1
|
Abstract
The HIV-1 Rev protein is a nuclear export factor for unspliced and incompletely spliced HIV-1 RNAs. Without Rev, these intron-retaining RNAs are trapped in the nucleus. A genome-wide screen identified nine proteins of the spliceosome, which all enhanced expression from the HIV-1 unspliced RNA after CRISPR/Cas knockdown. Depletion of DHX38, WDR70, and four proteins of the Prp19-associated complex (ISY1, BUD31, XAB2, and CRNKL1) resulted in a more than 20-fold enhancement of unspliced HIV-1 RNA levels in the cytoplasm. Targeting of CRNKL1, DHX38, and BUD31 affected nuclear export efficiencies of the HIV-1 unspliced RNA to a much larger extent than splicing. Transcriptomic analyses further revealed that CRNKL1 also suppresses cytoplasmic levels of a subset of cellular mRNAs, including some with selectively retained introns. Thus, CRNKL1-dependent nuclear retention is a novel cellular mechanism for the regulation of cytoplasmic levels of intron-retaining HIV-1 mRNAs, which HIV-1 may have harnessed to direct its complex splicing pattern.IMPORTANCE To regulate its complex splicing pattern, HIV-1 uses the adaptor protein Rev to shuttle unspliced or partially spliced mRNA from the nucleus to the cytoplasm. In the absence of Rev, these RNAs are retained in the nucleus, but it is unclear why. Here we identify cellular proteins whose depletion enhances cytoplasmic levels of the HIV-1 unspliced RNA. Depletion of one of them, CRNKL1, also increases cytoplasmic levels of a subset of intron-retaining cellular mRNA, suggesting that CRNKL1-dependent nuclear retention may be a basic cellular mechanism exploited by HIV-1.
Collapse
|
2
|
HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5. Retrovirology 2014; 11:20. [PMID: 24571616 PMCID: PMC4015682 DOI: 10.1186/1742-4690-11-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Background Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Results Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. CCR5 antagonists prevented these HIV-1-induced alterations. Conclusions HIV-1 activates cytoskeletal proteins during monocyte-endothelial interactions and increase transcription and activation of Rac1 in brain tissues. In addition to preventing macrophage infection, CCR5 antagonists could diminish viral-induced alteration and phosphorylation of cytoskeletal proteins, monocyte adhesion to the brain endothelium and viral entry into the central nervous system.
Collapse
|
3
|
Cavallari I, Rende F, Bender C, Romanelli MG, D'Agostino DM, Ciminale V. Fine tuning of the temporal expression of HTLV-1 and HTLV-2. Front Microbiol 2013; 4:235. [PMID: 24032027 PMCID: PMC3759025 DOI: 10.3389/fmicb.2013.00235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022] Open
Abstract
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses that share a common overall genetic organization, splicing pattern, and ability to infect and immortalize T-cells in vitro. However, HTLV-1 and HTLV-2 exhibit a clearly distinct pathogenic potential in infected patients. To find clues to the possible viral determinants of the biology of these viruses, recent studies investigated the timing of expression and the intracellular compartmentalization of viral transcripts in ex-vivo samples from infected patients. Results of these studies revealed a common overall pattern of expression of HTLV-1 and -2 with a two-phase kinetics of expression and a nuclear accumulation of minus-strand transcripts. Studies in cells transfected with HTLV-1 molecular clones demonstrated the strict Rex-dependency of this "two-phase" kinetics. These studies also highlighted interesting differences in the relative abundance of transcripts encoding the Tax and Rex regulatory proteins, and that of the accessory proteins controlling Rex expression and function, thus suggesting a potential basis for the different pathobiology of the two viruses.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Surgery, Oncology and Gastroenterology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Wellensiek BP, Ramakrishnan R, Bashyal BP, Eason Y, Gunatilaka AAL, Ahmad N. Inhibition of HIV-1 Replication by Secondary Metabolites From Endophytic Fungi of Desert Plants. Open Virol J 2013; 7:72-80. [PMID: 23961302 PMCID: PMC3744856 DOI: 10.2174/1874357920130624002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/24/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022] Open
Abstract
Most antiretroviral drugs currently in use to treat an HIV-1 infection are chemically synthesized and lead to the development of viral resistance, as well as cause severe toxicities. However, a largely unexplored source for HIV-1 drug discovery is endophytic fungi that live in a symbiotic relationship with plants. These fungi produce biologically active secondary metabolites, which are natural products that are beneficial to the host. We prepared several hundred extracts from endophytic fungi of desert plants and evaluated the inhibitory effects on HIV-1 replication of those extracts that showed less than 30% cytotoxicity in T-lymphocytes. Those extracts that inhibited viral replication were fractionated in order to isolate the compounds responsible for activity. Multiple rounds of fractionation and antiviral evaluation lead to the identification of four compounds, which almost completely impede HIV-1 replication. These studies demonstrate that metabolites from endophytic fungi of desert plants can serve as a viable source for identifying potent inhibitors of HIV-1 replication.
Collapse
Affiliation(s)
- Brian P Wellensiek
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
5
|
Grover JR, Llewellyn GN, Soheilian F, Nagashima K, Veatch SL, Ono A. Roles played by capsid-dependent induction of membrane curvature and Gag-ESCRT interactions in tetherin recruitment to HIV-1 assembly sites. J Virol 2013; 87:4650-64. [PMID: 23408603 PMCID: PMC3624355 DOI: 10.1128/jvi.03526-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/04/2013] [Indexed: 12/17/2022] Open
Abstract
Tetherin/BST-2 (here called tetherin) is an antiviral protein that restricts release of diverse enveloped viruses from infected cells through physically tethering virus envelope and host plasma membrane. For HIV-1, specific recruitment of tetherin to assembly sites has been observed as its colocalization with the viral structural protein Gag or its accumulation in virus particles. Because of its broad range of targets, we hypothesized that tetherin is recruited through conserved features shared among various enveloped viruses, such as lipid raft association, membrane curvature, or ESCRT dependence. We observed that reduction of cellular cholesterol does not block tetherin anti-HIV-1 function, excluding an essential role for lipid rafts. In contrast, mutations in the capsid domain of Gag, which inhibit induction of membrane curvature, prevented tetherin-Gag colocalization detectable by confocal microscopy. Disruption of Gag-ESCRT interactions also inhibited tetherin-Gag colocalization when disruption was accomplished via amino acid substitutions in late domain motifs, expression of a dominant-negative Tsg101 derivative, or small interfering RNA (siRNA)-mediated depletion of Tsg101 or Alix. However, further analyses of these conditions by quantitative superresolution localization microscopy revealed that Gag-tetherin coclustering is significantly reduced but persists at intermediate levels. Notably, this residual tetherin recruitment was still sufficient for the full restriction of HIV-1 release. Unlike the late domain mutants, the capsid mutants defective in inducing membrane curvature showed little or no coclustering with tetherin in superresolution analyses. These results support a model in which both Gag-induced membrane curvature and Gag-ESCRT interactions promote tetherin recruitment, but the recruitment level achieved by the former is sufficient for full restriction.
Collapse
Affiliation(s)
| | - G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Kunio Nagashima
- Electron Microscopy Laboratory, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Cavallari I, Rende F, D'Agostino DM, Ciminale V. Converging strategies in expression of human complex retroviruses. Viruses 2011; 3:1395-414. [PMID: 21994786 PMCID: PMC3185809 DOI: 10.3390/v3081395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as ‘simple’ and ‘complex’, respectively. Expression of most of these extra genes is achieved through the generation of alternatively spliced mRNAs. The present review summarizes the genetic organization and expression strategies of human complex retroviruses and highlights the converging mechanisms controlling their life cycles.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Francesca Rende
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
| | - Donna M. D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
| | - Vincenzo Ciminale
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, I-35128 Padova, Italy; E-Mails: (I.C.); (F.R.); (D.M.D.)
- Istituto Oncologico Veneto-IRCCS, I-35128 Padova, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.:+39-049-821-5885; Fax: +39-049-807-2854
| |
Collapse
|
7
|
HIV-1 replication and gene expression occur at higher levels in neonatal blood naive and memory T-lymphocytes compared with adult blood cells. Virology 2011; 413:39-46. [PMID: 21353282 DOI: 10.1016/j.virol.2011.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 09/24/2010] [Accepted: 01/28/2011] [Indexed: 11/22/2022]
Abstract
Our previous study has shown that HIV-1 replicated at higher levels in neonatal (cord) blood monocytes/macrophages and T-lymphocytes compared with adult blood cells. However, it is not known whether this differential HIV-1 replication also occurs in naive and/or memory T-lymphocytes. We, therefore, compared HIV-1 replication in CD3(+) and CD4(+) naive (CD45RA(+)) and memory (CD45RO(+)) T-lymphocytes isolated from five cord and adult blood donors. We found that HIV-1 replicated at higher levels in both CD3(+) and CD4(+) CD45RA(+) and CD45RO(+) T-lymphocytes isolated from cord blood compared with adult blood. In addition, there was no difference in the cell surface expression of CD4, CXCR4 and CCR5 on cord blood CD45RA(+) and CD45RO(+) T-lymphocytes compared with adult blood cells. Furthermore, we found that there was an increase in HIV-1 gene expression in cord blood CD45RA(+) and CD45RO(+) T-lymphocytes compared with adult blood cells by using a single-cycle replication competent HIV-1-NL4-3-Env(-)R(+) luciferase amphotropic virus, which measures HIV-1 transcriptional activity independent of CD4 and CXCR4 or CCR5 expression. In summary, HIV-1 replicated at higher levels in cord blood CD45RA(+) and CD45RO(+) T-lymphocytes compared with adult blood cells and this differential replication is influenced at the level of HIV-1 gene expression.
Collapse
|
8
|
Ahmad N. Molecular Mechanisms of HIV-1 Vertical Transmission and Pathogenesis in Infants. HIV-1: MOLECULAR BIOLOGY AND PATHOGENESIS 2008; 56:453-508. [DOI: 10.1016/s1054-3589(07)56015-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Sundaravaradan V, Saxena SK, Ramakrishnan R, Yedavalli VRK, Harris DT, Ahmad N. Differential HIV-1 replication in neonatal and adult blood mononuclear cells is influenced at the level of HIV-1 gene expression. Proc Natl Acad Sci U S A 2006; 103:11701-6. [PMID: 16868088 PMCID: PMC1544233 DOI: 10.1073/pnas.0602185103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of HIV-1-infected neonates and infants have a higher level of viremia and develop AIDS more rapidly than infected adults, including differences seen in clinical manifestations. To determine the mechanisms of HIV-1 infection in neonates vs. adults, we compared the replication kinetics of HIV-1 in neonatal (cord) and adult blood T lymphocytes and monocyte-derived macrophages (MDM) from seven different donors. We found that HIV-1 replicated 3-fold better in cord blood T lymphocytes compared with adult blood T lymphocytes and 9-fold better in cord MDM than adult MDM. We also show that this differential HIV-1 replication did not depend on differences in cell proliferative capabilities, cell surface expression of CD4, CXCR4, and CCR5, or in the amount of PCR products of reverse transcription, DNA synthesis, and translocation of preintegration complex into the nucleus in cord and adult T lymphocytes and MDM. Furthermore, using a single-cycle replication competent HIV-1-NL4-3-Env(-) luciferase amphotropic virus, which measures HIV-1 transcriptional activity independent of receptor and coreceptor expression, we found there was a 3-fold increase of HIV-1 LTR-driven luciferase expression in cord T lymphocytes compared with adult T lymphocytes and 10-fold in cord MDM than in adult MDM. The HIV-1 LTR-driven luciferase expression correlated with HIV-1 LTR transcription, as measured by ribonuclease protection assay. These data suggest that the increased replication of HIV-1 in cord blood compared with adult blood mononuclear cells is regulated at the level of HIV-1 gene expression, resulting in a higher level of viremia and faster disease progression in neonates than adults.
Collapse
Affiliation(s)
- Vasudha Sundaravaradan
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Shailendra K. Saxena
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Rajesh Ramakrishnan
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Venkat R. K. Yedavalli
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - David T. Harris
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Nafees Ahmad
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, Tucson, AZ 85724
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Matala E, Hahn T, Yedavalli VR, Ahmad N. Biological characterization of HIV type 1 envelope V3 regions from mothers and infants associated with perinatal transmission. AIDS Res Hum Retroviruses 2001; 17:1725-35. [PMID: 11788024 DOI: 10.1089/08892220152741423] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study has shown that the human immunodeficiency virus type 1 (HIV-1) envelope V3 region minor genotypes of infected mothers were transmitted to their infants and predominated initially as a homogeneous virus population in the infants (Ahmad N, Baroudy BM, Baker RC, et al.: J Virol 1995;69:1001-1012). Here we have characterized the biological properties, including cellular tropism, replication efficiency, cytopathic effects, and coreceptor utilization, of these V3 region isolates from mothers and infants. Nineteen V3 region sequences from three mother-infant pairs, including the minor variants of mothers and the major variants of infants as characterized in our previous study, were reciprocally inserted into an HIV-1 infectious molecular clone, pNL4-3, and chimeric viruses were generated by DNA transfections into HeLa cells. Equal amounts of chimeric viruses were then used to infect T lymphocyte cell lines (A3.01 and MT-2), primary blood lymphocytes (PBLs), primary monocyte-derived macrophages (MDMs), and coreceptor cell lines. We found that the V3 region chimeras failed to replicate in T lymphocyte cell lines but replicated in MDMs and PBLs, albeit at reduced levels compared with R5 laboratory HIV-1 strains. In addition, the V3 region chimeras were able to infect the HOS-CD4(+)CCR5(+) cell line, suggesting CCR5 coreceptor utilization. Moreover, the V3 region chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium-inducing (NSI) phenotypes. In conclusion, the HIV-1 minor genotypes of infected mothers with macrophage-tropic and NSI or R5 phenotypes are transmitted to their infants and are initially maintained with the same properties.
Collapse
Affiliation(s)
- E Matala
- Department of Microbiology and Immunology, College of Medicine, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
11
|
Kim YB, Lee MK, Han DP, Cho MW. Development of a safe and rapid neutralization assay using murine leukemia virus pseudotyped with HIV type 1 envelope glycoprotein lacking the cytoplasmic domain. AIDS Res Hum Retroviruses 2001; 17:1715-24. [PMID: 11788023 DOI: 10.1089/08892220152741414] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neutralizing antibody (NAb) is a critical component of an immune system that can potentially provide sterilizing protection against human immunodeficiency virus type 1 (HIV-1). Therefore, an in vitro assay that can rapidly, safely, and accurately evaluate the NAb response vaccine candidates elicit, especially against a large number of HIV-1 variants, would be highly valuable. It has been demonstrated that HIV-1 envelope glycoprotein lacking the cytoplasmic domain can pseudotype murine leukemia virus encoding the beta-galactosidase gene and that this pseudovirus can specifically infect CD4(+) cells (Schnierle BS, Stitz J, Bosch V, et al.: Proc Natl Acad Sci USA 1997;94:8640-8645). Because the pseudovirus is not biohazardous and because the infection can be quantitatively determined within 2 days, we examined the feasibility of using the pseudovirus for high-throughput neutralization assays for HIV-1. We have generated viruses pseudotyped with gp140 of six different HIV-1 isolates (LAI, RF, Bal, AD8, 89.6, and DH12). All six pseudoviruses were infectious and exhibited expected coreceptor usage phenotype in HOS-CD4 cells expressing either CCR5 or CXCR4. More importantly, the neutralization sensitivity profile of these pseudoviruses was virtually identical to that observed from more conventional neutralization assays using either HIV-1 or SHIV. All pseudoviruses could be neutralized by broadly reactive human monoclonal antibody IgG1 b12. Our results indicate that the pseudoviruses are ideal for high-throughput evaluation of immune sera for their capacity to broadly neutralize a large number of HIV-1 isolates.
Collapse
Affiliation(s)
- Y B Kim
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
12
|
Collins ND, D'Souza C, Albrecht B, Robek MD, Ratner L, Ding W, Green PL, Lairmore MD. Proliferation response to interleukin-2 and Jak/Stat activation of T cells immortalized by human T-cell lymphotropic virus type 1 is independent of open reading frame I expression. J Virol 1999; 73:9642-9. [PMID: 10516077 PMCID: PMC113003 DOI: 10.1128/jvi.73.11.9642-9649.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1), a complex retrovirus, encodes a hydrophobic 12-kD protein from pX open reading frame (ORF) I that localizes to cellular endomembranes and contains four minimal SH3 binding motifs (PXXP). We have demonstrated the importance of ORF I expression in the establishment of infection and hypothesize that p12(I) has a role in T-cell activation. In this study, we tested interleukin-2 (IL-2) receptor expression, IL-2-mediated proliferation, and Jak/Stat activation in T-cell lines immortalized with either wild-type or ORF I mutant clones of HTLV-1. All cell lines exhibited typical patterns of T-cell markers and maintained mutation fidelity. No significant differences between cell lines were observed in IL-2 receptor chain (alpha, beta, or gamma(c)) expression, in IL-2-mediated proliferation, or in IL-2-induced phosphorylated forms of Stat3, Stat5, Jak1, or Jak3. The expression of ORF I is more likely to play a role in early HTLV-1 infection, such as in the activation of quiescent T cells in vivo.
Collapse
Affiliation(s)
- N D Collins
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Arthur James Cancer Hospital, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Van Ryk DI, Venkatesan S. Real-time kinetics of HIV-1 Rev-Rev response element interactions. Definition of minimal binding sites on RNA and protein and stoichiometric analysis. J Biol Chem 1999; 274:17452-63. [PMID: 10364175 DOI: 10.1074/jbc.274.25.17452] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kinetics of interaction between the human immunodeficiency virus-1 Rev protein and its RNA target, Rev response element (RRE) RNA was determined in vitro using a biosensor technique. Our results showed that the primary Rev binding site is a core stem-loop RNA molecule of 30 nucleotides that bound Rev at a 1:1 ratio, whereas the 244-nucleotide full-length RRE bound four Rev monomers. At high Rev concentrations, additional binding of Rev to RRE was observed with ratios of more than 10:1. Because RRE mutants that lacked the core binding site and were inactive in vivo bound Rev nonspecifically at these concentrations, the real stoichiometric ratio of Rev-RRE is probably closer to 4:1. Binding affinity of Rev for RRE was approximately 10(-10) M, whereas the affinity for the core RNA was about 10(-11) M, the difference being due to the contribution of low affinity binding sites on the RRE. Mathematical analysis suggested cooperativity of Rev binding, probably mediated by the Rev oligomerization domains. C-terminal deletions of Rev had no effect on RRE binding, but truncation of the N terminus by as few as 11 residues significantly reduced binding specificity. This method was also useful to rapidly evaluate the potential of aminoglycoside antibiotics, to inhibit the Rev-RRE interaction.
Collapse
Affiliation(s)
- D I Van Ryk
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
14
|
Ansari-Lari MA, Gibbs RA. Expression of human immunodeficiency virus type 1 reverse transcriptase in trans during virion release and after infection. J Virol 1996; 70:3870-5. [PMID: 8648723 PMCID: PMC190264 DOI: 10.1128/jvi.70.6.3870-3875.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The normal reverse transcription of retroviral RNA is a complex process which depends on the orchestration of several steps throughout the virus life cycle. During the assembly of retroviruses, reverse transcriptase (RT) is directed into the virion as a component of the Gag-Pol polyprotein. In the maturation of the Gag-Pol polyprotein of human immunodeficiency virus type 1 (HIV-1), cleavage by the viral protease occurs during viral budding. After infection, reverse transcription of viral RNA into double-stranded DNA is completed in the cytoplasm of the infected cell. In this study, the processing and reverse transcription of HIV-1 have been examined by separate expression of mature HIV-1 RT and proviral molecules bearing RT mutations. The effects of RT expression in trans during virion release and after viral entry were investigated. Constitutive expression of HIV-1 RT was established in CD4- and non-CD4-expressing cells via the coexpression of its individual subunits, and three HIV-1 RT mutant constructs were generated. The results indicate that a bona fide RT trans complementation does not occur during virion release or after infection. However, after infection of an RT-expressing cell with a high titer RT-defective virus, intracellular reverse transcription can be detected.
Collapse
Affiliation(s)
- M A Ansari-Lari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
15
|
Hope T, Pomerantz RJ. The human immunodeficiency virus type 1 Rev protein: a pivotal protein in the viral life cycle. Curr Top Microbiol Immunol 1995; 193:91-105. [PMID: 7648880 DOI: 10.1007/978-3-642-78929-8_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Hope
- Salk Institute, Infectious Disease Laboratory, San Diego, CA 92138-5800, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- L Ratner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
17
|
Antoni BA, Stein SB, Rabson AB. Regulation of human immunodeficiency virus infection: implications for pathogenesis. Adv Virus Res 1994; 43:53-145. [PMID: 8191958 DOI: 10.1016/s0065-3527(08)60047-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- B A Antoni
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | |
Collapse
|
18
|
Abstract
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic.
Collapse
Affiliation(s)
- J A Levy
- Department of Medicine, University of California School of Medicine, San Francisco 94143-0128
| |
Collapse
|
19
|
Venkatesan S, Gerstberger SM, Park H, Holland SM, Nam Y. Human immunodeficiency virus type 1 Rev activation can be achieved without Rev-responsive element RNA if Rev is directed to the target as a Rev/MS2 fusion protein which tethers the MS2 operator RNA. J Virol 1992; 66:7469-80. [PMID: 1433526 PMCID: PMC240455 DOI: 10.1128/jvi.66.12.7469-7480.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The posttranscriptional trans activation of unspliced or partially spliced human immunodeficiency virus RNAs by the Rev regulatory protein is crucial for virus replication and is dependent on sequence-specific RNA binding by Rev. The cognate RNA target of Rev is contained within a highly structured, 244-nucleotide Rev-responsive element (RRE) RNA in the viral env gene. Here, we show that specific interaction with the RRE is not an absolute requirement for Rev function. When the RRE is replaced by a heterologous MS2 phage operator sequence, Rev will facilitate the cytoplasmic expression of human immunodeficiency virus mRNAs containing this sequence if directed to the MS2 operator via the RNA binding motif of the MS2 phage coat protein (MS-C) as a Rev/MS-C fusion protein. Rev/MS-C efficiently activated both RRE and MS2 targets. A mutation in the MS2 operator that abolished the coat protein binding in vitro rendered the mutant RNA nonresponsive to the fusion protein in vivo. Notwithstanding that Rev can be tethered to the viral RNAs via another RNA binding motif, the structural integrity of the N terminus of Rev was still required for optimal trans activation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Capsid/genetics
- Capsid/metabolism
- Capsid Proteins
- Cell Line
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Escherichia coli/genetics
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/genetics
- Genes, gag
- HIV Long Terminal Repeat
- HIV-1/genetics
- HeLa Cells
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Open Reading Frames
- Plasmids
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins
- Recombinant Fusion Proteins/metabolism
- Restriction Mapping
- Transcriptional Activation
- Transfection
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- S Venkatesan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
20
|
Ciminale V, Pavlakis GN, Derse D, Cunningham CP, Felber BK. Complex splicing in the human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins produced by HTLV type I. J Virol 1992; 66:1737-45. [PMID: 1310774 PMCID: PMC240923 DOI: 10.1128/jvi.66.3.1737-1745.1992] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Novel cytoplasmic mRNA species produced by human T-cell leukemia virus type I (HTLV-I) were cloned by using the polymerase chain reaction technique. Five novel 3' splice sites located in the X region and upstream of the env gene were identified. Splicing to the 3' splice sites in the X region generates mRNAs that express two previously unidentified viral proteins, named Rof and Tof. Tof accumulates in the nucleoli of transfected cells. The other viruses of the HTLV family, such as HTLV-II and bovine leukemia virus, also have a complex splicing pattern and are capable of producing additional proteins encoded in the X region. These results suggest that HTLV-I and other members of the HTLV family produce novel proteins, which may contribute to the biological properties of these viruses.
Collapse
Affiliation(s)
- V Ciminale
- Human Retrovirus Section, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | |
Collapse
|
21
|
Dropulić B, Lin NH, Martin MA, Jeang KT. Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol 1992; 66:1432-41. [PMID: 1738200 PMCID: PMC240867 DOI: 10.1128/jvi.66.3.1432-1441.1992] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have designed a ribozyme that cleaves human immunodeficiency virus type 1 (HIV-1) RNA in U5 (at nucleotide +115). This ribozyme was tested in vitro and was found to give efficient and specific digestion of RNA containing the HIV-1 U5 sequence. When the U5 ribozyme was placed into the HIV-1 genome, virus replication was suppressed in tissue culture. Introduction of this ribozyme into cells by using an amphotropic retrovirus vector significantly reduced expression of U5-containing RNA in cells chronically infected with HIV-1. Naive T cells were cocultivated with packaging cells that produce defective amphotropic retroviruses containing the U5 ribozyme. These lymphocytes were found to be partially protected from HIV-1 infection.
Collapse
Affiliation(s)
- B Dropulić
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
22
|
Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 1992. [PMID: 1729599 DOI: 10.1128/mcb.12.1.207] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used a panel of cDNA clones expressing wild-type and mutant human immunodeficiency virus type 1 (HIV-1) mRNAs to study translation of these mRNAs in eucaryotic cells. The tat open reading frame (ORF) has a strong signal for translation initiation, while rev and vpu ORFs have weaker signals. The expression of downstream ORFs is inhibited in mRNAs that contain the tat ORF as the first ORF. In contrast, downstream ORFs are expressed efficiently from mRNAs that have rev or vpu as the first ORF. All env mRNAs contain the upstream vpu ORF. Expression of HIV-1 Env protein requires a weak vpu AUG, which allows leaky scanning to occur, thereby allowing ribosomes access to the downstream env ORF. We concluded that HIV-1 mRNAs are translated by the scanning mechanism and that expression of more than one protein from each mRNA was caused by leaky scanning at the first AUG of the mRNA.
Collapse
|
23
|
Schwartz S, Felber BK, Pavlakis GN. Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 1992; 12:207-19. [PMID: 1729599 PMCID: PMC364085 DOI: 10.1128/mcb.12.1.207-219.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have used a panel of cDNA clones expressing wild-type and mutant human immunodeficiency virus type 1 (HIV-1) mRNAs to study translation of these mRNAs in eucaryotic cells. The tat open reading frame (ORF) has a strong signal for translation initiation, while rev and vpu ORFs have weaker signals. The expression of downstream ORFs is inhibited in mRNAs that contain the tat ORF as the first ORF. In contrast, downstream ORFs are expressed efficiently from mRNAs that have rev or vpu as the first ORF. All env mRNAs contain the upstream vpu ORF. Expression of HIV-1 Env protein requires a weak vpu AUG, which allows leaky scanning to occur, thereby allowing ribosomes access to the downstream env ORF. We concluded that HIV-1 mRNAs are translated by the scanning mechanism and that expression of more than one protein from each mRNA was caused by leaky scanning at the first AUG of the mRNA.
Collapse
Affiliation(s)
- S Schwartz
- Human Retrovirus Section, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | |
Collapse
|
24
|
Arrigo SJ, Chen IS. Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 1991; 5:808-19. [PMID: 1827422 DOI: 10.1101/gad.5.5.808] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of Rev on cytoplasmic accumulation of the singly spliced human immunodeficiency virus type 1 (HIV-1) vif, vpr, and env/vpu RNAs was examined by using a quantitative RNA polymerase chain reaction (PCR) analysis following transfection of complete proviral molecular clones into lymphoid cells. Previously published studies using subgenomic env constructs in nonlymphoid cell types concluded that Rev was necessary for cytoplasmic accumulation of high levels of unspliced env RNA and that, by analogy, Rev must be necessary for the cytoplasmic accumulation of all HIV-1 RNAs that contain the Rev-responsive element (RRE). We confirm those results in COS cells. Unexpectedly, in lymphoid cells, we find that although Rev acts somewhat to increase the cytoplasmic level of full-length HIV-1 RNA, Rev has little or no effect on cytoplasmic accumulation of singly spliced HIV-1 RNAs. However, Env protein expression was greatly reduced in the absence of Rev. Analysis of the cytoplasmic RNA revealed that in the absence of Rev or the RRE, the cytoplasmic vif, vpr, and env/vpu 2 RNAs were not associated with polysomes but with a complex of 40S-80S in size. Consequently, efficient expression of the Vif, Vpr, Vpu, and Env proteins from these RNAs is dependent on Rev. These results exclude a mechanism whereby the sole function of Rev is simply to export RNAs from nucleus to cytoplasm. We discuss other models to take into account the dependence on Rev for efficient translation of cytoplasmic HIV-1 RNAs.
Collapse
Affiliation(s)
- S J Arrigo
- Department of Microbiology, University of California, Los Angeles School of Medicine
| | | |
Collapse
|
25
|
Karn J, Dingwall C, Gait MJ, Heaphy S, Skinner MA. Regulation of HIV-1 Gene Expression by the RNA-Binding Proteins tat and rev. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1991. [DOI: 10.1007/978-3-642-84292-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Gruters RA, Otto SA, Al BJ, Verhoeven AJ, Verweij CL, Van Lier RA, Miedema F. Non-mitogenic T cell activation signals are sufficient for induction of human immunodeficiency virus transcription. Eur J Immunol 1991; 21:167-72. [PMID: 1846814 DOI: 10.1002/eji.1830210125] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of human immunodeficiency virus type 1 (HIV) is enhanced after T cell activation due to the interaction of cell-encoded nuclear factors with binding sites in the viral long terminal repeats (LTR). We studied the minimal signal transduction requirements for induction of HIV transcription during T cell activation. Monoclonal antibodies (mAb) against the T cell receptor/CD3 complex induced interleukin (IL) 2 production as well as HIV-LTR-directed gene expression in Jurkat T cells. Addition of cyclosporin A or buffering of intracellular Ca2+ changes did not abolish this LTR-directed gene expression but did block IL 2 production. In contrast, interference with protein kinase C (PKC) activation did inhibit both IL 2 production and LTR-driven gene expression. Under all conditions HIV-LTR-directed gene expression correlated with gene expression induced by the NF-kB binding enhancer, but not by the NF-AT or OCT-1 binding sites. In accordance with observations by Verweij, Geerts and Aarden on the CD28 co-stimulatory activation of IL2 transcription via an NF-kB-like activity, stimulation of the CD2, CD28 and CD44 accessory molecules was tested to mimick physiological activation signals independent of T cell receptor triggering. mAb directed against CD2 and CD44 only marginally induced the LTR. Next, non-mitogenic stimulation by mAb against CD28 clearly induced the HIV-LTR- and NF-kB- but not NF-AT- and OCT-1-driven chloramphenicol acetyltransferase CAT expression, showing a direct effect on gene expression via this receptor. Taken together, this report shows that non-mitogenic T cell activation signals are sufficient to induce HIV transcription. The finding that these signals may be delivered by receptors that are not dependent on antigen-specific activation may have important implications for our understanding of HIV pathogenesis.
Collapse
Affiliation(s)
- R A Gruters
- Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, Amsterdem
| | | | | | | | | | | | | |
Collapse
|
27
|
Holland SM, Ahmad N, Maitra RK, Wingfield P, Venkatesan S. Human immunodeficiency virus rev protein recognizes a target sequence in rev-responsive element RNA within the context of RNA secondary structure. J Virol 1990; 64:5966-75. [PMID: 2243382 PMCID: PMC248770 DOI: 10.1128/jvi.64.12.5966-5975.1990] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human immunodeficiency virus type 1 Rev protein modulates the distribution of viral mRNAs from the nucleus to the cytoplasm by interaction with a highly structured viral RNA sequence, the Rev-responsive element (RRE). To identify the minimal functional elements of RRE, we evaluated mutant RREs for Rev binding in vitro and Rev response in vivo in the context of a Gag expression plasmid. The critical functional elements fold into a structure composed of a stem-loop A, formed by the ends of the RRE, joined to a branched stem-loop B/B1/B2, between bases 49 and 113. The 5' 132 nucleotides of RRE, RREDDE, which possessed a similar structure, bound Rev efficiently but were nonfunctional in vivo, implying separate binding and functional domains within the RRE. Excision of stem-loop A reduced Rev binding significantly and abolished the in vivo Rev response. The B2 branch could be removed without severe impairment of binding, but deletions in the B1 branch significantly reduced binding and function. However, deletion of 12 nucleotides, including the 5' strand of stem B, abolished both binding and function, while excision of the 3' strand of stem B only reduced them. Maintenance of the native RRE secondary structure alone was not sufficient for Rev recognition. Many mutations that altered the primary structure of the critical region while preserving the original RNA conformation were Rev responsive. However, mutations that changed a 5'..CACUAUGGG..3' sequence in the B stem, without affecting the overall structure abolished both in vitro Rev binding and the in vivo Rev response.
Collapse
Affiliation(s)
- S M Holland
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
28
|
Nalin CM, Purcell RD, Antelman D, Mueller D, Tomchak L, Wegrzynski B, McCarney E, Toome V, Kramer R, Hsu MC. Purification and characterization of recombinant Rev protein of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1990; 87:7593-7. [PMID: 2217189 PMCID: PMC54794 DOI: 10.1073/pnas.87.19.7593] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant Rev protein of human immunodeficiency virus type 1 has been expressed in Escherichia coli and purified by ion-exchange and gel-filtration chromatography. Specific binding of the purified protein to the Rev-responsive element of the viral RNA is demonstrated. Physical characterization of the purified protein by circular dichroism and intrinsic fluorescence spectroscopy indicate that the protein preparation is suitable for structural analysis. Circular dichroism measurements show that the protein is approximately 40-45% alpha-helix. Tryptophan fluorescence measurements suggest that the single tryptophan residue is located near the surface of the protein. Gel-filtration chromatography of the protein indicates that it has an apparent molecular mass of 33,000 daltons. This suggests that the protein in solution forms a stable tetramer consisting of monomers having molecular mass of 13,000 daltons.
Collapse
Affiliation(s)
- C M Nalin
- Department of Protein Biochemistry, Roche Research Center, Hoffmann-La Roche Inc., Nutley, NJ 07110
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Viglianti GA, Sharma PL, Mullins JI. Simian immunodeficiency virus displays complex patterns of RNA splicing. J Virol 1990; 64:4207-16. [PMID: 2384918 PMCID: PMC247885 DOI: 10.1128/jvi.64.9.4207-4216.1990] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human and simian immunodeficiency viruses encode at least six gene products that apparently serve regulatory functions. To evaluate the regulation of simian immunodeficiency virus gene expression at the level of RNA splicing, we used the polymerase chain reaction to amplify and clone cDNAs corresponding to a large array of mRNAs from infected cells. We identified mRNAs that used splice acceptor sites upstream of the initiator codons for tat, rev, vpr, nef, vif, and vpx, suggesting that these proteins may be expressed from different mRNAs. We also provide hybridization data suggesting that the same splice acceptor site may be used for both rev and env mRNAs. Furthermore, we isolated both tat and rev cDNAs that utilized three alternative splice acceptor sites at the start of coding exon 2, indicating that different versions of these proteins may be encoded. Finally, approximately 10 to 20% of simian immunodeficiency virus mRNAs spliced an intron from their untranslated 5' ends, and sequences contained within this intron constituted a portion of the tat-responsive TAR element. Thus, alternative pre-mRNA splicing adds a level of complexity to simian immunodeficiency virus expression, which may affect several levels of gene regulation.
Collapse
Affiliation(s)
- G A Viglianti
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | | | |
Collapse
|
30
|
Felber BK, Drysdale CM, Pavlakis GN. Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J Virol 1990; 64:3734-41. [PMID: 2196381 PMCID: PMC249668 DOI: 10.1128/jvi.64.8.3734-3741.1990] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rev is an essential regulatory protein of the human immunodeficiency virus type 1 (HIV-1) that affects the transport and half-life of certain viral mRNAs. Rev exerts its function via a unique element, the Rev-responsive element (RRE), located within the env region of HIV-1. It has been previously demonstrated that Rev affects the relative levels of RRE-containing and RRE-lacking mRNAs. We have studied the effects of Rev on the expression of the three different groups of small, multiply spliced mRNAs that lack the RRE sequence and encode the regulatory proteins Tat, Rev, and Nef. To monitor the tat, rev, and nef mRNAs we generated specific S1 nuclease mapping probes that distinguish among them. Analysis of all the mRNA species producing Tat, Rev, and Nef revealed that their levels are coordinately regulated by Rev. They are increased in the absence of Rev protein and are down regulated in the presence of Rev. The corresponding proteins were measured by immunoprecipitations, and their levels are in agreement with the RNA levels. These results verify the model proposing that Rev is a general regulator indirectly affecting all the multiply spliced mRNAs to a similar extent. Therefore, Rev down regulates its own expression and the expression of Tat and Nef.
Collapse
Affiliation(s)
- B K Felber
- National Cancer Institute-Frederick Cancer Research and Development Center, Basic Research Program, Maryland 21701-1013
| | | | | |
Collapse
|