1
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
2
|
Rast LI, Rouzine IM, Rozhnova G, Bishop L, Weinberger AD, Weinberger LS. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals. PLoS Comput Biol 2016; 12:e1004799. [PMID: 27152856 PMCID: PMC4859541 DOI: 10.1371/journal.pcbi.1004799] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. A major obstacle to effective antimicrobial therapy campaigns is the rapid evolution of drug resistance. Given the static nature of current pharmaceuticals and vaccines, natural selection inevitably drives pathogens to mutate into drug-resistant variants that can resume productive replication. Further, these drug-resistant mutants transmit across populations, resulting in untreatable epidemics. Recently, a therapeutic strategy was proposed in which viral deletion mutants—termed therapeutic interfering particles (TIPs)—are engineered to only replicate by stealing their missing proteins from full-length viruses in co-infected cells. By stealing essential viral proteins, these engineered molecular parasites have been predicted to reduce viral levels in patients and viral transmission events across populations. Yet, a critical question is whether rapidly mutating viruses like HIV can evolve around TIP control by reducing production of the proteins that TIPs must steal in order to replicate (i.e., by ‘starving’ the TIPs). Here we develop a multi-scale model that tests whether TIP-starving HIV mutants can spread across populations to undermine TIP therapy campaigns at the population-scale. Strikingly, model results show that inherent evolutionary tradeoffs prevent these TIP-resistant HIV mutants from increasing in frequency (i.e., these TIP-resistant HIV mutants are continually outcompeted by TIP-sensitive mutants in both patients and populations). Maintained by natural selection, TIPs may offer a novel therapeutic approach to indefinitely control rapidly evolving viral pandemics.
Collapse
Affiliation(s)
- Luke I. Rast
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Igor M. Rouzine
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Ganna Rozhnova
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Lisa Bishop
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Ariel D. Weinberger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- * E-mail: (ADW); (LSW)
| | - Leor S. Weinberger
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- QB3: California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (ADW); (LSW)
| |
Collapse
|
3
|
Kawamura M, Watanabe S, Odahara Y, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Genetic diversity in the feline leukemia virus gag gene. Virus Res 2015; 204:74-81. [PMID: 25892717 DOI: 10.1016/j.virusres.2015.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field.
Collapse
Affiliation(s)
- Maki Kawamura
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yuka Odahara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yasuyuki Endo
- Laboratory of Small Animal Internal Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
4
|
Microglial content-dependent inhibitory effects of calcitonin gene-related peptide (CGRP) on murine retroviral infection of glial cells. J Neuroimmunol 2015; 279:64-70. [PMID: 25670002 PMCID: PMC4325278 DOI: 10.1016/j.jneuroim.2015.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/17/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022]
Abstract
C57BL/6 (B6) mice develop peripheral neuropathy post-LP-BM5 infection, a murine model of HIV-1 infection, along with the up-regulation of select spinal cord cytokines. We investigated if calcitonin gene-related peptide (CGRP) contributed to the development of peripheral neuropathy by stimulating glial responses. An increased expression of lumbar spinal cord CGRP was observed in vivo, post-LP-BM5 infection. Consequently, in vitro CGRP co-treatments led to a microglial content-dependent attenuation of viral loads in spinal cord mixed glia infected with selected doses of LP-BM5. This inhibition was neither caused by the loss of glia nor induced via the direct inhibition of LP-BM5 by CGRP.
Collapse
|
5
|
Clouser CL, Bonnac L, Mansky LM, Patterson SE. Characterization of permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine divalerate prodrugs. Antivir Chem Chemother 2014; 23:223-30. [PMID: 23994876 DOI: 10.3851/imp2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Over 25 drugs have been approved for the treatment of HIV-1 replication. All but one of these drugs is delivered as an oral medication. Previous studies have demonstrated that two drugs, decitabine and gemcitabine, have potent anti-HIV-1 activities and can work together in synergy to reduce HIV-1 infectivity via lethal mutagenesis. For their current indications, decitabine and gemcitabine are delivered intravenously. METHODS As an initial step towards the clinical translation of these drugs for the treatment of HIV-1 infection, we synthesized decitabine and gemcitabine prodrugs in order to increase drug permeability, which has generally been shown to correlate with increased bioavailability in vivo. In the present study we investigated the permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine prodrugs and selected the divalerate esters of each as candidates for further investigation. RESULTS Our results provide the first demonstration of divalerate prodrugs of decitabine and gemcitabine that are readily permeable, stable and possess anti-HIV-1 activity. CONCLUSIONS These observations predict improved oral availability of decitabine and gemcitabine, and warrant further study of their ability to reduce HIV-1 infectivity in vivo.
Collapse
Affiliation(s)
- Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
6
|
Involvement of microglial CD40 in murine retrovirus-induced peripheral neuropathy. J Neuroimmunol 2013; 261:37-43. [PMID: 23726765 DOI: 10.1016/j.jneuroim.2013.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Abstract
B6 mice infected with LP-BM5 develop severe immunodeficiency (termed murine acquired immunodeficiency syndrome (MAIDS)) and peripheral neuropathy. To determine whether microglial CD40 is involved in LP-BM5-induced peripheral neuropathy, B6-CD40 knockout (KO) mice and B6-CD40 KO mice adoptively transferred either total leukocytes or B cells were examined for behavioral sensitivity, tissue viral loads, cytokine responses, and the development of MAIDS. All three CD40 KO groups developed MAIDS, the severity of which was correlated with peripheral cytokine responses. CD40 KO mice displayed significantly reduced mechanical hypersensitivity post-infection compared to wild-type mice regardless of cell transfer. These findings support microglial CD40 involvement in LP-BM5-induced peripheral neuropathy.
Collapse
|
7
|
Design requirements for interfering particles to maintain coadaptive stability with HIV-1. J Virol 2012; 87:2081-93. [PMID: 23221552 DOI: 10.1128/jvi.02741-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering particles (DIPs) are viral deletion mutants lacking essential transacting or packaging elements and must be complemented by wild-type virus to propagate. DIPs transmit through human populations, replicating at the expense of the wild-type virus and acting as molecular parasites of viruses. Consequently, engineered DIPs have been proposed as therapies for a number of diseases, including human immunodeficiency virus (HIV). However, it is not clear if DIP-based therapies would face evolutionary blocks given the high mutation rates and high within-host diversity of lentiviruses. Divergent evolution of HIV and DIPs appears likely since natural DIPs have not been detected for lentiviruses, despite extensive sequencing of HIVs and simian immunodeficiency viruses (SIVs). Here, we tested if the apparent lack of lentiviral DIPs is due to natural selection and analyzed which molecular characteristics a DIP or DIP-based therapy would need to maintain coadaptive stability with HIV-1. Using a well-established mathematical model of HIV-1 in a host extended to include its replication in a single cell and interference from DIP, we calculated evolutionary selection coefficients. The analysis predicts that interference by codimerization between DIPs and HIV-1 genomes is evolutionarily unstable, indicating that recombination between DIPs and HIV-1 would be selected against. In contrast, DIPs that interfere via competition for capsids have the potential to be evolutionarily stable if the capsid-to-genome production ratio of HIV-1 is >1. Thus, HIV-1 variants that attempt to "starve" DIPs to escape interference would be selected against. In summary, the analysis suggests specific experimental measurements that could address the apparent lack of naturally occurring lentiviral DIPs and specifies how therapeutic approaches based on engineered DIPs could be evolutionarily robust and avoid recombination.
Collapse
|
8
|
Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol 2012; 87:2058-71. [PMID: 23221564 DOI: 10.1128/jvi.01547-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b(+) Gr-1(+) Ly6C(+)) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1-PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6G(low/±) Ly6C(+) CD11b(+)-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.
Collapse
|
9
|
Cao L, Butler MB, Tan L, Draleau KS, Koh WY. Murine immunodeficiency virus-induced peripheral neuropathy and the associated cytokine responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:3724-33. [PMID: 22956581 DOI: 10.4049/jimmunol.1201313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Distal symmetrical polyneuropathy is the most common form of HIV infection-associated peripheral neuropathy and is often associated with pain. C57BL/6 (B6) mice infected with LP-BM5, a murine retroviral isolate, develop a severe immunodeficiency syndrome similar to that in humans infected with HIV-1, hence the term murine AIDS. We investigated the induction of peripheral neuropathy after LP-BM5 infection in B6 mice. Infected B6 mice, like HIV-infected humans, exhibited behavioral (increased sensitivity to mechanical and heat stimuli) and pathological (transient loss of intraepidermal nerve fibers) signs of peripheral neuropathy. The levels of viral gag RNA were significantly increased in all tissues tested, including spleen, paw skin, lumbar dorsal root ganglia, and lumbar spinal cord, postinfection (p.i.). Correlated with the development of peripheral neuropathy, the tissue levels of several cytokines, including IFN-γ, IL-1β, IL-6, and IL-12, were significantly elevated p.i. These increases had cytokine-specific and tissue-specific profiles and kinetics. Further, treatment with the antiretroviral agent zidovudine either significantly reduced or completely reversed the aforementioned behavioral, pathologic, and cytokine changes p.i. These data suggest that LP-BM5 infection is a potential mouse model of HIV-associated distal symmetrical polyneuropathy that can be used for investigating the roles of various cytokines in infection-induced neuropathic pain. Further investigation of this model could give a better understanding of, and lead to more effective treatments for, HIV infection-associated painful peripheral neuropathy.
Collapse
Affiliation(s)
- Ling Cao
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | | | | | | | | |
Collapse
|
10
|
Jones PH, Mehta HV, Okeoma CM. A novel role for APOBEC3: susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS) is aggravated in APOBEC3 deficient mice. Retrovirology 2012; 9:50. [PMID: 22691411 PMCID: PMC3418182 DOI: 10.1186/1742-4690-9-50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background APOBEC3 proteins are host factors that restrict infection by retroviruses like HIV, MMTV, and MLV and are variably expressed in hematopoietic and non-hematopoietic cells, such as macrophages, lymphocytes, dendritic, and epithelia cells. Previously, we showed that APOBEC3 expressed in mammary epithelia cells function to limit milk-borne transmission of the beta-retrovirus, mouse mammary tumor virus. In this present study, we used APOBEC3 knockout mice and their wild type counterpart to query the role of APOBEC3 in sexual transmission of LP-BM5 MLV – the etiological agent of murine AIDs (mAIDs). Results We show that mouse APOBEC3 is expressed in murine genital tract tissues and gametes and that genital tract tissue of APOBEC3-deficient mice are more susceptible to infection by LP-BM5 virus. APOBEC3 expressed in genital tract tissues most likely plays a role in decreasing virus transmission via the sexual route, since mice deficient in APOBEC3 gene have higher genitalia and seminal plasma virus load and sexually transmit the virus more efficiently to their partners compared to APOBEC3+ mice. Moreover, we show that female mice sexually infected with LP-BM5 virus transmit the virus to their off-spring in APOBEC3-dependent manner. Conclusion Our data indicate that genital tissue intrinsic APOBEC3 restricts genital tract infection and limits sexual transmission of LP-BM5 virus.
Collapse
Affiliation(s)
- Philip H Jones
- Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
11
|
Activity of a novel combined antiretroviral therapy of gemcitabine and decitabine in a mouse model for HIV-1. Antimicrob Agents Chemother 2012; 56:1942-8. [PMID: 22271861 DOI: 10.1128/aac.06161-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The emergence of drug resistance threatens to limit the use of current anti-HIV-1 drugs and highlights the need to expand the number of treatment options available for HIV-1-infected individuals. Our previous studies demonstrated that two clinically approved drugs, decitabine and gemcitabine, potently inhibited HIV-1 replication in cell culture through a mechanism that is distinct from the mechanisms for the drugs currently used to treat HIV-1 infection. We further demonstrated that gemcitabine inhibited replication of a related retrovirus, murine leukemia virus (MuLV), in vivo using the MuLV-based LP-BM5/murine AIDS (MAIDS) mouse model at doses that were not toxic. Since decitabine and gemcitabine inhibited MuLV and HIV-1 replication with similar potency in cell culture, the current study examined the efficacy and toxicity of the drug combination using the MAIDS model. The data demonstrate that the drug combination inhibited disease progression, as detected by histopathology, viral loads, and spleen weights, at doses lower than those that would be required if the drugs were used individually. The combination of decitabine and gemcitabine exerted antiviral activity at doses that were not toxic. These findings indicate that the combination of decitabine and gemcitabine shows potent antiretroviral activity at nontoxic doses and should be further investigated for clinical relevance.
Collapse
|
12
|
Clouser CL, Holtz CM, Mullett M, Crankshaw DL, Briggs JE, Chauhan J, VanHoutan IM, Patterson SE, Mansky LM. Analysis of the ex vivo and in vivo antiretroviral activity of gemcitabine. PLoS One 2011; 6:e15840. [PMID: 21264291 PMCID: PMC3021508 DOI: 10.1371/journal.pone.0015840] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022] Open
Abstract
Replication of retroviral and host genomes requires ribonucleotide reductase to convert rNTPs to dNTPs, which are then used as substrates for DNA synthesis. Inhibition of ribonucleotide reductase by hydroxyurea (HU) has been previously used to treat cancers as well as HIV. However, the use of HU as an antiretroviral is limited by its associated toxicities such as myelosuppression and hepatotoxicity. In this study, we examined the ribonucleotide reductase inhibitor, gemcitabine, both in cell culture and in C57Bl/6 mice infected with LP-BM5 murine leukemia virus (LP-BM5 MuLV, a murine AIDS model). Gemcitabine decreased infectivity of MuLV in cell culture with an EC50 in the low nanomolar range with no detectable cytotoxicity. Similarly, gemcitabine significantly decreased disease progression in mice infected with LP-BM5. Specifically, gemcitabine treatment decreased spleen size, plasma IgM, and provirus levels compared to LP-BM5 MuLV infected, untreated mice. Gemcitabine efficacy was observed at doses as low as 1 mg/kg/day in the absence of toxicity. Higher doses of gemcitabine (3 mg/kg/day and higher) were associated with toxicity as determined by a loss in body mass. In summary, our findings demonstrate that gemcitabine has antiretroviral activity ex vivo and in vivo in the LP-BM5 MuLV model. These observations together with a recent ex vivo study with HIV-1, suggest that gemcitabine has broad antiretroviral activity and could be particularly useful in vivo when used in combination drug therapy.
Collapse
Affiliation(s)
- Christine L. Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Holtz
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Diagnostic & Biological Sciences, MinnCResT Program, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mary Mullett
- Department of Food Science and Nutrition, VA Medical Center, Minneapolis, Minnesota, United States of America
| | - Duane L. Crankshaw
- Department of Food Science and Nutrition, VA Medical Center, Minneapolis, Minnesota, United States of America
| | - Jacquie E. Briggs
- Department of Food Science and Nutrition, VA Medical Center, Minneapolis, Minnesota, United States of America
| | - Jay Chauhan
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ilze Matise VanHoutan
- Masonic Cancer Center Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven E. Patterson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Diagnostic & Biological Sciences, MinnCResT Program, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
13
|
CLONING AND CHARACTERIZATION OF ENDOGENOUS RETROVIRUSES ASSOCIATED WITH POSTINJURY STRESS SIGNALS IN LYMPHOID TISSUES. Shock 2009; 32:80-8. [DOI: 10.1097/shk.0b013e31818bc193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
Infection of germline cells with retroviruses initiates permanent proviral colonization of the germline genome. The germline-integrated proviruses, called endogenous retroviruses (ERVs), are inherited to offspring in a Mendelian order and belong to the transposable element family. Endogenous retroviruses and other long terminal repeat retroelements constitute ~8% and ~10% of the human and mouse genomes, respectively. It is likely that each individual has a distinct genomic ERV profile. Recent studies have revealed that a substantial fraction of ERVs retains the coding potentials necessary for virion assembly and replication. There are several layers of potential mechanisms controlling ERV expression: intracellular transcription environment (e.g., transcription factor pool, splicing machinery, hormones), epigenetic status of the genome (e.g., proviral methylation, histone acetylation), profile of transcription regulatory elements on each ERV's promoter, and a range of stress signals (e.g., injury, infection, environment). Endogenous retroviruses may exert pathophysiologic effects by infection followed by random reintegration into the genome, by their gene products (e.g., envelope, superantigen), and by altering the expression of neighboring genes. Several studies have provided evidence that ERVs are associated with a range of pathogenic processes involving multiple sclerosis, systemic lupus erythematosus, breast cancer, and the response to burn injury. For instance, the proinflammatory properties of the human ERV-W envelope protein play a central role in demyelination of oligodendrocytes. As reviewed in this article, recent advances in ERV biology and mammalian genomics suggest that ERVs may have a profound influence on various pathogenic processes including the response to injury and infection. Understanding the roles of ERVs in the pathogenesis of injury and infection will broaden insights into the underlying mechanisms of systemic immune disorder and organ failure in these patients.
Collapse
|
15
|
Tepsuporn S, Horwitt JN, Cobb GW, Stranford SA. MAIDS resistance-associated gene expression patterns in secondary lymphoid organs. Immunogenetics 2008; 60:485-94. [PMID: 18612634 DOI: 10.1007/s00251-008-0312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/28/2008] [Indexed: 11/28/2022]
Abstract
Murine acquired immunodeficiency syndrome (MAIDS) is caused by exposure to murine leukemia virus and serves as a model to study human AIDS. In MAIDS-susceptible C57BL/6 mice, virus exposure leads to progressive immune deficiency, while resistant strains such as BALB/c recover from infection and develop protective immunity. The goal of this study was to identify early gene expression patterns that may be important in establishing this strain-specific differential response. Total RNA was isolated from spleens and pooled lymph nodes of both mouse strains at 3 and 7 days post virus infection. The complementary DNA generated from this RNA was hybridized to mouse oligonucleotide DNA microarrays using a strategy that controlled for inherent variability and highlighted only virus-induced changes. Fluorescent intensities were normalized and analyzed for statistically significant differential expression between strains across both time points and lymphoid organs. The majority of the resistance-associated genes was identified at day 3 post-infection and demonstrated the highest fold differences between strains, while more susceptibility-associated sequences were seen at 7 days post-infection. Among the most highly differentially expressed sequences seen at the earlier time point were genes related to protein metabolism, especially serine proteases. Differential patterns of chemokine-related genes were observed at the later time point. The overall pattern of expression suggests strain-specific differences in proteases and chemokines within secondary lymphoid organs shortly after infection influence the likelihood of disease progression.
Collapse
Affiliation(s)
- Suprawee Tepsuporn
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | | | | | | |
Collapse
|
16
|
The programmed death-1 and interleukin-10 pathways play a down-modulatory role in LP-BM5 retrovirus-induced murine immunodeficiency syndrome. J Virol 2007; 82:2456-69. [PMID: 18094175 DOI: 10.1128/jvi.01665-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathology due to the immune system's response to viral infections often represents a delicate balance between inhibition of viral pathogenesis and regulation of protective immunity. In susceptible C57BL/6 (B6) mice, the murine retroviral isolate LP-BM5 induces splenomegaly, hypergammaglobulinemia, profound B- and T-cell immunodeficiency, and increased susceptibility to opportunistic pathogens and terminal B-cell lymphomas. Here, we report that B6.PD-1 (programmed death-1) and B6.IL-10 knockout mice are substantially more susceptible to LP-BM5-induced disease than wild-type B6 mice. LP-BM5-infected B6.PD-1(-/-) mice developed more severe splenomegaly, hypergammaglobulinemia, and immunodeficiency than infected B6 mice: PD-1(-/-) mice are more susceptible to lower doses of LP-BM5 and show more exaggerated disease early postinfection. LP-BM5-infected B6.IL-10(-/-) mice also develop exaggerated LP-BM5-induced disease, compared to B6 mice, without a significant change in the retroviral load. By reciprocal reconstitution experiments, comparing wild-type versus PD-1(-/-) sources of the requisite cells for LP-BM5 pathogenesis-CD4 T and B cells, PD-1(+) B cells appear to be crucial in the normal limitation of LP-BM5-induced disease in B6 mice. Also, infected B6 mice have increased CD11b(+) spleen cells that express interleukin-10 (IL-10). However, PD-1(-/-) mice, though showing an even greater expansion of CD11b(+) cells after LP-BM5 inoculation, did not show an equivalent increase in IL-10-producing cells. Thus, it appears that PD-1/PD-L interactions and IL-10 are primarily important in moderating the effects of LP-BM5-induced disease in B6 mice.
Collapse
|
17
|
Jeeninga RE, Jan B, van den Berg H, Berkhout B. Construction of doxycyline-dependent mini-HIV-1 variants for the development of a virotherapy against leukemias. Retrovirology 2006; 3:64. [PMID: 17005036 PMCID: PMC1592508 DOI: 10.1186/1742-4690-3-64] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/27/2006] [Indexed: 11/10/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk type of blood-cell cancer. We describe the improvement of a candidate therapeutic virus for virotherapy of leukemic cells. Virotherapy is based on the exclusive replication of a virus in leukemic cells, leading to the selective removal of these malignant cells. To improve the safety of such a virus, we constructed an HIV-1 variant that replicates exclusively in the presence of the nontoxic effector doxycycline (dox). This was achieved by replacement of the viral TAR-Tat system for transcriptional activation by the Escherichia coli-derived Tet system for inducible gene expression. This HIV-rtTA virus replicates in a strictly dox-dependent manner. In this virus, additional deletions and/or inactivating mutations were introduced in the genes for accessory proteins. These proteins are essential for virus replication in untransformed cells, but dispensable in leukemic T cells. These minimized HIV-rtTA variants contain up to 7 deletions/inactivating mutations (TAR, Tat, vif, vpR, vpU, nef and U3) and replicate efficiently in the leukemic SupT1 T cell line, but do not replicate in normal peripheral blood mononuclear cells. These virus variants are also able to efficiently remove leukemic cells from a mixed culture with untransformed cells. The therapeutic viruses use CD4 and CXCR4 for cell entry and could potentially be used against CXCR4 expressing malignancies such as T-lymphoblastic leukemia/lymphoma, NK leukemia and some myeloid leukemias.
Collapse
Affiliation(s)
- Rienk E Jeeninga
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Jan
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Henk van den Berg
- Department of Paediatric Oncology, Emma Children Hospital, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Swanson I, Jude BA, Zhang AR, Pucker A, Smith ZE, Golovkina TV. Sequences within the gag gene of mouse mammary tumor virus needed for mammary gland cell transformation. J Virol 2006; 80:3215-24. [PMID: 16537589 PMCID: PMC1440402 DOI: 10.1128/jvi.80.7.3215-3224.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we identified a group of replication-competent exogenous mouse mammary tumor viruses that failed to induce mammary tumors in susceptible mice. Sequence comparison of tumorigenic and tumor-attenuated virus variants has linked the ability of virus to cause high-frequency mammary tumors to the gag gene. To determine the specific sequences within the gag gene that contribute to tumor induction, we constructed five distinct chimeric viruses that have various amino acid coding sequences of gag derived from a tumor-attenuated virus replaced by those of highly tumorigenic virus and tested these viruses for tumorigenic capacities in virus-susceptible C3H/HeN mice. Comparing the tumorigenic potentials of these viruses has allowed us to map the region responsible for tumorigenesis to a 253-amino-acid region within the CA and NC regions of the Gag protein. Unlike C3H/HeN mice, BALB/cJ mice develop tumors when infected with all viral variants, irrespective of the gag gene sequences. Using genetic crosses between BALB/cJ and C3H/HeN mice, we were able to determine that the mechanism that confers susceptibility to Gag-independent mammary tumors in BALB/cJ mice is inherited as a dominant trait and is controlled by a single gene, called mammary tumor susceptibility (mts), that maps to chromosome 14.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Transformation, Neoplastic
- Chromosome Mapping
- Chromosomes
- Cloning, Molecular
- Conserved Sequence
- Crosses, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, gag
- Genetic Engineering
- Haplotypes
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
Collapse
|
19
|
Ho O, Green WR. Cytolytic CD8+T Cells Directed against a Cryptic Epitope Derived from a Retroviral Alternative Reading Frame Confer Disease Protection. THE JOURNAL OF IMMUNOLOGY 2006; 176:2470-5. [PMID: 16456007 DOI: 10.4049/jimmunol.176.4.2470] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytolytic CD8(+) T cells (CTL) are key to the immune response that controls virus infections and mediates disease protection. The ability of CTL to induce apoptosis of infected cells and/or limit viral replication is determined by recognition of processed viral peptide epitopes on the surface of the target cell. An understudied source of MHC class I-presented peptides is the aptly named "cryptic epitopes," defined by their nontraditional methods of generation, including derivation from alternative reading frames (ARFs). Although ARF-encoded epitopes have now been documented in a few systems, their potential functional relevance in vivo has been debated. In this study, we demonstrate the physiological significance of an ARF-derived CTL epitope in a retrovirus-induced disease model. We show that disease-susceptible CD8-deficient mice reconstituted with CTL specific for the retroviral ARF-derived SYNTGRFPPL epitope controlled an infection by the LP-BM5 retrovirus isolate, evidently at the level of viral clearance, resulting in protection of these mice from disease. These data indicate that ARF-derived epitopes are indeed relevant inducers of the immune system and demonstrate the importance of atypically generated peptides as functional Ag with a physiologic role in disease protection.
Collapse
Affiliation(s)
- On Ho
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
20
|
Chen E, Lim MS, Rosic-Kablar S, Liu J, Jolicoeur P, Dubé ID, Hough MR. Dysregulated expression of mitotic regulators is associated with B-cell lymphomagenesis in HOX11-transgenic mice. Oncogene 2006; 25:2575-87. [PMID: 16407851 DOI: 10.1038/sj.onc.1209285] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dysregulated expression of the homeobox gene, HOX11 is a frequent etiologic event in T-cell acute lymphoblastic leukemias. HOX11-transgenic mice (IgHmu-HOX11Tg)-expressing HOX11 in the B-cell compartment develop B-cell lymphomas with extended latency. The latency suggests that additional genetic events are required prior to the onset of malignant lymphoma. We report the identification of 17 HOX11 collaborating genes, revealed through their propensity to be targeted in a proviral insertional mutagenesis screen. Seven integrations disrupted genes in mitotic spindle checkpoint control, suggesting that cells with elevated HOX11 expression are especially sensitive to dysregulation of chromosome segregation during mitosis. IgHmu-HOX11Tg primary B-lymphocyte cultures exposed to the aneugenic agents, colchicine and colcemid, exhibited increased incidences of chromosome missegregation as assessed by cytokinesis-block micronucleus assays. Additionally, IgHmu-HOX11Tg cultures were shown to exhibit aberrant bypass of spindle checkpoint arrest, as assessed by the increased presence of cycling cells determined by assessment of DNA content and by BrdU immunolabelling. Western immunoblotting revealed elevated expression of the mitotic effector molecules, cyclin A, cyclin B1 and cdc20 in IgHmu-HOX11Tg cultures. Moreover, spontaneously arising lymphoid neoplasms in IgHmu-HOX11Tg mice frequently exhibit aberrant expression of mitotic regulators, concomitant with increased development of micronuclei, abnormal mitotic checkpoint control and increased incidences of abnormal karyotypes when expanded in culture. Collectively, these findings indicate that abnormal regulation of spindle checkpoint control as a result of HOX11 overexpression leads to a heightened predisposition for development of aneuploidy, contributing to oncogenesis.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Bromodeoxyuridine/metabolism
- Cdc20 Proteins
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cyclin A/genetics
- Cyclin A/metabolism
- Cyclin B/genetics
- Cyclin B/metabolism
- Cyclin B1
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Genes, cdc
- Homeodomain Proteins/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis, Insertional
- Proviruses/genetics
- RNA, Messenger/metabolism
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spindle Apparatus/metabolism
Collapse
Affiliation(s)
- E Chen
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Tse KF, Inayat MS, Morrow JK, Hughes NK, Oakley OR, Gallicchio VS. Reconstitution of erythroid, megakaryocyte and myeloid hematopoietic support function with neutralizing antibodies against IL-4 and TGFbeta1 in long-term bone marrow cultures infected with LP-BM5 murine leukemia virus. Virus Res 2005; 113:1-15. [PMID: 15869820 DOI: 10.1016/j.virusres.2005.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/25/2022]
Abstract
Murine acquired immunodeficiency syndrome (MAIDS) induced by a defective LP-BM5 murine leukemia virus (MuLV) produces hematopoietic cytopenias similar to HIV in patients with AIDS. The pathogenesis of MAIDS induced cytopenias remains obscure; however, direct retroviral infection of bone marrow stroma has been implicated to play a role. To evaluate the consequential effect of viral infection, primary stromal cell cultures were transiently incubated in vitro with LP-BM5 MuLV viral supernatant. Reverse transcription polymerase chain reaction (RT-PCR) and Southern blot hybridization revealed that defective LP-BM5 MuLV infection resulted in elevated levels of IL-4 and TGFbeta1 transcript expression in infected stromal cells. The increased expression of both IL-4 and TGFbeta1 transcripts was associated with enhanced production of corresponding proteins as determined by quantitative western blot analyses. Hematopoietic reconstitution assays revealed that the hematopoietic support function of stromal cells was significantly reduced following transient exposure to LP-BM5 MuLV. The production of nonadherent mononuclear cells and the growth of myeloid, megakaryocyte and erythroid lineages were all suppressed in infected cultures. Culture supernatant conditioned by infected stromal cells demonstrated growth-inhibitory activity for hematopoietic progenitor colony formation. This growth-inhibitory activity could be significantly abolished by addition of anti-IL-4 and/or anti-TGFbeta1 neutralizing antibodies to the culture supernatant or directly to the stromal cell cultures. This study demonstrates LP-BM5 MuLV increases two known cytokines to suppress hematopoiesis implicating viral infection can directly suppress hematopoiesis mediated by inhibitors released from marrow stroma.
Collapse
Affiliation(s)
- Kam-Fai Tse
- Laboratory of Experimental Immunohematopoiesis and Developmental Therapeutics, Hematology/Oncology Division, University of Kentucky, Lexington, KY 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gaur A, Green WR. Role of a cytotoxic-T-lymphocyte epitope-defined, alternative gag open reading frame in the pathogenesis of a murine retrovirus-induced immunodeficiency syndrome. J Virol 2005; 79:4308-15. [PMID: 15767431 PMCID: PMC1061551 DOI: 10.1128/jvi.79.7.4308-4315.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
LP-BM5 murine leukemia virus-infected C57BL/6 mice develop profound immunodeficiency and B-cell lymphomas. The LP-BM5 complex contains a mixture of defective (BM5def) and replication-competent helper viruses among which BM5def is the primary causative agent of disease. The BM5def primary open reading frame (ORF1) encodes the single gag precursor protein (Pr60gag). Our lab has recently demonstrated that a novel immunodominant cytotoxic-T-lymphocyte (CTL) epitope (SYNTGRFPPL) is expressed from a +1-nucleotide translational open reading frame of BM5def during the course of normal retrovirus expression. The SYNTGRFPPL CTL epitope may be generated from either of two initiation methionines present, ORF2a or ORF2b, located downstream of the ORF1 initiation site. This study investigates the role(s) of the alternative ORF2-derived gag protein(s) of BM5def in viral pathogenesis. We have examined the disease-inducing capabilities of mutant viruses in which the translational potential of either the initiating ORF2a or ORF2b AUG has been disrupted. Although these mutated viruses are capable of wild-type ORF1 expression, they are unable to induce disease. Our data strongly suggest the existence of a novel ORF2 product(s) that is required for LP-BM5-induced pathogenesis and have potentially broad implications for other retroviral diseases.
Collapse
MESH Headings
- Animals
- Codon, Initiator
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Viral
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/physiology
- Immunodominant Epitopes
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Murine Acquired Immunodeficiency Syndrome/physiopathology
- Murine Acquired Immunodeficiency Syndrome/virology
- Mutation
- Open Reading Frames
- Protein Biosynthesis
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Arti Gaur
- Department of Microbiology and Immunology, Norris Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | |
Collapse
|
23
|
Paun A, Shaw K, Fisher S, Sammels LM, Watson MW, Beilharz MW. Quantitation of defective and ecotropic viruses during LP-BM5 infection by real time PCR and RT-PCR. J Virol Methods 2005; 124:57-63. [PMID: 15664051 DOI: 10.1016/j.jviromet.2004.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/01/2004] [Accepted: 11/02/2004] [Indexed: 11/22/2022]
Abstract
Murine AIDS (MAIDS) is a pathology induced by the LP-BM5 murine leukaemia virus mixture in susceptible strains of mice such as C57BL/6J resulting in lymphoproliferation and progressive immunodeficiency. The etiologic agent of this pathology is BM5d, a replication defective virus. BM5e is a replication competent virus in the viral mixture that functions as a helper virus. This paper describes real time PCR and RT-PCR assays for quantitation of the proviral DNA and viral RNA of BM5d and BM5e. Data is presented describing the change in BM5d and BM5e proviral DNA levels and viral RNA levels in both blood and spleen in the first 8 weeks of infection. Infected mice have increasing levels of BM5d and BM5e viral DNA and RNA detectable from as early as 2 weeks post infection. Similar levels of proviral DNA was found for BM5d and BM5e in PBMC and spleen, however higher levels of BM5e viral RNA were observed in both tissues throughout infection. The assays described can be used as both a diagnostic tool and to investigate the direct effect of treatments on the BM5d and BM5e viruses and MAIDS development.
Collapse
Affiliation(s)
- Andrea Paun
- Discipline of Microbiology, School of Biological and Chemical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Cho K, Pham TN, Greenhalgh DG. CD14-dependent Modulation of Transcriptional Activities of Endogenous Retroviruses in the Lung after Injury. Virus Genes 2005; 30:5-12. [PMID: 15744557 DOI: 10.1007/s11262-004-4576-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 07/06/2004] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharide (LPS) plays a central role in the pathogenesis of distant organs after burn. Recent studies demonstrated the regulation of mouse endogenous retroviruses (MuERVs) in several organs after burn. In this study, the role of CD14, a LPS receptor, in burn-mediated regulation of MuERV expression in the lung was investigated. CD14 knockout (KO) and wild type (WT) mice were subjected to burn followed by RT-PCR analysis of alterations in the MuERV expression in the lung 1 day after injury. Even without injury, CD14 KO mice had a unique profile of MuERV expression compared to WT. Three bands (Lung-1, Lung-2, and Lung-3) in CD14 KO were downregulated after injury. Lung-2 and Lung-3 transcripts were almost identical to 2 previously described defective env transcripts of MuERVs, respectively. The Lung-1-1 transcript was a double spliced message generated by the env and a set of novel splicing signals, whereas the Lung-1-2 transcript was a defective env transcript. Only the Lung-1-1 transcript had a significant ORF capable of encoding a gag-pol fusion polypeptide. Putative proviral sequences of Lung-1-1 and Lung-1-2 transcripts were mapped to chromosomes 4 and 11, respectively. The results from this study suggest that the absence of CD14 expression in CD14 KO mice contributes to the transcriptional regulation of MuERVs in the lung after injury.
Collapse
Affiliation(s)
- Kiho Cho
- Burn Research, Shriners Hospitals for Children Northern California, Department of Surgery, University of California at Davis, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
25
|
Beilharz MW, Sammels LM, Paun A, Shaw K, van Eeden P, Watson MW, Ashdown ML. Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression. THE JOURNAL OF IMMUNOLOGY 2004; 172:4917-25. [PMID: 15067071 DOI: 10.4049/jimmunol.172.8.4917] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe successful immunotherapy of murine AIDS (MAIDS) in C57BL/6J mice based on the elimination of replicating CD4(+) regulator T cells. We demonstrate that a single injection of the antimitotic drug vinblastine (Vb) given 14 days postinfection (p.i.) with LP-BM5 can prevent MAIDS progression. Treatment with anti-CD4 mAb at 14 days p.i. is similarly able to prevent MAIDS. Treatment at other time points with Vb or anti-CD4 mAb is ineffective. The effect is based on ablation of a replicating dominantly suppressive CD4(+) T cell population, as indicated by adoptive transfer and in vivo depletion experiments using mAbs against CD4 as well as combinations of mAbs against the known regulatory cell surface markers CD25, GITR, and CTLA-4. Cell surface marker analysis shows a population of CD4(+)CD25(+) cells arising shortly before day 14 p.i. Cytokine analyses show a peak in IL-10 production from day 12 to day 16 p.i. MAIDS-infected mice also have CD4(+) T cells with significantly higher expression levels of CD38 and particularly CD69, which have been demonstrated to be regulator T cell markers in the Friend retroviral model. The immunotherapy appears to prevent disease progression, although no protection against reinfection with LP-BM5 is generated. These data define a new therapy for murine retroviral infection, which has potential for use in other diseases where T regulator cell-mediated immunosuppression plays a role in the disease process.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/administration & dosage
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cell Cycle/drug effects
- Cell Cycle/immunology
- Disease Progression
- Drug Administration Schedule
- Female
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/therapeutic use
- Immunization Schedule
- Immunization, Secondary
- Injections, Intraperitoneal
- Interleukin-10/antagonists & inhibitors
- Interleukin-10/biosynthesis
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/biosynthesis
- Lectins, C-Type
- Leukemia Virus, Murine/immunology
- Lymphocyte Depletion/methods
- Mice
- Mice, Inbred C57BL
- Murine Acquired Immunodeficiency Syndrome/drug therapy
- Murine Acquired Immunodeficiency Syndrome/immunology
- Murine Acquired Immunodeficiency Syndrome/pathology
- Murine Acquired Immunodeficiency Syndrome/prevention & control
- Receptors, Interleukin-2/biosynthesis
- Spleen/immunology
- Spleen/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Vinblastine/administration & dosage
- Vinblastine/therapeutic use
- Viral Load
Collapse
Affiliation(s)
- Manfred W Beilharz
- Discipline of Microbiology, School of Biological and Chemical Sciences, University of Western Australia, Nedlands, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Green KA, Ahonen CL, Cook WJ, Green WR. CD40-associated TRAF 6 signaling is required for disease induction in a retrovirus-induced murine immunodeficiency. J Virol 2004; 78:6055-60. [PMID: 15141004 PMCID: PMC415804 DOI: 10.1128/jvi.78.11.6055-6060.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LP-BM5 retrovirus-infected C57BL/6 mice develop splenomegaly, lymphadenopathy, hypergammaglobulinemia, and immunodeficiency; thus, this disease has been named mouse AIDS. In this syndrome, CD154/CD40 interactions are required for but do not mediate disease by upregulation of CD80 or CD86. We report here that there is nonetheless a necessity for CD40 signaling competence, specifically an intact tumor necrosis factor receptor-associated factor 6 (TRAF 6) binding site.
Collapse
Affiliation(s)
- Kathy A Green
- Department of Microbiology and Immunology, 1 Medical Center Dr., Dartmouth Medical School, Lebanon, NH 03750, USA.
| | | | | | | |
Collapse
|
27
|
Tse KF, Inayat MS, Morrow JK, DellaPuca R, Hughes NK, Gallicchio VS. Basic fibroblast growth factor (bFGF) and its receptor expression (bek and flg) In bone marrow stroma of murine AIDS. Virus Res 2004; 101:175-84. [PMID: 15041185 DOI: 10.1016/j.virusres.2004.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/12/2004] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
Murine acquired immunodeficiency disease (MAIDS) induced by LPBM5 MuLV is characterized by a late-stage lymphoma and hematopoietic cytopenias similar to those observed in human AIDS. The pathogenesis of MAIDS-related lymphoma/cytopenia is unknown but it has been postulated to involve a defective marrow microenvironment or stroma. The basic Fibroblast Growth Factor (bFGF) of stromal origin is an important stimulator for hematopoietic progenitors of several lineages. Long-term bone marrow cultures (LTBMCs) were established and pure stromal cell cultures were used for in vitro infection hematopoietic reconstitution studies. Reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze bFGF gene expression in stromal cells derived from either viral-infected marrow or uninfected marrow. RT-PCR analysis showed a 40% reduction in the expression of bFGF transcript expression from viral-infected stromal cells, however, the levels of bek and flg bFGF receptors remained unchanged indicating virus-infection only inhibited bFGF gene expression in stromal cells. Viral infection was associated with a progressive decrease in bFGF transcript expression 35% of control at day 7, 50% of control at day 14 and 60% of control at day 21 compared to the mock-infected cultures. In addition, for bek and flg the transcript expression in, in vitro-infected primary cultures were comparable to the mock-infected cultures and remained essentially unchanged throughout culture period. Western blot analysis revealed viral-infected stromal cells produced a 45% decrease in bFGF protein production. Reduction of bFGF protein was confirmed by indirect immunofluorescent staining. We report MuLV infection reduces bFGF transcript expression but not its surface-receptors (bek and flg) in infected stromal cells. Impaired hematopoiesis consistently exhibited from MuLV-infected stromal cultures was restored by exogenous bFGF; therefore, bFGF was responsible in restoration of normal marrow stromal support function. These results suggest a role for bFGF deficiency in the pathogenesis of MAIDS-related marrow failure.
Collapse
Affiliation(s)
- Kam-Fai Tse
- Hematology/Oncology Division, Laboratory of Experimental Immunohematopoiesis and Developmental Therapeutics, Department of Internal Medicine,University of Kentucky, Lexington, KY 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
28
|
Gaur A, Green WR. Analysis of the helper virus in murine retrovirus-induced immunodeficiency syndrome: evidence for immunoselection of the dominant and subdominant CTL epitopes of the BM5 ecotropic virus. Viral Immunol 2003; 16:203-12. [PMID: 12828871 DOI: 10.1089/088282403322017938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In genetically susceptible strains, such as C57BL/6 (B6) mice, LP-BM5 causes murine AIDS (MAIDS). LP-BM5 is a complex mixture of murine leukemia viruses (MuLV) that includes replication competent ecotropic (BM5eco) and mink cell focus inducing (MCF), and replication defective (BM5d) MuLV. At present, for the BM5eco virus, sequence information on only the gag region is available. In this paper, we describe for the first time the sequencing of the entire BM5eco viral genome as well as analysis of homology with two other previously sequenced and well-characterized MuLVs, Emv-11 and Emv-2, the latter constituting the parental virus for BM5eco. We propose that the detailed sequence comparisons herein provide cogent evidence that BM5eco utilizes variations in cytotoxic T lymphocytes (CTL) epitopes as an immune escape mechanism. This CTL evasion mechanism may contribute substantially to the underlying prototypic susceptibility of B6 mice to LP-BM5-induced MAIDS.
Collapse
Affiliation(s)
- Arti Gaur
- Department of Microbiology and Immunology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
29
|
Casabianca A, Orlandi C, Fraternale A, Magnani M. A new one-step RT-PCR method for virus quantitation in murine AIDS. J Virol Methods 2003; 110:81-90. [PMID: 12757924 DOI: 10.1016/s0166-0934(03)00104-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The causative agent of murine AIDS (MAIDS) in C57BL/6 mice, is a defective murine leukemia virus (BM5d) that requires the replication-competent helper virus (BM5e). Since this animal model of immunodeficiency, which shows many similarities to human AIDS, is also used to test the efficacy and toxicity of antiretroviral drugs, a method that allows the quantitative detection of both viruses would be very useful also if hampered potentially by endogenous viral sequences usually present in mice. While BM5d alone could induce the disease, the effect of BM5e on the immune system of diseased mice is unclear. A specific and reliable one-step RT-PCR method was developed for the co-amplification, with the same efficiency, of BM5d or BM5e with ss-actin used as an internal standard. The standard curves produced with cloned cDNA sequences (ss-actin and BM5d or BM5e) assure that all samples are analyzed during the exponential phase of the reaction. Using this new assay which provided a dynamic range of at least four-log-unit, the ratio of initial absolute amounts of the virus and ss-actin RNA was determined, obtaining quantitative information on virus-specific cellular-transcript in the lymph nodes and spleen during the natural history of the disease and during therapeutic regimens.
Collapse
Affiliation(s)
- Anna Casabianca
- Institute of Biological Chemistry Giorgio Fornaini, University of Urbino, Via Saffi, 2, 61029 (PU), Urbino, Italy
| | | | | | | |
Collapse
|
30
|
Cho K, Greenhalgh D. Injury-associated induction of two novel and replication-defective murine retroviral RNAs in the liver of mice. Virus Res 2003; 93:189-98. [PMID: 12782367 DOI: 10.1016/s0168-1702(03)00097-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Injury can alter the expression of numerous genes in affected tissues as well as in distant organs. The mouse genome harbors numerous copies of endogenous murine leukemia virus (MuLV)-related retroviral sequences. Mouse liver tissues harvested after burn injury were subjected to RT-PCR analysis to investigate the regulation of MuLV-related sequences using a primer set capable of amplifying the full-length transcript. A doublet of approximately 5-kb was transiently up-regulated at 3 and 6 h after injury. Sequence analyses revealed that these are novel defective endogenous retroviral sequences (MuLV(LI-8) and MuLV(LI-12)), which are predominantly characterized by major deletions in pol and env genes. The MuLV(LI-8) clone is 4.85 kb long and the deduced gag polypeptide sequence was almost identical to a previously reported replication-defective retroviral sequence associated with immunesuppression. In the MuLV(LI-12) clone of 5.06 kb, there were two truncated gag open reading frames (ORFs) and 1 pol ORF fused to the C-terminus of the env p15E. Furthermore, the ORFs for the unique gag p12 presumed to be responsible for the immunesuppression were present in both clones. These novel replication-defective MuLVs may participate in the pathogenesis of distant organs after injury.
Collapse
Affiliation(s)
- Kiho Cho
- Burn Surgery, Shriners Hospitals for Children Northern California and Department of Surgery, University of California at Davis, 2425 Stockton Blvd, Sacramento, CA 95817, USA
| | | |
Collapse
|
31
|
Cook WJ, Green KA, Obar JJ, Green WR. Quantitative analysis of LP-BM5 murine leukemia retrovirus RNA using real-time RT-PCR. J Virol Methods 2003; 108:49-58. [PMID: 12565153 DOI: 10.1016/s0166-0934(02)00256-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Murine AIDS (MAIDS) develops in susceptible mouse strains after infection with the LP-BM5 murine leukemia virus (MuLV) complex that contains a mixture of defective (BM5def) and replication-competent viruses. While the BM5def virus is the causative agent in MAIDS, the replication-competent viruses in LP-BM5, including ecotropic MuLV (BM5eco), are required for BM5def propagation and thus function as helper viruses. We describe quantitative real-time RT-PCR assays for RNA encoded by the BM5def and BM5eco components of LP-BM5. The assays were used to standardize better the input doses of LP-BM5 viruses across viral preparations and to quantify BM5def and BM5eco gag RNA levels in spleen and blood cells from MAIDS-susceptible and -insusceptible infected mice. Spleens of MAIDS-susceptible infected mice harbored approximately similar levels of BM5def gag RNA as infected spleens of mice that are insusceptible to MAIDS due to lack of CD40. In contrast, the same infected spleens of CD40-deficient mice contained substantially higher (up to 10-fold) levels of BM5eco gag RNA compared with susceptible controls. Similar to that seen in spleen, infected blood of CD40-deficient mice contained similar levels of BM5def gag as susceptible strains, but increased levels (up to threefold) of BM5eco gag RNA. The assays described below can be used to characterize better the contributions of different functional viral components of the LP-BM5 mixture to the development of MAIDS.
Collapse
Affiliation(s)
- W James Cook
- Department of Microbiology and Immunology, Dartmouth Medical School and the Norris Cotton Cancer Center, Borwell Building, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
32
|
Green KA, Cook WJ, Sharpe AH, Green WR. The CD154/CD40 interaction required for retrovirus-induced murine immunodeficiency syndrome is not mediated by upregulation of the CD80/CD86 costimulatory molecules. J Virol 2002; 76:13106-10. [PMID: 12438641 PMCID: PMC136728 DOI: 10.1128/jvi.76.24.13106-13110.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C57BL/6 (B6) mice infected with LP-BM5 retroviruses develop disease, including an immunodeficiency similar to AIDS. This disease, murine AIDS (MAIDS), is inhibited by in vivo anti-CD154 monoclonal antibody treatment. The similar levels of insusceptibility of CD40(-/-) and CD154(-/-) B6 mice indicate that CD154/CD40 molecular interactions are required for MAIDS. CD4(+) T and B cells, respectively, provide the CD154 and CD40 expression needed for MAIDS induction. Here, the required CD154/CD40 interaction is shown to be independent of CD80 and CD86 expression: CD80/CD86(-/-) B6 mice develop MAIDS after LP-BM5 infection.
Collapse
Affiliation(s)
- Kathy A Green
- Department of Microbiology and Immunology and the Norris Cotton Cancer Center, Dartmouth Medical School, Borwell Building, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
33
|
Hook LM, Jude BA, Ter-Grigorov VS, Hartley JW, Morse HC, Trainin Z, Toder V, Chervonsky AV, Golovkina TV. Characterization of a novel murine retrovirus mixture that facilitates hematopoiesis. J Virol 2002; 76:12112-22. [PMID: 12414952 PMCID: PMC136857 DOI: 10.1128/jvi.76.23.12112-12122.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new virus previously arose in BALB/c females mated repeatedly to C57BL/6 (B6) males and then injected with fixed, activated B6 male spleen cells (V. S. Ter-Grigorov, O. Krifuks, E. Liubashevsky, A. Nyska, Z. Trainin, and V. Toder, Nat. Med. 3:37-41, 1997). In the present study, BALB/cJ mice inoculated with virus-containing plasma from affected mice developed splenomegaly, which was caused by increased numbers of Sca-1(+) Lin(-) hematopoietic stem cells (HSC) and their differentiated progeny. Biological and molecular analyses of a new virus revealed a mixture of murine leukemia viruses (MuLVs). These MuLVs comprised ecotropic and mink lung cell focus-forming (MCF) virus classes and are termed Rauscher-like MuLVs because they bear numerous similarities to the ecotropic and MCF viruses of the Rauscher MuLV complex but do not include a spleen focus-forming virus. The ecotropic virus component alone transferred some disease characteristics, while MCF virus alone did not. Thus, we have described a novel virus mixture, termed Rauscher-like MuLV, that causes an increase in hematopoiesis due to activation of pluripotent HSC. Experiments using mice and a protocol that replicated the pregnancy and immunization strategy of the original experiment demonstrated that endogenous BALB/c mouse ecotropic and xenotropic MuLVs are activated by these treatments. Emv1 was expressed in the spleens of multiparous mice but not in those of virgin mice, and Bxv1Emv1-pseudotyped MuLVs were recovered following injection of fixed, activated B6 cells. Thus, multiple pregnancies and allostimuli appear to have provided the signals required for activation of and recombination among endogenous viruses and could have resulted in generation of the Rauscher-like MuLV mixture.
Collapse
Affiliation(s)
- Lauren M Hook
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Knoetig SM, Torrey TA, Naghashfar Z, McCarty T, Morse HC. CD19 signaling pathways play a major role for murine AIDS induction and progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5607-14. [PMID: 12421939 DOI: 10.4049/jimmunol.169.10.5607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of genetically susceptible mice with the LP-BM5 mixture of murine leukemia viruses including an etiologic defective virus (BM5def) causes an immunodeficiency syndrome called murine AIDS (MAIDS). The disease is characterized by interactions between B cells and CD4(+) T cells resulting in polyclonal activation of both cell types. It is known that BM5def is expressed at highest levels in B cells and that B cells serve as viral APC. The CD19-CD21 complex and CD22 on the surface of B cells play critical roles as regulators of B cell responses to a variety of stimuli, influencing cell activation, differentiation, and survival. CD19 integrates positive signals induced by B cell receptor ligation by interacting with the protooncogene Vav, which leads to subsequent tyrosine phosphorylation of this molecule. In contrast, CD22 negatively regulates Vav phosphorylation. To analyze the role of CD19, CD21, Vav, and CD22 in MAIDS, we infected mice deficient in CD19, CD21 (CR2), Vav-1, or CD22 with LP-BM5 murine leukemia viruses. Infected CR2(-/-) mice developed MAIDS with a time course and severity indistinguishable from that of wild-type mice. In contrast, CD19 as well as Vav-1 deficiency restricted viral replication and suppressed the development of typical signs of MAIDS including splenomegaly, lymphadenopathy, and hypergammaglobulinemia. Finally, CD22 deficiency was found to accelerate MAIDS development. These results provide novel insights into the B cell signaling pathways required for normal induction and progression of MAIDS.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD19/genetics
- Antigens, CD19/physiology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antiviral Agents/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Cell Adhesion Molecules
- Cell Cycle Proteins
- Cell Line, Transformed
- Disease Progression
- Immune Sera/biosynthesis
- Immunoglobulin Class Switching/genetics
- Immunoglobulin E/biosynthesis
- Immunophenotyping
- Lectins/deficiency
- Lectins/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/metabolism
- Lymphocyte Activation/genetics
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Murine Acquired Immunodeficiency Syndrome/genetics
- Murine Acquired Immunodeficiency Syndrome/immunology
- Murine Acquired Immunodeficiency Syndrome/pathology
- Murine Acquired Immunodeficiency Syndrome/virology
- Protein Binding/genetics
- Protein Binding/immunology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-vav
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Severity of Illness Index
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Virus Integration/genetics
- Virus Integration/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Sonja M Knoetig
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
35
|
Jeong BH, Jin JK, Choi EK, Lee EY, Meeker HC, Kozak CA, Carp RI, Kim YS. Analysis of the expression of endogenous murine leukemia viruses in the brains of senescence-accelerated mice (SAMP8) and the relationship between expression and brain histopathology. J Neuropathol Exp Neurol 2002; 61:1001-12. [PMID: 12430717 DOI: 10.1093/jnen/61.11.1001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies have explored the premature aging of accelerated senescence-prone (SAMP8) mice. However, the cause of premature aging in this strain remains unknown. We analyzed the expression of ecotropic, xenotropic, and polytropic murine leukemia viruses (MuLVs) in the brains of accelerated senescence-resistant (SAMR1) and SAMP8 mice. No ecotropic mRNA was detected in SAMR1 mice, and only Akv-type ecotropic MuLV mRNA was detected in SAMP8 mice. Restriction mapping of the full-length infectious E-MuLV genome from SAMP8 confirmed its identity as Akv. mRNAs corresponding to a prototypical polytropic MuLV and to an unusual xenotropic MuLV were detected at equal levels in SAMP8 and SAMR1 mice, but no infectious virus of either host range type was detected. In order to determine the cellular localization of Akv expression in SAMP8 mice, we used immunohistochemistry and electron microscopy to detect expression of the E-MuLV capsid gag (CAgag) gene in striatum, brainstem, hippocampus, and cerebellum of 12-month-old SAMR1 and SAMP8 mice. The CAgag antigen was seen in the neurons, oligodendroglia, and vascular endothelium of these brain regions of SAMP8 mice, but not in SAMR1 mice. To evaluate the correlation between activation of astrocytes and expression of Akv, we performed double-immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and CAgag in SAMR1 and SAMP8 mice. Strong astrocytic activation and extensive vacuolation were observed around CAgag-positive neurons in SAMP8 mice, whereas in SAMR1 mice neither astrocytosis nor vacuolation were present. CAgag antigen was also localized in astrocytes of the hippocampus region of SAMP8 mice. Electron micrography showed that a number of vacuoles were found in the cytoplasm of MuLV-positive neurons and the extracellular space surrounding these neurons showed lytic changes. These results suggest that endogenous Akv provirus is expressed in neurons, astrocytes, vascular endothelium, and oligodendroglia in the brains of SAMP8 and that this virus could play an important role in the brain aging processes in this mouse strain.
Collapse
MESH Headings
- Aging, Premature/genetics
- Aging, Premature/metabolism
- Aging, Premature/virology
- Animals
- Antigens/genetics
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Astrocytes/virology
- Base Sequence
- Brain/metabolism
- Brain/pathology
- Brain/virology
- Disease Models, Animal
- Gene Expression Regulation, Viral/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Immunohistochemistry
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/metabolism
- Leukemia Virus, Murine/pathogenicity
- Mice
- Mice, Mutant Strains
- Microscopy, Electron
- Nerve Degeneration/genetics
- Nerve Degeneration/pathology
- Nerve Degeneration/virology
- Neurons/pathology
- Neurons/ultrastructure
- Neurons/virology
- Proviruses/genetics
- Proviruses/metabolism
- RNA, Messenger/metabolism
- Restriction Mapping
- Virus Integration/genetics
Collapse
Affiliation(s)
- Byung Hoon Jeong
- Ilsong Institute of Life Science, College of Medicine, Hallym University, Chunchon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamaguchi K, Ushijima H, Hisano M, Inoue Y, Shimamura T, Hirano T, Müller WE. Immunomodulatory effect of gold sodium thiomalate on murine acquired immunodeficiency syndrome. Microbiol Immunol 2002; 45:549-55. [PMID: 11529562 DOI: 10.1111/j.1348-0421.2001.tb02657.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Induction of IL-2 production and increased expression of CD25 were observed in C57BL/10 mice after weekly treatment with gold sodium thiomalate (GST). LP-BM5 murine leukemia virus (MuLV) infected mice treated with GST survived longer, had less cervical lymph node swelling, lower spleen weight, and fewer abnormalities in the expression of the cell surface markers, CD4, CD8a and CD45R/B220 on spleen cells than those that were not treated with GST. Thus, GST treatment may be beneficial through a decrease in disease progression via IL-2 induction in MuLV infected mice. This may have application in human immunodeficiency virus-infected individuals.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Clark S, Duggan J, Chakraborty J. Tsl and LP-BM5: a comparison of two murine retrovirus models for HIV. Viral Immunol 2001; 14:95-109. [PMID: 11398815 DOI: 10.1089/088282401750234475] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ts1 murine leukemia virus produces an immunodeficiency state in mice that parallels human immunodeficiency virus (HIV) infection in humans. Other murine leukemia viruses, such as LP-BM5 used in the murine acquired immune deficiency virus (MAIDS) model, have been studied extensively as a small animal model for HIV research, but lack many key similarities to HIV. Mice infected with ts1, however, utilize CD4 target cells for infection, undergo neuronal loss and demyelination, and develop clinical immunodeficiency. These features make this retrovirus in many ways an ideal candidate for a small animal model for HIV research. In this review article, the early development, the molecular and clinical pathogenesis of both the ts1 mutant of the Moloney murine leukemia virus and LP-BM5 are examined. Based on an extensive evaluation of the literature on LP-BM5 and ts1, it is concluded that the ts1 virus may serve as a better animal model to human retrovirus infection.
Collapse
Affiliation(s)
- S Clark
- Department of Physiology and Molecular Medicine, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | |
Collapse
|
38
|
Rahmouni S, Aandahl EM, Trebak M, Boniver J, Taskén K, Moutschen M. Increased cAMP levels and protein kinase (PKA) type I activation in CD4+ T cells and B cells contribute to retrovirus-induced immunodeficiency of mice (MAIDS): a useful in vivo model for drug testing. FASEB J 2001; 15:1466-8. [PMID: 11387259 DOI: 10.1096/fj.00-0813fje] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S Rahmouni
- Department of Pathology, University of Liège, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Green KA, Noelle RJ, Durell BG, Green WR. Characterization of the CD154-positive and CD40-positive cellular subsets required for pathogenesis in retrovirus-induced murine immunodeficiency. J Virol 2001; 75:3581-9. [PMID: 11264347 PMCID: PMC114849 DOI: 10.1128/jvi.75.8.3581-3589.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically susceptible C57BL/6 (B6) mice that are infected with the LP-BM5 isolate of murine retroviruses develop profound splenomegaly, lymphadenopathy, hypergammaglobulinemia, terminal B-cell lymphomas, and an immunodeficiency state bearing many similarities to the pathologies seen in AIDS. Because of these similarities, this syndrome has been called murine AIDS (MAIDS). We have previously shown that CD154 (CD40 ligand)-CD40 molecular interactions are required both for the initiation and progression of MAIDS. Thus, in vivo anti-CD154 monoclonal antibody (MAb) treatment inhibited MAIDS symptoms in LP-BM5-infected wild-type mice when either a short course of anti-CD154 MAb treatment was started on the day of infection or a course was initiated 3 to 4 weeks after LP-BM5 administration, after disease was established. Here, we further characterize this required CD154-CD40 interaction by a series of adoptive transfer experiments designed to elucidate which cellular subsets must express CD154 or CD40 for LP-BM5 to induce MAIDS. Specifically with regard to CD154 expression, MAIDS-insusceptible B6 nude mice reconstituted with highly purified CD4+ T cells from wild-type, but not from CD154 knockout, B6 donors displayed clear MAIDS after LP-BM5 infection. In contrast, nude B6 recipients that received CD8+ T cells from wild-type B6 donors did not develop MAIDS after LP-BM5 infection. B6 CD40 knockout mice, which are also relatively resistant to LP-BM5-induced MAIDS, became susceptible to LP-BM5-induced disease after reconstitution with highly purified wild-type B cells but not after receiving purified wild-type dendritic cells (DC) or a combined CD40+ population composed of DC and macrophages obtained from B6 SCID mouse donors. Based on these and other experiments, we thus conclude that the cellular basis for the requirement for CD154-CD40 interactions for MAIDS induction and progression can be accounted for by CD154 expression on CD4+ T cells and CD40 expression on B cells.
Collapse
Affiliation(s)
- K A Green
- Department of Microbiology and Immunology, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
40
|
Umemura M, Hirose K, Wajjwalku W, Nishimura H, Matsuguchi T, Gotoh Y, Takahashi M, Makino M, Yoshikai Y. Impaired IL‐15 production associated with susceptibility of murine AIDS to mycobacterial infection. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.1.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Masayuki Umemura
- Laboratory of Host Defense, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Tokyo
| | - Kenji Hirose
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo
| | - Worawidh Wajjwalku
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Nakhonpathom, Thailand
| | - Hitoshi Nishimura
- Laboratory of Host Defense, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Tokyo
| | - Tetsuya Matsuguchi
- Laboratory of Host Defense, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Tokyo
| | - Yoshitaka Gotoh
- Department of Veterinary Microbiology, Faculty of Agriculture, Miyazaki University, Japan
| | - Masahide Takahashi
- Center of Excellence, Department of Pathology II, Nagoya University School of Medicine, Japan
| | - Masahiko Makino
- Division of Human Retrovirus, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Japan
| | - Yasunobu Yoshikai
- Laboratory of Host Defense, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Tokyo
| |
Collapse
|
41
|
McLeod B, Burroughs N. Defective deletion mutant amplification. J Theor Biol 2000; 206:449-64. [PMID: 11013108 DOI: 10.1006/jtbi.2000.2128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defective deletion mutants can be replicated in superinfected cells by parasitism of the intact virus' replication machinery, and through replication with the host cell. We show by analysis of a mathematical model that dynamic stability of superinfected cell growth is crucial in determining the frequency of deletion mutant infected cells, i.e. there is a critical infectivity threshold rho(sc)below which the density of proliferative virus is significantly reduced by the presence of defective deletion mutants. Above rho(sc), proliferative virus principally occurs as superinfected cells (wild type with defective deletion mutant). The threshold rho(sc), and the interference effects of the deletion mutant, increase with deletion mutant parasitism of the wild-type replication machinery in superinfected cells. The interaction of virally infected cells with host homeostasis determines whether immune escape by deletion mutant infected cells is necessary for the interference window to exist. Only when the deletion mutant has a detrimental effect on infected host cell replication did we observe periodic behaviour.
Collapse
Affiliation(s)
- B McLeod
- The Mathematics Institute, Coventry, CV4 7AL, UK
| | | |
Collapse
|
42
|
Mayrand SM, Healy PA, Torbett BE, Green WR. Anti-Gag cytolytic T lymphocytes specific for an alternative translational reading frame-derived epitope and resistance versus susceptibility to retrovirus-induced murine AIDS in F(1) mice. Virology 2000; 272:438-49. [PMID: 10873788 DOI: 10.1006/viro.2000.0339] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine AIDS (MAIDS) develops in susceptible mouse strains after infection with the LP-BM5 murine leukemia virus complex that contains causative defective, and ecotropic helper, retroviruses. We previously demonstrated that the MAIDS-resistant H-2(d) strains BALB/cByJ and C57BL/KsJ generate MHC class I (K(d)) restricted virus-specific CD8(+) cytolytic T lymphocytes (CTLs) that lyse cells expressing either defective or ecotropic gag proteins. In contrast, the congenic BALB.B and closely related C57BL/6J MAIDS-susceptible H-2(b) strains were unable to serve as a source of gag-specific CTLs (Schwarz and Green, 1994), suggesting that anti-gag CTLs might provide a basis for resistance to MAIDS. Although its susceptibility to MAIDS was unknown, the (BALB/c x C57BL/6J) F(1) (CBY6F(1)) strain could also produce H-2(d)-, but not H-2(b)-, restricted, anti-gag CTLs (Schwarz and Green, 1994). Because of this correlation between anti-gag CTLs and resistance to MAIDS, it was important to provide more direct evidence in support of CTL-mediated protection and to determine both the fine specificity of CByB6F(1) anti-gag CTLs, in comparison with the resistant C57BL/Ks and BALB/c strains, and the susceptibility of this F(1) strain to LP-BM5-induced MAIDS. We report here that no symptoms of MAIDS were observed in CBY6F(1) (H-2(dxb)) mice. For F(2) mice, in contrast to the high susceptibility of H-2(b/b) mice, 77% of H-2(d/d) and 81% of H-2(b/d) F(2) mice did not exhibit MAIDS after LP-BM5 infection. These results are in contrast to other published studies that concluded that susceptibility, rather than resistance, is dominant in F(1) (resistant x susceptible or susceptible x resistant) mice. We also show that CBY6F(1) anti-gag CTLs exhibit a fine specificity shared by the MAIDS-resistant BALB/c and C57BL/Ks strains, that is, the immunodominant gag epitope, SYNTGRFPPL, encoded by an alternative open reading frame. Together with our direct demonstration here that in vivo monoclonal antibody (mAb) depletion of CD8(+) T cells converts genetically resistant mice to MAIDS susceptibility, these data on the ability to mount anti-ORF2/SYNTGRFPPL, gag-specific CTL responses strongly suggest that CTLs are a primary factor in determining MAIDS resistance. Accordingly, given the K(d)-restricted nature of the CTLs, the main genetic determinant of resistance appeared to be the codominant expression of the resistant H-2(d) haplotype. Interestingly, however, 19% of H-2(d/b) and 23% of the H-2(d/d) F(2) mice had at least one clinical aspect of MAIDS, suggesting that a non-MHC genetic determinant(s) can negatively influence T-cell protection and thus disease outcome
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Crosses, Genetic
- Disease Susceptibility
- Epitopes, T-Lymphocyte/isolation & purification
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, gag/immunology
- Genetic Predisposition to Disease
- Immunity, Innate
- Immunodominant Epitopes/metabolism
- Leukemia Virus, Murine/immunology
- Lymphocyte Depletion
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Murine Acquired Immunodeficiency Syndrome/genetics
- Murine Acquired Immunodeficiency Syndrome/immunology
- Murine Acquired Immunodeficiency Syndrome/virology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- S M Mayrand
- Department of Microbiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, New Hampshire, 03756, USA
| | | | | | | |
Collapse
|
43
|
Utsunomiya T, Kobayashi M, Ito M, Pollard RB, Suzuki F. Glycyrrhizin improves the resistance of MAIDS mice to opportunistic infection of Candida albicans through the modulation of MAIDS-associated type 2 T cell responses. Clin Immunol 2000; 95:145-55. [PMID: 10779408 DOI: 10.1006/clim.2000.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Compared with normal mice, MAIDS mice (mice infected with LP-BM5 murine leukemia virus) exhibited an increase up to 100 times greater in susceptibility to infection with Candida albicans. The impaired resistance of MAIDS mice to the infection was recovered to levels observed in normal mice by the administration of glycyrrhizin (GR), an active component of licorice roots. MAIDS mice inoculated with CD4(+) T cells from GR-treated mice were also resistant to C. albicans infection. Normal mice inoculated with CD4(+) T helper type 2 cells (Th2 cells) from MAIDS mice were susceptible to C. albicans infection at the same levels shown in MAIDS mice. The susceptibility of normal mice inoculated with type 2 T cells was reversible by (i) administration of GR and (ii) inoculation of CD4(+) T cells from GR-treated mice and injection of a mixture of mAbs targeted against type 2 cytokines (IL-4 and IL-10). Type 2 cytokines were not detected in sera of MAIDS mice inoculated with CD4(+) T cells from GR-treated mice, while they were present in sera of MAIDS mice treated with saline. These results suggest that, by inducing CD4(+) T cells which suppress type 2 cytokine production by MAIDS-associated Th2 cells, GR improves the resistance of MAIDS mice to C. albicans infection.
Collapse
Affiliation(s)
- T Utsunomiya
- Division of Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas 77555-0835, USA
| | | | | | | | | |
Collapse
|
44
|
Hügin AW, Fossati-Jimack L, Izui S. The autoimmune accelerating yaa mutation does not accelerate murine AIDS. Cell Immunol 2000; 200:76-80. [PMID: 10753498 DOI: 10.1006/cimm.2000.1611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Murine acquired immunodeficiency syndrome (MAIDS) is characterized by lymphoproliferation, polyclonal B cell activation resulting in the production of autoantibodies, and a progressive immunodeficiency. These are all hallmarks of some autoimmune diseases. Yaa is a Y-chromosome-linked gene that accelerates autoimmune diseases in some autoimmune-prone strains of mice. To further elucidate a possible relationship with autoimmunity, the effect of the Yaa gene on MAIDS was investigated. Analysis of phenotypic and functional disease parameters revealed that Yaa does not accelerate MAIDS disease. This is probably due to the generalized activation of most or all lymphoid cells in MAIDS, which cannot be enhanced by the Yaa gene. This result is in accordance with the selective enhancing effect of the Yaa gene on the immune response against self and foreign antigens in a specific genetic background. It suggests that the autoimmune response associated with MAIDS is a secondary phenomenon. Interestingly, even in wild-type C57BL/6 mice, autoantibody production may contribute overproportionally to the hypergammaglobulinemia associated with MAIDS.
Collapse
Affiliation(s)
- A W Hügin
- Department of Dermatology, University Hospital, Geneva, Switzerland
| | | | | |
Collapse
|
45
|
De Leval L, Debrus S, Lane P, Boniver J, Moutschen M. Mice transgenic for a soluble form of murine cytotoxic T lymphocyte antigen 4 are refractory to murine acquired immune deficiency sydrome development. Immunology 1999; 98:630-8. [PMID: 10594698 PMCID: PMC2326967 DOI: 10.1046/j.1365-2567.1999.00900.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between B and CD4+ T cells are central to the pathogenesis of retrovirus-induced murine acquired immune deficiency virus (MAIDS). Prompted by previous work showing that treatment with cytotoxic T lymphocyte antigen 4 immunoglobulin (CTLA4Ig) partly inhibited the disease, we studied the course of infection in mice deficient for CD28-B7 interactions (mCTLA4-Hgamma1 transgenic mice). Despite a relative viral load identical to that of non-transgenic mice, the transgenic mice did not develop any of the major MAIDS symptoms (i.e. lymphoproliferation and immune anergy). The mCTLA4-Hgamma1 did not however, completely inhibit B-cell activation as indicated by a slight hypergammaglobulinaemia and microscopic blastic transformation. Absence of MAIDS in transgenic mice was associated with much lower levels of both interleukin-4 and interferon-gamma transcripts following viral infection. These results support the theory that the CD28/B7 costimulatory pathway is a critical determinant to MAIDS development.
Collapse
Affiliation(s)
- L De Leval
- Laboratory of Pathology, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
46
|
Hayashi RJ, Kanagawa O. Unique CD4(+) T cells in TCR alpha chain-deficient class I MHC-restricted TCR transgenic mice: role in a superantigen-mediated disease process. Int Immunol 1999; 11:1581-90. [PMID: 10464179 DOI: 10.1093/intimm/11.9.1581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mice carrying a transgenic TCR with targeted disruption of the TCR alpha chain (H-Y alpha(-/-)) possess CD4(+) T cells which express the transgenic TCR beta without the alpha chain. These mice developed the murine acquired immunodeficiency syndrome (MAIDS) after infection with LP-BM5 retroviruses, a process which requires CD4(+) T cells. These cells are negative for TCR delta chain and pre-TCR alpha chain expression, and thus express a unique surface receptor with the TCR beta chain as a component. The cells respond to MAIDS virus-associated superantigen and concanavalin A, but not to protein antigens such as ovalbumin. Thus, this novel surface receptor appears to play an important role in the pathogenesis of MAIDS.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cells, Cultured
- Female
- Genes, RAG-1/genetics
- Hybridomas/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Murine Acquired Immunodeficiency Syndrome/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Retroviridae
Collapse
Affiliation(s)
- R J Hayashi
- Center for Immunology, and Departments of Pediatrics and Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
47
|
Crinelli R, Bianchi M, Gentilini L, Magnani M, Hiscott J. Activation of the ubiquitin proteolytic system in murine acquired immunodeficiency syndrome affects IkappaBalpha turnover. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:202-11. [PMID: 10429205 DOI: 10.1046/j.1432-1327.1999.00485.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine acquired immunodeficiency syndrome (MAIDS) is a complex immunopathology caused by a defective murine leukemia virus (LP-BM5) that mainly targets B-lymphocytes. Lymphadenophathy, splenomegaly, hypergammaglobulinemia and progressive immunodeficiency are prominent features of MAIDS. Previously, we showed that the ubiquitin proteolytic system was upregulated in infected lymph nodes [Crinelli, R., Fraternale, A., Casabianca, A. & Magnani, M. (1997) Eur. J. Biochem. 247, 91-97]. In this report, we demonstrate that increased 26S proteasome activity is responsible for accelerated turnover of the IkappaBalpha inhibitor in lymph node extracts derived from animals with MAIDS. The molecular mechanisms mediating IkappaBalpha proteolysis involved constitutive phosphorylation of IkappaBalpha at Ser32 and Ser36 and subsequent ubiquitination, suggesting persistent activation of an NF-kappaB inducing pathway. Interestingly, enhanced IkappaBalpha degradation did not result in enhanced NF-kappaB DNA binding activity, but rather in a different subunit composition. The modulation of NF-kappaB/IkappaB system may affect multiple immunoregulatory pathways and may in part explain the mechanisms leading to the profound immune dysregulation involved in MAIDS pathogenesis.
Collapse
Affiliation(s)
- R Crinelli
- Instuto di Chimica Biologica 'G. Fornaini', University of Urbino, Italy
| | | | | | | | | |
Collapse
|
48
|
Tomonaga K, Coffin JM. Structures of endogenous nonecotropic murine leukemia virus (MLV) long terminal repeats in wild mice: implication for evolution of MLVs. J Virol 1999; 73:4327-40. [PMID: 10196331 PMCID: PMC104214 DOI: 10.1128/jvi.73.5.4327-4340.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.
Collapse
Affiliation(s)
- K Tomonaga
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
49
|
Shaughnessy JD, Largaespada DA, Tian E, Fletcher CF, Cho BC, Vyas P, Jenkins NA, Copeland NG. Mrvi1, a common MRV integration site in BXH2 myeloid leukemias, encodes a protein with homology to a lymphoid-restricted membrane protein Jaw1. Oncogene 1999; 18:2069-84. [PMID: 10321731 DOI: 10.1038/sj.onc.1202419] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ecotropic MuLVs induce myeloid leukemia in BXH2 mice by insertional mutagenesis of cellular proto-oncogenes or tumor suppressor genes. Disease genes can thus be identified by viral tagging as common sites of viral integration in BXH2 leukemias. Previous studies showed that a frequent common integration site in BXH2 leukemias is the Nf1 tumor suppressor gene. Unexpectedly, about half of the viral integrations at Nf1 represented a previously undiscovered defective nonecotropic virus, termed MRV. Because other common integration sites in BXH2 leukemias encoding proto-oncogenes contain ecotropic rather than MRV viruses, it has been speculated that MRV viruses may selectively target tumor suppressor genes. To determine if this were the case, 21 MRV-positive BXH2 leukemias were screened for new MRV common integration sites. One new site, Mrvi1 was identified that was disrupted by MRV in two of the leukemias. Ecotropic virus did not disrupt Mrvi1 in 205 ecotropic virus-positive leukemias, suggesting that Mrvi1 is specifically targeted by MRV. Mrvi1 encodes a novel protein with homology to Jaw1, a lymphoid restricted type II membrane protein that localizes to the endoplasmic reticulum. MRV integration occurs at the 5' end of the gene between two differentially used promoters. Within hematopoietic cells, Mrvi1 expression is restricted to megakaryocytes and some myeloid leukemias. Like Jaw1, which is down-regulated during lymphoid differentiation, Mrv1 is downregulated during monocytic differentiation of BXH2 leukemias. Taken together, these data suggest that MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for myeloid cell growth and/or differentiation. Experiments are in progress to test whether Mrvi1 is a tumor suppressor gene.
Collapse
Affiliation(s)
- J D Shaughnessy
- Division of Hematology and Oncology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tayar L, Higo K, Kubo Y, Wang Y, Lu LM, Zhang F, Iwatani Y, Wang L, Ono T, Maeda M, Sakai H, Ishimoto A. Induction of B-cell lymphoma in BALB/c nude mice with an ecotropic, B-tropic helper virus present in the murine AIDS virus stock. J Virol 1999; 73:1640-4. [PMID: 9882372 PMCID: PMC103991 DOI: 10.1128/jvi.73.2.1640-1644.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenicities of the murine AIDS (MAIDS) virus complex (LP-BM5) and ecotropic helper virus (BM5eco) isolated from the complex to BALB/c nude mice were studied to elucidate the possible role of replication-competent helper virus in inducing the monoclonal outgrowth of lymphoid cells. Neither LP-BM5 nor BM5eco was pathogenic in adult BALB/c nude mice. However, B-cell lymphoma developed with a very high frequency when either virus was inoculated into newborn BALB/c nude (nu/nu) mice. The cells from the B-cell lymphoma were easily transplanted into nude mice. These results suggested that ecotropic helper virus in the MAIDS virus complex plays an important role in inducing the monoclonal outgrowth of lymphoid cells under immunodeficient conditions caused by defective virus.
Collapse
Affiliation(s)
- L Tayar
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|