1
|
Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM. Alzheimer's Presenilin-1 Mutation Potentiates Inositol 1,4,5-Trisphosphate-Mediated Calcium Signaling in Xenopus. J Neurochem 2008. [DOI: 10.1111/j.1471-4159.1999.721061.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Vannier C, Triller A. Biology of the postsynaptic glycine receptor. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 176:201-44. [PMID: 9394920 DOI: 10.1016/s0074-7696(08)61611-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycine is one of the major inhibitory neurotransmitters, and upon binding to its receptor it activates chloride conductances. Receptors are accumulated immediately opposite release sites, at the postsynaptic differentiations, where they form functional microdomains. This review describes recent advances in our understanding of the structure-function relationships of the glycine receptor, a member of the ligand-gated ion channel superfamily. Following purification of the receptor complex and identification of its integral and peripheral membrane protein components, molecular cloning has revealed the existence of several subtypes of the ligand-binding subunit. This heterogeneity is responsible for the distinct pharmacological and functional properties displayed by the various receptor configurations that are differentially expressed and assembled during development. This review also focuses on the molecular aspects of glycinergic synaptogenesis, highlighting gephyrin, the peripheral component of the receptor. The role of this cytoplasmic protein in anchoring and maintaining the channel complex in postsynaptic clusters is discussed. The glycine receptor recently moved into the spotlight as a paradigm in the approach to cell biology of the formation of the postsynaptic membrane.
Collapse
Affiliation(s)
- C Vannier
- Laboratoire de Biologie Cellulaire de la Synapse, INSERM CJF 94-10, Paris, France
| | | |
Collapse
|
4
|
García-Colunga J, Miledi R. Serotonergic modulation of muscle acetylcholine receptors of different subunit composition. Proc Natl Acad Sci U S A 1996; 93:3990-4. [PMID: 8633003 PMCID: PMC39473 DOI: 10.1073/pnas.93.9.3990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Modulation of muscle acetylcholine (AcCho) receptors (AcChoRs) by serotonin [5-hydroxytryptamine (5HT)] and other serotonergic compounds was studied in Xenopus laevis oocytes. Various combinations of alpha, beta, gamma, and delta subunit RNAs were injected into oocytes, and membrane currents elicited by AcCho were recorded under voltage clamp. Judging by the amplitudes of AcCho currents generated, the levels of functional receptor expression were: alpha beta gamma delta > alpha beta delta > alpha beta gamma > alpha gamma delta. The alpha beta gamma delta and alpha beta delta AcChoR Subtypes were strongly blocked by 5HT, whereas the alpha beta gamma receptor was blocked only slightly. The order of blocking potency of AcChoRs by 5HT was: alpha beta delta > alpha beta gamma delta > alpha beta gamma. 5HT receptor antagonists, such as methysergide and spiperone, were even more potent blockers of AcChoRs than 5HT but did not show much subunit selectivity. Blockage of alpha beta gamma delta and alpha beta delta receptors by 5HT was voltage-dependent, and the voltage dependence was abolished when the delta subunit was omitted. These findings may need to be taken into consideration when trying to elucidate the mode of action of many clinically important serotonergic compounds.
Collapse
Affiliation(s)
- J García-Colunga
- Department of Psychobiology, University of California, Irvine 92717-4550, USA
| | | |
Collapse
|
5
|
Morales A, Aleu J, Ivorra I, Ferragut JA, Gonzalez-Ros JM, Miledi R. Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane. Proc Natl Acad Sci U S A 1995; 92:8468-72. [PMID: 7667313 PMCID: PMC41178 DOI: 10.1073/pnas.92.18.8468] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified nicotinic acetylcholine receptors are efficiently inserted into the plasma membrane, where they form "clusters" of receptors that retain their native properties. This constitutes an innovative approach that, besides allowing the analyses of membrane fusion processes, is also a powerful technique for studying the characteristics and regulation of many membrane proteins (with their native stoichiometry and configuration) upon reinsertion into the membrane of a very convenient host cell system.
Collapse
Affiliation(s)
- A Morales
- Department of Physiology, Universidad de Alicante, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Marsal J, Tigyi G, Miledi R. Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci U S A 1995; 92:5224-8. [PMID: 7761478 PMCID: PMC41881 DOI: 10.1073/pnas.92.11.5224] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins.
Collapse
Affiliation(s)
- J Marsal
- Department of Psychobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
7
|
James JR, Nordberg A. Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: emphasis on Alzheimer's disease and Parkinson's disease. Behav Genet 1995; 25:149-59. [PMID: 7733856 DOI: 10.1007/bf02196924] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As neurodegenerative disorders are better characterized, the importance of genetic and environmental interactions is becoming more evident. Among the neurodegenerative disorders, Alzheimer's disease and Parkinson's disease are both characterized by large losses of nicotinic binding sites in brain. In addition, losses in nicotinic receptors occur during normal aging. Chronic administration of nicotine in man or experimental animals increases the number of nicotinic receptors in brain. Nicotine has been shown to possess some neuroprotective properties for both cholinergic and dopaminergic neurons. These neuroprotective properties, when better understood, may provide important information on normal aging and neurodegenerative disorder related neuronal cell death. Understanding the functional aspects of neuronal nicotinic receptor subtypes may lead to successful therapeutic treatments or disease preventative strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- J R James
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | |
Collapse
|
8
|
Conti-Tronconi BM, McLane KE, Raftery MA, Grando SA, Protti MP. The nicotinic acetylcholine receptor: structure and autoimmune pathology. Crit Rev Biochem Mol Biol 1994; 29:69-123. [PMID: 8026215 DOI: 10.3109/10409239409086798] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nicotinic acetylcholine receptors (AChR) are presently the best-characterized neurotransmitter receptors. They are pentamers of homologous or identical subunits, symmetrically arranged to form a transmembrane cation channel. The AChR subunits form a family of homologous proteins, derived from a common ancestor. An autoimmune response to muscle AChR causes the disease myasthenia gravis. This review summarizes recent developments in the understanding of the AChR structure and its molecular recognition by the immune system in myasthenia.
Collapse
Affiliation(s)
- B M Conti-Tronconi
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul 55108
| | | | | | | | | |
Collapse
|
9
|
Naranjo D, Brehm P. Modal shifts in acetylcholine receptor channel gating confer subunit-dependent desensitization. Science 1993; 260:1811-4. [PMID: 8511590 DOI: 10.1126/science.8511590] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the transition from embryonic to adult skeletal muscle, a decreased mean channel open time and accelerated desensitization of nicotinic acetylcholine (ACh) receptors result from the substitution of an epsilon subunit for gamma. A single ACh receptor channel of the embryonic type, expressed in Xenopus oocytes, interconverts between gating modes of short and long open time, whereas the adult receptor channel resides almost exclusively in the gating mode with short open time. Differences in the fraction of time spent in either gating mode account for the subunit dependence of both receptor open time and desensitization. Therefore, developmental changes in the kinetics of muscle ACh receptors may be imparted through subunit-dependent stabilization of intrinsic gating modes.
Collapse
Affiliation(s)
- D Naranjo
- Department of Neurobiology and Behavior, State University of New York, Stony Brook 11794
| | | |
Collapse
|
10
|
Cartaud J, Changeux JP. Post-transcriptional compartmentalization of acetylcholine receptor biosynthesis in the subneural domain of muscle and electrocyte junctions. Eur J Neurosci 1993; 5:191-202. [PMID: 8261100 DOI: 10.1111/j.1460-9568.1993.tb00485.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, CNRS, Université Paris VII, France
| | | |
Collapse
|
11
|
Loutrari H, Tzartos SJ, Claudio T. Use of Torpedo-mouse hybrid acetylcholine receptors reveals immunodominance of the alpha subunit in myasthenia gravis antisera. Eur J Immunol 1992; 22:2949-56. [PMID: 1385157 DOI: 10.1002/eji.1830221129] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nicotinic acetylcholine receptor (AChR), a pentameric complex of alpha 2 beta gamma delta subunits, is the autoantigen in the human autoimmune disease myasthenia gravis (MG). Anti-AChR antibodies are found in approximately 90% of MG patients and using indirect methods (competitive binding to solubilized AChR), peptides, or synthetic peptides, the majority of these antibodies have been shown to bind to the AChR alpha subunit. In order to determine directly the AChR subunit specificities of MG antibodies, we employed as antigens a novel set of hybrid AChR composed of species cross-reacting and non-cross-reacting subunits stably expressed in fibroblasts. Sequence similarities of homologous subunits among species can vary widely, with mammalian subunits having 87%-96% identity and Torpedo-mammalian subunits having 54%-80% identity. These findings are reflected in antigenic specificities, with human anti-AChR antisera frequently recognizing mouse AChR but rarely recognizing Torpedo. By establishing separate cell lines stably expressing all-Torpedo, all-mouse, and different combinations of Torpedo and mouse subunits, we were able to provide the first direct evidence of a predominant anti-alpha subunit specificity in MG antisera. Functional hybrid AChR stably expressed in an intact cell membrane provide us with a system that best mimics the in vivo environment of the MG antibody in a binding assay. Such a system allows us to investigate a perplexing observation in the field: a poor correlation between the patient's clinical status and antibody titer. Those antibodies which can interfere with AChR function, such as ones with the ability to cross-link AChR and induce their accelerated internalization and degradation (antigenic modulation) might represent a subpopulation of MG antibodies important in disease induction or maintenance. In this report, we demonstrate that wild-type and hybrid AChR expressed in fibroblasts can be antigenically modulated by intermolecular cross-linking antibodies as AChR are in native muscle cells. Because we can monitor dynamic interactions between AChR and MG antibodies, this system may allow us to define crucial pathogenic epitopes in MG by expressing hybrid, chimeric, and mutant AChR.
Collapse
Affiliation(s)
- H Loutrari
- Department of Biochemistry, Hellenic Pasteur Institute, Athens
| | | | | |
Collapse
|
12
|
Gross A, Ballivet M, Rungger D, Bertrand D. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes: role of the alpha subunit in agonist sensitivity and desensitization. Pflugers Arch 1991; 419:545-51. [PMID: 1775381 DOI: 10.1007/bf00370805] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) were expressed in Xenopus laevis oocytes after nuclear injection of complementary deoxyribonucleic acid (cDNA) expression vectors. The two receptor subtypes alpha 4/n alpha 1 and alpha 3/n alpha 1 were readily distinguishable from one another by ACh sensitivity and desensitization. alpha 3/n alpha 1 receptors showed lower ACh sensitivity and stronger desensitization than alpha 4/n alpha 1 receptors. Furthermore, although the current/voltage relationship was very similar in both receptor subtypes, the voltage dependence of desensitization was found to be strikingly different. As the n alpha 1 subunit was unchanged, the alpha subunits must be responsible for these functional differences. Symmetric hybrid alpha cDNAs, alpha 4:alpha 3 and alpha 3:alpha 4, were constructed and functional receptors were obtained by co-injection with n alpha 1. These hybrid receptors displayed an ACh sensitivity that was mainly defined by the extracellular sequence of the alpha subunit. In contrast, no part of the alpha subunit was found fully to determine desensitization.
Collapse
Affiliation(s)
- A Gross
- Department of Physiology, CMU, Geneva, Switzerland
| | | | | | | |
Collapse
|
13
|
Tunicamycin increases desensitization of acetylcholine receptors in cultured mouse muscle cells. Proc Natl Acad Sci U S A 1991; 88:1808-11. [PMID: 2000386 PMCID: PMC51114 DOI: 10.1073/pnas.88.5.1808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Whole-cell currents activated by acetylcholine (AcCho) were recorded in C2 mouse myotubes before and after prolonged treatment with tunicamycin, an inhibitor of glycosylation. In control cells the AcCho-induced currents decayed slowly even in the continuous presence of AcCho. After 24 hr of treatment with tunicamycin AcCho still elicited currents, but their size was significantly reduced and their decay was greatly accelerated. The binding of 125I-labeled alpha-bungarotoxin, a specific and irreversible antagonist of muscle AcCho receptors, was greatly reduced after tunicamycin treatment, and an equivalent reduction was observed after a long-lasting application of the AcCho agonist carbachol. We suggest that, after inhibition of glycosylation by tunicamycin, AcCho receptors are expressed correctly on the plasma membrane but these receptors desensitize more rapidly and are less efficient in binding alpha-bungarotoxin.
Collapse
|
14
|
Zona C, Farini D, Palma E, Eusebi F. Modulation of voltage-activated channels by calcitonin gene-related peptide in cultured rat neurones. J Physiol 1991; 433:631-43. [PMID: 1726796 PMCID: PMC1181392 DOI: 10.1113/jphysiol.1991.sp018447] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. Whole-cell currents were recorded from cultures of dissociated neocortical neurones of the rat. Rat alpha-calcitonin gene-related peptide (CGRP; 1 nM-1 microM) caused significant dose-dependent decreases in the voltage-activated transient (A-current) and delayed rectifier K+ currents. Forskolin (10 nM-20 microM) mimicked this effect. Peak K+ currents were gradually decreased after loading neurones with cyclic AMP (100 microM) through patch pipettes. CGRP was ineffective in neurones loaded with cyclic AMP. 2. CGRP (0.5-2 microM) increased cytosolic cyclic AMP concentration and this effect was mimicked by forskolin (5-40 microM). 3. CGRP (0.1-1 microM) reduced high-threshold Ca2+ currents; as did forskolin (5-20 microM) and cyclic AMP loaded into the neurones. In contrast, low-threshold Ca2+ currents were not affected by any of these agents. 4. Voltage-activated Na+ currents were significantly reduced by both CGRP (0.1-1 microM) and forskolin (5-20 microM). A similar effect was observed when cells were loaded with cyclic AMP. 5. We conclude that, in neocortical neurones, CGRP attenuates voltage-activated currents by stimulating the intracellular cyclic AMP signalling system.
Collapse
Affiliation(s)
- C Zona
- Dipartimento di Medicina Sperimentale, Universitá dell'Aquila, Italy
| | | | | | | |
Collapse
|
15
|
Sigel E. Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J Membr Biol 1990; 117:201-21. [PMID: 2231695 DOI: 10.1007/bf01868451] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- E Sigel
- Pharmakologisches Institut, Universität Bern, Switzerland
| |
Collapse
|
16
|
Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP. The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci U S A 1990; 87:4675-9. [PMID: 1693775 PMCID: PMC54179 DOI: 10.1073/pnas.87.12.4675] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker [3H]chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The [3H]chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.
Collapse
Affiliation(s)
- F Revah
- Unité de Recherche Associée au Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
17
|
Bertrand D, Ballivet M, Rungger D. Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in Xenopus oocytes. Proc Natl Acad Sci U S A 1990; 87:1993-7. [PMID: 1968642 PMCID: PMC53611 DOI: 10.1073/pnas.87.5.1993] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptor of the alpha 4/non-alpha (alpha 4/n alpha) type was reconstituted in Xenopus oocytes after nuclear injection of cDNA expression vectors. Functional neuronal receptor was only formed when the two subunits alpha 4 and n alpha were coinjected, neither alpha 4 nor n alpha alone being effective. Responses to bath application of acetylcholine (AcCho) have been measured in voltage clamp. AcCho doses as low as 10 nM induce currents of up to 50 nA. Dose-response studies indicate a Kd of about 0.77 x 10(-6) M and a Hill coefficient of 1.5, thus predicting more than one AcCho binding site per receptor molecule. The current-voltage relationship of AcCho-induced currents presents a strong inward rectification. Responses to AcCho were compared to those of three other agonists: L-nicotine, carbachol, and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP). Sensitivities to AcCho, nicotine, and DMPP are quite similar. Sensitivity to carbachol is much lower, but the currents are otherwise indistinguishable from those induced by AcCho. Five AcCho antagonists--neuronal bungarotoxin (kappa-bungarotoxin), tubocurarine (TC), hexamethonium bromide (Hex), decamethonium bromide (Dec), and mecamylamine (Mec)--have been tested. Neuronal bungarotoxin has no effect on the alpha 4/n alpha channel, whereas 2.5 microM TC reduces by half the current peak evoked by 1 microM AcCho. The block by TC is independent of membrane voltage. By contrast, the block of AcCho-induced currents by Hex or Dec is strongly voltage dependent, suggesting that these substances enter the channel. The block by Mec is detectable at concentrations as low as 100 nM when applied together with 1 microM AcCho and is voltage independent. Hex, Dec, and Mec are effective only when AcCho is present. While the effects of all other agents are fully reversible, the Mec block is persistent.
Collapse
Affiliation(s)
- D Bertrand
- Department of Physiology, Centre Medical Universitaire, Geneva, Switzerland
| | | | | |
Collapse
|
18
|
Colquhoun D, Cachelin AB, Marshall CG, Mathie A, Ogden DC. Function of nicotinic synapses. PROGRESS IN BRAIN RESEARCH 1990; 84:43-50. [PMID: 2267314 DOI: 10.1016/s0079-6123(08)60887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- D Colquhoun
- MRC Receptor Mechanisms Group, Department of Pharmacology, University College London, U.K
| | | | | | | | | |
Collapse
|
19
|
Ochoa EL, Li L, McNamee MG. Desensitization of central cholinergic mechanisms and neuroadaptation to nicotine. Mol Neurobiol 1990; 4:251-87. [PMID: 2135395 DOI: 10.1007/bf02780343] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review focuses on neuroadaptation to nicotine. The first part of the paper delineates some possible general mechanisms subserving neuroadaptation to commonly abused drugs. The postulated role of the mesocorticolimbic neuroanatomical pathway and drug-receptor desensitization mechanisms in the establishment of tolerance to, dependence on, and withdrawal from psychoactive drugs are discussed. The second part of the review deals with the pharmacological effects of nicotine at both pre- and postsynaptic locations within the central nervous system, and the still-perplexing upregulation of brain nicotine-binding sites seen after chronic nicotine administration. A special emphasis has been put on desensitization of presynaptic cholinergic mechanisms, and postsynaptic neuronal nicotinic-receptor function and its modulation by endogenous substances. A comparison with the inactivation process occurring at peripheral nicotinic receptors is also included. Finally, a hypothesis on the possible connections between desensitization of central cholinergic mechanisms and neuroadaptation to nicotine is advanced. A brief comment on the necessity of fully understanding the effects of nicotine on the developing nervous system closes this work.
Collapse
Affiliation(s)
- E L Ochoa
- Department of Pediatrics, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
20
|
Giovannelli A, Farini D, Gauzzi MC, Alema S, Eusebi F. Regulation of acetylcholine receptor desensitization in mouse myotubes by cytosolic cyclic AMP. Cell Signal 1990; 2:347-52. [PMID: 2174690 DOI: 10.1016/0898-6568(90)90064-h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whole-cell currents activated by bath applications of acetylcholine (ACh) (10-30 microM) were recorded from patch-clamped myotubes of the mouse C2 cell line. Increasing concentrations of forskolin caused a dose-dependent fast decay of ACh-activated currents as compared to the long-lasting ACh-currents in control cells. The forskolin-induced modulation of nicotinic ACh receptor (nAChR) desensitization was proportional to the drug-induced elevation in the cyclic AMP (cAMP) cellular content. Furthermore, an increase in the rate of decay of the ACh-current response, which paralleled an elevation in cAMP cellular content, was caused by treatment with a calcitonin gene-related peptide (1 microM), 8-Br-cAMP (0.5 mM), or by loading the myotubes with cAMP. These results therefore indicate that the desensitization of nAChR is a cAMP-related process in C2-myotubes.
Collapse
Affiliation(s)
- A Giovannelli
- Dipartimento di Medicina Sperimentale Università dell'Aquila, Italy
| | | | | | | | | |
Collapse
|
21
|
Cachelin AB, Colquhoun D. Desensitization of the acetylcholine receptor of frog end-plates measured in a Vaseline-gap voltage clamp. J Physiol 1989; 415:159-88. [PMID: 2561785 PMCID: PMC1189172 DOI: 10.1113/jphysiol.1989.sp017717] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Desensitization of the nicotinic acetylcholine receptor of the frog end-plate was investigated in dissociated frog muscle fibres using the Vaseline-gap clamp method so that a wide range of well-defined agonist concentrations could be used without having to use alpha-bungarotoxin to reduce currents, and so that the intracellular medium could be controlled. 2. Acetylcholine (ACh) concentrations between 1 and 1000 microM were used, after inactivation of acetylcholinesterase. The intracellular calcium concentration was usually kept near zero by using 80 mM-K2EGTA as the intracellular solution. 3. When using the low intracellular calcium solution, desensitization proceeded as a biphasic process with estimates of fast and slow time constants of about 8 and 80 s at 4 degrees C and 20 microM-ACh (the rates increased with concentration). In contrast, only one (fast) component of desensitization was detected when the intracellular calcium concentration was allowed to increase during ACh application. 4. Despite rapid application of ACh the time to peak response was 0.2 s (with 400 microM-ACh) to 2 s (with 1 microM-ACh); this slow rise was shown to result from diffusion delays. Nevertheless the peak current with 200 microM-ACh corresponded to opening of most of the channels present, so there is probably not much desensitization in the millisecond time range. 5. Both fast and slow time constants for onset of desensitization showed only slight dependence on membrane potential when [Ca2+]i was buffered with 80 mM-K2EGTA. 6. Increasing the intracellular cyclic AMP concentration directly, or indirectly with forskolin and IBMX, had no effect on the time course of desensitization. 7. Intracellular application of submicromolar concentrations of phorbol-12,13-dibutyrate (PDBu) and phorbol-12-myristate-13-acetate (PMA) yielded a small but reproducible reduction of the peak response to ACh. The time course of desensitization was, however, not modified by these substances. 8. The implications of these observations for the mechanism of desensitization, and their relationship to single-channel observations, are discussed.
Collapse
Affiliation(s)
- A B Cachelin
- Department of Pharmacology, University College London
| | | |
Collapse
|