1
|
Umumararungu T, Nyandwi JB, Katandula J, Twizeyimana E, Claude Tomani J, Gahamanyi N, Ishimwe N, Olawode EO, Habarurema G, Mpenda M, Uyisenga JP, Saeed SI. Current status of the small molecule anti-HIV drugs in the pipeline or recently approved. Bioorg Med Chem 2024; 111:117860. [PMID: 39094527 DOI: 10.1016/j.bmc.2024.117860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Human Immunodeficiency Virus (HIV) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS) with high morbidity and mortality rates. Treatment of AIDS/HIV is being complicated by increasing resistance to currently used antiretroviral (ARV) drugs, mainly in low- and middle-income countries (LMICs) due to drug misuse, poor drug supply and poor treatment monitoring. However, progress has been made in the development of new ARV drugs, targeting different HIV components (Fig. 1). This review aims at presenting and discussing the progress made towards the discovery of new ARVs that are at different stages of clinical trials as of July 2024. For each compound, the mechanism of action, target biomolecule, genes associated with resistance, efficacy and safety, class, and phase of clinical trial are discussed. These compounds include analogues of nucleoside reverse transcriptase inhibitors (NRTIs) - islatravir and censavudine; non-nucleoside reverse transcriptase inhibitors (NNRTIs) - Rilpivirine, elsulfavirine and doravirine; integrase inhibitors namely cabotegravir and dolutegravir and chemokine coreceptors 5 and 2 (CC5/CCR2) antagonists for example cenicriviroc. Also, fostemsavir is being developed as an attachment inhibitor while lenacapavir, VH4004280 and VH4011499 are capsid inhibitors. Others are maturation inhibitors such as GSK-254, GSK3532795, GSK3739937, GSK2838232, and other compounds labelled as miscellaneous (do not belong to the classical groups of anti-HIV drugs or to the newer classes) such as obefazimod and BIT225. There is a considerable progress in the development of new anti-HIV drugs and the effort will continue since HIV infections has no cure or vaccine till now. Efforts are needed to reduce the toxicity of available drugs or discover new drugs with new classes which can delay the development of resistance.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Baptiste Nyandwi
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; East African Community Regional Centre of Excellence for Vaccines, Immunization and Health Supply Chain Management, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Twizeyimana
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jean Claude Tomani
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Nestor Ishimwe
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jeanne Primitive Uyisenga
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Shamsaldeen Ibrahim Saeed
- Faculty of Veterinary Science, University of Nyala, P.O. Box: 155, Nyala, Sudan; Nanotechnology in Veterinary Medicine (NanoVet) Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kelantan 16100, Pengkalan Chepa, Malaysia
| |
Collapse
|
2
|
Zhu M, Shan Q, Ma L, Wen J, Dong B, Zhang G, Wang M, Wang J, Zhou J, Cen S, Wang Y. Design and biological evaluation of cinnamic and phenylpropionic amide derivatives as novel dual inhibitors of HIV-1 protease and reverse transcriptase. Eur J Med Chem 2021; 220:113498. [PMID: 33933756 DOI: 10.1016/j.ejmech.2021.113498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023]
Abstract
Upon the basis of both possible ligand-binding site interactions and the uniformity of key residues in active sites, a novel class of HIV-1 PR/RT dual inhibitors was designed and evaluated. Cinnamic acids or phenylpropionic acids with more flexible chain and smaller steric hindrance were introduced into the inhibitors, giving rise to significant improvement in HIV-1 RT inhibitory activity by one or two orders of magnitude, with comparable or even improved potency against PR at the same time, compared with coumarin anologues in our previous studies. Among these inhibitors, 38d displayed a 19-fold improvement in anti-PR activity with IC50 value of 0.081 nM compared to the control DRV. In addition, inhibitor 38c exhibited an excellent anti-RT IC50 value of 0.43 μM, only a 4.7-fold less potent activity than the control EFV. More significantly, the disparate ratio between HIV-1 PR and RT inhibition became more reasonable with ratio of 1: 10.4, just as 37b. Furthermore, the assays on HIV-1 late stage and early stage supported the rationality of designing dual inhibitors. The SAR data as well as molecular modeling studies provided new insight for further optimization of more potent HIV-1 PR/RT dual inhibitors.
Collapse
Affiliation(s)
- Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Zhu M, Zhou H, Ma L, Dong B, Zhou J, Zhang G, Wang M, Wang J, Cen S, Wang Y. Design and evaluation of novel piperidine HIV-1 protease inhibitors with potency against DRV-resistant variants. Eur J Med Chem 2021; 220:113450. [PMID: 33906049 DOI: 10.1016/j.ejmech.2021.113450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
A novel class of HIV-1 protease inhibitors with flexible piperidine as the P2 ligand was designed with the aim of improving extensive interactions with the active subsites. Many inhibitors exhibited good to excellent inhibitory effect on enzymatic activity and viral infectivity. In particular, inhibitor 3a with (R)-piperidine-3-carboxamide as the P2 ligand and 4-methoxybenzenesulfonamide as the P2' ligand showed an enzyme Ki value of 29 pM and antiviral IC50 value of 0.13 nM, more than six-fold enhancement of activity compared to DRV. Furthermore, there was no significant change in potency against DRV-resistant mutations and HIV-1NL4-3 variant for 3a. Besides, inhibitor 3a exhibited potent antiviral activity against subtype C variants with low nanomole EC50 values. In addition, the molecular modeling revealed important hydrogen bonds and other favorable van der Waals interactions with the backbone atoms of the protease and provided insight for designing and optimizing more potent HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Huiyu Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Abstract
![]()
Accurate determination
of the binding affinity of the ligand to
the receptor remains a difficult problem in computer-aided drug design.
Here, we study and compare the efficiency of Jarzynski’s equality
(JE) combined with steered molecular dynamics and the linear interaction
energy (LIE) method by assessing the binding affinity of 23 small
compounds to six receptors, including β-lactamase, thrombin,
factor Xa, HIV-1 protease (HIV), myeloid cell leukemia-1, and cyclin-dependent
kinase 2 proteins. It was shown that Jarzynski’s nonequilibrium
binding free energy ΔGneqJar correlates with the available
experimental data with the correlation levels R =
0.89, 0.86, 0.83, 0.80, 0.83, and 0.81 for six data sets, while for
the binding free energy ΔGLIE obtained
by the LIE method, we have R = 0.73, 0.80, 0.42,
0.23, 0.85, and 0.01. Therefore, JE is recommended to be used for
ranking binding affinities as it provides accurate and robust results.
In contrast, LIE is not as reliable as JE, and it should be used with
caution, especially when it comes to new systems.
Collapse
Affiliation(s)
- Kiet Ho
- Institute for Computational Sciences and Technology, Quang Trung Software City, SBI Building, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Duc Toan Truong
- Institute for Computational Sciences and Technology, Quang Trung Software City, SBI Building, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.,Department of Theoretical Physics, Faculty of Physics and Engineering Physics, Ho Chi Minh University of Science, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
5
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
6
|
Ghosh AK, Brindisi M. Nature Inspired Molecular Design: Stereoselective Synthesis of Bicyclic and Polycyclic Ethers for Potent HIV-1 Protease Inhibitors. ASIAN J ORG CHEM 2018; 7:1448-1466. [PMID: 31595212 PMCID: PMC6781882 DOI: 10.1002/ajoc.201800255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/14/2022]
Abstract
We have developed a conceptually new generation of non-peptidic HIV-1 protease inhibitors incorporating novel structural templates inspired by nature. This has resulted in protease inhibitors with exceptional potency and excellent pharmacological and drug-resistance profiles. The design of a stereochemically defined bis-tetrahydrofuran (bis-THF) scaffold followed by modifications to promote hydrogen bonding interactions with the backbone atoms of HIV-1 protease led to darunavir, the first clinically approved drug for treatment of drug resistant HIV. Subsequent X-ray crystal structure-based design efforts led us to create a range of exceptionally potent inhibitors incorporating other intriguing molecular templates possessing fused ring polycyclic ethers with multiple stereocenters. These structural templates are critical to inhibitors' exceptional potency and drug-like properties. Herein, we will highlight the synthetic strategies that provided access to these complex scaffolds in a stereoselective and optically active form, enabling our medicinal chemistry and drug development efforts.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907 (USA)
| |
Collapse
|
7
|
Shi JH, Zhou KL, Lou YY, Pan DQ. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:362-371. [PMID: 28753530 DOI: 10.1016/j.saa.2017.07.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Darunavir (DRV), a second-generation HIV protease inhibitor, is widely used across the world as an important component of HIV therapy. The interaction of DRV with bovine serum albumin (BSA), a major carrier protein, has been studied under simulated physiological conditions (pH7.4) by multi-spectroscopic techniques in combination with molecular modeling. Fluorescence data revealed that the intrinsic fluorescence of BSA was quenched by DRV in terms of a static quenching procedure due to the formation of the DRV-BSA complex. The results indicated the presence of single weak affinity binding site (~103M-1, 310K) on protein. The thermodynamic parameters, namely enthalpy change (ΔH0), entropy change (ΔS0) and Gibbs free energy change (ΔG0) were calculated, which signified that the binding reaction was spontaneous, the main binding forces were hydrogen bonding and van der Waals forces. Importantly, competitive binding experiments with three site probes, phenylbutazone (in sub-domain IIA, site I), ibuprofen (in sub-domain IIIA, site II) and artemether (in the interface between sub-domain IIA and IIB, site II'), suggested that DRV was preferentially bound to the hydrophobic cavity in site II' of BSA, and this finding was validated by the docking results. Additionally, synchronous fluorescence, three-dimensional fluorescence and Resonance Rayleigh Scattering (RRS) spectroscopy gave qualitative information on the conformational changes of BSA upon adding DRV, while quantitative data were obtained with Fourier transform infrared spectroscopy (FT-IR).
Collapse
Affiliation(s)
- Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
8
|
Bhargava S, Adhikari N, Amin SA, Das K, Gayen S, Jha T. Hydroxyethylamine derivatives as HIV-1 protease inhibitors: a predictive QSAR modelling study based on Monte Carlo optimization. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:973-990. [PMID: 29072112 DOI: 10.1080/1062936x.2017.1388281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Application of HIV-1 protease inhibitors (as an anti-HIV regimen) may serve as an attractive strategy for anti-HIV drug development. Several investigations suggest that there is a crucial need to develop a novel protease inhibitor with higher potency and reduced toxicity. Monte Carlo optimized QSAR study was performed on 200 hydroxyethylamine derivatives with antiprotease activity. Twenty-one QSAR models with good statistical qualities were developed from three different splits with various combinations of SMILES and GRAPH based descriptors. The best models from different splits were selected on the basis of statistically validated characteristics of the test set and have the following statistical parameters: r2 = 0.806, Q2 = 0.788 (split 1); r2 = 0.842, Q2 = 0.826 (split 2); r2 = 0.774, Q2 = 0.755 (split 3). The structural attributes obtained from the best models were analysed to understand the structural requirements of the selected series for HIV-1 protease inhibitory activity. On the basis of obtained structural attributes, 11 new compounds were designed, out of which five compounds were found to have better activity than the best active compound in the series.
Collapse
Affiliation(s)
- S Bhargava
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University (A Central University) , Madhya Pradesh , India
| | - N Adhikari
- b Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| | - S A Amin
- b Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| | - K Das
- c Department of Chemistry , Dr. Harisingh Gour University (A Central University) , Madhya Pradesh , India
| | - S Gayen
- a Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences , Dr Harisingh Gour University (A Central University) , Madhya Pradesh , India
| | - T Jha
- b Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , West Bengal , India
| |
Collapse
|
9
|
Potts KE, Smidt ML, Tucker SP, Stiebel TR, McDonald JJ, Stallings WC, Bryant ML. In vitro Sequential Selection and Characterization of Human Immunodeficiency Virus Type 1 Variants with Reduced Sensitivity to Hydroxyethylurea Protease Inhibitors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029700800508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro resistance to the human immunodeficiency virus (HIV) protease inhibitors SC-52151 and SC-55389A was evaluated in an in vitro sequential selection scheme. HIVRF variants were selected for reduced sensitivity to SC-52151 and subsequently passaged in both SC-52151 and a structurally different hydroxyethylurea protease inhibitor, SC-55389A, to select for dual-resistant virus. SC-52151 selection alone resulted in a 23-fold reduction in virus sensitivity whereas selection in both inhibitors resulted in 34- and eightfold reductions in virus sensitivity to SC-52151 and SC-55389A, respectively. Sequence analysis of the protease gene revealed that SC-52151 -resistant virus had a Gly to Val substitution at residue 48 (G48V) and, in 58% of subclones, an accompanying Val to Ala substitution at residue 82 (V82A). Dual-resistant virus had both G48V and V82A substitutions present and, in the majority of subclones, an lle to Thr and/or Leu to Pro substitution at residues 54 and 63, respectively. Drug susceptibility assays with limiting dilution-cloned HIVRFR (G48V/V82A) and HIVRFRR (G48V/154T/L63P/V82A) viruses demonstrated moderate to high-level cross-resistance to additional structurally non-related protease inhibitors. Recombinant HIVHXB2 proviral clones with G48V, L63P and V82A substitutions showed that one active site mutation was permissible, but the presence of both G48V and V82A substitutions together significantly reduced infectious virus production. Insight into the contributions of the observed substitutions to drug resistance is presented in molecular modelling studies.
Collapse
Affiliation(s)
- KE Potts
- Infectious Disease Research, Searle, St Louis, MO 63198, USA
| | - ML Smidt
- Infectious Disease Research, Searle, St Louis, MO 63198, USA
| | - SP Tucker
- Infectious Disease Research, Searle, St Louis, MO 63198, USA
| | - TR Stiebel
- Infectious Disease Research, Searle, St Louis, MO 63198, USA
| | - JJ McDonald
- Medicinal and Structural Chemistry, Searle, St Louis, MO 63198, USA
| | - WC Stallings
- Medicinal and Structural Chemistry, Searle, St Louis, MO 63198, USA
| | - ML Bryant
- Infectious Disease Research, Searle, St Louis, MO 63198, USA
| |
Collapse
|
10
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
11
|
Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Protein Expr Purif 2016; 122:90-6. [PMID: 26917227 DOI: 10.1016/j.pep.2016.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities.
Collapse
|
12
|
Alcaine SD, Tilton L, Serrano MAC, Wang M, Vachet RW, Nugen SR. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens. Appl Microbiol Biotechnol 2015; 99:8177-85. [PMID: 26245682 DOI: 10.1007/s00253-015-6867-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 11/27/2022]
Abstract
Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.
Collapse
Affiliation(s)
- S D Alcaine
- Department of Food Science, University of Massachusetts, 246 Chenoweth Laboratory, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wei Y, Li J, Chen Z, Wang F, Huang W, Hong Z, Lin J. Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods. Eur J Med Chem 2015; 101:409-18. [PMID: 26185005 DOI: 10.1016/j.ejmech.2015.06.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Abstract
The HIV-1 protease has proven to be a crucial component of the HIV replication machinery and a reliable target for anti-HIV drug discovery. In this study, we applied an optimized hierarchical multistage virtual screening method targeting HIV-1 protease. The method sequentially applied SVM (Support Vector Machine), shape similarity, pharmacophore modeling and molecular docking. Using a validation set (270 positives, 155,996 negatives), the multistage virtual screening method showed a high hit rate and high enrichment factor of 80.47% and 465.75, respectively. Furthermore, this approach was applied to screen the National Cancer Institute database (NCI), which contains 260,000 molecules. From the final hit list, 6 molecules were selected for further testing in an in vitro HIV-1 protease inhibitory assay, and 2 molecules (NSC111887 and NSC121217) showed inhibitory potency against HIV-1 protease, with IC50 values of 62 μM and 162 μM, respectively. With further chemical development, these 2 molecules could potentially serve as HIV-1 protease inhibitors.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China; College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Jinlong Li
- College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Zeming Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China; College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Fengwei Wang
- Department of Oncology, Tianjin Union Medical Center, Tianjin 300180, PR China
| | | | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China; College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, PR China; College of Pharmacy, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
14
|
P2' benzene carboxylic acid moiety is associated with decrease in cellular uptake: evaluation of novel nonpeptidic HIV-1 protease inhibitors containing P2 bis-tetrahydrofuran moiety. Antimicrob Agents Chemother 2013; 57:4920-7. [PMID: 23877703 DOI: 10.1128/aac.00868-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GRL007 and GRL008, two structurally related nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) as the P2 moiety and a sulfonamide isostere consisting of benzene carboxylic acid and benzene carboxamide as the P2' moiety, respectively, were evaluated for their antiviral activity and interactions with wild-type protease (PR(WT)). Both GRL007 (Ki of 12.7 pM with PR(WT)) and GRL008 (Ki of 8.9 pM) inhibited PR(WT) with high potency in vitro. X-ray crystallographic analysis of PR(WT) in complex with GRL007 or GRL008 showed that the bis-THF moiety of both compounds has three direct polar contacts with the backbone amide nitrogen atoms of Asp29 and Asp30 of PR(WT). The P2' moiety of both compounds showed one direct contact with the backbone of Asp30' and a bridging polar contact with Gly48' through a water molecule. Cell-based antiviral assays showed that GRL007 was inactive (50% effective concentration [EC50] of >1 μM) while GRL008 was highly active (EC50 of 0.04 μM) against wild-type HIV-1. High-performance liquid chromatography (HPLC)/mass spectrometry-based cellular uptake assays showed 8.1- and 84-fold higher intracellular concentrations of GRL008 than GRL007 in human MT-2 and MT-4 cell extracts, respectively. Thus, GRL007, in spite of its favorable enzyme-inhibitory activity and protease binding profile, exhibited a lack of antiviral activity in cell-based assays, most likely due to its compromised cellular uptake associated with its P2' benzene carboxylic acid moiety. The anti-HIV-1 potency, favorable toxicity, and binding profile of GRL008 suggest that further optimization of the P2' moiety may improve its antiretroviral features.
Collapse
|
15
|
Sindhikara DJ, Yoshida N, Hirata F. Placevent: an algorithm for prediction of explicit solvent atom distribution-application to HIV-1 protease and F-ATP synthase. J Comput Chem 2012; 33:1536-43. [PMID: 22522665 DOI: 10.1002/jcc.22984] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/10/2012] [Accepted: 03/10/2012] [Indexed: 01/16/2023]
Abstract
We have created a simple algorithm for automatically predicting the explicit solvent atom distribution of biomolecules. The explicit distribution is coerced from the three-dimensional (3D) continuous distribution resulting from a 3D reference interaction site model (3D-RISM) calculation. This procedure predicts optimal location of solvent molecules and ions given a rigid biomolecular structure and the solvent composition. We show examples of predicting water molecules near the KNI-272 bound form of HIV-1 protease and predicting both sodium ions and water molecules near the rotor ring of F-adenosine triphosphate (ATP) synthase. Our results give excellent agreement with experimental structure with an average prediction error of 0.39-0.65 Å. Further, unlike experimental methods, this method does not suffer from the partial occupancy limit. Our method can be performed directly on 3D-RISM output within minutes. It is extremely useful for examining multiple specific solvent-solute interactions, as a convenient method for generating initial solvent structures for molecular dynamics calculations, and may assist in refinement of experimental structures. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel J Sindhikara
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Japan
| | | | | |
Collapse
|
16
|
Schader SM, Wainberg MA. Insights into HIV-1 pathogenesis through drug discovery: 30 years of basic research and concerns for the future. HIV & AIDS REVIEW 2011. [DOI: 10.1016/j.hivar.2011.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Szecsi PB. The aspartic proteases. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519209104650] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Jiang Y, Wong JH, Fu M, Ng TB, Liu ZK, Wang CR, Li N, Qiao WT, Wen TY, Liu F. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:189-93. [PMID: 20576416 DOI: 10.1016/j.phymed.2010.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 04/27/2010] [Indexed: 05/21/2023]
Abstract
According to previous studies, a close relationship between oxidative stress and AIDS suggests that antioxidants might play an important role in the treatment of AIDS. Cordyceps militaris was selected from nine edible mushrooms by assay of inhibition of erythrocyte hemolysis. Macroporous adsorption resin and HPLC were used to purify three micromolecular compounds named L3a, L3b and L3c. L3a was identified to be adenosine with the molecular formula C(10)H(13)N(5)O(4); L3b was 6,7,2',4',5'-pentamethoxyflavone with the molecular formula C(20)H(20)O(7), and L3c was dimethylguanosine with the molecular formula C(12)H(17)N(5)O(5). The compound 6,7,2',4',5'-pentamethoxyflavone was first isolated from C. militaris. The assay of inhibition of HIV-1 protease (HIV-1 PR) was based on the fact that the expression of this enzyme can inhibit the growth of E. coli. This is a new screening system for HIV-1 PR inhibitors. Both L3a and L3b showed high inhibition to HIV-1 PR. These compounds could be new anti-HIV-1 PR drugs.
Collapse
Affiliation(s)
- Y Jiang
- Center for AIDS Research, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pednekar D, Durani S. Protein homomers in point-group assembly: symmetry making and breaking are specific and distinctive in their codes of chemical alphabet in side chains. Proteins 2011; 78:3048-55. [PMID: 20737441 DOI: 10.1002/prot.22828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oligomerizing to point-group symmetry, protein oligomers need to have the symmetry broken for biologically crucial functions, such as, allosteric regulation, enzyme catalysis, and so forth. In the making of symmetry, based on self assembly, and the breaking of symmetry, based on intermolecular interactions, proteins may manifest, like their other functions, specific scripts over the coding alphabet in side chains. To address the possibility, we analyzed 82 protein homodimers in their C(2)-symmetry-related side chains across noncrystallographic interfaces, to know if they may be identical or distinct in conformation, and thus conserved or broken in symmetry. We find the propensity to conformational mismatch across interfaces correlated with side-chain chemical structure, low to very low in aromatic Trp, Tyr, His, Phe, and Arg, and high to very high in aliphatic Val, Pro, Met, Glu, Ser, Lys, Gln, Asn, and Asp, related not to polarity but, interestingly, to aromaticity of the structure. The organizational plan having aromatics embedded in a hub of aliphatic-nonpolar groups and a surrounding rim of aliphatic-polar groups, called "hotspot," has been known to direct protein-protein interaction. Finding conformational-mismatch propensities of side chains congruous with their specific chemical roles in protein-protein interaction, we propose that aromatic side chains will drive protein homomers to high symmetry, while polar- and nonpolar aliphatic side chains will drive them to the functionally-necessitated breaks of symmetry. Side chains are in their roles as protein-coding alphabet illuminated in the physics, which is discussed.
Collapse
Affiliation(s)
- Deepa Pednekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | | |
Collapse
|
20
|
De Clercq E. The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol 2009; 19:287-99. [DOI: 10.1002/rmv.624] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Rusconi S, Cicero ML, Viganò O, Sirianni F, Bulgheroni E, Ferramosca S, Bencini A, Bianchi A, Ruiz L, Cabrera C, Martinez-Picado J, Supuran CT, Galli M. New macrocyclic amines showing activity as HIV entry inhibitors against wild type and multi-drug resistant viruses. Molecules 2009; 14:1927-37. [PMID: 19471212 PMCID: PMC6254439 DOI: 10.3390/molecules14051927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 11/25/2022] Open
Abstract
Considering as a lead molecule the chemokine CXCR4 receptor antagonist AMD-3100, which shows significant anti-HIV activity in vitro and in vivo, we investigated a series of structurally related macrocyclic polyamines incorporating o,o’-phenanthroline or 2,2’-bipyridyl scaffolds as potential antiviral agents with lower toxicity and increased activity against both wild type X4-tropic and dual tropic HIV strains. The antiviral activity of these compounds was evaluated by susceptibility assays in PBMC (Peripheral Blood Mononuclear Cells) and compared to that of AMD-3100. The newly investigated compounds showed IC50s values in the low micromolar range and significantly inhibited the viral replication of wild type X4-tropic isolate and dual tropic strains. These macrocyclic polyamines constitute a promising class of HIV entry inhibitors.
Collapse
Affiliation(s)
- Stefano Rusconi
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-39042668; Fax: +39-02-50319758
| | - Mirko Lo Cicero
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| | - Ottavia Viganò
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| | - Francesca Sirianni
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| | - Elisabetta Bulgheroni
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| | - Stefania Ferramosca
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| | - Andrea Bencini
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; E-mail: (C-T.S.)
| | - Antonio Bianchi
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; E-mail: (C-T.S.)
| | - Lidia Ruiz
- IrsiCaixa Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain; E-mail: (J.M-P.)
| | - Cecilia Cabrera
- IrsiCaixa Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain; E-mail: (J.M-P.)
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, University Hospital Germans Trias i Pujol, Badalona, Spain; E-mail: (J.M-P.)
| | - Claudiu T. Supuran
- Università degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy; E-mail: (C-T.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-39042668; Fax: +39-02-50319758
| | - Massimo Galli
- Dipartimento di Scienze Cliniche “Luigi Sacco”, Sezione di Malattie Infettive e Immunopatologia, Università degli Studi, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy
| |
Collapse
|
22
|
Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc Natl Acad Sci U S A 2009; 106:4641-6. [PMID: 19273847 DOI: 10.1073/pnas.0809400106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HIV-1 protease is a dimeric aspartic protease that plays an essential role in viral replication. To further understand the catalytic mechanism and inhibitor recognition of HIV-1 protease, we need to determine the locations of key hydrogen atoms in the catalytic aspartates Asp-25 and Asp-125. The structure of HIV-1 protease in complex with transition-state analog KNI-272 was determined by combined neutron crystallography at 1.9-A resolution and X-ray crystallography at 1.4-A resolution. The resulting structural data show that the catalytic residue Asp-25 is protonated and that Asp-125 (the catalytic residue from the corresponding diad-related molecule) is deprotonated. The proton on Asp-25 makes a hydrogen bond with the carbonyl group of the allophenylnorstatine (Apns) group in KNI-272. The deprotonated Asp-125 bonds to the hydroxyl proton of Apns. The results provide direct experimental evidence for proposed aspects of the catalytic mechanism of HIV-1 protease and can therefore contribute substantially to the development of specific inhibitors for therapeutic application.
Collapse
|
23
|
|
24
|
Ghosh AK, Chapsal BD, Weber IT, Mitsuya H. Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance. Acc Chem Res 2008; 41:78-86. [PMID: 17722874 DOI: 10.1021/ar7001232] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of human immunodeficiency virus (HIV) protease inhibitors (PIs) and their utilization in highly active antiretroviral therapy (HAART) have been a major turning point in the management of HIV/acquired immune-deficiency syndrome (AIDS). However, despite the successes in disease management and the decrease of HIV/AIDS-related mortality, several drawbacks continue to hamper first-generation protease inhibitor therapies. The rapid emergence of drug resistance has become the most urgent concern because it renders current treatments ineffective and therefore compels the scientific community to continue efforts in the design of inhibitors that can efficiently combat drug resistance. The present line of research focuses on the presumption that an inhibitor that can maximize interactions in the HIV-1 protease active site, particularly with the enzyme backbone atoms, will likely retain these interactions with mutant enzymes. Our structure-based design of HIV PIs specifically targeting the protein backbone has led to exceedingly potent inhibitors with superb resistance profiles. We initially introduced new structural templates, particulary nonpeptidic conformationally constrained P 2 ligands that would efficiently mimic peptide binding in the S 2 subsite of the protease and provide enhanced bioavailability to the inhibitor. Cyclic ether derived ligands appeared as privileged structural features and allowed us to obtain a series of potent PIs. Following our structure-based design approach, we developed a high-affinity 3( R),3a( R),6a( R)-bis-tetrahydrofuranylurethane (bis-THF) ligand that maximizes hydrogen bonding and hyrophobic interactions in the protease S 2 subsite. Combination of this ligand with a range of different isosteres led to a series of exceedingly potent inhibitors. Darunavir, initially TMC-114, which combines the bis-THF ligand with a sulfonamide isostere, directly resulted from this line of research. This inhibitor displayed unprecedented enzyme inhibitory potency ( K i = 16 pM) and antiviral activity (IC 90 = 4.1 nM). Most importantly, it consistently retained is potency against highly drug-resistant HIV strains. Darunavir's IC 50 remained in the low nanomolar range against highly mutated HIV strains that displayed resistance to most available PIs. Our detailed crystal structure analyses of darunavir-bound protease complexes clearly demonstrated extensive hydrogen bonding between the inhibitor and the protease backbone. Most strikingly, these analyses provided ample evidence of the unique contribution of the bis-THF as a P 2-ligand. With numerous hydrogen bonds, bis-THF was shown to closely and tightly bind to the backbone atoms of the S 2 subsite of the protease. Such tight interactions were consistently observed with mutant proteases and might therefore account for the unusually high resistance profile of darunavir. Optimization attempts of the backbone binding in other subsites of the enzyme, through rational modifications of the isostere or tailor made P 2 ligands, led to equally impressive inhibitors with excellent resistance profiles. The concept of targeting the protein backbone in current structure-based drug design may offer a reliable strategy for combating drug resistance.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
25
|
Ghosh AK, Dawson ZL, Mitsuya H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg Med Chem 2007; 15:7576-80. [PMID: 17900913 PMCID: PMC2112938 DOI: 10.1016/j.bmc.2007.09.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Our structure-based design strategies which specifically target the HIV-1 protease backbone, resulted in a number of exceedingly potent nonpeptidyl inhibitors. One of these inhibitors, darunavir (TMC114), contains a privileged, structure-based designed high-affinity P2 ligand, 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF). Darunavir has recently been approved for the treatment of HIV/AIDS patients harboring multidrug-resistant HIV-1 variants that do not respond to previously existing HAART regimens.
Collapse
Affiliation(s)
- Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
26
|
Ghosh AK, Ramu Sridhar P, Kumaragurubaran N, Koh Y, Weber IT, Mitsuya H. Bis-tetrahydrofuran: a privileged ligand for darunavir and a new generation of hiv protease inhibitors that combat drug resistance. ChemMedChem 2006; 1:939-50. [PMID: 16927344 DOI: 10.1002/cmdc.200600103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Syntheses of dipeptides containing (1R,5S)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2(S)-carboxylic acid (4), (1R,5S)-spiro[3-azabicyclo[3.1.0]hexane-6,1′-cyclopropane]- 2(S)-carboxylic acid (5) and (1S,5R)-6,6-dimethyl-3-azabicyclo[3.1.0]hexane-2(S)-carboxylic acid (6). Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Lather V, Madan AK. Topological models for the prediction of HIV-protease inhibitory activity of tetrahydropyrimidin-2-ones. J Mol Graph Model 2005; 23:339-45. [PMID: 15670954 DOI: 10.1016/j.jmgm.2004.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 10/21/2004] [Accepted: 11/02/2004] [Indexed: 11/28/2022]
Abstract
Relationship between the topological indices and HIV-protease inhibitory activity of tetrahydropyrimidine-2-ones has been investigated. Three topological indices, Wiener's index--a distance based topological descriptor, Zagreb group parameter--an adjacency based topological descriptor and eccentric connectivity index--an adjacency-cum-distance based topological descriptor were used for the present investigations. A dataset comprising of 80 substituted tetrahydropyrimidine-2-one analogues was selected for the present studies. The values of the Wiener's index, Zagreb group parameter and eccentric connectivity index for each of the 80 compounds comprising the dataset were computed using an in-house computer program. The dataset was divided randomly into training and test sets. Resultant data was analyzed and suitable models were developed after identifying the active ranges in the training set. Subsequently, a biological activity was assigned to each of the compound involved in the test set using these models, which was then compared with the reported HIV-protease inhibitory activity. Accuracy of prediction using these models was found to vary from a minimum of approximately 86% to a maximum of approximately 88%.
Collapse
Affiliation(s)
- Viney Lather
- Faculty of Pharmaceutical Sciences, M. D. University, Rohtak-124001, India
| | | |
Collapse
|
29
|
Andersson HO, Fridborg K, Löwgren S, Alterman M, Mühlman A, Björsne M, Garg N, Kvarnström I, Schaal W, Classon B, Karlén A, Danielsson UH, Ahlsén G, Nillroth U, Vrang L, Oberg B, Samuelsson B, Hallberg A, Unge T. Optimization of P1-P3 groups in symmetric and asymmetric HIV-1 protease inhibitors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1746-58. [PMID: 12694187 DOI: 10.1046/j.1432-1033.2003.03533.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.
Collapse
Affiliation(s)
- Hans O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Babé LM, Linnevers CJ, Schmidt BF. Production of active mammalian and viral proteases in bacterial expression systems. Biotechnol Genet Eng Rev 2001; 17:213-52. [PMID: 11255667 DOI: 10.1080/02648725.2000.10647993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- L M Babé
- Axys Pharmaceuticals Inc., 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
31
|
Shoeman RL, Hüttermann C, Hartig R, Traub P. Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells. Mol Biol Cell 2001; 12:143-54. [PMID: 11160829 PMCID: PMC30574 DOI: 10.1091/mbc.12.1.143] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 10/18/2000] [Accepted: 10/23/2000] [Indexed: 11/11/2022] Open
Abstract
Electron microscopy of human skin fibroblasts syringe-loaded with human immunodeficiency virus type 1 protease (HIV-1 PR) revealed several effects on nuclear architecture. The most dramatic is a change from a spherical nuclear morphology to one with multiple lobes or deep invaginations. The nuclear matrix collapses or remains only as a peripheral rudiment, with individual elements thicker than in control cells. Chromatin organization and distribution is also perturbed. Attempts to identify a major nuclear protein whose cleavage by the protease might be responsible for these alterations were unsuccessful. Similar changes were observed in SW 13 T3 M [vimentin(+)] cells, whereas no changes were observed in SW 13 [vimentin(-)] cells after microinjection of protease. Treatment of SW 13 [vimentin(-)] cells, preinjected with vimentin to establish an intermediate filament network, with HIV-1 PR resulted in alterations in chromatin staining and distribution, but not in nuclear shape. These same changes were produced in SW 13 [vimentin(-)] cells after the injection of a mixture of vimentin peptides, produced by the cleavage of vimentin to completion by HIV-1 PR in vitro. Similar experiments with 16 purified peptides derived from wild-type or mutant vimentin proteins and five synthetic peptides demonstrated that exclusively N-terminal peptides were capable of altering chromatin distribution. Furthermore, two separate regions of the N-terminal head domain are primarily responsible for perturbing nuclear architecture. The ability of HIV-1 to affect nuclear organization via the liberation of vimentin peptides may play an important role in HIV-1-associated cytopathogenesis and carcinogenesis.
Collapse
Affiliation(s)
- R L Shoeman
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany.
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- W Lewis
- Department of Pathology, Emory University School of Medicine, 7117 Woodruff Memorial Building, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Hong L, Zhang XC, Hartsuck JA, Tang J. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Protein Sci 2000; 9:1898-904. [PMID: 11106162 PMCID: PMC2144469 DOI: 10.1110/ps.9.10.1898] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Saquinavir is a widely used HIV-1 protease inhibitor drug for AIDS therapy. Its effectiveness, however, has been hindered by the emergence of resistant mutations, a common problem for inhibitor drugs that target HIV-1 viral enzymes. Three HIV-1 protease mutant species, G48V, L90M, and G48V/L90M double mutant, are associated in vivo with saquinavir resistance by the enzyme (Jacobsen et al., 1996). Kinetic studies on these mutants demonstrate a 13.5-, 3-, and 419-fold increase in Ki values, respectively, compared to the wild-type enzyme (Ermolieff J, Lin X, Tang J, 1997, Biochemistry 36:12364-12370). To gain an understanding of how these mutations modulate inhibitor binding, we have solved the HIV-1 protease crystal structure of the G48V/L90M double mutant in complex with saquinavir at 2.6 A resolution. This mutant complex is compared with that of the wild-type enzyme bound to the same inhibitor (Krohn A, Redshaw S, Richie JC, Graves BJ, Hatada MH, 1991, J Med Chem 34:3340-3342). Our analysis shows that to accommodate a valine side chain at position 48, the inhibitor moves away from the protease, resulting in the formation of larger gaps between the inhibitor P3 subsite and the flap region of the enzyme. Other subsites also demonstrate reduced inhibitor interaction due to an overall change of inhibitor conformation. The new methionine side chain at position 90 has van der Waals interactions with main-chain atoms of the active site residues resulting in a decrease in the volume and the structural flexibility of S1/S1' substrate binding pockets. Indirect interactions between the mutant methionine side chain and the substrate scissile bond or the isostere part of the inhibitor may differ from those of the wild-type enzyme and therefore may facilitate catalysis by the resistant mutant.
Collapse
Affiliation(s)
- L Hong
- Protein Studies Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
34
|
Chevalet L, Robert A, Gueneau F, Bonnefoy JY, Nguyen T. Recombinant protein production driven by the tryptophan promoter is tightly controlled in ICONE 200, a new genetically engineered E. coli mutant. Biotechnol Bioeng 2000; 69:351-8. [PMID: 10862673 DOI: 10.1002/1097-0290(20000820)69:4<351::aid-bit1>3.0.co;2-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Batch processes for recombinant gene expression in prokaryotic systems should optimally comprise a growth phase with minimal promoter activity followed by a short phase favoring expression. The strong promoter of the tryptophan operon (Ptrp) gives high-level expression of recombinant proteins in E. coli. The inefficiency to control basal expression before induction is however a major obstacle towards the use of Ptrp, especially in the case of toxic proteins. To circumvent this problem, a novel E. coli strain has been generated. This mutant, named ICONE 200 (Improved Cell for Over and Non-leaky Expression), underwent replacement of tnaA, the tryptophanase encoding gene, with the trpR gene encoding the aporepressor of Ptrp. Detailed analysis of ICONE 200 showed that tryptophan, in addition to its natural role of Ptrp co-repressor, was able to induce trpR through the tryptophan-inducible tryptophanase promoter/operator. Consequently, Ptrp-dependent expression was efficiently repressed in the presence of tryptophan and was turned on, as in wild-type E. coli, as soon as tryptophan was exhausted from the medium. ICONE 200 has the capacity to express a wide range of proteins including toxic proteins such as HIV-1 protease and poliovirus 2B protein. ICONE 200 is a new host carrying stable, targeted, and marker-free genetic modifications and a candidate for large-scale applications.
Collapse
Affiliation(s)
- L Chevalet
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74164 Saint-Julien en Genevois, France.
| | | | | | | | | |
Collapse
|
35
|
Speck RR, Flexner C, Tian CJ, Yu XF. Comparison of human immunodeficiency virus type 1 Pr55(Gag) and Pr160(Gag-pol) processing intermediates that accumulate in primary and transformed cells treated with peptidic and nonpeptidic protease inhibitors. Antimicrob Agents Chemother 2000; 44:1397-403. [PMID: 10770790 PMCID: PMC89883 DOI: 10.1128/aac.44.5.1397-1403.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) produces two polyproteins, Pr55(Gag) and Pr160(Gag-Pol), that are cleaved into mature functional subunits by the virally encoded protease. Drugs that inhibit this protease are an important part of anti-HIV therapy. We studied the ordered accumulation of Gag and Gag-Pol processing intermediates by variably blocking the protease with HIV-1 protease inhibitors (PIs). Variable protease inhibition caused accumulation of a complex pattern of processing intermediates, which was the same after incubating HIV-1-infected cells with increasing concentrations of either one of the peptidomimetic inhibitors indinavir, saquinavir (SQV), ritonavir (RTV), nelfinavir, and SC-52151 or one of the nonpeptidomimetic inhibitors DMP450, DMP323, PNU-140135, and PNU-109112 for 3 days. The patterns of Gag and Gag-Pol processing intermediate accumulation were nearly identical when the following were compared: cell- versus virion-associated proteins, HIV-1-infected transformed cell lines versus primary human peripheral blood mononuclear cells (PBMCs) and HIV-1(MN) versus HIV-1(IIIB) virus strains. RTV was a more potent inhibitor of p24 production in PBMCs than SQV by approximately 7-fold, whereas SQV was a more potent inhibitor in transformed cells than RTV by approximately 30-fold. Although the antiretroviral potency of HIV-1 PIs may change as a function of cell type, the polyprotein intermediates that accumulate with increasing drug concentrations are the same. These results support sequential processing of Gag and Gag-Pol polyproteins by the HIV-1 protease and may have important implications for understanding common cross-resistance pathways.
Collapse
Affiliation(s)
- R R Speck
- Departments of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-5554, USA
| | | | | | | |
Collapse
|
36
|
Trylska J, Antosiewicz J, Geller M, Hodge CN, Klabe RM, Head MS, Gilson MK. Thermodynamic linkage between the binding of protons and inhibitors to HIV-1 protease. Protein Sci 1999; 8:180-95. [PMID: 10210196 PMCID: PMC2144115 DOI: 10.1110/ps.8.1.180] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aspartyl dyad of free HIV-1 protease has apparent pK(a)s of approximately 3 and approximately 6, but recent NMR studies indicate that the aspartyl dyad is fixed in the doubly protonated form over a wide pH range when cyclic urea inhibitors are bound, and in the monoprotonated form when the inhibitor KNI-272 is bound. We present computations and measurements related to these changes in protonation and to the thermodynamic linkage between protonation and inhibition. The Poisson-Boltzmann model of electrostatics is used to compute the apparent pK(a)s of the aspartyl dyad in the free enzyme and in complexes with four different inhibitors. The calculations are done with two parameter sets. One assigns epsilon = 4 to the solute interior and uses a detailed model of ionization; the other uses epsilon = 20 for the solute interior and a simplified representation of ionization. For the free enzyme, both parameter sets agree well with previously measured apparent pK(a)s of approximately 3 and approximately 6. However, the calculations with an internal dielectric constant of 4 reproduce the large pKa shifts upon binding of inhibitors, but the calculations with an internal dielectric constant of 20 do not. This observation has implications for the accurate calculation of pK(a)s in complex protein environments. Because binding of a cyclic urea inhibitor shifts the pK(a)s of the aspartyl dyad, changing the pH is expected to change its apparent binding affinity. However, we find experimentally that the affinity is independent of pH from 5.5 to 7.0. Possible explanations for this discrepancy are discussed.
Collapse
Affiliation(s)
- J Trylska
- Department of Biophysics, University of Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1044] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- C Flexner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Kempf DJ, Sham HL, Marsh KC, Flentge CA, Betebenner D, Green BE, McDonald E, Vasavanonda S, Saldivar A, Wideburg NE, Kati WM, Ruiz L, Zhao C, Fino L, Patterson J, Molla A, Plattner JJ, Norbeck DW. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J Med Chem 1998; 41:602-17. [PMID: 9484509 DOI: 10.1021/jm970636+] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure-activity studies leading to the potent and clinically efficacious HIV protease inhibitor ritonavir are described. Beginning with the moderately potent and orally bioavailable inhibitor A-80987, systematic investigation of peripheral (P3 and P2') heterocyclic groups designed to decrease the rate of hepatic metabolism provided analogues with improved pharmacokinetic properties after oral dosing in rats. Replacement of pyridyl groups with thiazoles provided increased chemical stability toward oxidation while maintaining sufficient aqueous solubility for oral absorption. Optimization of hydrophobic interactions with the HIV protease active site produced ritonavir, with excellent in vitro potency (EC50 = 0.02 microM) and high and sustained plasma concentrations after oral administration in four species. Details of the discovery and preclinical development of ritonavir are described.
Collapse
Affiliation(s)
- D J Kempf
- Pharmaceutical Products Division, Abbott Laboratory, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hong L, Hartsuck JA, Foundling S, Ermolieff J, Tang J. Active-site mobility in human immunodeficiency virus, type 1, protease as demonstrated by crystal structure of A28S mutant. Protein Sci 1998; 7:300-5. [PMID: 9521105 PMCID: PMC2143907 DOI: 10.1002/pro.5560070209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mutation Ala28 to serine in human immunodeficiency virus, type 1, (HIV-1) protease introduces putative hydrogen bonds to each active-site carboxyl group. These hydrogen bonds are ubiquitous in pepsin-like eukaryotic aspartic proteases. In order to understand the significance of this difference between HIV-1 protease and homologous, eukaryotic aspartic proteases, we solved the three-dimensional structure of A28S mutant HIV-1 protease in complex with a peptidic inhibitor U-89360E. The structure has been determined to 2.0 A resolution with an R factor of 0.194. Comparison of the mutant enzyme structure with that of the wild-type HIV-1 protease bound to the same inhibitor (Hong L, Treharne A, Hartsuck JA, Foundling S, Tang J, 1996, Biochemistry 35:10627-10633) revealed double occupancy for the Ser28 hydroxyl group, which forms a hydrogen bond either to one of the oxygen atoms of the active-site carboxyl or to the carbonyl oxygen of Asp30. We also observed marked changes in orientation of the Asp25 catalytic carboxyl groups, presumably caused by the new hydrogen bonds. These observations suggest that catalytic aspartyl groups of HIV-1 protease have significant conformational flexibility unseen in eukaryotic aspartic proteases. This difference may provide an explanation for some unique catalytic properties of HIV-1 protease.
Collapse
Affiliation(s)
- L Hong
- Protein Studies, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Proline is unique among the 20 amino acids due to its cyclic structure. This specific conformation imposes many restrictions on the structural aspects of peptides and proteins and confers particular biological properties upon a wide range of physiologically important biomolecules. In order to adequately deal with such peptides, nature has developed a group of enzymes that recognise this residue specifically. These peptidases cover practically all situations where a proline residue might occur in a potential substrate. In this paper we endeavour to discuss these enzymes, particularly those responsible for peptide or protein hydrolysis at proline sites. We have detailed their discovery, biochemical attributes and substrate specificities and have provided information as to the methodology used to detect and manipulate their activities. We have also described the roles, or potential roles that these enzymes may play physiologically and the consequences of their dysfunction in varied disease states.
Collapse
Affiliation(s)
- D F Cunningham
- School of Biological Sciences, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
42
|
Almog N, Roller R, Arad G, Passi-Even L, Wainberg MA, Kotler M. A p6Pol-protease fusion protein is present in mature particles of human immunodeficiency virus type 1. J Virol 1996; 70:7228-32. [PMID: 8794372 PMCID: PMC190778 DOI: 10.1128/jvi.70.10.7228-7232.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease (PR) and p6(Pol) are translated as part of the Gag-Pol polyprotein after a ribosomal frameshift. PR is essential to virus replication and is responsible for cleaving Gag and Gag-Pol precursors, but the role of p6(Pol) in HIV-1 infection is poorly understood. Here, we report that (i) PR is present in mature HIV-1 virions primarily as a p6(Pol)-PR fusion protein; (ii) HIV-1 PR cleaves viral precursor proteins expressed in bacterial cells at the Phe-Leu bond (positions 1639 to 1642) located at the junction of the NC and p6(Pol) proteins, releasing the p6(Pol)-PR fusion protein; and (iii) purified p6(Pol)-PR fusion protein undergoes autocleavage in vitro at at least three sites.
Collapse
Affiliation(s)
- N Almog
- Department of Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Wan M, Takagi M, Loh BN, Xu XZ, Imanaka T. Autoprocessing: an essential step for the activation of HIV-1 protease. Biochem J 1996; 316 ( Pt 2):569-73. [PMID: 8687402 PMCID: PMC1217386 DOI: 10.1042/bj3160569] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) expresses its structural and functional proteins within Gag-Pol precursor polyproteins. Specific proteolytic processing of the precursors by the viral protease is critical for the maturation and infectivity of viral particles. To observe the influence of autoprocessing on the activation of recombinant HIV-1 protease, we constructed different HIV-1 protease forms, with or without the Phe-Pro bond directly upstream of the protease domain, and expressed them in Escherichia coli systems. We found that the presence of a short upstream sequence of the protease domain, which could generate the original N-terminus of the protease by autoproteolysis of the Phe-Pro bond, resulted in processing of active protease, whereas for a wild-type protease extended only with the initiator methionine, the proteolytic activity was not recovered. Our results suggested that autoprocessing of the direct upstream sequence of the protease domain is an essential step for the activation of recombinant HIV-1 protease in the E. coli expression system. Expression of HIV-1 protease as fusion proteins revealed that the existence of a fusion portion increased the accumulation of expressed protease by affecting its homotypic dimer formation.
Collapse
Affiliation(s)
- M Wan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore
| | | | | | | | | |
Collapse
|
44
|
Tomasselli AG, Thaisrivongs S, Heinrikson RL. Discovery and design of HIV protease inhibitors as drugs for treatment of aids. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1075-8593(96)80106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
45
|
Martin JA, Redshaw S, Thomas GJ. Inhibitors of HIV proteinase. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:239-87. [PMID: 8577919 DOI: 10.1016/s0079-6468(08)70455-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J A Martin
- Roche Products Ltd., Welwyn Garden City, Herts, UK
| | | | | |
Collapse
|
46
|
Rosé JR, Craik CS. Structure-assisted design of nonpeptide human immunodeficiency virus-1 protease inhibitors. Am J Respir Crit Care Med 1994; 150:S176-82. [PMID: 7952656 DOI: 10.1164/ajrccm/150.6_pt_2.s176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The discovery of therapeutic agents has, in the past, started primarily with random screening efforts. These screens, although effective, are time-consuming and expensive. Attempts are now being made to design more efficient methods of screening that take into account available information about the three-dimensional structure of a target receptor or enzyme. In the case of acquired immunodeficiency syndrome, the structure of a proteolytic enzyme, the human immunodeficiency virus (HIV) protease, an aspartyl protease that plays a crucial role in the viral life cycle, has been determined and extensively characterized. Using the protease structure and the computer program DOCK, the active site of the protease was mapped and its shape used to screen a subset of the Cambridge Structural Database. Among the molecules whose shape was complementary to the active site was the antipsychotic agent haloperidol. This molecule and several chemically modified derivatives were shown to bind competitively with micromolar affinity to the HIV protease but not to cellular aspartyl proteases. X-ray structures of the HIV protease complexed with haloperidol derivatives show the molecules binding in the predicted position at the active site. In an attempt to overcome the problems associated with low-affinity competitive inhibitors, reactive groups that enable the molecule to serve as a specific irreversible inhibitor of the HIV protease were introduced onto the haloperidol scaffold. These inhibitors demonstrated an ability to block viral polyprotein processing in a tissue culture model of HIV-1 infection, although their cytotoxicity is pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J R Rosé
- Department of Pharmacology, University of California, San Francisco
| | | |
Collapse
|
47
|
Munoz B, Giam CZ, Wong CH. Alpha-ketoamide Phe-Pro isostere as a new core structure for the inhibition of HIV protease. Bioorg Med Chem 1994; 2:1085-90. [PMID: 7773625 DOI: 10.1016/s0968-0896(00)82058-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Studies on the inhibition of HIV-1 protease utilizing a core isostere with replacement of the scissle bond for an alpha-amino-ketone have resulted in the development of an alpha-keto-amide isosteric replacement of the Phe-Pro scissle amide bond. The simple dipeptide isostere was shown to be a promising new core structure for the development of the enzyme inhibitors. The Ki of this core structure was determined to be 6 microM, compared to 230 microM and > 50 microM for the corresponding phosphinic acid and hydroxyethylamine isosteres.
Collapse
Affiliation(s)
- B Munoz
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
48
|
Interactions of substrates and inhibitors with a family of tethered HIV-1 and HIV-2 homo- and heterodimeric proteinases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37613-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
Zybarth G, Kräusslich HG, Partin K, Carter C. Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. J Virol 1994; 68:240-50. [PMID: 8254734 PMCID: PMC236283 DOI: 10.1128/jvi.68.1.240-250.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mature human immunodeficiency virus type 1 proteinase (PR; 11 kDa) can cleave all interdomain junctions in the Gag and Gag-Pol polyprotein precursors. To determine the activity of the enzyme in its precursor form, we blocked release of mature PR from a truncated Gag-Pol polyprotein by introducing mutations into the N-terminal Phe-Pro cleavage site of the PR domain. The mutant precursor autoprocessed efficiently upon expression in Escherichia coli. No detectable mature PR was released; however, several PR-related products ranging in size from approximately 14 to 18 kDa accumulated. Products of the same size were generated when mutant precursors were digested with wild-type PR. Thus, PR can utilize cleavage sites in the region upstream of the PR domain, resulting in the formation of extended PR species. On the basis of active-site titration, the PR species generated from mutated precursor exhibited wild-type activity on peptide substrates. However, the proteolytic activity of these extended enzymes on polyprotein substrates provided exogenously was low when equimolar amounts of extended and wild-type PR proteins were compared. Mammalian cells expressing the mutated precursor produced predominantly precursor and considerably reduced amounts of mature products. Released particles consisted mostly of uncleaved or partially cleaved polyproteins. Our results suggest that precursor forms of PR can autoprocess but are less efficient in processing of the Gag precursor for formation of mature virus particles.
Collapse
Affiliation(s)
- G Zybarth
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | | | | | |
Collapse
|
50
|
Leuthardt A, Roesel JL. Cloning, expression and purification of a recombinant poly-histidine-linked HIV-1 protease. FEBS Lett 1993; 326:275-80. [PMID: 8325379 DOI: 10.1016/0014-5793(93)81807-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene coding for the HIV-1 protease was cloned in an Escherichia coli expression vector adding three-histidine codons to the amino and carboxy terminus of the protease sequence. Expression of the protease from this construct led to the accumulation of high amounts of insoluble histidine-linked protease entrapped in inclusion bodies. The histidine-linked protease could be efficiently released from purified inclusion bodies with 6 M guanidine hydrochloride and further purified by metal chelate affinity chromatography. The refolded protease cleaved synthetic peptide substrates and the viral polyprotein p55 with the same specificity as the wild type protease. It displays a specific activity of 4.4 mumol/min/mg.
Collapse
Affiliation(s)
- A Leuthardt
- Ciba-Geigy Ltd., Oncology and Virology Research Department, Basel, Switzerland
| | | |
Collapse
|