequence (25 residues). Disruption of the structural gene encoding EXGs I and II resulted in a strain unable to secrete all three isoenzymes. EXGII1/2 was indistinguishable in terms of molecular weight from the single intermediate detected during the deglycosylation (mediated by endo H) of EXGII by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Thus, the new isoenzyme contains only one of the two slightly elongated mannan inner cores present in enzyme II. Two intermediates were, however, detected when the deglycosylation of EXGII was monitored by ion-exchange chromatography (high-pressure liquid chromatography). Site-directed mutagenesis indicated that the major intermediate, which eluted at about the same position as enzyme II1/2, corresponded to protein molecules carrying the oligosaccharide attached to the Asn of the second sequon, whereas the minor one carried the oligosaccharide in the first potential glycosylation site. Several lines of evidence indicate that EXGII1/2 is a biosynthetic product resulting from an imbalance between the rate of protein synthesis and the glycosylation capabilities of the glycosylation machinery.
Collapse
Affiliation(s)
- R D Basco
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | |
Collapse
|
45
|
Puccia R, Grondin B, Herscovics A. Disruption of the processing alpha-mannosidase gene does not prevent outer chain synthesis in Saccharomyces cerevisiae. Biochem J 1993; 290 ( Pt 1):21-6. [PMID: 8439291 PMCID: PMC1132377 DOI: 10.1042/bj2900021] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Processing of N-linked oligosaccharides in Saccharomyces cerevisiae begins with the removal of glucose and mannose residues from Glc3Man9GlcNAc2 to form a single isomer of Man8GlcNAc2. The importance of mannose removal for subsequent outer chain synthesis was examined in strains of S. cerevisiae disrupted in the MNS1 gene encoding a specific alpha 1,2-mannosidase responsible for Man8GlcNAc2 synthesis [Camirand, Heysen, Grondin and Herscovics (1991) J. Biol. Chem. 266, 15120-15127]. Both MNS1 transcripts of 1.85 kb and 1.7 kb were not observed in Northern blots of mns1 cells (i.e. cells containing the disrupted gene). Analysis on Bio-Gel P-6 of endo-beta-N-acetylglucosaminidase-H-sensitive oligosaccharides following a 10 min pulse with [2-3H]mannose revealed similar amounts of labelled outer chains excluded from the gel in both control and mns1 cells. H.p.l.c. of the included oligosaccharides showed that a Man9GlcNAc, rather than a Man8GlcNAc, intermediate was formed in mns1 cells. Analysis of [3H]mannose-labelled core oligosaccharides from immunoprecipitated CPY and invertase by h.p.l.c. showed a similar size distribution in mns1 and control cells. Invertase immunoprecipitated from [35S]methionine-labelled mns1 cells was highly glycosylated, but migrated slightly faster than that from control cells on denaturing PAGE, indicating a small difference in glycosylation. A similar difference in mobility was observed for invertase activity stain following non-denaturing gel electrophoresis. It is concluded that the alpha-mannosidase encoded by MNS1 is the only enzyme responsible for mannose removal in vivo, and that this processing step is not essential for outer chain synthesis.
Collapse
Affiliation(s)
- R Puccia
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
46
|
Abstract
A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development.
Collapse
Affiliation(s)
- R F Hector
- Cutter Biological, Berkeley, California 94710
| |
Collapse
|
47
|
Klionsky DJ, Cueva R, Yaver DS. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Biophys Biochem Cytol 1992; 119:287-99. [PMID: 1400574 PMCID: PMC2289658 DOI: 10.1083/jcb.119.2.287] [Citation(s) in RCA: 292] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Saccharomyces cerevisiae APE1 gene product, aminopeptidase I (API), is a soluble hydrolase that has been shown to be localized to the vacuole. API lacks a standard signal sequence and contains an unusual amino-terminal propeptide. We have examined the biosynthesis of API in order to elucidate the mechanism of its delivery to the vacuole. API is synthesized as an inactive precursor that is matured in a PEP4-dependent manner. The half-time for processing is approximately 45 min. The API precursor remains in the cytoplasm after synthesis and does not enter the secretory pathway. The precursor does not receive glycosyl modifications, and removal of its propeptide occurs in a sec-independent manner. Neither the precursor nor mature form of API are secreted into the extracellular fraction in vps mutants or upon overproduction, two additional characteristics of soluble vacuolar proteins that transit through the secretory pathway. Overproduction of API results in both an increase in the half-time of processing and the stable accumulation of precursor protein. These results suggest that API enters the vacuole by a posttranslational process not used by most previously studied resident vacuolar proteins and will be a useful model protein to analyze this alternative mechanism of vacuolar localization.
Collapse
Affiliation(s)
- D J Klionsky
- Department of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
48
|
Affiliation(s)
- M A Romanos
- Department of Cell Biology, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | | | |
Collapse
|
49
|
Schaeffer GW, Sharpe FT, Dudley JT. Rice protein mutant expressed in liquid suspension cultures: chitinases, β-glucanases and other proteins. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:26-32. [PMID: 24203024 DOI: 10.1007/bf00223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/1991] [Accepted: 10/09/1991] [Indexed: 06/02/2023]
Abstract
A rice mutant with unique protein expression/ transport properties has been established as cells in liquid suspension and partially characterized. Mutants were originally recovered from anther calli grown for three cycles at inhibitory levels of lysine + threonine and one cycle of S-(2-aminoethyl)cysteine. Cell suspension cultures were started from high lysine-containing seeds regenerated from the inhibitor selections. Cultures of the mutant produce 2 times as much protein per unit weight as is produced by the control. Significant portions of the proteins are exported from the cells into the surrounding medium. The mutant also has 20% greater lysine content in the exported protein than the control. This cell suspension line should be particularly useful for biochemical and molecular studies on protein synthesis and processing phenomena in cereals.
Collapse
Affiliation(s)
- G W Schaeffer
- USDA, ARS, BARC-West, Plant Molecular Biology Laboratory, Building 006, Room 100A, 20705, Beltsville, Md, USA
| | | | | |
Collapse
|
50
|
Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH. Biogenesis of the vacuole in Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 139:59-120. [PMID: 1428679 DOI: 10.1016/s0074-7696(08)61410-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C K Raymond
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | | | | | |
Collapse
|