1
|
Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, Strick TR, Lebbink JHG. The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res 2020; 47:11667-11680. [PMID: 31598722 PMCID: PMC6902014 DOI: 10.1093/nar/gkz834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.
Collapse
Affiliation(s)
| | - Katerina Nitsenko
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Charlie Laffeber
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Camille Duboc
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Enes Sahin
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Audrey Quessada-Vial
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | - Titia K Sixma
- Oncode Institute, the Netherlands.,Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Terence R Strick
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Superieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.,Programme "Equipe Labellisée", Ligue Nationale contre le Cancer
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Hermans N, Laffeber C, Cristovão M, Artola-Borán M, Mardenborough Y, Ikpa P, Jaddoe A, Winterwerp HHK, Wyman C, Jiricny J, Kanaar R, Friedhoff P, Lebbink JHG. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair. Nucleic Acids Res 2016; 44:6770-86. [PMID: 27174933 PMCID: PMC5001592 DOI: 10.1093/nar/gkw411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.
Collapse
Affiliation(s)
- Nicolaas Hermans
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Michele Cristovão
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Yannicka Mardenborough
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Pauline Ikpa
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Aruna Jaddoe
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wan W, Li L, Xu Q, Wang Z, Yao Y, Wang R, Zhang J, Liu H, Gao X, Hong J. Error removal in microchip-synthesized DNA using immobilized MutS. Nucleic Acids Res 2014; 42:e102. [PMID: 24829454 PMCID: PMC4081059 DOI: 10.1093/nar/gku405] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of economical de novo gene synthesis methods using microchip-synthesized oligonucleotides has been limited by their high error rates. In this study, a low-cost, effective and improved-throughput (up to 32 oligos per run) error-removal method using an immobilized cellulose column containing the mismatch binding protein MutS was produced to generate high-quality DNA from oligos, particularly microchip-synthesized oligonucleotides. Error-containing DNA in the initial material was specifically retained on the MutS-immobilized cellulose column (MICC), and error-depleted DNA in the eluate was collected for downstream gene assembly. Significantly, this method improved a population of synthetic enhanced green fluorescent protein (720 bp) clones from 0.93% to 83.22%, corresponding to a decrease in the error frequency of synthetic gene from 11.44/kb to 0.46/kb. In addition, a parallel multiplex MICC error-removal strategy was also evaluated in assembling 11 genes encoding ∼21 kb of DNA from 893 oligos. The error frequency was reduced by 21.59-fold (from 14.25/kb to 0.66/kb), resulting in a 24.48-fold increase in the percentage of error-free assembled fragments (from 3.23% to 79.07%). Furthermore, the standard MICC error-removal process could be completed within 1.5 h at a cost as low as $0.374 per MICC.
Collapse
Affiliation(s)
- Wen Wan
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Lulu Li
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Qianqian Xu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Zhefan Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Yuan Yao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Rongliang Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Haiyan Liu
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui, People's Republic of China
| |
Collapse
|
4
|
Chang YW, Mai RT, Fang WH, Lin CC, Chiu CC, Wu Lee YH. YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 2013; 33:5065-77. [PMID: 24141788 DOI: 10.1038/onc.2013.450] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/04/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022]
Abstract
Y-box binding protein-1 (YB-1) is highly expressed in tumors and it participates in various cellular processes. Previous studies indicated that YB-1 binds to mispaired DNA and interacts with several mismatch repair (MMR)-related factors. However, its role in the MMR system remains undefined. Here, we found that YB-1 represses mutS homolog 6 (MSH6)-containing MMR complex formation and reduces MutSα mismatch binding activity by disrupting interactions among MMR-related factors. In an effort to elucidate how YB-1 exerts this inhibitory effect, we have identified two functional proliferating cell nuclear antigen (PCNA)-interacting protein (PIP)-boxes that mediate YB-1/PCNA interaction and locate within the C-terminal region of YB-1. This interaction is critical for the regulatory role of YB-1 in repressing MutSα mismatch binding activity, disrupting MutSα/PCNA/G/T heteroduplex ternary complex formation and inhibiting in vitro MMR activity. The differential regulation of 3' and 5' nick-directed MMR activity by YB-1 was also observed. Moreover, YB-1 overexpression is associated with the alteration of microsatellite pattern and the enhancement of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced and spontaneous mutations. Furthermore, upregulation of other PIP-box-containing proteins, such as myeloid cell leukemia-1 (Mcl-1) and inhibitor of growth protein 1b (ING1b), has no impact on MMR complex formation and mutation accumulation, thus revealing the significant effect of YB-1 on regulating the MMR system. In conclusion, our study suggests that YB-1 functions as a PCNA-interacting factor to exert its regulatory role on the MMR process and involves in the induction of genome instability, which may partially account for the oncogenic potential of YB-1.
Collapse
Affiliation(s)
- Y-W Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - R-T Mai
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan [2] Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan
| | - W-H Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Hospital, Taipei, Taiwan
| | - C-C Lin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - C-C Chiu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y-H Wu Lee
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan [2] Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao-Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Campo VA, Patenaude AM, Kaden S, Horb L, Firka D, Jiricny J, Di Noia JM. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Res 2013; 41:3032-46. [PMID: 23314153 PMCID: PMC3597665 DOI: 10.1093/nar/gks1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.
Collapse
Affiliation(s)
- Vanina A Campo
- Institut de Recherches Cliniques de Montréal, Division of Immunity and Viral Infections, Montréal, H2W 1R7 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Ollila S, Dermadi Bebek D, Jiricny J, Nyström M. Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 2008; 29:1355-63. [PMID: 18951462 DOI: 10.1002/humu.20893] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human mismatch repair (MMR) gene MSH2 is the second most frequently mutated hereditary nonpolyposis colorectal cancer (HNPCC) susceptibility locus. Given that missense mutations account for 17% of all identified alterations in this gene, the study of their pathogenicity is of increasing importance. Previously, we showed that pathogenic MSH2 missense mutations typically impaired the repair activity of the protein. In this study, we took advantage of its crystal structure and attempted to correlate the mismatch binding and ATP-catalyzed mismatch release activities with the location of 18 nontruncating MSH2 mutations. We observed that the MMR-deficient mutations situated in the amino-terminal connector and lever domains of MSH2 (V161D, G162R, G164R, L173P, L187P, C333Y, and D603N) affected protein stability, whereas mutations in the ATPase domain (A636P, G674A, C697F, I745_I746del, and E749 K) mainly caused defects in mismatch binding or release. Of the MMR-proficient variants, four (T33P, A272 V, G322D, and V923E) showed slightly reduced mismatch binding and/or release efficiencies compared to wild-type (WT) protein, while two variants (N127S and A834 T) showed no defects in the assays. Similar to our biochemical data, the mutations that affected protein stability were associated with an absence of the protein in tumors in immunohistochemical (IHC) analyses. In contrast, the protein with the mutation E749 K, which abrogates MMR but not protein stability, is well expressed in tumors. In conclusion, pathogenic missense mutations in MSH2 may interfere with different mechanisms that tend to cluster in separate protein domains with varying effects on protein stability, which could be taken into account when interpreting IHC data.
Collapse
Affiliation(s)
- Saara Ollila
- Department of Biological and Environmental Sciences, Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
8
|
Korhonen MK, Vuorenmaa E, Nyström M. The first functional study of MLH3 mutations found in cancer patients. Genes Chromosomes Cancer 2008; 47:803-9. [PMID: 18521850 DOI: 10.1002/gcc.20581] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The MLH3 gene is one of the five mismatch repair (MMR) genes associated with hereditary nonpolyposis colorectal cancer (HNPCC). Eighteen different inherited MLH3 mutations have been reported as pathogenic in an international mutation database. In several cases, a mutation was found in a patient without a family history suggestive of inherited cancer susceptibility. In some cases, a similar mutation was also found in sporadic patients and/or healthy controls. Four patients carried an MLH3 mutation together with another inherited MMR gene variation. No functional analyses have been performed to assess the pathogenicity of these 18 mutations. MLH3 has been assumed to be less important in MMR than the other HNPCC susceptibility genes MSH2, MSH6, MLH1, and PMS2, and accordingly a low-risk gene for colorectal cancer (CRC). To assess the significance of the inherited sequence variations in MLH3, we functionally characterized seven missense mutations (Q24E, R647C, S817G, G933C, W1276R, A1394T, E1451K) scattered throughout the MLH3 polypeptide. The mutations were found in CRC or endometrial cancer patients and reported as pathogenic. Our study showed that the seven mutated MLH3 proteins, in complex with their counterpart MLH1 (MutLgamma), repaired mismatches as the wild type MutLgamma but worse than a heterodimer of MLH1 and PMS2 (MutLalpha). The results confirm that MutLgamma is a less efficient MMR complex than MutLalpha and show that the MLH3 mutations alone do not interfere with MMR. Further studies are needed to evaluate the pathogenicity of MLH3 mutations in compound with other MMR mutations.
Collapse
Affiliation(s)
- Mari K Korhonen
- Department of Biological and Environmental Sciences, Genetics, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
9
|
Ollila S, Bebek DD, Greenblatt M, Nyström M. Uncertain pathogenicity of MSH2
variants N127S and G322D challenges their classification. Int J Cancer 2008; 123:720-4. [DOI: 10.1002/ijc.23573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Fischer F, Baerenfaller K, Jiricny J. 5-Fluorouracil is efficiently removed from DNA by the base excision and mismatch repair systems. Gastroenterology 2007; 133:1858-68. [PMID: 18054558 DOI: 10.1053/j.gastro.2007.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 08/23/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS 5-Fluorouracil (FU) is one of the mainstays of colon cancer chemotherapy. Although developed as an inhibitor of thymidylate synthase, its cytotoxicity has been linked also to its incorporation into RNA. Surprisingly, although FU is incorporated also into DNA, little is known about its metabolism in this nucleic acid. METHODS Using extracts of human cells and circular DNA substrates containing a single FU residue either paired with adenine or mispaired with guanine, we studied the enzymology of FU processing. RESULTS In nicked circular substrates, FU/G mispairs were efficiently repaired by mismatch repair (MMR). In covalently closed circular DNA, which is refractory to MMR, FU/G repair was initiated by either thymine-DNA glycosylase or uracil-DNA glycosylase, whereas FU/A pairs were processed by UNG. Methylated CpG binding domain 4 protein and single-strand selective monofunctional uracil-DNA glycosylase 1 did not detectably contribute to FU removal; however, because these recombinant enzymes process FU/G and FU/A in oligonucleotide substrates, respectively, they too may be involved in FU metabolism in vivo. CONCLUSIONS The functional redundancy of MMR and DNA glycosylases in FU processing should ensure that the drug is efficiently removed from DNA before it can interfere with essential DNA metabolic processes, such as transcription. However, in FU-treated cells, the nucleotide pools are depleted of thymine. The repair synthesis might thus be inhibited and leave cytotoxic gaps or breaks in DNA. Moreover, FU and/or 5-fluorouracil-2'-deoxyuridine-5'-triphosphate removed from DNA will increase the intracellular concentration of the drug and thus exacerbate its cytotoxicity.
Collapse
Affiliation(s)
- Franziska Fischer
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F, Cejka P, Jiricny J. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 2006; 65:10759-66. [PMID: 16322221 DOI: 10.1158/0008-5472.can-05-2528] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human mismatch repair (MMR) proteins hMLH1 and hPMS2 function in MMR as a heterodimer. Cells lacking either protein have a strong mutator phenotype and display microsatellite instability, yet mutations in the hMLH1 gene account for approximately 50% of hereditary nonpolyposis colon cancer families, whereas hPMS2 mutations are substantially less frequent and less penetrant. Similarly, in the mouse model, Mlh1-/- animals are highly cancer prone and present with gastrointestinal tumors at an early age, whereas Pms2-/- mice succumb to cancer much later in life and do not present with gastrointestinal tumors. This evidence suggested that MLH1 might functionally interact with another MutL homologue, which compensates, at least in part, for a deficiency in PMS2. Sterility of Mlh1-/-, Pms2-/-, and Mlh3-/- mice implicated the Mlh1/Pms2 and Mlh1/Mlh3 heterodimers in meiotic recombination. We now show that the hMLH1/hMLH3 heterodimer, hMutLgamma, can also assist in the repair of base-base mismatches and single extrahelical nucleotides in vitro. Analysis of hMLH3 expression in colon cancer cell lines indicated that the protein levels vary substantially and independently of hMLH1. If hMLH3 participates in MMR in vivo, its partial redundancy with hPMS2, coupled with the fluctuating expression levels of hMLH3, may help explain the low penetrance of hPMS2 mutations in hereditary nonpolyposis colon cancer families.
Collapse
Affiliation(s)
- Elda Cannavo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Marra G, Jiricny J. DNA mismatch repair and colon cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:85-123. [PMID: 18727499 DOI: 10.1007/1-4020-3764-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Drotschmann K, Yang W, Brownewell FE, Kool ET, Kunkel TA. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 2001; 276:46225-9. [PMID: 11641390 DOI: 10.1074/jbc.c100450200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of bacterial MutS homodimers bound to mismatched DNA reveal asymmetric interactions of the two subunits with DNA. A phenylalanine and glutamate of one subunit make mismatched base-specific interactions, and residues of both subunits contact the DNA backbone surrounding the mismatched base, but asymmetrically. A number of amino acids in MutS that contact the DNA are conserved in the eukaryotic Msh2-Msh6 heterodimer. We report here that yeast strains with amino acids substituted for residues inferred to interact with the DNA backbone or mismatched base have elevated spontaneous mutation rates consistent with defective mismatch repair. Purified Msh2-Msh6 with substitutions in the conserved Phe(337) and Glu(339) in Msh6 thought to stack or hydrogen bond, respectively, with the mismatched base do have reduced DNA binding affinity but normal ATPase activity. Moreover, wild-type Msh2-Msh6 binds with lower affinity to mismatches with thymine replaced by difluorotoluene, which lacks the ability to hydrogen bond. The results suggest that yeast Msh2-Msh6 interacts asymmetrically with the DNA through base-specific stacking and hydrogen bonding interactions and backbone contacts. The importance of these contacts decreases with increasing distance from the mismatch, implying that interactions at and near the mismatch are important for binding in a kinked DNA conformation.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
14
|
Nyström-Lahti M, Perrera C, Räschle M, Panyushkina-Seiler E, Marra G, Curci A, Quaresima B, Costanzo F, D'Urso M, Venuta S, Jiricny J. Functional analysis ofMLH1mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosomes Cancer 2001. [DOI: 10.1002/gcc.1225] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Abstract
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair.
Collapse
Affiliation(s)
- P Hsieh
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10 Rm. 9D06, 10 Center Dr. MSC 1810, Bethesda, MD 20892-1810, USA.
| |
Collapse
|
16
|
Marra G, D'Atri S, Corti C, Bonmassar L, Cattaruzza MS, Schweizer P, Heinimann K, Bartosova Z, Nyström-Lahti M, Jiricny J. Tolerance of human MSH2+/- lymphoblastoid cells to the methylating agent temozolomide. Proc Natl Acad Sci U S A 2001; 98:7164-9. [PMID: 11416201 PMCID: PMC34640 DOI: 10.1073/pnas.121136498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of hereditary nonpolyposis colon cancer (HNPCC) families harboring heterozygous germline mutations in the DNA mismatch repair genes hMSH2 or hMLH1 present with tumors generally two to three decades earlier than individuals with nonfamilial sporadic colon cancer. We searched for phenotypic features that might predispose heterozygous cells from HNPCC kindreds to malignant transformation. hMSH2(+/-) lymphoblastoid cell lines were found to be on average about 4-fold more tolerant than wild-type cells to killing by the methylating agent temozolomide, a phenotype that is invariably linked with impairment of the mismatch repair system. This finding was associated with an average 2-fold decrease of the steady-state level of hMSH2 protein in hMSH2(+/-) cell lines. In contrast, hMLH1(+/-) heterozygous cells were indistinguishable from normal controls in these assays. Thus, despite the fact that HNPCC families harboring mutations in hMSH2 or hMLH1 cannot be distinguished clinically, the early stages of the carcinogenic process in hMSH2 and hMLH1 mutation carriers may be different. Should hMSH2(+/-) colonocytes and lymphoblasts harbor a similar phenotype, the increased tolerance of the former to DNA-damaging agents present in the human colon may play a key role in the initiation of the carcinogenic process.
Collapse
Affiliation(s)
- G Marra
- Institute of Medical Radiobiology of the University of Zürich, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dufner P, Marra G, Räschle M, Jiricny J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit. J Biol Chem 2000; 275:36550-5. [PMID: 10938287 DOI: 10.1074/jbc.m005987200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The most abundant mismatch binding factor in human cells, hMutSalpha, is a heterodimer of hMSH2 and hMSH6, two homologues of the bacterial MutS protein. The C-terminal portions of all MutS homologues contain an ATP binding motif and are highly conserved throughout evolution. Although the N termini are generally divergent, they too contain short conserved sequence elements. A phenylalanine --> alanine substitution within one such motif, GXFY(X)(5)DA, has been shown to abolish the mismatch binding activity of the MutS protein of Thermus aquaticus (Malkov, V. A., Biswas, I., Camerini-Otero, R. D., and Hsieh, P. (1997) J. Biol. Chem. 272, 23811-23817). We introduced an identical mutation into one or both subunits of hMutSalpha. The Phe --> Ala substitution in hMSH2 had no effect on the biological activity of the heterodimer. In contrast, the in vitro mismatch binding and mismatch repair functions of hMutSalpha were severely attenuated when the hMSH6 subunit was mutated. Moreover, this variant heterodimer also displayed a general DNA binding defect. Correspondingly, its ATPase activity could not be stimulated by either heteroduplex or homoduplex DNA. Thus the N-terminal portion of hMSH6 appears to impart on hMutSalpha not only the specificity for recognition and binding of mismatched substrates but also the ability to bind to homoduplex DNA.
Collapse
Affiliation(s)
- P Dufner
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel-Strasse 7, Zürich 8008, Switzerland
| | | | | | | |
Collapse
|
18
|
Abstract
About 23% of mutations in hereditary human diseases and 24% of mutations in p53 in human cancers are G to A transitions at sites of cytosine methylation suggesting that these sites are either foci for DNA damage, or foci for damage that is poorly repaired. Thymine produced at these sites by the hydrolytic deamination of 5-methylcytosine is removed by thymine-DNA glycosylase. Thymine-DNA glycosylase will also remove 3,N(4)-ethenocytosine and uracil from DNA. The action of this enzyme is limited by its very low k(cat) and by tight binding to the apurinic site produced when the thymine is removed. These properties of the enzyme suggest that the inefficiency of the base excision repair pathway that it initiates may be the underlying cause of the prevalence of these mutations.
Collapse
Affiliation(s)
- T R Waters
- Department of Biochemistry and Molecular Biology, University College London, London, UK.
| | | |
Collapse
|
19
|
Iaccarino I, Marra G, Dufner P, Jiricny J. Mutation in the magnesium binding site of hMSH6 disables the hMutSalpha sliding clamp from translocating along DNA. J Biol Chem 2000; 275:2080-6. [PMID: 10636912 DOI: 10.1074/jbc.275.3.2080] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human cells, binding of base/base mismatches and small insertion/deletion loops is mediated by hMutSalpha, a heterodimer of hMSH2 and hMSH6. In the presence of ATP and magnesium, hMutSalpha dissociates from the mismatch by following the DNA contour in the form of a sliding clamp. This process is enabled by a conformational change of the heterodimer, which is driven by the binding of ATP and magnesium in the Walker type A and B motifs of the polypeptides, respectively. We show that a purified recombinant hMutSalpha variant, hMutSalpha 6DV, which contains an aspartate to valine substitution in the Walker type B motif of the hMSH6 subunit, fails to undergo the conformational change compatible with translocation. Instead, its direct dissociation from the mismatch-containing DNA substrate in the presence of ATP and magnesium precludes the assembly of a functional mismatch repair complex. The "translocation-prone" conformation of wild type hMutSalpha could be observed solely under conditions that favor hydrolysis of the nucleotide and mismatch repair in vitro. Thus, whereas magnesium could be substituted with manganese, ATP could not be replaced with its slowly or nonhydrolyzable homologues ATP-gammaS or AMPPNP, respectively. The finding that ATP induces different conformational changes in hMutSalpha in the presence and in the absence of magnesium helps explain the functional differences between hMutSalpha variants incapable of binding ATP as compared with those unable to bind the metal ion.
Collapse
Affiliation(s)
- I Iaccarino
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer Institute, August Forel Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
20
|
Räschle M, Marra G, Nyström-Lahti M, Schär P, Jiricny J. Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1. J Biol Chem 1999; 274:32368-75. [PMID: 10542278 DOI: 10.1074/jbc.274.45.32368] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
hMLH1 and hPMS2 function in postreplicative mismatch repair in the form of a heterodimer referred to as hMutLalpha. Tumors or cell lines lacking this factor display mutator phenotypes and microsatellite instability, and mutations in the hMLH1 and hPMS2 genes predispose to hereditary non-polyposis colon cancer. A third MutL homologue, hPMS1, has also been reported to be mutated in one cancer-prone kindred, but the protein encoded by this locus has so far remained without function. We now show that hPMS1 is expressed in human cells and that it interacts with hMLH1 with high affinity to form the heterodimer hMutLbeta. Recombinant hMutLalpha and hMutLbeta, expressed in the baculovirus system, were tested for their activity in an in vitro mismatch repair assay. While hMutLalpha could fully complement extracts of mismatch repair-deficient cell lines lacking hMLH1 or hPMS2, hMutLbeta failed to do so with any of the different substrates tested in this assay. The involvement of the latter factor in postreplicative mismatch repair thus remains to be demonstrated.
Collapse
Affiliation(s)
- M Räschle
- Institute of Medical Radiobiology, University of Zürich August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Lambert MW, Lambert WC. DNA repair and chromatin structure in genetic diseases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:257-310. [PMID: 10506834 DOI: 10.1016/s0079-6603(08)60725-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interaction of DNA repair proteins with damaged DNA in eukaryotic cells is influenced by the packaging of DNA into chromatin. The basic repeating unit of chromatin, the nucleosome, plays an important role in regulating accessibility of repair proteins to sites of damage in DNA. There are a number of different pathways fundamental to the DNA repair process. Elucidation of the proteins involved in these pathways and the mechanisms they utilize for interacting with damaged nucleosomal and nonnucleosomal DNA has been aided by studies of genetic diseases where there are defects in the DNA repair process. Two of these diseases are xeroderma pigmentosum (XP) and Fanconi anemia (FA). Cells from patients with these disorders are similar in that they have defects in the initial steps of the repair process. However, there are a number of important differences in the nature of these defects. One of these is in the ability of repair proteins from XP and FA cells to interact with damaged nucleosomal DNA. In XP complementation group A (XPA) cells, for example, endonucleases present in a chromatin-associated protein complex involved in the initial steps in the repair process are defective in their ability to incise damaged nucleosomal DNA, but, like the normal complexes, can incise damaged naked DNA. In contrast, in FA complementation group A (FA-A) cells, these complexes are equally deficient in their ability to incise damaged naked and similarly damaged nucleosomal DNA. This ability to interact with damaged nucleosomal DNA correlates with the mechanism of action these endonucleases use for locating sites of damage. Whereas the FA-A and normal endonucleases act by a processive mechanism of action, the XPA endonucleases locate sites of damage distributively. Thus the mechanism of action utilized by a DNA repair enzyme may be of critical importance in its ability to interact with damaged nucleosomal DNA.
Collapse
Affiliation(s)
- M W Lambert
- Department of Pathology, UMDNJ-New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
22
|
Hickman MJ, Samson LD. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci U S A 1999; 96:10764-9. [PMID: 10485900 PMCID: PMC17957 DOI: 10.1073/pnas.96.19.10764] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O(6)-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine (O(6)CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutSalpha branch of the DNA mismatch repair pathway (but not the MutSbeta branch) is absolutely required for signaling the initiation of apoptosis in response to O(6)MeGs and is partially required for signaling apoptosis in response to O(6)CEGs. Further, O(6)MeG lesions signal the stabilization of the p53 tumor suppressor, and such signaling is also MutSalpha-dependent. Despite this, MutSalpha-dependent apoptosis can be executed in a p53-independent manner. DNA mismatch repair status did not influence the response of cells to other inducers of p53 and apoptosis. Thus, it appears that mismatch repair status, rather than p53 status, is a strong indicator of the susceptibility of cells to alkylation-induced apoptosis. This experimental system will allow dissection of the signal transduction events that couple a specific type of DNA base lesion with the final outcome of apoptotic cell death.
Collapse
Affiliation(s)
- M J Hickman
- Department of Cancer Cell Biology, Toxicology Division, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Terato H, Masaoka A, Kobayashi M, Fukushima S, Ohyama Y, Yoshida M, Ide H. Enzymatic repair of 5-formyluracil. II. Mismatch formation between 5-formyluracil and guanine during dna replication and its recognition by two proteins involved in base excision repair (AlkA) and mismatch repair (MutS). J Biol Chem 1999; 274:25144-50. [PMID: 10455196 DOI: 10.1074/jbc.274.35.25144] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.
Collapse
Affiliation(s)
- H Terato
- Graduate Department of Gene Science, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Nakajima E, Ikejima M, Watanabe A, Shimada T. Identification of the protein components of mismatch binding complexes in human cells using a gel-shift assay. FEBS Lett 1999; 453:85-9. [PMID: 10403381 DOI: 10.1016/s0014-5793(99)00626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In eukaryotes, mismatch recognition is thought to be mediated by two heterodimers, hMutSalpha (hMSH2+hMSH6), which preferentially binds to base-base mismatches and hMutSbeta (hMSH2+hMSH3), which binds to insertion/deletion loops. We studied these mismatch binding activities in several human cell lines with a gel-shift assay using various mismatch oligonucleotides as substrates. Both hMutSalpha and hMutSbeta activities could be detected in various human cell lines. In cells with amplified copies of the hMSH3 gene, a large increase in hMutSbeta and a reduction in hMutSalpha were observed. To identify the composition of each mismatch binding complex, the protein-DNA complexes were transferred from gel-shift polyacrylamide gel to a polyvinylidene difluoride membrane and were subjected to immunoblot analysis with an enhanced chemiluminescence protein detection system. The results clearly demonstrated that hMutSalpha detected by the gel-shift assay was composed of hMSH2 and hMSH6, while hMutSbeta was composed of hMSH2 and hMSH3. Our data, therefore, support a model whereby formation of hMutSalpha and hMutSbeta is mutually regulated. Combination of a gel-shift assay with immunoblotting (shift-Western assay) proved to be a highly sensitive technique and should be useful for studying the interactions between DNA and binding proteins, including DNA mismatch recognition.
Collapse
Affiliation(s)
- E Nakajima
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Bocker T, Rüschoff J, Fishel R. Molecular diagnostics of cancer predisposition: hereditary non-polyposis colorectal carcinoma and mismatch repair defects. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:O1-O10. [PMID: 10382540 DOI: 10.1016/s0304-419x(99)00008-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hereditary non-polyposis colorectal carcinoma accounts for 5-13% of all colorectal carcinomas and is inherited in a dominant fashion. Two different forms can be distinguished. Type I is restricted to colorectal cancers, whereas type II patients acquire acolorectal, endometrial, gastric, small intestinal and transitional carcinomas of the upper urinary tract. Germline mutations in the human mismatch repair genes (hMSH2, hMSH6, hMLH1, hPMS2) account for the majority of hereditary non-polyposis colorectal carcinoma. As a result of the mismatch repair deficiency, replication errors are not repaired, resulting in a mutator phenotype. Simple repetitive sequences (microsatellites) are especially prone to replication errors and analysis of their stability combined with immunohistochemical analysis of mismatch repair protein expression provides a rapid diagnostic strategy. For patients either (1) fulfilling the Amsterdam criteria for HNPCC, (2) with synchronous or metachronous hereditary non-polyposis colorectal carcinoma-related tumors, (3) with hereditary non-polyposis colorectal carcinoma-related tumors before the age of 45 and/or (4) with right sided CRC and mucinous, solid, or cribriform growth patterns, screening for mismatch repair deficiencies should be performed. The identification of colorectal cancers displaying a mutator phenotype has implications for both treatment and prognosis.
Collapse
Affiliation(s)
- T Bocker
- Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
26
|
Marra G, Schär P. Recognition of DNA alterations by the mismatch repair system. Biochem J 1999; 338 ( Pt 1):1-13. [PMID: 9931291 PMCID: PMC1220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Misincorporation of non-complementary bases by DNA polymerases is a major source of the occurrence of promutagenic base-pairing errors during DNA replication or repair. Base-base mismatches or loops of extra bases can arise which, if left unrepaired, will generate point or frameshift mutations respectively. To counteract this mutagenic potential, organisms have developed a number of elaborate surveillance and repair strategies which co-operate to maintain the integrity of their genomes. An important replication-associated correction function is provided by the post-replicative mismatch repair system. This system is highly conserved among species and appears to be the major pathway for strand-specific elimination of base-base mispairs and short insertion/deletion loops (IDLs), not only during DNA replication, but also in intermediates of homologous recombination. The efficiency of repair of different base-pairing errors in the DNA varies, and appears to depend on multiple factors, such as the physical structure of the mismatch and sequence context effects. These structural aspects of mismatch repair are poorly understood. In contrast, remarkable progress in understanding the biochemical role of error-recognition proteins has been made in the recent past. In eukaryotes, two heterodimers consisting of MutS-homologous proteins have been shown to share the function of mismatch recognition in vivo and in vitro. A first MutS homologue, MSH2, is present in both heterodimers, and the specificity for mismatch recognition is dictated by its association with either of two other MutS homologues: MSH6 for recognition of base-base mismatches and small IDLs, or MSH3 for recognition of IDLs only. Mismatch repair deficiency in cells can arise through mutation, transcriptional silencing or as a result of imbalanced expression of these genes.
Collapse
Affiliation(s)
- G Marra
- Institute for Medical Radiobiology, Zürich, Switzerland
| | | |
Collapse
|
27
|
Clark AB, Cook ME, Tran HT, Gordenin DA, Resnick MA, Kunkel TA. Functional analysis of human MutSalpha and MutSbeta complexes in yeast. Nucleic Acids Res 1999; 27:736-42. [PMID: 9889267 PMCID: PMC148241 DOI: 10.1093/nar/27.3.736] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mismatch repair (MMR) is initiated when a heterodimer of hMSH2*hMSH6 or hMSH2*hMSH3 binds to mismatches. Here we perform functional analyses of these human protein complexes in yeast. We use a sensitive genetic system wherein the rate of single-base deletions in a homopolymeric run in the LYS2 gene is 10 000-fold higher in an msh2 mutant than in a wild-type strain. Expression of the human proteins alone or in combination does not reduce the mutation rate of the msh2 strain, and expression of the individual human proteins does not increase the low mutation rate of a wild-type strain. However, co-expression of hMSH2 and hMSH6 in wild-type yeast increases the mutation rate 4000-fold, while co-expression of hMSH2 and hMSH3 elevates the rate 5-fold. Analysis of cell extracts indicates that the proteins are expressed and bind to mismatched DNA. The results suggest that hMutSalpha and hMutSbeta complexes form, bind to and prevent correction of replication slippage errors in yeast. Expression of hMSH6 with hMSH2 containing a proline substituted for a conserved Arg524 eliminates the mutator effect and reduces mismatch binding. The analogous mutation in humans is associated with microsatellite instability, defective MMR and cancer, illustrating the utility of the yeast system for studying human disease alleles.
Collapse
Affiliation(s)
- A B Clark
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233,Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The discovery that mutations in mismatch repair genes segregate with hereditary nonpolyposis colon cancer has awakened a great deal of interest in the study of the process of postreplicative mismatch repair. The characterisation of the principal players involved in this important metabolic pathway has been greatly facilitated by the amino acid sequence conservation among functional homologues of bacteria, yeast and mammals. The phenotypes of mismatch repair deficient mutants are also similar in many ways. In humans, mismatch repair malfunction demonstrates itself in the form of a mutator phenotype of the affected cells, an instability of microsatellite sequences and increased levels of somatic recombination. Moreover, mismatch repair deficient cells display also varying levels of tolerance to DNA damaging agents and are thought to be involved in the cell killing mediated by these agents. This article discusses some recent developments in this fast-moving field.
Collapse
Affiliation(s)
- J Jiricny
- Institute of Medical Radiobiology of the University of Zürich, Switzerland.
| |
Collapse
|
29
|
Abstract
Since the discovery of a link between the malfunction of post-replicative mismatch correction and hereditary non-polyposis colon cancer, the study of this complex repair pathway has received a great deal of attention. Our understanding of the mammalian system was facilitated by conservation of the main protagonists of this process from microbes to humans. Thus, biochemical experiments carried out with Escherichia coli extracts helped us to identify functional human homologues of the bacterial mismatch repair proteins, while the genetics of Saccharomyces cerevisiae aided our understanding of the phenotypes of human cells deficient in mismatch correction. Today, mismatch repair is no longer thought of solely as the mechanism responsible for the correction of replication errors, whose failure demonstrates itself in the form of a mutator phenotype and microsatellite instability. Malfunction of this process has been implicated also in mitotic and meiotic recombination, drug and ionizing radiation resistance, transcription-coupled repair and apoptosis. Elucidation of the roles of mismatch repair proteins in these transduction pathways is key to our understanding of the role of mismatch correction in human cancer. However, in order to unravel all the complexities involved in post-replicative mismatch correction, we need to know the cast and the roles of the individual players. This brief treatise provides an overview of our current knowledge of the biochemistry of this process.
Collapse
Affiliation(s)
- J Jiricny
- Institute of Medical Radiobiology of the University of Zürich and the Paul Scherrer-Institute, August Forel-Strasse 7, CH-8008 Zürich, Switzerland
| |
Collapse
|
30
|
Qian Y, Yu Y, Cheng X, Luo J, Xie H, Shen B. Molecular events after antisense inhibition of hMSH2 in a HeLa cell line. Mutat Res 1998; 418:61-71. [PMID: 9756996 DOI: 10.1016/s1383-5718(98)00108-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To establish a cause-effect relationship between the human mismatch repair pathway deficiency and the observed phenotypes, a hMSH2 deficient HeLa cell line (HeLa-MSH2-) was established by transfecting the HeLa cells with an antisense RNA expression plasmid. The expression plasmid was constructed by inserting an 851 bp fragment of hMSH2 cDNA into the polyclonal site of the vector pREP9 in a reversed orientation. The production of the mismatch binding protein, hMSH2, was inhibited in HeLa-MSH2- cells, as demonstrated by Western blotting and band shift assay of its whole cell extract. The growth rate of this cell line was not different from the parental HeLa cells soon after transfection. However, the rate was faster after 10 subcultures. The spontaneous mutation frequency at the hypoxanthine phosphoribosyltransferase (HPRT) locus increased markedly, but no N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) tolerance appeared in this cell line. Our results clearly demonstrated several molecular events happened after the inhibition of a major mismatch recognition protein, hMSH2, in the mismatch repair pathway, mimicking carcinogenesis processes.
Collapse
Affiliation(s)
- Y Qian
- Department of Pathophysiology and Laboratory of Medical Molecular Biology, Zhejiang Medical University, Hangzhou, Zhejiang 310031, China
| | | | | | | | | | | |
Collapse
|
31
|
Levati L, Marra G, Lettieri T, D'Atri S, Vernole P, Tentori L, Lacal PM, Pagani E, Bonmassar E, Jiricny J, Graziani G. Mutation of the mismatch repair genehMSH2 andhMSH6 in a human T-cell leukemia line tolerant to methylating agents. Genes Chromosomes Cancer 1998. [DOI: 10.1002/(sici)1098-2264(199810)23:2<159::aid-gcc9>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
32
|
David SS, Williams SD. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair. Chem Rev 1998; 98:1221-1262. [PMID: 11848931 DOI: 10.1021/cr980321h] [Citation(s) in RCA: 425] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheila S. David
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
33
|
Iaccarino I, Marra G, Palombo F, Jiricny J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J 1998; 17:2677-86. [PMID: 9564049 PMCID: PMC1170608 DOI: 10.1093/emboj/17.9.2677] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In extracts of human cells, base-base mismatches and small insertion/deletion loops are bound primarily by hMutSalpha, a heterodimer of hMSH2 and hMSH6 (also known as GTBP or p160). Recombinant hMutSalpha bound a G/T mismatch-containing oligonucleotide with an apparent dissociation constant Kd = 2.6 nM, while its affinity for a homoduplex substrate was >20-fold lower. In the presence of ATP, hMutSalpha dissociated from mismatched oligonucleotide substrates, and this reaction was attenuated by mutating the conserved lysine in the ATP-binding domains of hMSH6, hMSH2 or both to arginine. Surprisingly, this reaction required only ATP binding, not hydrolysis. The ATPase activity of hMutSalpha variants carrying the Lys-->Arg mutation in hMSH2 or in hMSH6 was severely affected, but these mutants were still proficient in mismatch binding and were able to complement, albeit to different extents, mismatch repair-deficient cell extracts. The mismatch binding-proficient, ATPase-deficient double mutant was inactive in the complementation assay and its presence in repair-proficient extracts was inhibitory. We conclude that although the ATPase activity of hMutSalpha is dispensible for mismatch binding, it is required for mismatch correction.
Collapse
Affiliation(s)
- I Iaccarino
- Institute of Medical Radiobiology, P.O. Box 424, August Forel-Strasse 7, CH-8029, Zürich, Switzerland
| | | | | | | |
Collapse
|
34
|
Malkov VA, Biswas I, Camerini-Otero RD, Hsieh P. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J Biol Chem 1997; 272:23811-7. [PMID: 9295328 DOI: 10.1074/jbc.272.38.23811] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The MutS DNA mismatch repair protein recognizes heteroduplex DNAs containing mispaired or unpaired bases. To identify regions of MutS protein in close proximity to the heteroduplex DNA, we have utilized the photoactivated cross-linking moiety 5-iododeoxyuridine (5-IdUrd). Nucleoprotein complexes of Thermus aquaticus MutS protein bound to monosubstituted 5-IdUrd-containing heteroduplex DNAs were cross-linked with long-wavelength ultraviolet light. Positioning of the 5-IdUrd moiety at one of three positions within the DNA bulge, two nucleotides upstream or three nucleotides downstream of the unpaired base, resulted in an identical subset of cross-linked peptides as determined by proteolytic fingerprinting. The tryptic peptide cross-linked to an unpaired 5-IdUrd residue was determined by peptide sequencing to correspond to a highly conserved region spanning residues 25-49. Cross-linking to the bulge nucleotide occurred at Phe-39, indicating that this residue contacts, or is in close proximity to, the unpaired base of a heteroduplex DNA. Site-directed mutagenesis resulting in the substitution of Ala for Phe-39 reduced the affinity of the mutant protein for heteroduplex DNA by roughly 3 orders of magnitude, but had no apparent effect on its ability to dimerize, its thermostability, or its ATPase activity. These results implicate the region in the vicinity of Phe-39 as being crucial for heteroduplex DNA binding by Taq MutS protein.
Collapse
Affiliation(s)
- V A Malkov
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | | | | | |
Collapse
|
35
|
Yoder JA, Soman NS, Verdine GL, Bestor TH. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 1997; 270:385-95. [PMID: 9237905 DOI: 10.1006/jmbi.1997.1125] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanisms that establish and maintain methylation patterns in the mammalian genome are very poorly understood, even though perturbations of methylation patterns lead to a loss of genomic imprinting, ectopic X chromosome inactivation, and death of mammalian embryos. A family of sequence-specific DNA methyltransferases has been proposed to be responsible for the wave of de novo methylation that occurs in the early embryo, although no such enzyme has been identified. A universal mechanism-based probe for DNA (cytosine-5)-methyltransferases was used to screen tissues and cell types known to be active in de novo methylation for new species of DNA methyltransferase. All identifiable de novo methyltransferase activity was found to reside in Dnmt1. As this enzyme is the predominant de novo methyltransferase at all developmental stages inspected, it does not fit the definition of maintenance methyltransferase or hemimethylase. Recent genetic data indicate that de novo methylation of retroviral DNA in embryonic stem cells is likely to involve one or more additional DNA methyltransferases. Such enzymes were not detected and are either present in very small amounts or are very different from Dnmt1. A new method was developed and used to determine the sequence specificity of intact Dnmt1 in whole-cell lysates. Specificity was found to be confined to the sequence 5'-CpG-3'; there was little dependence on sequence context or density of CpG dinucleotides. These data suggest that any sequence-specific de novo methylation mediated by Dnmt1 is either under the control of regulatory factors that interact with Dnmt1, or is cued by alternative secondary structures in DNA.
Collapse
Affiliation(s)
- J A Yoder
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
36
|
Biswas I, Hsieh P. Interaction of MutS protein with the major and minor grooves of a heteroduplex DNA. J Biol Chem 1997; 272:13355-64. [PMID: 9148958 DOI: 10.1074/jbc.272.20.13355] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thermus aquaticus MutS protein is a DNA mismatch repair protein that recognizes and binds to heteroduplex DNAs containing mispaired or unpaired bases. Using enzymatic and chemical probe methods, we have examined the binding of Taq MutS protein to a heteroduplex DNA having a single unpaired thymidine residue. DNase I footprinting identifies a symmetrical region of protection 24-28 nucleotides long centered on the unpaired base. Methylation protection and interference studies establish that Taq MutS protein makes contacts with the major groove of the heteroduplex in the immediate vicinity of the unpaired base. Hydroxyl radical and 1, 10-phenanthroline-copper footprinting experiments indicate that MutS also interacts with the minor groove near the unpaired base. Together with the identification of key phosphate groups detected by ethylation interference, these data reveal critical contact points residing in the major and minor grooves of the heteroduplex DNA.
Collapse
Affiliation(s)
- I Biswas
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
37
|
Abstract
Alterations of the human mismatch repair genes have been linked to hereditary non-polyposis colon cancer (HNPCC) as well as to sporadic cancers that exhibit microsatellite instability. The human mismatch repair genes are highly conserved homologs of the Escherichia coli MutHLS system. Six MutS homologs have been identified in Saccharomyces cerevisiae and four MutS homologs have been identified in human cells. At least three of these eukaryotic MutS homologs are involved in the recognition/binding of mispaired nucleotides and nucleotide lesions. MSH2 plays a fundamental role in mispair recognition whereas MSH3 and MSH6 appear to modify the specificity of this recognition. The redundant functions of MSH3 and MSH6 explain the greater prevalence of hmsh2 mutations in HNPCC families.
Collapse
Affiliation(s)
- R Fishel
- DNA Repair and Molecular Carcinogenesis Program, Kimmel Cancer Institute and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
38
|
Donohue PJ, Feng SL, Alberts GF, Guo Y, Peifley KA, Hsu DK, Winkles JA. Fibroblast growth factor-1 stimulation of quiescent NIH 3T3 cells increases G/T mismatch-binding protein expression. Biochem J 1996; 319 ( Pt 1):9-12. [PMID: 8870641 PMCID: PMC1217727 DOI: 10.1042/bj3190009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polypeptide growth factors promote cell-cycle progression in part by the transcriptional activation of a diverse group of specific genes. We have used an mRNA differential-display approach to identify several fibroblast growth factor (FGF)-1 (acidic FGF)-inducible genes in NIH 3T3 cells. Here we report that one of these genes, called FGF-regulated (FR)-3, is predicted to encode G/T mismatch-binding protein (GTBP), a component of the mammalian DNA mismatch correction system. The murine GTBP gene is transiently expressed after FGF-1 or calf serum treatment, with maximal mRNA levels detected at 12 and 18 h post-stimulation. FGF-1-stimulated NIH 3T3 cells also express an increased amount of GTBP as determined by immunoblot analysis. These results indicate that elevated levels of GTBP may be required during the DNA synthesis phase of the cell cycle for efficient G/T mismatch recognition and repair.
Collapse
Affiliation(s)
- P J Donohue
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Varlet I, Canard B, Brooks P, Cerovic G, Radman M. Mismatch repair in Xenopus egg extracts: DNA strand breaks act as signals rather than excision points. Proc Natl Acad Sci U S A 1996; 93:10156-61. [PMID: 8816768 PMCID: PMC38353 DOI: 10.1073/pnas.93.19.10156] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Xenopus egg extracts, DNA strand breaks (nicks) located 3' or 5' to a mismatch cause an overall 3-fold stimulation of the repair of the mismatch in circular heteroduplex DNA molecules. The increase in mismatch repair is almost entirely due to an increase in repair of the nicked strand, which is stimulated 5-fold. Repair synthesis is centered to the mismatch site, decreases symmetrically on both sides, and its position is not significantly altered by the presence of the nick. Therefore, it appears that in the Xenopus germ cells, the mismatch repair system utilizes nicks as signals for the induction and direction of mismatch repair, but not as the start or end point for excision and resynthesis.
Collapse
Affiliation(s)
- I Varlet
- Laboratoire de Mutagenèse, Institut Jacques Mound, Centre National de la Recherche Scientifique, UMR 9922, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Hereditary nonpolyposis colorectal cancer (HNPCC) dates to Aldred Warthin's description of Family G a century ago. The phenotype features an excess of early onset colorectal carcinoma (CRC) with a propensity to involve the proximal colon, and a variety of extracolonic cancers, particularly carcinoma of the endometrium, ovary, stomach, small bowel, ureter, and renal pelvis. The recent discovery that HNPCC patients carry germline mutations in DNA mismatch repair genes has engendered great interest in the syndrome. METHODS This is a description of HNPCC based on the authors' experience with more than 170 families and a review of the world literature. RESULTS This review describes the genotypic and phenotypic features of HNPCC. The distinctive natural history of the syndrome is discussed in light of the recent discovery that ineffective DNA mismatch repair is the principal abnormality in affected individuals. CONCLUSIONS Clinical and molecular genetic knowledge about HNPCC is now available to physicians, and should enable them to provide highly targeted surveillance and management for patients with a high cancer risk. Genetic counseling can prove lifesaving. The study of HNPCC will likely contribute to knowledge about the causes and control of common forms of cancer in the general population.
Collapse
Affiliation(s)
- H T Lynch
- Department of Preventive Medicine, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
41
|
Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J. hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol 1996; 6:1181-4. [PMID: 8805365 DOI: 10.1016/s0960-9822(02)70685-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In human cells, mismatch recognition is mediated by a heterodimeric complex, hMutSalpha, comprised of two members of the MutS homolog (MSH) family of proteins, hMSH2 and GTBP [1,2]. Correspondingly, tumour-derived cell lines defective in hMSH2 and GTBP have a mutator phenotype [3,4], and extracts prepared from these cells lack mismatch-binding activity [1]. However, although hMSH2 mutant cell lines showed considerable microsatellite instability in tracts of mononucleotide and dinucleotide repeats [4,5], only mononucleotide repeats were somewhat unstable in GTBP mutants [4,6]. These findings, together with data showing that extracts of cells lacking GTBP are partially proficient in the repair of two-nucleotide loops [2], suggested that loop repair can be GTBP-independent. We show here that hMSH2 can also heterodimerize with a third human MSH family member, hMSH3, and that this complex, hMutSbeta, binds loops of one to four extrahelical bases. Our data further suggest that hMSH3 and GTBP are redundant in loop repair, and help explain why only mutations in hMSH2, and not in GTBP or hMSH3, segregate with hereditary non-polyposis colorectal cancer (HNPCC) [7].
Collapse
Affiliation(s)
- F Palombo
- Istituto di Richerche di Biologia Molecolare "P. Angeletti" Via Pontina Km 30,600 I-00040 Pomezia Italy
| | | | | | | | | | | |
Collapse
|
42
|
Swann PF, Waters TR, Moulton DC, Xu YZ, Zheng Q, Edwards M, Mace R. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 1996; 273:1109-11. [PMID: 8688098 DOI: 10.1126/science.273.5278.1109] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is proposed here that the delayed cytotoxicity of thioguanine involves the postreplicative DNA mismatch repair system. After incorporation into DNA, the thioguanine is chemically methylated by S-adenosylmethionine to form S6-methylthioguanine. During DNA replication, the S6-methylthioguanine directs incorporation of either thymine or cytosine into the growing DNA strand, and the resultant S6-methylthioguanine-thymine pairs are recognized by the postreplicative mismatch repair system. Azathioprine, an immunosuppressant used in organ transplantation, is partly converted to thioguanine. Because the carcinogenicity of N-nitrosamines depends on formation of O6-alkylguanine in DNA, the formation of the analog S6-methylthioguanine during azathioprine treatment may partly explain the high incidence of cancer after transplantation.
Collapse
Affiliation(s)
- P F Swann
- Cancer Research Campaign Nitrosamine-Induced Cancer Group, Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Wedge SR, Porteus JK, May BL, Newlands ES. Potentiation of temozolomide and BCNU cytotoxicity by O(6)-benzylguanine: a comparative study in vitro. Br J Cancer 1996; 73:482-90. [PMID: 8595163 PMCID: PMC2074446 DOI: 10.1038/bjc.1996.85] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Depletion of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) with O(6)-benzylguanine (O(6)-BG) has been widely shown to enhance 1,3-bis(2-chloroethyl)-nitrosourea (BCNU) activity. This study aimed to determine whether temozolomide, a methylating imidazotetrazinone, would similarly benefit from combination with O(6)-BG. Seven human cell lines were examined with AGT activities ranging from <6 fmol mg-1 protein to >700 fmol mg-1 protein. Comparisons with BCNU were made on both single and multiple dosing schedules, since temozolomide cytotoxicity is highly schedule dependent. In single-dose potentiation studies, cells were preincubated with 100 microM O(6)-BG for 1 h, a treatment found to deplete AGT activity by >90% for 24 h. No potentiation of either temozolomide or BCNU cytotoxicity was observed in two glioblastoma cell lines with <6 fmol mg-1 protein AGT. In all other cell lines studied potentiation of BCNU toxicity by O(6)-BG was between 1.6- and 2.3-fold and exceeded that of temozolomide (1.1- to 1.7-fold). The magnitude of this potentiation was unrelated to AGT activity and the relative potentiation of temozolomide and BCNU cytotoxicity was found to be highly variable between cell lines. In multiple dosing studies two colorectal cell lines (Mawi and LS174T) were treated with temozolomide or BCNU at 24 h intervals for up to 5 days, with or without either 100 microM O(6)-BG for 1 h or 1 microM O(6)-BG for 24 h, commencing 1 h before alkylating treatment. Extended treatment with 1 microM O(6)-BG produced greater potentiation than intermittent treatment with 100 microM O(6)-BG. Potentiation of temozolomide cytotoxicity increased linearly in Mawi with each subsequent dosing: from 1.4-fold (day 1) to 4.2-fold (day 5) with continuous 1 microM O(6)-BG. In contrast, no potentiation was observed in LS174T, a cell line that would appear to be 'tolerant' of methylation. Potentiation of BNCU cytotoxicity increased in both cell lines with repeat dosing, although the rate of increase was less than that observed with temozolomide and continuous 1 microM O(6)-BG in Mawi. These results suggest that repeat dosing of an AGT inhibitor and temozolomide may have a clinical role in the treatment of tumours that exhibit AGT-mediated resistance.
Collapse
Affiliation(s)
- S R Wedge
- Department of Medical Oncology, Charing Cross Hospital, London, UK
| | | | | | | |
Collapse
|
44
|
O'Regan NE, Branch P, Macpherson P, Karran P. hMSH2-independent DNA mismatch recognition by human proteins. J Biol Chem 1996; 271:1789-96. [PMID: 8576184 DOI: 10.1074/jbc.271.3.1789] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two distinct mismatch binding activities are detected using bandshift assays with human cell extracts and DNA with mispairs at defined positions. One requires hMSH2 protein and is absent from extracts of LoVo cells, which contain a partial deletion of the hMSH2 gene. The second activity is independent of hMSH2 and is present at normal levels in LoVo and three other cell lines, which are defective in in vitro hMSH2-dependent binding. The two mismatch recognition activities are distinguished by their sensitivity to polycations and can be resolved by chromatography on MonoQ. hMSH2-independent activity has been purified extensively from wild-type cells and from a cell line deficient in hMSH2-dependent binding. The purified material preferentially recognizes A-C, some pyrimidine-pyrimidine mismatches, and certain slipped mispaired structures. Binding exhibits some sequence preferences. The similar properties of the two mismatch binding activities suggest that they both contribute to mismatch repair.
Collapse
Affiliation(s)
- N E O'Regan
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, United Kingdom
| | | | | | | |
Collapse
|
45
|
Morton BR, Clegg MT. Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. J Mol Evol 1995; 41:597-603. [PMID: 7490774 DOI: 10.1007/bf00175818] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleotide sequence from a region of the chloroplast genome is presented for 12 species spanning four subfamilies of the grass family. The region contains the coding sequence for the rbcL gene and the intergenic spacer between the gene coding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the photosystem I gene psaI. This intergenic spacer contains a pseudogene for rpl23 as well as two noncoding segments with different A+T contents. Using the sequence of rbcL a chloroplast phylogeny of this family was constructed by parsimony. Variable sites of the two noncoding segments were traced onto the phylogeny to study the dynamics of base substitution. This was also performed for the fourfold-degenerate sites of the rbcL gene. A wide variation in transversion/transition is observed between the two noncoding segments and between the noncoding DNA and the fourfold-degenerate sites of rbcL. This variation is correlated with regional A+T content. As regional A+T content decreases, the ratio of transversions to transitions also decreases. Substitutions were then scored in relation to neighboring base composition. The composition of the two bases immediately flanking each substitution is highly correlated with the transversion/transition bias. When both the 5' and 3' flanking bases are an A or a T, transversions are observed 2.2 times as frequently as transitions. When either or both neighbors are a C or a G, the opposite trend is found; transitions are observed 1.5 times more frequently than transversions.
Collapse
Affiliation(s)
- B R Morton
- Department of Botany and Plant Sciences, University of California, Riverside 92521-0124, USA
| | | |
Collapse
|
46
|
Hentosh P, Tibudan M, Grippo P. A human factor that recognizes DNA substituted with 2-chloroadenine, an antileukemic purine analog. Mol Carcinog 1995; 13:245-53. [PMID: 7646763 DOI: 10.1002/mc.2940130407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
2-Chloro-2'-deoxyadenosine (cladribine), an analog of deoxyadenosine, is an important new drug for the treatment of hairy cell leukemia and other forms of adult and pediatric leukemia. By a gel-shift binding assay, we identified an activity in HeLa nuclear extracts that recognizes and binds to oligonucleotides substituted with 2-chloroadenine (ClAde). The activity was specific for ClAde residues because control oligomers did not readily compete out the complex. The binding factor was a monomeric protein that was resistant to inactivation by heating at 45 degrees C but sensitive to heating at 65 degrees C, proteinase K treatment, and 5 mM ZnCl2. This protein, designated ClAde recognition protein (CARP), appeared to be related to a protein that recognized other forms of DNA damage. Gel-shift binding reactions with ultraviolet (UV)-irradiated oligomers revealed a UV-specific protein/DNA complex that had an electrophoretic mobility similar to that of the CARP/DNA complex, and CARP binding to ClAde-containing oligomers was readily competed out by UV-irradiated DNA. Moreover, CARP activity was present in extracts prepared from UV-sensitive xeroderma pigmentosum group A cells but not in a subset of cells from group E, suggesting that CARP was similar to a previously described repair associated factor, xeroderma pigmentosum-E binding factor. Our findings support a possible repair process for ClAde residues incorporated into cellular DNA.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, Illinois 60064, USA
| | | | | |
Collapse
|
47
|
Palombo F, Gallinari P, Iaccarino I, Lettieri T, Hughes M, D'Arrigo A, Truong O, Hsuan JJ, Jiricny J. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 1995; 268:1912-4. [PMID: 7604265 DOI: 10.1126/science.7604265] [Citation(s) in RCA: 403] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA mismatch recognition and binding in human cells has been thought to be mediated by the hMSH2 protein. Here it is shown that the mismatch-binding factor consists of two distinct proteins, the 100-kilodalton hMSH2 and a 160-kilodalton polypeptide, GTBP (for G/T binding protein). Sequence analysis identified GTBP as a new member of the MutS homolog family. Both proteins are required for mismatch-specific binding, a result consistent with the finding that tumor-derived cell lines devoid of either protein are also devoid of mismatch-binding activity.
Collapse
Affiliation(s)
- F Palombo
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Day RS. Site specificity of incisions at G:T and O6-methylguanine:T base mismatches in DNA by human cell-free extracts. Biochemistry 1995; 34:6869-75. [PMID: 7756318 DOI: 10.1021/bi00020a034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free extract from human tumor cell line A1235 (lacking O6-methylguanine-DNA methyltransferase) was employed to compare incision at G:T base mispairs with that at O6-methylguanine (m6G):T pairs at two different sites (sites 20 and 25) in 45-bp heteroduplexes. To study the effect of neighboring bases on the activity(ies), the base pair immediately 5' to the mismatched G at each site was varied to provide four contexts: CpG:T, TpG:T, ApG:T, and GpG:T (and two analogous series for m6G:T pairs). At site 20, cell-free extract produced observable incision only in the 45-bp DNA with the G:T mispair in the CpG:T context, giving a product with incisions immediately 5' and 3' to the mismatched T. We observed incision of neither the strand containing the mismatched G nor the DNAs with the site 20 ApG:T, GpG:T, and TpG:T mismatches. By contrast, at site 25, incision specificity was different. All four G:T mismatched DNAs were incised, and the ApG:T-25, GpG:T-25, and TpG:T-25 DNAs were incised 1-3 bonds 3' to the mismatched T, while similar in other respects to the CpG:T-25 DNA, which showed a pattern like the CpG:T-20 DNA. CpG:T-20 specific incision activity in the extract was strongly inhibited by both CpG:T (sites 20 and 25) DNAs, but at least 10-fold more poorly by DNAs with Apg:T-25 and GpG:T-25 pairs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
49
|
McGoldrick JP, Yeh YC, Solomon M, Essigmann JM, Lu AL. Characterization of a mammalian homolog of the Escherichia coli MutY mismatch repair protein. Mol Cell Biol 1995; 15:989-96. [PMID: 7823963 PMCID: PMC231992 DOI: 10.1128/mcb.15.2.989] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A protein homologous to the Escherichia coli MutY protein, referred to as MYH, has been identified in nuclear extracts of calf thymus and human HeLa cells. Western blot (immunoblot) analysis using polyclonal antibodies to the E. coli MutY protein detected a protein of 65 kDa in both extracts. Partial purification of MYH from calf thymus cells revealed a 65-kDa protein as well as a functional but apparently degraded form of 36 kDa, as determined by glycerol gradient centrifugation and immunoblotting with anti-MutY antibodies. Calf MYH is a DNA glycosylase that specifically removes mispaired adenines from A/G, A/7,8-dihydro-8-oxodeoxyguanine (8-oxoG or GO), and A/C mismatches (mismatches indicated by slashes). A nicking activity that is either associated with or copurified with MYH was also detected. Nicking was observed at the first phosphodiester bond 3' to the apurinic or apyrimidinic (AP) site generated by the glycosylase activity. The nicking activity on A/C mismatches was 30-fold lower and the activity on A/GO mismatches was twofold lower than that on A/G mismatches. No nicking activity was detected on substrates containing other selected mismatches or homoduplexes. Nicking activity on DNA containing A/G mismatches was inhibited in the presence of anti-MutY antibodies or upon treatment with potassium ferricyanide, which oxidizes iron-sulfur clusters. Gel shift analysis showed specific binding complex formation with A/G and A/GO substrates, but not with A/A, C.GO, and C.G substrates. Binding is sevenfold greater on A/GO substrates than on A/G substrates. The eukaryotic MYH may be involved in the major repair of both replication errors and oxidative damage to DNA, the same functions as those of the E. coli MutY protein.
Collapse
Affiliation(s)
- J P McGoldrick
- Department of Biological Chemistry, School of Medicine, University of Maryland at Baltimore, 21201
| | | | | | | | | |
Collapse
|
50
|
Fleck O, Schär P, Kohli J. Identification of two mismatch-binding activities in protein extracts of Schizosaccharomyces pombe. Nucleic Acids Res 1994; 22:5289-95. [PMID: 7816618 PMCID: PMC332073 DOI: 10.1093/nar/22.24.5289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have performed band-shift assays to identify mismatch-binding proteins in cell extracts of Schizosaccharomyces pombe. By testing heteroduplex DNA containing either a T/G or a C/C mismatch, two distinct band shifts were produced in the gels. A low mobility complex was observed with the T/G substrate, while a high mobility complex was present with C/C. Further analysis of the mismatch-binding specificities revealed that the T/G binding activity also binds to T/C, C/T, T/T, T/-, A/-, C/-, G/-, G/G, A/A, A/C, A/G, G/T, G/A, and C/A substrates with varying efficiencies, but not binds to C/C. The C/C binding activity efficiently binds to C/C, T/C, C/T, C/A, A/C, C/-, and weakly also to T/T, while all other mispairs are not recognized. Protein extracts of a mutant strain, defective in the mutS homologue swi4, displayed both mismatch-binding activities. Thus, swi4 does not encode for either one of the mismatch-binding proteins.
Collapse
Affiliation(s)
- O Fleck
- Institute of General Microbiology, University of Bern, Switzerland
| | | | | |
Collapse
|