1
|
Wu X, Xu M, Yang JR, Lu J. Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster. Nat Commun 2024; 15:8329. [PMID: 39333102 PMCID: PMC11437122 DOI: 10.1038/s41467-024-52660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Accuracy and efficiency are fundamental to mRNA translation. Codon usage bias is widespread across species. Despite the long-standing association between optimized codon usage and improved translation, our understanding of its evolutionary basis and functional effects remains limited. Drosophila is widely used to study codon usage bias, but genome-scale experimental data are scarce. Using high-resolution mass spectrometry data from Drosophila melanogaster, we show that optimal codons have lower translation errors than nonoptimal codons after accounting for these biases. Genomic-scale analysis of ribosome profiling data shows that optimal codons are translated more rapidly than nonoptimal codons. Although we find no long-term selection favoring synonymous mutations in D. melanogaster after diverging from D. simulans, we identify signatures of positive selection driving codon optimization in the D. melanogaster population. These findings expand our understanding of the functional consequences of codon optimization and serve as a foundation for future investigations.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Mengze Xu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Gao M, Yang X, Wu Y, Wang J, Hu X, Ma Z, Zhou JH. Analysis for codon usage bias in membrane anchor of nonstructural protein 5A from BVDV. J Basic Microbiol 2023; 63:1106-1114. [PMID: 37407515 DOI: 10.1002/jobm.202300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
The nonstructural protein 5A (NS5A) of the bovine viral diarrhea virus (BVDV) is a monotopic membrane protein. This protein can anchor to the cell membrane by an in-plane amphipathic ⍺-helix, which participates in the viral replication complex. In this study, the effects of synonymous codon usage pattern of NS5A and the overall transfer RNA (tRNA) abundance in cells on the formation of the in-plane membrane anchor of NS5A were analyzed, based on NS5A coding sequences of different BVDV genotypes. BVDV NS5A coding sequences represent the most potential for BVDV genotyping. Moreover, the nucleotide usage of BVDV NS5A dominates the genotype-specific pattern of synonymous codon usage. There is an obvious relationship between synonymous codon usage bias and the spatial conformation of the in-plane membrane anchor. Furthermore, the overall tRNA abundance profiling displays that codon positions with a high level of tRNA abundance are more than ones with a low level of tRNA abundance in the in-plane membrane anchor, implying that high translation speed probably acts on the spatial conformation of in-plane membrane anchor of BVDV NS5A. These results give a new opinion on the effect of codon usage bias in the formation of the in-plane membrane anchor of BVDV NS5A.
Collapse
Affiliation(s)
- Mingyang Gao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xuanye Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yuhu Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
| | - Jian-Hua Zhou
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou
| |
Collapse
|
3
|
Hugaboom M, Hatmaker EA, LaBella AL, Rokas A. Evolution and codon usage bias of mitochondrial and nuclear genomes in Aspergillus section Flavi. G3 (BETHESDA, MD.) 2022; 13:6777267. [PMID: 36305682 PMCID: PMC9836360 DOI: 10.1093/g3journal/jkac285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The fungal genus Aspergillus contains a diversity of species divided into taxonomic sections of closely related species. Section Flavi contains 33 species, many of industrial, agricultural, or medical relevance. Here, we analyze the mitochondrial genomes (mitogenomes) of 20 Flavi species-including 18 newly assembled mitogenomes-and compare their evolutionary history and codon usage bias patterns to their nuclear counterparts. Codon usage bias refers to variable frequencies of synonymous codons in coding DNA and is shaped by a balance of neutral processes and natural selection. All mitogenomes were circular DNA molecules with highly conserved gene content and order. As expected, genomic content, including GC content, and genome size differed greatly between mitochondrial and nuclear genomes. Phylogenetic analysis based on 14 concatenated mitochondrial genes predicted evolutionary relationships largely consistent with those predicted by a phylogeny constructed from 2,422 nuclear genes. Comparing similarities in interspecies patterns of codon usage bias between mitochondrial and nuclear genomes showed that species grouped differently by patterns of codon usage bias depending on whether analyses were performed using mitochondrial or nuclear relative synonymous usage values. We found that patterns of codon usage bias at gene level are more similar between mitogenomes of different species than the mitogenome and nuclear genome of the same species. Finally, we inferred that, although most genes-both nuclear and mitochondrial-deviated from the neutral expectation for codon usage, mitogenomes were not under translational selection while nuclear genomes were under moderate translational selection. These results contribute to the study of mitochondrial genome evolution in filamentous fungi.
Collapse
Affiliation(s)
- Miya Hugaboom
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Elizabeth Anne Hatmaker
- Corresponding author: Department of Biological Sciences, Vanderbilt University, VU Station B 35-1364, Nashville, TN 37235, USA. (AH)
| | - Abigail L LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Antonis Rokas
- Corresponding author: Department of Biological Sciences, Vanderbilt University, VU Station B 35-1364, Nashville, TN 37235, USA. (AR)
| |
Collapse
|
4
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biol 2021; 19:e3001185. [PMID: 33872297 PMCID: PMC8084343 DOI: 10.1371/journal.pbio.3001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/29/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Reverse ecology is the inference of ecological information from patterns of genomic variation. One rich, heretofore underutilized, source of ecologically relevant genomic information is codon optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated with high gene expression in diverse organisms, suggesting that codon optimization could be used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. To test this hypothesis, we examined the relationship between optimal codon usage in the classic galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is positively correlated with quantitative growth on galactose, suggesting that GAL codon optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL pathway is also positively correlated with human-associated ecological niches in yeasts of the CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. For example, optimal codon usage of GAL genes is greater than 85% of all genes in the genome of the major human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the genome of the dairy yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between optimization in the GALactose pathway genes and several genes associated with nutrient sensing and metabolism. This work suggests that codon optimization harbors information about the metabolic ecology of microbial eukaryotes. This information may be particularly useful for studying fungal dark matter-species that have yet to be cultured in the lab or have only been identified by genomic material.
Collapse
Affiliation(s)
- Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Variation and selection on codon usage bias across an entire subphylum. PLoS Genet 2019; 15:e1008304. [PMID: 31365533 PMCID: PMC6701816 DOI: 10.1371/journal.pgen.1008304] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/20/2019] [Accepted: 07/11/2019] [Indexed: 01/04/2023] Open
Abstract
Variation in synonymous codon usage is abundant across multiple levels of organization: between codons of an amino acid, between genes in a genome, and between genomes of different species. It is now well understood that variation in synonymous codon usage is influenced by mutational bias coupled with both natural selection for translational efficiency and genetic drift, but how these processes shape patterns of codon usage bias across entire lineages remains unexplored. To address this question, we used a rich genomic data set of 327 species that covers nearly one third of the known biodiversity of the budding yeast subphylum Saccharomycotina. We found that, while genome-wide relative synonymous codon usage (RSCU) for all codons was highly correlated with the GC content of the third codon position (GC3), the usage of codons for the amino acids proline, arginine, and glycine was inconsistent with the neutral expectation where mutational bias coupled with genetic drift drive codon usage. Examination between genes' effective numbers of codons and their GC3 contents in individual genomes revealed that nearly a quarter of genes (381,174/1,683,203; 23%), as well as most genomes (308/327; 94%), significantly deviate from the neutral expectation. Finally, by evaluating the imprint of translational selection on codon usage, measured as the degree to which genes' adaptiveness to the tRNA pool were correlated with selective pressure, we show that translational selection is widespread in budding yeast genomes (264/327; 81%). These results suggest that the contribution of translational selection and drift to patterns of synonymous codon usage across budding yeasts varies across codons, genes, and genomes; whereas drift is the primary driver of global codon usage across the subphylum, the codon bias of large numbers of genes in the majority of genomes is influenced by translational selection.
Collapse
Affiliation(s)
- Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Wisconsin, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Li B, Wu H, Guo H. Plant mRNA decay: extended roles and potential determinants. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:178-184. [PMID: 30223189 DOI: 10.1016/j.pbi.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 05/19/2023]
Abstract
The decay of mRNA in plants is tightly controlled and shapes the transcriptome. The roles of this process are to digest RNA as well as to suppress exogenous and endogenous gene silencing by preventing siRNA generation. Recent evidence suggests that mRNA decay also regulates the accumulation of the putative 3' fragment-derived long non-coding RNAs (3'lncRNAs). The generation of siRNA or 3'lncRNA from a selective subset of mRNAs raises a fundamental question of how the mRNA decay machineries select and determine their substrate transcripts for distinctive decay destiny. Evidence for potential mRNA decay determinants, such as codon bias, GC content and N6-methyladenosine (m6A) modification, is rapidly emerging. This paper aims to review the recent discoveries in plant mRNA decay.
Collapse
Affiliation(s)
- Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huihui Wu
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Abstract
The pool of transfer RNA (tRNA) molecules in cells allows the ribosome to decode genetic information. This repertoire of molecular decoders is positioned in the crossroad of the genome, the transcriptome, and the proteome. Omics and systems biology now allow scientists to explore the entire repertoire of tRNAs of many organisms, revealing basic exciting biology. The tRNA gene set of hundreds of species is now characterized, in addition to the tRNA genes of organelles and viruses. Genes encoding tRNAs for certain anticodon types appear in dozens of copies in a genome, while others are universally absent from any genome. Transcriptome measurement of tRNAs is challenging, but in recent years new technologies have allowed researchers to determine the dynamic expression patterns of tRNAs. These advances reveal that availability of ready-to-translate tRNA molecules is highly controlled by several transcriptional and posttranscriptional regulatory processes. This regulation shapes the proteome according to the cellular state. The tRNA pool profoundly impacts many aspects of cellular and organismal life, including protein expression level, translation accuracy, adequacy of folding, and even mRNA stability. As a result, the shape of the tRNA pool affects organismal health and may participate in causing conditions such as cancer and neurological conditions.
Collapse
Affiliation(s)
- Roni Rak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| |
Collapse
|
8
|
Großmann P, Lück A, Kaleta C. Model-based genome-wide determination of RNA chain elongation rates in Escherichia coli. Sci Rep 2017; 7:17213. [PMID: 29222445 PMCID: PMC5722913 DOI: 10.1038/s41598-017-17408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022] Open
Abstract
Dynamics in the process of transcription are often simplified, yet they play an important role in transcript folding, translation into functional protein and DNA supercoiling. While the modulation of the speed of transcription of individual genes and its role in regulation and proper protein folding has been analyzed in depth, the functional relevance of differences in transcription speeds as well as the factors influencing it have not yet been determined on a genome-wide scale. Here we determined transcription speeds for the majority of E. coli genes based on experimental data. We find large differences in transcription speed between individual genes and a strong influence of both cellular location as well as the relative importance of genes for cellular function on transcription speeds. Investigating factors influencing transcription speeds we observe both codon composition as well as factors associated to DNA topology as most important factors influencing transcription speeds. Moreover, we show that differences in transcription speeds are sufficient to explain the timing of regulatory responses during environmental shifts and highlight the importance of the consideration of transcription speeds in the design of experiments measuring transcriptomic responses to perturbations.
Collapse
Affiliation(s)
- Peter Großmann
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07747, Jena, Germany
| | - Anja Lück
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07747, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, c/o Transfusionsmedizin, Institut für Experimentelle Medizin, Christian-Albrechts-University Kiel, Michaelis-Straße 5, Haus 17, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 2017; 19:20-30. [PMID: 29018283 DOI: 10.1038/nrm.2017.91] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The advent of ribosome profiling and other tools to probe mRNA translation has revealed that codon bias - the uneven use of synonymous codons in the transcriptome - serves as a secondary genetic code: a code that guides the efficiency of protein production, the fidelity of translation and the metabolism of mRNAs. Recent advancements in our understanding of mRNA decay have revealed a tight coupling between ribosome dynamics and the stability of mRNA transcripts; this coupling integrates codon bias into the concept of codon optimality, or the effects that specific codons and tRNA concentrations have on the efficiency and fidelity of the translation machinery. In this Review, we first discuss the evidence for codon-dependent effects on translation, beginning with the basic mechanisms through which translation perturbation can affect translation efficiency, protein folding and transcript stability. We then discuss how codon effects are leveraged by the cell to tailor the proteome to maintain homeostasis, execute specific gene expression programmes of growth or differentiation and optimize the efficiency of protein production.
Collapse
Affiliation(s)
- Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
10
|
Radhakrishnan A, Chen YH, Martin S, Alhusaini N, Green R, Coller J. The DEAD-Box Protein Dhh1p Couples mRNA Decay and Translation by Monitoring Codon Optimality. Cell 2016; 167:122-132.e9. [PMID: 27641505 DOI: 10.1016/j.cell.2016.08.053] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/25/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
Abstract
A major determinant of mRNA half-life is the codon-dependent rate of translational elongation. How the processes of translational elongation and mRNA decay communicate is unclear. Here, we establish that the DEAD-box protein Dhh1p is a sensor of codon optimality that targets an mRNA for decay. First, we find mRNAs whose translation elongation rate is slowed by inclusion of non-optimal codons are specifically degraded in a Dhh1p-dependent manner. Biochemical experiments show Dhh1p is preferentially associated with mRNAs with suboptimal codon choice. We find these effects on mRNA decay are sensitive to the number of slow-moving ribosomes on an mRNA. Moreover, we find Dhh1p overexpression leads to the accumulation of ribosomes specifically on mRNAs (and even codons) of low codon optimality. Lastly, Dhh1p physically interacts with ribosomes in vivo. Together, these data argue that Dhh1p is a sensor for ribosome speed, targeting an mRNA for repression and subsequent decay.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying-Hsin Chen
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sophie Martin
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Najwa Alhusaini
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Jeff Coller
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Pouyet F, Bailly-Bechet M, Mouchiroud D, Guéguen L. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage. Genome Biol Evol 2016; 8:2427-41. [PMID: 27401173 PMCID: PMC5010899 DOI: 10.1093/gbe/evw165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences.
Collapse
Affiliation(s)
- Fanny Pouyet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Marc Bailly-Bechet
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Dominique Mouchiroud
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Evolutive, University Claude Bernard Lyon 1-University of Lyon, Villeurbanne, France
| |
Collapse
|
12
|
Satapathy SS, Powdel BR, Buragohain AK, Ray SK. Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria. DNA Res 2016; 23:441-449. [PMID: 27426467 PMCID: PMC5066170 DOI: 10.1093/dnares/dsw027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values. Of the synonymous codons for specific amino acids, some are preferentially used in the high expression genes that are referred to as the 'optimal codons' (OCs). In this study, we compared OCs of the 18 amino acids in 221 species of bacteria. It is observed that there is amino acid specific influence for the selection of OCs. There is also influence of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and Leu. The phenomenon of codon bias is also supported by the comparative studies of the abundance values of the synonymous codons with same G + C. It is likely that the order of the nucleotides in the triplet codon is also perhaps involved in the phenomenon of codon usage bias in organisms.
Collapse
Affiliation(s)
| | - Bhesh Raj Powdel
- Department of Statistics, Darrang College, Tezpur 784001, Assam, India
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.,Office of the Vice-Chancellor, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
13
|
Diament A, Tuller T. Estimation of ribosome profiling performance and reproducibility at various levels of resolution. Biol Direct 2016; 11:24. [PMID: 27160013 PMCID: PMC4862193 DOI: 10.1186/s13062-016-0127-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Ribosome profiling (or Ribo-seq) is currently the most popular methodology for studying translation; it has been employed in recent years to decipher various fundamental gene expression regulation aspects. The main promise of the approach is its ability to detect ribosome densities over an entire transcriptome in high resolution of single codons. Indeed, dozens of ribo-seq studies have included results related to local ribosome densities in different parts of the transcript; nevertheless, the performance of Ribo-seq has yet to be quantitatively evaluated and reported in a large-scale multi-organismal and multi-protocol study of currently available datasets. RESULTS Here we provide the first objective evaluation of Ribo-seq at the resolution of a single nucleotide(s) using clear, interpretable measures, based on the analysis of 15 experiments, 6 organisms, and a total of 612, 961 transcripts. Our major conclusion is that the ability to infer signals of ribosomal densities at nucleotide scale is considerably lower than previously thought, as signals at this level are not reproduced well in experimental replicates. In addition, we provide various quantitative measures that connect the expected error rate with Ribo-seq analysis resolution. CONCLUSIONS The analysis of Ribo-seq data at the resolution of codons and nucleotides provides a challenging task, calls for task-specific statistical methods and further protocol improvements. We believe that our results are important for every researcher studying translation and specifically for researchers analyzing data generated by the Ribo-seq approach. REVIEWERS This article was reviewed by Dmitrij Frishman, Eugene Koonin and Frank Eisenhaber.
Collapse
Affiliation(s)
- Alon Diament
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Tamir Tuller
- Biomedical Engineering Department, Tel Aviv University, Tel Aviv-Yafo, Israel. .,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
14
|
Abstract
BACKGROUND During protein synthesis, the nascent peptide chain emerges from the ribosome through the ribosomal exit tunnel. Biochemical interactions between the nascent peptide and the tunnel may stall the ribosome movement and thus affect the expression level of the protein being synthesized. Earlier studies focused on one model organism (S. cerevisiae), have suggested that certain amino acid sequences may be responsible for ribosome stalling; however, the stalling effect at the individual amino acid level across many organisms has not yet been quantified. RESULTS By analyzing multiple ribosome profiling datasets from different organisms (including prokaryotes and eukaryotes), we report for the first time the organism-specific amino acids that significantly lead to ribosome stalling. We show that the identity of the stalling amino acids vary across the tree of life. In agreement with previous studies, we observed a remarkable stalling signal of proline and arginine in S. cerevisiae. In addition, our analysis supports the conjecture that the stalling effect of positively charged amino acids is not universal and that in certain conditions, negative charge may also induce ribosome stalling. Finally, we show that the beginning part of the tunnel tends to undergo more interactions with the translated amino acids than other positions along the tunnel. CONCLUSIONS The reported results support the conjecture that the ribosomal exit tunnel interacts with various amino acids and that the nature of these interactions varies among different organisms. Our findings should contribute towards better understanding of transcript and proteomic evolution and translation elongation regulation.
Collapse
Affiliation(s)
- Renana Sabi
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University (TAU), Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University (TAU), Tel-Aviv, Israel
| |
Collapse
|
15
|
Artieri CG, Fraser HB. Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Res 2014; 24:2011-21. [PMID: 25294246 PMCID: PMC4248317 DOI: 10.1101/gr.175893.114] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent advent of ribosome profiling-sequencing of short ribosome-bound fragments of mRNA-has offered an unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Nevertheless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing. Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which positions spanned by the ribosome cause stalling.
Collapse
Affiliation(s)
- Carlo G Artieri
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
16
|
The effects of codon context on in vivo translation speed. PLoS Genet 2014; 10:e1004392. [PMID: 24901308 PMCID: PMC4046918 DOI: 10.1371/journal.pgen.1004392] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
We developed a bacterial genetic system based on translation of the his operon leader peptide gene to determine the relative speed at which the ribosome reads single or multiple codons in vivo. Low frequency effects of so-called "silent" codon changes and codon neighbor (context) effects could be measured using this assay. An advantage of this system is that translation speed is unaffected by the primary sequence of the His leader peptide. We show that the apparent speed at which ribosomes translate synonymous codons can vary substantially even for synonymous codons read by the same tRNA species. Assaying translation through codon pairs for the 5'- and 3'- side positioning of the 64 codons relative to a specific codon revealed that the codon-pair orientation significantly affected in vivo translation speed. Codon pairs with rare arginine codons and successive proline codons were among the slowest codon pairs translated in vivo. This system allowed us to determine the effects of different factors on in vivo translation speed including Shine-Dalgarno sequence, rate of dipeptide bond formation, codon context, and charged tRNA levels.
Collapse
|
17
|
Wald N, Margalit H. Auxiliary tRNAs: large-scale analysis of tRNA genes reveals patterns of tRNA repertoire dynamics. Nucleic Acids Res 2014; 42:6552-66. [PMID: 24782525 PMCID: PMC4041420 DOI: 10.1093/nar/gku245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Decoding of all codons can be achieved by a subset of tRNAs. In bacteria, certain tRNA species are mandatory, while others are auxiliary and are variably used. It is currently unknown how this variability has evolved and whether it provides an adaptive advantage. Here we shed light on the subset of auxiliary tRNAs, using genomic data from 319 bacteria. By reconstructing the evolution of tRNAs we show that the auxiliary tRNAs are highly dynamic, being frequently gained and lost along the phylogenetic tree, with a clear dominance of loss events for most auxiliary tRNA species. We reveal distinct co-gain and co-loss patterns for subsets of the auxiliary tRNAs, suggesting that they are subjected to the same selection forces. Controlling for phylogenetic dependencies, we find that the usage of these tRNA species is positively correlated with GC content and may derive directly from nucleotide bias or from preference of Watson-Crick codon-anticodon interactions. Our results highlight the highly dynamic nature of these tRNAs and their complicated balance with codon usage.
Collapse
Affiliation(s)
- Naama Wald
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
18
|
Westhof E, Yusupov M, Yusupova G. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. F1000PRIME REPORTS 2014; 6:19. [PMID: 24765524 PMCID: PMC3974571 DOI: 10.12703/p6-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The natural bases of nucleic acids have a strong preference for one tautomer form, guaranteeing fidelity in their hydrogen bonding potential. However, base pairs observed in recent crystal structures of polymerases and ribosomes are best explained by an alternative base tautomer, leading to the formation of base pairs with Watson-Crick-like geometries. These observations set limits to geometric selection in molecular recognition of complementary Watson-Crick pairs for fidelity in replication and translation processes.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et CellulaireCNRS, 15 rue René Descartes, F-67084 Strasbourg CedexFrance
| | - Marat Yusupov
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et CellulaireCNRS, INSERM, Université de Strasbourg, F-67400 IllkirchFrance
| |
Collapse
|
19
|
Liu L, Wang L, Zhang Z, Wang S, Chen H. Effect of codon message on xylanase thermal activity. J Biol Chem 2012; 287:27183-8. [PMID: 22707716 DOI: 10.1074/jbc.m111.327577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because the genetic codon is known for degeneracy, its effect on enzyme thermal property is seldom investigated. A dataset was constructed for GH10 xylanase coding sequences and optimal temperatures for activity (T(opt)). Codon contents and relative synonymous codon usages were calculated and respectively correlated with the enzyme T(opt) values, which were used to describe the xylanase thermophilic tendencies without dividing them into two thermophilic and mesophilic groups. After analyses of codon content and relative synonymous codon usages were checked by the Bonferroni correction, we found five codons, with three (AUA, AGA, and AGG) correlating positively and two (CGU and AGC) correlating negatively with the T(opt) value. The three positive codons are purine-rich codons, and the two negative codons have A-ends. The two negative codons are pyridine-rich codons, and one has a C-end. Comparable with the codon C- and A-ending features, C- and A-content within mRNA correlated negatively and positively with the T(opt) value, respectively. Thereby, codons have effects on enzyme thermal property. When the issue is analyzed at the residual level, the effect of codon message is lost. The codons relating to enzyme thermal property are selected by thermophilic force at nucleotide level.
Collapse
Affiliation(s)
- Liangwei Liu
- Life Science College, Henan Agricultural University, Zhengzhou 450002, China.
| | | | | | | | | |
Collapse
|
20
|
Wohlgemuth I, Pohl C, Mittelstaet J, Konevega AL, Rodnina MV. Evolutionary optimization of speed and accuracy of decoding on the ribosome. Philos Trans R Soc Lond B Biol Sci 2012; 366:2979-86. [PMID: 21930591 DOI: 10.1098/rstb.2011.0138] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
21
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
22
|
Stadler M, Fire A. Wobble base-pairing slows in vivo translation elongation in metazoans. RNA (NEW YORK, N.Y.) 2011; 17:2063-73. [PMID: 22045228 PMCID: PMC3222120 DOI: 10.1261/rna.02890211] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/30/2011] [Indexed: 05/24/2023]
Abstract
In the universal genetic code, most amino acids can be encoded by multiple trinucleotide codons, and the choice among available codons can influence position-specific translation elongation rates. By using sequence-based ribosome profiling, we obtained transcriptome-wide profiles of in vivo ribosome occupancy as a function of codon identity in Caenorhabditis elegans and human cells. Particularly striking in these profiles was a universal trend of higher ribosome occupancy for codons translated via G:U wobble base-pairing compared with synonymous codons that pair with the same tRNA family using G:C base-pairing. These data support a model in which ribosomal translocation is slowed at wobble codon positions.
Collapse
Affiliation(s)
- Michael Stadler
- Department of Genetics, Stanford University, Stanford, California 94305-5324, USA
| | - Andrew Fire
- Department of Genetics, Stanford University, Stanford, California 94305-5324, USA
- Department of Pathology, Stanford University, Stanford, California 94305-5324, USA
| |
Collapse
|
23
|
Brackley CA, Romano MC, Thiel M. The dynamics of supply and demand in mRNA translation. PLoS Comput Biol 2011; 7:e1002203. [PMID: 22022250 PMCID: PMC3192816 DOI: 10.1371/journal.pcbi.1002203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 08/04/2011] [Indexed: 11/30/2022] Open
Abstract
We study the elongation stage of mRNA translation in eukaryotes and find that, in contrast to the assumptions of previous models, both the supply and the demand for tRNA resources are important for determining elongation rates. We find that increasing the initiation rate of translation can lead to the depletion of some species of aa-tRNA, which in turn can lead to slow codons and queueing. Particularly striking “competition” effects are observed in simulations of multiple species of mRNA which are reliant on the same pool of tRNA resources. These simulations are based on a recent model of elongation which we use to study the translation of mRNA sequences from the Saccharomyces cerevisiae genome. This model includes the dynamics of the use and recharging of amino acid tRNA complexes, and we show via Monte Carlo simulation that this has a dramatic effect on the protein production behaviour of the system. In this paper we show that the rate at which proteins are produced can be controlled at the elongation stage of mRNA translation. Regulation of translation initiation has been a focus of much study, but the subsequent effect of changes in the initiation rate on the overall translation rate, and the role of slow and fast codon usage in mRNA sequences is still not fully understood. We consider a model of elongation in which the dynamics of tRNA use and recharging are considered for real mRNA sequences. We find that the balance between the demand for, and supply of tRNAs is crucial in determining translation rates. Particularly interesting “competition” effects are observed when the simultaneous translation of multiple mRNA is considered. We show indeed that, via the choice of slow or fast codons, it is in principle possible to control how variation of the supply and demand for tRNA resources changes the rate of protein production from different mRNAs.
Collapse
Affiliation(s)
- Chris A Brackley
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
24
|
Zalucki YM, Beacham IR, Jennings MP. Coupling between codon usage, translation and protein export in Escherichia coli. Biotechnol J 2011; 6:660-7. [PMID: 21567959 DOI: 10.1002/biot.201000334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/07/2022]
Abstract
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
25
|
Frank J, Gonzalez RL. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 2010; 79:381-412. [PMID: 20235828 DOI: 10.1146/annurev-biochem-060408-173330] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is mounting evidence indicating that protein synthesis is driven and regulated by mechanisms that direct stochastic, large-scale conformational fluctuations of the translational apparatus. This mechanistic paradigm implies that a free-energy landscape governs the conformational states that are accessible to and sampled by the translating ribosome. This scenario presents interdependent opportunities and challenges for structural and dynamic studies of protein synthesis. Indeed, the synergism between cryogenic electron microscopic and X-ray crystallographic structural studies, on the one hand, and single-molecule fluorescence resonance energy transfer (smFRET) dynamic studies, on the other, is emerging as a powerful means for investigating the complex free-energy landscape of the translating ribosome and uncovering the mechanisms that direct the stochastic conformational fluctuations of the translational machinery. In this review, we highlight the principal insights obtained from cryogenic electron microscopic, X-ray crystallographic, and smFRET studies of the elongation stage of protein synthesis and outline the emerging themes, questions, and challenges that lie ahead in mechanistic studies of translation.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, New York 10032, USA.
| | | |
Collapse
|
26
|
Zalucki YM, Beacham IR, Jennings MP. Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 2009; 17:146-50. [PMID: 19307122 DOI: 10.1016/j.tim.2009.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/03/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
The signal peptide of proteins exported via the general secretory pathway encodes structural features that enable the targeting and export of the protein to the periplasm. Recent studies have shown biased codon usage at the second amino acid position and a high usage of non-optimal codons within the signal peptide. Altering these biases in codon usage can have deleterious effects on protein folding and export. We propose that these codon-usage biases act in concert to optimize the export process through modulating ribosome spacing on the transcript. This highlights a new aspect of protein export and implies that codon usage in the signal peptide encodes signals that are important for protein targeting and export to the periplasm.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia 4072, Brisbane, QLD, Australia
| | | | | |
Collapse
|
27
|
Ledoux S, Uhlenbeck OC. Different aa-tRNAs are selected uniformly on the ribosome. Mol Cell 2008; 31:114-23. [PMID: 18614050 DOI: 10.1016/j.molcel.2008.04.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/16/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
Ten E. coli aminoacyl-tRNAs (aa-tRNAs) were assessed for their ability to decode cognate codons on E. coli ribosomes by using three assays that evaluate the key steps in the decoding pathway. Despite a wide variety of structural features, each aa-tRNA exhibited similar kinetic and thermodynamic properties in each assay. This surprising kinetic and thermodynamic uniformity is likely to reflect the importance of ribosome conformational changes in defining the rates and affinities of the decoding process as well as the evolutionary "tuning" of each aa-tRNA sequence to modify their individual interactions with the ribosome at each step.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
28
|
Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 2008; 30:589-98. [PMID: 18538657 DOI: 10.1016/j.molcel.2008.04.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 01/04/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.
Collapse
Affiliation(s)
- Magnus Johansson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Robinson F, Jackson RJ, Smith CWJ. Expression of human nPTB is limited by extreme suboptimal codon content. PLoS One 2008; 3:e1801. [PMID: 18335065 PMCID: PMC2258417 DOI: 10.1371/journal.pone.0001801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/13/2008] [Indexed: 11/18/2022] Open
Abstract
Background The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little attention has been paid to the consequences of codon content upon translation of host proteins. Methodology/Principal Findings In comparing the splicing repressor activities of transfected human PTB and its two tissue-restricted paralogs–nPTB and ROD1–we found that the three proteins were expressed at widely varying levels. nPTB was expressed at 1–3% the level of PTB despite similar levels of mRNA expression and 74% amino acid identity. The low nPTB expression was due to the high proportion of codons with A or U at the third codon position, which are suboptimal in human mRNAs. Optimization of the nPTB codon content, akin to the “humanization” of foreign ORFs, allowed efficient translation in vivo and in vitro to levels comparable with PTB. We were then able to demonstrate that all three proteins act as splicing repressors. Conclusions/Significance Our results provide a striking illustration of the importance of mRNA codon content in determining levels of protein expression, even within cells of the natural host species.
Collapse
Affiliation(s)
- Fiona Robinson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Zalucki YM, Gittins KL, Jennings MP. Secretory signal sequence non-optimal codons are required for expression and export of beta-lactamase. Biochem Biophys Res Commun 2007; 366:135-41. [PMID: 18053805 DOI: 10.1016/j.bbrc.2007.11.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 11/19/2022]
Abstract
In this study we altered the codon usage in the signal sequence of the bla gene, encoding beta-lactamase in Escherichia coli. Changing all of the thirteen non-optimal codons to optimal lowered expression 4-fold as measured by minimum inhibitory concentration (MIC) to the beta-lactam antibiotic ampicillin. The difference in ampicillin resistance was reduced at 28 degrees C compared to expression at 37 degrees C, suggesting that the optimised bla allele is misfolded and degraded by heat-shock regulated proteases. A screen was carried out, designed specifically to identify revertants with changes in codon usage resulting in higher MIC to ampicillin. The nine revertants revealed by this method all had optimal to non-optimal codon changes in the signal sequence. These results, and those of our previous study with maltose binding protein model system, confirm that non-optimal codons are important for expression and export of secretory proteins via both the SecB-dependent and -independent pathways.
Collapse
Affiliation(s)
- Yaramah M Zalucki
- School of Molecular & Microbial Sciences, University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | |
Collapse
|
31
|
Gilchrist MA, Wagner A. A model of protein translation including codon bias, nonsense errors, and ribosome recycling. J Theor Biol 2006; 239:417-34. [PMID: 16171830 DOI: 10.1016/j.jtbi.2005.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/15/2022]
Abstract
We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias.
Collapse
Affiliation(s)
- Michael A Gilchrist
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, 37996, USA.
| | | |
Collapse
|
32
|
Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, Freitas A, Oliveira JL, Santos MAS. Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol 2005; 6:R28. [PMID: 15774029 PMCID: PMC1088947 DOI: 10.1186/gb-2005-6-3-r28] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/25/2004] [Accepted: 01/17/2005] [Indexed: 11/10/2022] Open
Abstract
We have developed a system for comparative codon context analysis of open reading frames in whole genomes, providing insights into the rules that govern the evolution of codon-pair context. Codon context is an important feature of gene primary structure that modulates mRNA decoding accuracy. We have developed an analytical software package and a graphical interface for comparative codon context analysis of all the open reading frames in a genome (the ORFeome). Using the complete ORFeome sequences of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Escherichia coli, we show that this methodology permits large-scale codon context comparisons and provides new insight on the rules that govern the evolution of codon-pair context.
Collapse
Affiliation(s)
- Gabriela Moura
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Pinheiro
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Raquel Silva
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Miranda
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Afreixo
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gaspar Dias
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adelaide Freitas
- Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José L Oliveira
- Institute of Electronics and Telematics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel AS Santos
- Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Bucklin DJ, Wills NM, Gesteland RF, Atkins JF. P-site pairing subtleties revealed by the effects of different tRNAs on programmed translational bypassing where anticodon re-pairing to mRNA is separated from dissociation. J Mol Biol 2005; 345:39-49. [PMID: 15567409 DOI: 10.1016/j.jmb.2004.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/11/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022]
Abstract
Programmed ribosomal bypassing occurs in decoding phage T4 gene 60 mRNA. Half the ribosomes bypass a 50 nucleotide gap between codons 46 and 47. Peptidyl-tRNA dissociates from the "take-off" GGA, codon 46, and re-pairs to mRNA at a matched GGA "landing site" codon directly 5' of codon 47 where translation resumes. The system described here allows the contribution of peptidyl-tRNA re-pairing to be measured independently of dissociation. The matched GGA codons have been replaced by 62 other matched codons, giving a wide range of bypassing efficiencies. Codons with G or C in either or both of the first two codon positions yielded high levels of bypassing. The results are compared with those from a complementary study of non-programmed bypassing, where the combined effects of peptidyl-tRNA dissociation and reassociation were measured. The wild-type, GGA, matched codons are the most efficient in their gene 60 context in contrast to the relatively low value in the non-programmed bypassing study.
Collapse
Affiliation(s)
- Douglas J Bucklin
- Department of Human Genetics, University of Utah, 15N 2030E Rm7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | |
Collapse
|
34
|
Fahlman RP, Dale T, Uhlenbeck OC. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol Cell 2005; 16:799-805. [PMID: 15574334 DOI: 10.1016/j.molcel.2004.10.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/29/2022]
Abstract
The association and dissociation rate constants of eight different E. coli aminoacyl-tRNAs (aa-tRNAs) for E. coli ribosomes programmed with mRNAs of defined sequences were determined. Identical association and dissociation rate constants were observed for all eight aa-tRNAs in both the ribosomal A and P sites despite substantial differences in tRNA sequence, the type of esterified amino acid, and posttranscriptional modifications. These results indicate that the overall binding of all aa-tRNAs to the ribosome is uniform. However, when either the esterified amino acid or the tRNA modifications were removed, binding was no longer uniform. These results suggest that differences in tRNA sequences and tRNA modifications have evolved to offset differential thermodynamic contributions of the esterified amino acid and the codon-anticodon interaction so that ribosomal binding of all aa-tRNAs remains uniform.
Collapse
Affiliation(s)
- Richard P Fahlman
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
35
|
Rocha EPC. Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 2004; 14:2279-86. [PMID: 15479947 PMCID: PMC525687 DOI: 10.1101/gr.2896904] [Citation(s) in RCA: 270] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The selection-mutation-drift theory of codon usage plays a major role in the theory of molecular evolution by explaining the co-evolution of codon usage bias and tRNA content in the framework of translation optimization. Because most studies have focused only on codon usage, we analyzed the tRNA gene pool of 102 bacterial species. We show that as minimal generation times get shorter, the genomes contain more tRNA genes, but fewer anticodon species. Surprisingly, despite the wide G+C variation of bacterial genomes these anticodons are the same in most genomes. This suggests an optimization of the translation machinery to use a small subset of optimal codons and anticodons in fast-growing bacteria and in highly expressed genes. As a result, the overrepresented codons in highly expressed genes tend to be the same in very different genomes to match the same most-frequent anticodons. This is particularly important in fast-growing bacteria, which have higher codon usage bias in these genes. Three models were tested to understand the choice of codons recognized by the same anticodons, all providing significant fit, but under different classes of genes and genomes. Thus, co-evolution of tRNA gene composition and codon usage bias in genomes seen from tRNA's point of view agrees with the selection-mutation-drift theory. However, it suggests a much more universal trend in the evolution of anticodon and codon choice than previously thought. It also provides new evidence that a selective force for the optimization of the translation machinery is the maximization of growth.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex 15, France.
| |
Collapse
|
36
|
Klasen M, Wabl M. Silent point mutation in DsRed resulting in enhanced relative fluorescence intensity. Biotechniques 2004; 36:236-8. [PMID: 14989087 DOI: 10.2144/04362bm06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Maik Klasen
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0670, USA.
| | | |
Collapse
|
37
|
Takai K, Okumura S, Hosono K, Yokoyama S, Takaku H. A single uridine modification at the wobble position of an artificial tRNA enhances wobbling in an Escherichia coli cell-free translation system. FEBS Lett 1999; 447:1-4. [PMID: 10218569 DOI: 10.1016/s0014-5793(99)00255-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Methoxyuridine was introduced into the first position of the anticodon of the unmodified form of tRNA(1Ser) from Escherichia coli. The codon reading efficiencies of this tRNA (tRNA(5-methoxyuridine UGA)) relative to those of the unmodified counterpart (tRNA(UGA)) were measured in a cell-free translation system. tRNA(5-methoxyuridine UGA) was more efficient than tRNA(UGA) in the reading of the UCU and UCG codons and was less efficient in the reading of the UCA codon. Thus, the single modification of U to 5-methoxyuridine can enhance the wobble readings.
Collapse
Affiliation(s)
- K Takai
- Department of Industrial Chemistry, Chiba Institute of Technology, Narashino, Japan.
| | | | | | | | | |
Collapse
|
38
|
Pape T, Wintermeyer W, Rodnina MV. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J 1998; 17:7490-7. [PMID: 9857203 PMCID: PMC1171092 DOI: 10.1093/emboj/17.24.7490] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetic mechanism of elongation factor Tu (EF-Tu)-dependent binding of Phe-tRNAPhe to the A site of poly(U)-programmed Escherichia coli ribosomes has been established by pre-steady-state kinetic experiments. Six steps were distinguished kinetically, and their elemental rate constants were determined either by global fitting, or directly by dissociation experiments. Initial binding to the ribosome of the ternary complex EF-Tu.GTP.Phe-tRNAPhe is rapid (k1 = 110 and 60/micromM/s at 10 and 5 mM Mg2+, 20 degreesC) and readily reversible (k-1 = 25 and 30/s). Subsequent codon recognition (k2 = 100 and 80/s) stabilizes the complex in an Mg2+-dependent manner (k-2 = 0.2 and 2/s). It induces the GTPase conformation of EF-Tu (k3 = 500 and 55/s), instantaneously followed by GTP hydrolysis. Subsequent steps are independent of Mg2+. The EF-Tu conformation switches from the GTP- to the GDP-bound form (k4 = 60/s), and Phe-tRNAPhe is released from EF-Tu.GDP. The accommodation of Phe-tRNAPhe in the A site (k5 = 8/s) takes place independently of EF-Tu and is followed instantaneously by peptide bond formation. The slowest step is dissociation of EF-Tu.GDP from the ribosome (k6 = 4/s). A characteristic feature of the mechanism is the existence of two conformational rearrangements which limit the rates of the subsequent chemical steps of A-site binding.
Collapse
Affiliation(s)
- T Pape
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | |
Collapse
|
39
|
Oresic M, Shalloway D. Specific correlations between relative synonymous codon usage and protein secondary structure. J Mol Biol 1998; 281:31-48. [PMID: 9680473 DOI: 10.1006/jmbi.1998.1921] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We found significant species-specific correlations between the use of two synonymous codons and protein secondary structure units by comparing the three-dimensional structures of human and Escherichia coli proteins with their mRNA sequences. The correlations are not explained by codon-context, expression level, GC/AU content, or positional effects. The E. coli correlation is between Asn AAC and the C-terminal regions of beta-sheet segments; it may result from selection for translational accuracy, suggesting the hypothesis that downstream Asn residues are important for beta-sheet formation. The correlation in human proteins is between Asp GAU and the N termini of alpha-helices; it may be important for eukaryote-specific sequential, cotranslational folding. The kingdom-specific correlations may reflect kingdom-specific differences in translational mechanisms. The correlations may help identify residues that are important for secondary structure formation, be useful in secondary structure prediction algorithms, and have implications for recombinant gene expression.
Collapse
Affiliation(s)
- M Oresic
- Section of Biochemistry Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Li J, Esberg B, Curran JF, Björk GR. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J Mol Biol 1997; 271:209-21. [PMID: 9268653 DOI: 10.1006/jmbi.1997.1176] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Salmonella typhimurium seven tRNA species specific for leucine, proline and arginine have 1-methylguanosine (m1G) next to and 3' of the anticodon (position 37 of tRNA), five tRNA species specific for phenylalanine, serine, tyrosine, cysteine and tryptophan have 2-methylthio-N-6-(cis-hydroxy)isopentenyladenosine (ms2io6A) in the same position of the tRNA, and four tRNA species, specific for leucine and proline, have pseudouridine (Psi) as the last 3' nucleotide in the anticodon loop (position 38) or in the anticodon stem (positions 39 and 40). Mutants deficient in the synthesis of these modified nucleosides have been used to study their role in the first step of translation elongation, i.e. the aa-tRNA selection step in which the ternary complex (EF-Tu-GTP-aa-tRNA) binds at the cognate codon in the A-site on the mRNA programmed ribosome. We have found that the Psi present in the anticodon loop (position 38) stimulates the selection of tRNA specific for leucine whereas Psi in the anticodon stem did not affect the selection of tRNA specific for proline. The m1G37 strongly stimulates the rate of selection of the three tRNA species specific for proline and one tRNA species specific for arginine but has only minor or no effect on the selection of the three tRNA species specific for leucine. Likewise, the ms2io6A, present in the same position as m1G37 but in another subset of tRNA species, stimulates the selection of tRNA specific for tyrosine, stimulates to some extent also tRNA species specific for cysteine and tryptophan, but has no influence on the rate of selection of tRNA specific for phenylalanine. We conclude that function of m1G and ms2io6A present next to and 3' of the anticodon influences the in vivo aa-tRNA selection in a tRNA-dependent manner.
Collapse
MESH Headings
- Anticodon
- Base Sequence
- Binding Sites
- Codon
- Frameshift Mutation
- Genotype
- Guanosine/analogs & derivatives
- Guanosine/analysis
- Guanosine Triphosphate/metabolism
- Models, Structural
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Pro/chemistry
- RNA, Transfer, Pro/metabolism
- Ribosomes/metabolism
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- beta-Galactosidase/biosynthesis
Collapse
Affiliation(s)
- J Li
- Department of Microbiology, University of Umeâ, Umeâ, S-901 87, Sweden
| | | | | | | |
Collapse
|
41
|
Abstract
Codon usage and base composition in sequences from the A + T-rich genome of Rickettsia prowazekii, a member of the alpha Proteobacteria, have been investigated. Synonymous codon usage patterns are roughly similar among genes, even though the data set includes genes expected to be expressed at very different levels, indicating that translational selection has been ineffective in this species. However, multivariate statistical analysis differentiates genes according to their G + C contents at the first two codon positions. To study this variation, we have compared the amino acid composition patterns of 21 R. prowazekii proteins with that of a homologous set of proteins from Escherichia coli. The analysis shows that individual genes have been affected by biased mutation rates to very different extents: genes encoding proteins highly conserved among other species being the least affected. Overall, protein coding and intergenic spacer regions have G + C content values of 32.5% and 21.4%, respectively. Extrapolation from these values suggests that R. prowazekii has around 800 genes and that 60-70% of the genome may be coding.
Collapse
Affiliation(s)
- S G Andersson
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
42
|
Andersson SGE, Sharp PM. Codon usage in the Mycobacterium tuberculosis complex. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 4):915-925. [PMID: 8936318 DOI: 10.1099/00221287-142-4-915] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The usage of alternative synonymous codons in Mycobacterium tuberculosis (and M. bovis) genes has been investigated. This species is a member of the high-G+C Gram-positive bacteria, with a genomic G+C content around 65 mol%. This G+C-richness is reflected in a strong bias towards C- and G-ending codons for every amino acid: overall, the G+C content at the third positions of codons is 83%. However, there is significant variation in codon usage patterns among genes, which appears to be associated with gene expression level. From the variation among genes, putative optimal codons were identified for 15 amino acids. The degree of bias towards optimal codons in an M. tuberculosis gene is correlated with that in homologues from Escherichia coli and Bacillus subtilis. The set of selectively favoured codons seems to be quite highly conserved between M. tuberculosis and another high-G+C Gram-positive bacterium, Corynebacterium glutamicum, even though the genome and overall codon usage of the latter are much less G+C-rich.
Collapse
Affiliation(s)
- Siv G E Andersson
- Department of Molecular Biology, Biomedical Center, Uppsala University, Uppsala, S-75124, Sweden
| | - Paul M Sharp
- Department of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
43
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
44
|
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228, USA.
| |
Collapse
|
45
|
Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC. In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 1993; 32:7617-22. [PMID: 7688564 DOI: 10.1021/bi00081a003] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli tRNA(Phe) transcript lacking all the modified nucleosides was investigated in an in vitro translation system. To estimate the affinity of tRNA toward EF-Tu, Kd and K-1 were measured by the nuclease protection assay, and it was shown that the absence of modifications decreases ternary complex stability less than 2-fold. The activity of unmodified Phe-tRNA(Phe) on E. coli ribosomes was compared to modified Phe-tRNA(Phe) using the framework of the kinetic proofreading mechanism (Thompson & Dix, 1982) with both cognate and noncognate codons. Values of the individual rate constants in the elongation process showed that the modifications increased the accuracy of translation by (1) decreasing the rate of dipeptide synthesis and (2) increasing the rate of rejection with noncognate codons.
Collapse
Affiliation(s)
- K M Harrington
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | | | |
Collapse
|
46
|
Farabaugh PJ, Zhao H, Vimaladithan A. A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell 1993; 74:93-103. [PMID: 8267715 PMCID: PMC7172889 DOI: 10.1016/0092-8674(93)90297-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most retroviruses and retrotransposons express their pol gene as a translational fusion to the upstream gag gene, often involving translational frameshifting. We describe here an unusual translational frameshift event occurring between the GAG3 and POL3 genes of the retrotransposon Ty3 of yeast. A +1 frameshift occurs within the sequence GCG AGU U (shown as codons of GAG3), encoding alanine-valine (GCG A GUU). Unlike other programed translational frameshifts described, this event does not require tRNA slippage between cognate or near-cognate codons in the mRNA. Two features distal to the GCG codon stimulate frameshifting. The low availability of the tRNA specific for the "hungry" serine codon, AGU, induces a translational pause required for frameshifting. A sequence of 12 nt distal to the AGU codon (termed the Ty3 "context") also stimulates the event.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences, University of Maryland, Baltimore 21228
| | | | | |
Collapse
|
47
|
Weijland A, Parmeggiani A. Toward a model for the interaction between elongation factor Tu and the ribosome. Science 1993; 259:1311-4. [PMID: 8446899 DOI: 10.1126/science.8446899] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the elongation cycle of bacterial protein synthesis the interaction between elongation factor-Tu (EF-Tu).guanosine triphosphate (GTP), aminoacyl-transfer RNA (aa-tRNA), and messenger RNA-programmed ribosomes is associated with the hydrolysis of GTP. This interaction determines the selection of the proper aa-tRNA for incorporation into the polypeptide. In the canonical scheme, one molecule of GTP is hydrolyzed in the EF-Tu-dependent binding of aa-tRNA to the ribosome, and a second molecule is hydrolyzed in the elongation factor-G (EF-G)-mediated translocation of the polypeptide from the ribosomal A site to the P site. Substitution of Asp138 with Asn in EF-Tu changed the substrate specificity from GTP to xanthosine triphosphate and demonstrated that the EF-Tu-mediated reactions involved the hydrolysis of two nucleotide triphosphates for each Phe incorporated. This stoichiometry of two is associated with the binding of the correct aa-tRNA to the ribosome.
Collapse
Affiliation(s)
- A Weijland
- SDI n. 61840 du Centre National de la Recherche Scientifique, Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
48
|
Chapter 16 Structure and function of methanogen genes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Palmer JR, Reeve JN. Methanogen Genes and the Molecular Biology of Methane Biosynthesis. BROCK/SPRINGER SERIES IN CONTEMPORARY BIOSCIENCE 1993. [DOI: 10.1007/978-1-4615-7087-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Parker J, Precup J, Fu C. Misreading of the argI message in Escherichia coli. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05695.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|