1
|
Theofanopoulou C. A journey from speech to dance through the field of oxytocin. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100193. [PMID: 38108035 PMCID: PMC10724736 DOI: 10.1016/j.cpnec.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/14/2023] [Indexed: 12/19/2023] Open
Abstract
In this article, I am going through my scientific and personal journey using my work on oxytocin as a compass. I recount how my scientific questions were shaped over the years, and how I studied them through the lens of different fields ranging from linguistics and neuroscience to comparative and population genomics in a wide range of vertebrate species. I explain how my evolutionary findings and proposal for a universal gene nomenclature in the oxytocin-vasotocin ligand and receptor families have impacted relevant fields, and how my studies in the oxytocin and vasotocin system in songbirds, humans and non-human primates have led me to now be testing intranasal oxytocin as a candidate treatment for speech deficits. I also discuss my projects on the neurobiology of dance and where oxytocin fits in the picture of studying speech and dance in parallel. Lastly, I briefly communicate the challenges I have been facing as a woman and an international scholar in science and academia, and my personal ways to overcome them.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- The Rockefeller University, New York, USA
- Center for the Ballet and the Arts, New York University, New York, USA
| |
Collapse
|
2
|
Chakraborty P. Gene cluster from plant to microbes: Their role in genome architecture, organism's development, specialized metabolism and drug discovery. Biochimie 2021; 193:1-15. [PMID: 34890733 DOI: 10.1016/j.biochi.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
Plants and microbes fulfil our daily requirements through different high-value chemicals, e.g., nutraceuticals, pharmaceuticals, cosmetics, and through varieties of fruits, crops, vegetables, and many more. Utmost care would therefore be taken for growth, development and sustainability of these important crops and medicinal plants and microbes. Homeobox genes and HOX clusters and their recently characterized expanded family members, including newly discovered homeobox, WOX gene from medicinal herb, Panax ginseng, significantly contributes in the growth and development of these organisms. On the other hand, secondary metabolites produced through secondary metabolism of plants and microbes are used as organisms defense as well as drugs/drug-like molecules for humans. Both the developmental HOX cluster and the biosynthetic gene-cluster (BGC) for secondary metabolites are organised in organisms genome. Genome mining and genomewide analysis of these clusters will definitely identify and characterize many more important molecules from unexplored plants and microbes and underexplored human microbiota and the evolution studies of these clusters will indicate their source of origin. Although genomics revolution now continues at a pace, till date only few hundred plant genome sequences are available. However, next-generation sequencing (NGS) technology now in market and may be applied even for plants with recalcitrant genomes, eventually may discover genomic potential towards production of secondary metabolites of diverse plants and micro-organisms present in the environment and microbiota. Additionally, the development of tools for genome mining e.g., antiSMASH, plantiSMASH, and more and more computational approaches that predicts hundreds of secondary metabolite BGCs will be discussed.
Collapse
Affiliation(s)
- Prasanta Chakraborty
- Kalpana Chawla Center for Space and Nanoscience, Kolkata, Indian Institute of Chemical Biology (retd.), Kolkata, 700032, India.
| |
Collapse
|
3
|
Theofanopoulou C. Reconstructing the evolutionary history of the oxytocin and vasotocin receptor gene family: Insights on whole genome duplication scenarios. Dev Biol 2021; 479:99-106. [PMID: 34329619 DOI: 10.1016/j.ydbio.2021.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/08/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Vertebrate genome evolution remains a hotly debated topic, specifically as regards the number and the timing of putative rounds of whole genome duplication events. In this study, I sought to shed light to this conundrum through assessing the evolutionary history of the oxytocin/vasotocin receptor family. I performed ancestral analyses of the genomic segments containing oxytocin and vasotocin receptors (OTR-VTRs) by mapping them back to the reconstructed ancestral vertebrate/chordate karyotypes reported in five independent studies (Nakatani et al., 2007; Putnam et al., 2008; Smith and Keinath, 2015; Smith et al., 2018; Simakov et al., 2020) and found that two alternative scenarios can account for their evolution: one consistent with one round of whole genome duplication in the common ancestor of lampreys and gnathostomes, followed by segmental duplications in both lineages, and another consistent with two rounds of whole genome duplication, with the first occurring in the gnathostome-lamprey ancestor and the second in the jawed vertebrate ancestor. Combining the data reported here with synteny and phylogeny data reported in our previous study (Theofanopoulou et al., 2021), I put forward that a single round of whole genome duplication scenario is more consistent with the synteny and evolution of chromosomes where OTR-VTRs are encountered, without excluding the possibility of a scenario including two rounds of whole genome duplication. Although the analysis of one gene family is not able to capture the full complexity of vertebrate genome evolution, this study can provide solid insight, since the gene family used here has been meticulously analyzed for its genes' orthologous and paralogous relationships across species using high quality genomes.
Collapse
|
4
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
5
|
Chakraborty M, Jarvis ED. Brain evolution by brain pathway duplication. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0056. [PMID: 26554045 PMCID: PMC4650129 DOI: 10.1098/rstb.2015.0056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27713, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
Suomi F, Menger KE, Monteuuis G, Naumann U, Kursu VAS, Shvetsova A, Kastaniotis AJ. Expression and evolution of the non-canonically translated yeast mitochondrial acetyl-CoA carboxylase Hfa1p. PLoS One 2014; 9:e114738. [PMID: 25503745 PMCID: PMC4263661 DOI: 10.1371/journal.pone.0114738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
The Saccharomyces cerevisiae genome encodes two sequence related acetyl-CoA carboxylases, the cytosolic Acc1p and the mitochondrial Hfa1p, required for respiratory function. Several aspects of expression of the HFA1 gene and its evolutionary origin have remained unclear. Here, we determined the HFA1 transcription initiation sites by 5' RACE analysis. Using a novel "Stop codon scanning" approach, we mapped the location of the HFA1 translation initiation site to an upstream AUU codon at position -372 relative to the annotated start codon. This upstream initiation leads to production of a mitochondrial targeting sequence preceding the ACC domains of the protein. In silico analyses of fungal ACC genes revealed conserved "cryptic" upstream mitochondrial targeting sequences in yeast species that have not undergone a whole genome duplication. Our Δhfa1 baker's yeast mutant phenotype rescue studies using the protoploid Kluyveromyces lactis ACC confirmed functionality of the cryptic upstream mitochondrial targeting signal. These results lend strong experimental support to the hypothesis that the mitochondrial and cytosolic acetyl-CoA carboxylases in S. cerevisiae have evolved from a single gene encoding both the mitochondrial and cytosolic isoforms. Leaning on a cursory survey of a group of genes of our interest, we propose that cryptic 5' upstream mitochondrial targeting sequences may be more abundant in eukaryotes than anticipated thus far.
Collapse
Affiliation(s)
- Fumi Suomi
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Katja E Menger
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Uta Naumann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - V A Samuli Kursu
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Alexander J Kastaniotis
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Ferguson L, Marlétaz F, Carter JM, Taylor WR, Gibbs M, Breuker CJ, Holland PWH. Ancient expansion of the hox cluster in lepidoptera generated four homeobox genes implicated in extra-embryonic tissue formation. PLoS Genet 2014; 10:e1004698. [PMID: 25340822 PMCID: PMC4207634 DOI: 10.1371/journal.pgen.1004698] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/22/2014] [Indexed: 01/15/2023] Open
Abstract
Gene duplications within the conserved Hox cluster are rare in animal evolution, but in Lepidoptera an array of divergent Hox-related genes (Shx genes) has been reported between pb and zen. Here, we use genome sequencing of five lepidopteran species (Polygonia c-album, Pararge aegeria, Callimorpha dominula, Cameraria ohridella, Hepialus sylvina) plus a caddisfly outgroup (Glyphotaelius pellucidus) to trace the evolution of the lepidopteran Shx genes. We demonstrate that Shx genes originated by tandem duplication of zen early in the evolution of large clade Ditrysia; Shx are not found in a caddisfly and a member of the basally diverging Hepialidae (swift moths). Four distinct Shx genes were generated early in ditrysian evolution, and were stably retained in all descendent Lepidoptera except the silkmoth which has additional duplications. Despite extensive sequence divergence, molecular modelling indicates that all four Shx genes have the potential to encode stable homeodomains. The four Shx genes have distinct spatiotemporal expression patterns in early development of the Speckled Wood butterfly (Pararge aegeria), with ShxC demarcating the future sites of extraembryonic tissue formation via strikingly localised maternal RNA in the oocyte. All four genes are also expressed in presumptive serosal cells, prior to the onset of zen expression. Lepidopteran Shx genes represent an unusual example of Hox cluster expansion and integration of novel genes into ancient developmental regulatory networks.
Collapse
Affiliation(s)
- Laura Ferguson
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | - William R. Taylor
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Mualla R, Nagaraj K, Hortsch M. A phylogenetic analysis of the L1 family of neural cell adhesion molecules. Neurochem Res 2012; 38:1196-207. [PMID: 23011207 DOI: 10.1007/s11064-012-0892-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
L1-type genes form one of several distinct gene families that encode adhesive proteins, which are predominantly expressed in developing and mature metazoan nervous systems. These proteins have a multitude of different important cellular functions in neuronal and glial cells. L1-type gene products are transmembrane proteins with a characteristic extracellular domain structure consisting of six immunoglobulin and three to five fibronectin type III protein folds. As reported here, L1-type proteins can be identified in most metazoan phyla with the notable exception of Porifera (sponges). This puts the origin of L1-type genes at a point in time when primitive cellular neural networks emerged, approximately 1,200 to 1,500 million years ago. Subsequently, several independent gene duplication events generated multiple paralogous L1-type genes in some phyla, allowing for a considerable diversification of L1 structures and the emergence of new functional features and molecular interactions. One such evolutionary newer feature is the appearance of RGD integrin-binding motifs in some vertebrate L1 family members.
Collapse
Affiliation(s)
- Rula Mualla
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
10
|
Michaut L, Jansen HJ, Bardine N, Durston AJ, Gehring WJ. Analyzing the function of a hox gene: an evolutionary approach. Dev Growth Differ 2011; 53:982-93. [PMID: 22150153 DOI: 10.1111/j.1440-169x.2011.01307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an evolutionary approach to dissecting conserved developmental mechanisms. We reason that important mechanisms for making the bodyplan will act early, to generate the major features of the body and that they will be conserved in evolution across many metazoa, and thus, that they will be available in very different animals. This led to our specific approach of microarrays to screen for very early conserved developmental regulators in parallel in an insect, Drosophila and a vertebrate, Xenopus. We screened for the earliest conserved targets of the ectopically expressed hox gene Hoxc6/Antennapedia in both species and followed these targets up, using in situ hybridization, in the Xenopus system. The results indicate that relatively few of the early Hox target genes are conserved: these are mainly involved in the specification of the antero-posterior body axis and in gastrulation.
Collapse
Affiliation(s)
- Lydia Michaut
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011; 27:585-610. [PMID: 21801013 DOI: 10.1146/annurev-cellbio-092910-154234] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although nearly all mammalian species are diploid, whole-genome duplications occur in select mammalian tissues as part of normal development. Such programmed polyploidization involves changes in the regulatory pathways that normally maintain the diploid state of the mammalian genome. Unscheduled whole-genome duplications, which lead primarily to tetraploid cells, also take place in a substantial fraction of human tumors and have been proposed to constitute an important step in the development of cancer aneuploidy. The origins of these polyploidization events and their consequences for tumor progression are explored in this review.
Collapse
Affiliation(s)
- Teresa Davoli
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
12
|
Fleury V. A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:73. [PMID: 21792746 DOI: 10.1140/epje/i2011-11073-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 03/15/2011] [Accepted: 07/01/2011] [Indexed: 05/31/2023]
Abstract
The morphogenesis of vertebrate body parts remains an open question. It is not clear whether the existence of different structures, such as a head, can be addressed by fundamental laws of tissue movement and deformation, or whether they are only a sequence of stop-and-go genetic instructions. I have filmed by time-lapse microscopy the formation of the presumptive head territory in chicken embryos. I show that the early lateral evagination of the eye cups and of the mesencephalic plate is a consequence of a sudden change in boundary conditions of the initial cell flow occurring in these embryos. Due to tissue flow, and collision of the two halves of the embryo, the tissue sheet movement is first dipolar, and next quadrupolar. In vivo air puff tonometry reveals a simple visco-elastic behaviour of the living material. The jump from a dipolar to a quadrupolar flow changes the topology of the early morphogenetic field which is observed towards a complex vortex winding with a trail (the eye cups and brain folds). The hydrodynamical model accounts for the discontinuity of the vector field at the moment of collision of the left and right halves of the embryo, at a quantitative level. This suggests a possible mechanism for the morphogenesis of the head of amniotes, as compared to cephalochordates and anamniotes.
Collapse
Affiliation(s)
- V Fleury
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France.
| |
Collapse
|
13
|
Guo B, Gan X, He S. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:135-47. [PMID: 19670462 DOI: 10.1002/jez.b.21318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Compared with other diploid teleosts (2n=48), anguilloid fish have a specialized karyotype (2n=38) and remarkable morphological variation, and represent one basal group species of teleosts. To investigate the Hox gene/cluster inventory in basal teleosts, a PCR-based survey of Hox genes in the Japanese eel (Anguilla japonica) was conducted with both gene-specific and homeobox-targeted degenerate primers. Our data provide evidence that at least 34 distinct Hox genes exist in the Japanese eel genome and that they represent eight Hox clusters. Duplication of Hox genes in the Japanese eel appears to be the result of the fish-specific genome duplication (FSGD) event. The Japanese eel shared the FSGD event with other teleosts such as zebrafish and pufferfish. A member of Hox paralog group one (HoxA1b) was preserved in the Japanese eel but was lost in other teleosts. Available Hox data revealed that the Hox cluster evolved distinctly in different teleost lineages. All duplicated Hox clusters were retained after the FSGD event in basal teleosts like in the Japanese eel, whereas crown teleosts lost one cluster (HoxCb or HoxDb). Based on current teleostean phylogeny, the HoxDb cluster was lost independently in the teleost lineages Otocephala and Euteleostei.
Collapse
Affiliation(s)
- Baocheng Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, P.R. China
| | | | | |
Collapse
|
14
|
In der Rieden PMJ, Vilaspasa FL, Durston AJ. Xwnt8 directly initiates expression of labial Hox genes. Dev Dyn 2010; 239:126-39. [PMID: 19623617 DOI: 10.1002/dvdy.22020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hox transcription factors play an essential role in patterning the anteroposterior axis during embryogenesis and exhibit a complex array of spatial and temporal patterns of expression. Their earliest onset of expression in vertebrates is during gastrulation in a temporally collinear sequence in the presomitic/ventrolateral mesoderm, and it is not clear which upstream signal transduction events initiate this expression. Using Xenopus, we present evidence that Xwnt8 is necessary for initiation of this collinear sequence by activating Hox-1 expression in three Hox clusters: hoxd, hoxa, and hoxb. All three labial genes appear to be direct targets of canonical Wnt signaling through Tcf/Lef. In addition, Xwnt8 loss- and gain-of-function leads to indirect regulation of other Hox genes: Hoxb4, Hoxd4, Hoxa7, Hoxc6, and Hoxc8. These findings shed new light on the early role of Wnt8 as well as of a proposed WNT gradient in patterning the Xenopus central nervous system (Kiecker and Niehrs [2001] Development 128:4189-4201).
Collapse
Affiliation(s)
- Paul M J In der Rieden
- Hubrecht Laboratorium, Nederlands Instituut voor Ontwikkelingsbiologie, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
|
16
|
Gunawardana A, Fries R. Assignment of the HOX2 and HOX3 gene clusters to the bovine chromosome regions 19q17-qter and 5q14-23. Anim Genet 2009; 23:161-5. [PMID: 1359814 DOI: 10.1111/j.1365-2052.1992.tb00035.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homeobox 2 (HOX2) and homeobox 3 (HOX3) clusters have been chromosomally assigned in cattle by in situ hybridization. The probes employed were a murine probe for the mapping of HOX2 to 19q17-qter and human probes for the mapping of HOX3 to 5q14-q23. These assignments confirm the chromosomal assignment of two syntenic groups, consisting of loci located on human chromosome 12 (bovine chromosome 5) and the long arm of human chromosome 17 (bovine chromosome 19).
Collapse
Affiliation(s)
- A Gunawardana
- Institut für Nutztierwissenschaften, ETH, Zürich, Switzerland
| | | |
Collapse
|
17
|
Mungpakdee S, Seo HC, Angotzi AR, Dong X, Akalin A, Chourrout D. Differential Evolution of the 13 Atlantic Salmon Hox Clusters. Mol Biol Evol 2008; 25:1333-43. [DOI: 10.1093/molbev/msn097] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Thummel R, Ju M, Sarras MP, Godwin AR. Both Hoxc13 orthologs are functionally important for zebrafish tail fin regeneration. Dev Genes Evol 2007; 217:413-20. [PMID: 17437127 DOI: 10.1007/s00427-007-0154-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
Hox genes are re-expressed during regeneration in many species. Given their important role in body plan development, it has been assumed, but not directly shown, that they play a functional role in regeneration. In this paper we show that morpholino-mediated knockdown of either Hoxc13a or Hoxc13b during the process of zebrafish tail fin regeneration results in a significant reduction of regenerative outgrowth. Furthermore, cellular proliferation within the blastema is directly affected in both knockdowns. Hence, similar to the demonstration of unique functions of multiple Hox genes during limb formation, both Hoxc13 orthologs have distinct functions in regeneration.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | |
Collapse
|
19
|
|
20
|
DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J, Kelvin DJ. Defining the origins and evolution of the chemokine/chemokine receptor system. THE JOURNAL OF IMMUNOLOGY 2006; 176:401-15. [PMID: 16365434 DOI: 10.4049/jimmunol.176.1.401] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chemokine system has a critical role in mammalian immunity, but the evolutionary history of chemokines and chemokine receptors are ill-defined. We used comparative whole genome analysis of fruit fly, sea urchin, sea squirt, pufferfish, zebrafish, frog, and chicken to identify chemokines and chemokine receptors in each species. We report 127 chemokine and 70 chemokine receptor genes in the 7 species, with zebrafish having the most chemokines, 63, and chemokine receptors, 24. Fruit fly, sea urchin, and sea squirt have no identifiable chemokines or chemokine receptors. This study represents the most comprehensive analysis of the chemokine system to date and the only complete characterization of chemokine systems outside of mouse and human. We establish a clear evolutionary model of the chemokine system and trace the origin of the chemokine system to approximately 650 million years ago, identifying critical steps in their evolution and demonstrating a more extensive chemokine system in fish than previously thought.
Collapse
Affiliation(s)
- Mark E DeVries
- Division of Experimental Therapeutics and Department of Immunology, University of Toronto, Toronto General Research Institute, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Moghadam HK, Ferguson MM, Danzmann RG. Evidence for Hox Gene Duplication in Rainbow Trout (Oncorhynchus mykiss): A Tetraploid Model Species. J Mol Evol 2005; 61:804-18. [PMID: 16315109 DOI: 10.1007/s00239-004-0230-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Accepted: 04/19/2005] [Indexed: 11/28/2022]
Abstract
We examined the genomic organization of Hox genes in rainbow trout (Oncorhynchus mykiss), a tetraploid teleost derivative species, in order to test models of presumptive genomic duplications during vertebrate evolution. Thirteen putative clusters were localized in the current rainbow trout genetic map; however, analysis of the sequence data suggests the presence of at least 14 Hox clusters. Many duplicated genes appear to have been retained in the genome and share a high percentage of amino acid similarity with one another. We characterized two Hox genes located within the HoxCb cluster that may have been lost independently in other teleost species studied to date. Finally, we identified conserved syntenic blocks between salmonids and human, and provide data supporting two new linkage group homeologies (i.e., RT-3/16, RT-12/29) and three previously described homeologies (RT-2/9, RT-17/22, and RT-27/31) in rainbow trout.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | |
Collapse
|
22
|
Moghadam HK, Ferguson MM, Danzmann RG. Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol 2005; 61:636-49. [PMID: 16205980 DOI: 10.1007/s00239-004-0338-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 04/29/2005] [Indexed: 11/30/2022]
Abstract
We studied the genomic organization of Hox genes in Atlantic salmon (Salmo salar) and made comparisons to that in rainbow trout (Oncorhynchus mykiss), another member of the family Salmonidae. We used these two species to test the hypothesis that the Hox genes would provide evidence for a fourth round of duplication (4R) of this gene family given the recent polyploid ancestry of the salmonid fish. Thirteen putative Hox clusters were identified and 10 of these complexes were localized to the current Atlantic salmon genetic map. Syntenic regions with the rainbow trout linkage map were detected and further homologies and homeologies are suggested. We propose that the common ancestor of Atlantic salmon and rainbow trout possessed at least 14 clusters of Hox genes, and additional clusters cannot be ruled out. Salmonid Hox cluster complements seem to be more similar to those of zebrafish (Danio rerio) than medaka (Oryzias latipes) or pufferfish (Sphoeroides nephelus and Takifugu rubripes), as both Atlantic salmon and rainbow trout have retained HoxCb ortholog, which has been lost in medaka and pufferfish but not in zebrafish. However, our data suggest that phylogenetically, the homologous genes within each cluster express mosaic relationships among the teleosts tested and, thus, leave unresolved the interfamilial relationships among these taxa.
Collapse
Affiliation(s)
- Hooman K Moghadam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
23
|
Weiss KM. A tooth, a toe, and a vertebra: The genetic dimensions of complex morphological traits. Evol Anthropol 2005. [DOI: 10.1002/evan.1360020407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Abstract
Over 35 years ago, Susumu Ohno stated that gene duplication was the single most important factor in evolution. He reiterated this point a few years later in proposing that without duplicated genes the creation of metazoans, vertebrates, and mammals from unicellular organisms would have been impossible. Such big leaps in evolution, he argued, required the creation of new gene loci with previously nonexistent functions. Bold statements such as these, combined with his proposal that at least one whole-genome duplication event facilitated the evolution of vertebrates, have made Ohno an icon in the literature on genome evolution. However, discussion on the occurrence and consequences of gene and genome duplication events has a much longer, and often neglected, history. Here we review literature dealing with the occurrence and consequences of gene duplication, beginning in 1911. We document conceptual and technological advances in gene duplication research from this early research in comparative cytology up to recent research on whole genomes, "transcriptomes," and "interactomes."
Collapse
Affiliation(s)
- John S Taylor
- Department of Biology, University of Victoria, British Columbia V8W 3N5, Canada.
| | | |
Collapse
|
25
|
Thummel R, Li L, Tanase C, Sarras MP, Godwin AR. Differences in expression pattern and function between zebrafish hoxc13 orthologs: recruitment of Hoxc13b into an early embryonic role. Dev Biol 2004; 274:318-33. [PMID: 15385162 DOI: 10.1016/j.ydbio.2004.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 06/18/2004] [Accepted: 07/06/2004] [Indexed: 01/17/2023]
Abstract
Vertebrate Hox genes are generally believed to initiate expression at the primitive streak or early neural plate stages. The timing and spatial restrictions of the Hox expression patterns during these stages correlate well with their demonstrated role in axial patterning. Here we demonstrate that one zebrafish hoxc13 ortholog, hoxc13a, has an expression pattern in the developing tail bud that is consistent with the gene playing a role in axial patterning. However, the second hoxc13 ortholog, hoxc13b, is maternally expressed and is detectable in every cell of early cleavage embryos through gastrulae. In addition, both transcript and protein are detectable at these stages. At 19 h post fertilization (hpf), hoxc13b expression is up-regulated in the tail bud, becoming restricted to the tail bud by 24 hpf. Importantly, by 24 hpf, hoxc13b morphants show a specific developmental delay, which can be rescued by co-injecting synthetic capped hoxc13a or hoxc13b message. These data suggest some functional divergence due to altered expression patterns of the two hoxc13 orthologs after duplication. Further characterization of the hoxc13b morphant delay reveals that it is biphasic in nature, with the first phase of the delay occurring before gastrulation, suggesting a new role for vertebrate Hox genes before their conserved role in axial patterning. The extent of the delay does not change through 20 hpf; however, an additional delay emerges at this time. Notably, this second phase of the delay correlates with hoxc13b expression pattern becoming restricted to the tail bud.
Collapse
Affiliation(s)
- Ryan Thummel
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
26
|
Leveugle M, Prat K, Popovici C, Birnbaum D, Coulier F. Phylogenetic analysis of Ciona intestinalis gene superfamilies supports the hypothesis of successive gene expansions. J Mol Evol 2004; 58:168-81. [PMID: 15042337 DOI: 10.1007/s00239-003-2538-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 08/04/2003] [Indexed: 10/26/2022]
Abstract
Understanding the formation of metazoan multigene families is a good approach to reconstitute the evolution of the chordate genome. In this attempt, the analysis of the genome of selected species provides valuable information. Ciona intestinalis belongs to the urochordates, whose lineage separated from the chordate lineage that later gave birth to vertebrates. We have searched available sequences from the small marine ascidian C. intestinalis for orthologs of members of five vertebrate superfamilies, including tyrosine kinase receptors, ETS, FOX and SOX transcription factors, and WNT secreted regulatory factors, and conducted phylogenetic analyses. We have found that most vertebrate subfamilies have a single C. intestinalis ortholog. Our results support the hypothesis of a gene expansion prior the base of chordate ancestry followed by another gene expansion during vertebrate evolution. They also indicate that Ciona intestinalis genome will be a very valuable tool for evolutionary analyses.
Collapse
Affiliation(s)
- Magalie Leveugle
- Département d'Oncologie Moléculaire, Unité 119 INSERM, IFR57, Marseille, France
| | | | | | | | | |
Collapse
|
27
|
|
28
|
In der Rieden PMJ, Mainguy G, Woltering JM, Durston AJ. Homeodomain to hexapeptide or PBC-interaction-domain distance: size apparently matters. Trends Genet 2004; 20:76-9. [PMID: 14746988 DOI: 10.1016/j.tig.2003.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Zhu L, Swergold GD, Seldin MF. Examination of sequence homology between human chromosome 20 and the mouse genome: intense conservation of many genomic elements. Hum Genet 2003; 113:60-70. [PMID: 12644935 DOI: 10.1007/s00439-003-0920-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 01/14/2003] [Indexed: 10/25/2022]
Abstract
The conservation of genomic organization of mammalian species has been of interest for its usefulness in characterizing the genetics of traits and diseases and as one tool for examining evolution. The recent rough draft sequencing of the mouse and human genomes provides the opportunity for more detailed analyses. The current study examines the extent of homology between human chromosome 20 and the mouse genome by comparing putative coding and non-coding sequence to provide insight into organizational and sequence similarities between the species. The relative position of each of 460 putative coding orthologues was the same in both species, except for a single genomic segment rearrangement. The similarity extended to exon/intron structure, the size of introns, as well as strong evidence for the conservation of position of ancient LINE-1, LINE-2 and LTR repetitive sequence and the subtelomeric region of the long arm of human chromosome 20 and that of mouse chromosome 2. There was also evidence for conservation of a limited amount of non-coding single-copy sequence. Together these data provide additional insight into the extent of conservation of mammalian genomic organization and sequence.
Collapse
Affiliation(s)
- Lingxiang Zhu
- Rowe Program in Genetics, Department of Biological Chemistry and Department of Medicine, University of California at Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
30
|
Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 2003; 31:63-7. [PMID: 12519948 PMCID: PMC165553 DOI: 10.1093/nar/gkg106] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Revised: 10/30/2002] [Accepted: 10/30/2002] [Indexed: 11/12/2022] Open
Abstract
We present ParaDB (http://abi.marseille.inserm.fr/paradb/), a new database for large-scale paralogy studies in vertebrate genomes. We intended to collect all information (sequence, mapping and phylogenetic data) needed to map and detect new paralogous regions, previously defined as Paralogons. The AceDB database software was used to generate graphical objects and to organize data. General data were automatically collated from public sources (Ensembl, GadFly and RefSeq). ParaDB provides access to data derived from whole genome sequences (Homo sapiens, Mus musculus and Drosophila melanogaster): cDNA and protein sequences, positional information, bibliographical links. In addition, we provide BLAST results for each protein sequence, InParanoid orthologs and 'In-Paralogs' data, previously established paralogy data, and, to compare vertebrates and Drosophila, orthology data.
Collapse
Affiliation(s)
- Magalie Leveugle
- Laboratoire d'Oncologie Moléculaire, Unité 119 INSERM, Marseille, France.
| | | | | | | | | |
Collapse
|
31
|
Gu X, Wang Y, Gu J. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat Genet 2002; 31:205-9. [PMID: 12032571 DOI: 10.1038/ng902] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.
Collapse
Affiliation(s)
- Xun Gu
- Department of Zoology and Genetics and Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
32
|
Force A, Amores A, Postlethwait JH. Hox cluster organization in the jawless vertebrate Petromyzon marinus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:30-46. [PMID: 11932947 DOI: 10.1002/jez.10091] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.
Collapse
Affiliation(s)
- Allan Force
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
33
|
Popovici C, Leveugle M, Birnbaum D, Coulier F. Coparalogy: physical and functional clusterings in the human genome. Biochem Biophys Res Commun 2001; 288:362-70. [PMID: 11606051 DOI: 10.1006/bbrc.2001.5794] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two rounds of large-scale duplications are thought to have occurred in early vertebrate ancestry; this is now known as the "2R hypothesis." They have led to the constitution of subfamilies of paralogous genes. Chromosomal regions that contain present-day paralogs (paralogous regions or paralogons) have been identified in mammals. We show that sets of paralogons (PGs) can be assembled in a tentative "human genome paralogy map" that includes all autosomes and X. A total of 14 PGs, containing more than 1600 genes, were assembled in this paralogy map. Genes that belong to the same PG are coparalogs. We show that identification of coparalogy can be used (i) to broaden data on gene mapping, (ii) to identify physical gene clusters that derive from early cis-duplications, and (iii) to speculate on coevolution and coregulation of genes sharing a common structure or function (functional clusters). Thus, coparalogy analyses should parallel phylogenetic analyses and can help draw hypotheses on gene and genome evolution.
Collapse
Affiliation(s)
- C Popovici
- U119 INSERM, IFR57, Laboratoire d'Oncologie Moléculaire, 27 boulevard Leï Roure, 13009 Marseille, France
| | | | | | | |
Collapse
|
34
|
Agosti D, Jacobs D, DeSalle R. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case. Cladistics 2001; 12:65-82. [PMID: 11541749 DOI: 10.1111/j.1096-0031.1996.tb00193.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Amino acid encoding genes contain character state information that may be useful for phylogenetic analysis on at least two levels. The nucleotide sequence and the translated amino acid sequences have both been employed separately as character states for cladistic studies of various taxa, including studies of the genealogy of genes in multigene families. In essence, amino acid sequences and nucleic acid sequences are two different ways of character coding the information in a gene. Silent positions in the nucleotide sequence (first or third positions in codons that can accrue change without changing the identity of the amino acid that the triplet codes for) may accrue change relatively rapidly and become saturated, losing the pattern of historical divergence. On the other hand, non-silent nucleotide alterations and their accompanying amino acid changes may evolve too slowly to reveal relationships among closely related taxa. In general, the dynamics of sequence change in silent and non-silent positions in protein coding genes result in homoplasy and lack of resolution, respectively. We suggest that the combination of nucleic acid and the translated amino acid coded character states into the same data matrix for phylogenetic analysis addresses some of the problems caused by the rapid change of silent nucleotide positions and overall slow rate of change of non-silent nucleotide positions and slowly changing amino acid positions. One major theoretical problem with this approach is the apparent non-independence of the two sources of characters. However, there are at least three possible outcomes when comparing protein coding nucleic acid sequences with their translated amino acids in a phylogenetic context on a codon by codon basis. First, the two character sets for a codon may be entirely congruent with respect to the information they convey about the relationships of a certain set of taxa. Second, one character set may display no information concerning a phylogenetic hypothesis while the other character set may impact information to a hypothesis. These two possibilities are cases of non-independence, however, we argue that congruence in such cases can be thought of as increasing the weight of the particular phylogenetic hypothesis that is supported by those characters. In the third case, the two sources of character information for a particular codon may be entirely incongruent with respect to phylogenetic hypotheses concerning the taxa examined. In this last case the two character sets are independent in that information from neither can predict the character states of the other. Examples of these possibilities are discussed and the general applicability of combining these two sources of information for protein coding genes is presented using sequences from the homeobox region of 46 homeobox genes from Drosophila melanogaster to develop a hypothesis of genealogical relationship of these genes in this large multigene family.
Collapse
Affiliation(s)
- D Agosti
- Department of Entomology, American Museum of Natural History, New York 10024, USA
| | | | | |
Collapse
|
35
|
Delague V, Bareil C, Bouvagnet P, Salem N, Chouery E, Loiselet J, Mégarbané A, Claustres M. Nonprogressive autosomal recessive ataxia maps to chromosome 9q34-9qter in a large consanguineous lebanese family. Ann Neurol 2001. [DOI: 10.1002/ana.1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Abstract
Thirty years after Susumu Ohno proposed that vertebrate genomes are degenerate polyploids, the extent to which genome duplication contributed to the evolution of the vertebrate genome, if at all, is still uncertain. Sequence-level studies on model organisms whose genomes show clearer evidence of ancient polyploidy are invaluable because they indicate what the evolutionary products of genome duplication can look like. The greatest mystery is the molecular basis of diploidization, the evolutionary process by which a polyploid genome turns into a diploid one.
Collapse
Affiliation(s)
- K H Wolfe
- Department of Genetics, Smurfit Institute, Trinity College, University of Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
37
|
Abstract
Homeobox genes encode important developmental control proteins. In vertebrates, those encoding the proteins of the HOX class and their most closely related families, including paraHOX and metaHOX classes, are clustered in paralogous regions (or paralogons). We show that the majority of the other homeobox genes (we called contraHOX) can also be clustered and belong to paralogons in humans. This suggests that they duplicated during vertebrate evolution along the same processes as the HOX genes. We tentatively assembled several paralogons in superparalogons. One of the superparalogons contains the contraHOX genes. These observations were extended to hundreds of genes, and allowed to describe a primary human genome paralogy map.
Collapse
Affiliation(s)
- C Popovici
- Laboratoire d'Oncologie Moléculaire, U119 Inserm, Marseille, France
| | | | | | | |
Collapse
|
38
|
Dailey L, Basilico C. Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J Cell Physiol 2001; 186:315-28. [PMID: 11169970 DOI: 10.1002/1097-4652(2001)9999:9999<000::aid-jcp1046>3.0.co;2-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The highly conserved homeodomains and HMG domains are components of a large number of proteins that play a role in the transcriptional regulation of gene expression during embryogenesis. Both the HMG domain and the homeodomain serve as interfaces for factor interactions with DNA, as well as with other proteins, and it is likely that the high degree of structural and sequence conservation within these domains reflects the conservation of basic aspects of these interactions. Classical HMG domain proteins have an ancient origin, being found in all eukaryotes, and are thought to have given rise to the metazoan-specific class of HMG domain proteins called the Sox proteins. Similarly, the metazoan-specific POU domain proteins are thought to have arisen from genes encoding ancestral homeodomain proteins. In this review, we summarize several examples of different HMG-homeodomain interactions that illustrate not only the ancient origin of each of these protein families, but also their relationship to each other, and discuss how coevolution of HMG and homeodomains may have lead to creation of the specialized Sox/POU protein complexes. Using the FGF-4 gene as an example, we also speculate on how coevolution of regulatory Sox/POU target DNA sequences may have occurred, and how the summation of these changes may have lead to the emergence of new developmental pathways.
Collapse
Affiliation(s)
- L Dailey
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Abstract
The arrangement of Hox genes into physical clusters is fundamental to the patterning of animal body plans, through the phenomenon of colinearity. Other homeobox genes are often described as dispersed, implying they are not arranged into clusters. Contrary to this view, however, two clusters of non-Hox homeobox genes have been reported: the amphioxus ParaHox gene cluster and the Drosophila 93D/E cluster (referred to here as the NKL cluster). Here I examine the antiquity of these gene clusters, their conservation and their pattern of evolution in vertebrate genomes. I argue that the ParaHox gene cluster arose early in animal evolution, and duplicated in vertebrates to give the four clusters in human and mouse genomes. The NKL cluster is also ancient, and also duplicated to yield four descendent clusters in mammalian genomes. The NKL and Hox gene clusters were originally chromosomal neighbours, within an ancient and extensive array of at least 30 related homeobox genes. There is no necessary relationship between clustering and colinearity, although it is argued that the ParaHox gene cluster does show modified spatial colinearity. A novel hypothesis for the evolution of ParaHox gene expression in deuterostomes is presented.
Collapse
Affiliation(s)
- P W Holland
- School of Animal & Microbial Sciences, The University of Reading, UK.
| |
Collapse
|
40
|
Abstract
Homeobox genes encode important developmental control proteins. The Drosophila fruit fly HOM complex genes are clustered in region 84-89 of chromosome 3. Probably due to large-scale genome duplication events, their human HOX orthologs belong to four paralogous regions. A series of 13 other homeobox genes are also clustered in region 88-94, on the same chromosome of Drosophila. We suggest that they also duplicated during vertebrate evolution and belong to paralogous regions in humans. These regions are on chromosome arms 4p, 5q, 10q, and 2p or 8p. We coined the term "paralogon" to designate paralogous regions in general. We propose to call these genes "meta Hox" genes. Like Hox genes, metaHox genes are present in one cluster in Drosophila and four clusters (metaHox A-D) in humans on the 4p/5q/10q paralogon.
Collapse
Affiliation(s)
- F Coulier
- Laboratoire d'Oncologie Moléculaire, Inserm U119, Marseille, France
| | | | | | | |
Collapse
|
41
|
Abstract
The arrangement of Hox genes into physical clusters is fundamental to the patterning of animal body plans. Other homeobox genes are often described as dispersed, with only occasional examples of linkage reported, such as the amphioxus ParaHox and Drosophila 93D/E clusters. This clustering is unlikely to be the derived condition, as the genes of the ParaHox and 93D/E clusters are phylogenetically widespread. To assess whether clustering is retained in mammals, and to infer its history, we considered the distribution of ANTP superclass homeobox genes in human and mouse genomes. We postulate four ancient arrays of ANTP superclass genes in animal genomes, denoted 'extended Hox' (Hox, Evx and Mox), NKL (including NK1, NK3, NK4, Lbx, Tlx, Emx, Vax, Hmx, NK6, Msx), ParaHox (Cdx, Xlox, Gsx) and EHGbox (En, HB9, Gbx). Each of these duplicated in the ancestry of the human genome to yield four Hox, four NKL, four ParaHox and at least two EHGbox clusters or arrays. Two of the human NKL clusters (four in mouse) have subsequently been split by chromosome rearrangement, as has one human EHGbox array. We date all cluster duplications to early chordate evolution and infer that three clusters (Hox, NKL, EHGbox) resided on the same chromosome before duplication.
Collapse
Affiliation(s)
- S L Pollard
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
| | | |
Collapse
|
42
|
Branford WW, Benson GV, Ma L, Maas RL, Potter SS. Characterization of Hoxa-10/Hoxa-11 transheterozygotes reveals functional redundancy and regulatory interactions. Dev Biol 2000; 224:373-87. [PMID: 10926774 DOI: 10.1006/dbio.2000.9809] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hox genes show related sequences and overlapping expression domains that often reflect functional redundancy as well as a common evolutionary origin. To accurately define their functions, it has become necessary to compare phenotypes of mice with single and multiple Hox gene mutations. Here, we focus on two Abd-B-type genes, Hoxa-10 and Hoxa-11, which are coexpressed in developing vertebrae, limbs, and reproductive tracts. To assess possible functional redundancy between these two genes, Hoxa-10/Hoxa-11 transheterozygotes were produced by genetic intercrosses and analyzed. This compound mutation resulted in synergistic defects in transheterozygous limbs and reproductive tracts, but not in vertebrae. In the forelimb, distal radial/ulnar thickening and pisiform/triangular carpal fusion were observed in 35 and 21% of transheterozygotes, respectively, but were effectively absent in Hoxa-10 and Hoxa-11 +/- forelimbs. In the hindlimb, distal tibial/fibular thickening and loss of tibial/fibular fusion were observed in >80% of transheterozygotes but in no Hoxa-10 or Hoxa-11 +/- hindlimbs, and all transheterozygotes displayed reduced medial patellar sesamoids, compared to modest incidences in Hoxa-10 and Hoxa-11 +/- mutants. Furthermore, while the reproductive tracts of Hoxa-10 and Hoxa-11 single heterozygous mutants of both sexes were primarily unaffected, male transheterozygotes displayed cryptorchidism and abnormal tortuosity of the ductus deferens, and female transheterozygotes exhibited abnormal uterotubal junctions and narrowing of the uterus. In addition we observed that the targeted mutations of Hoxa-10 and Hoxa-11 each affected the expression of the other gene in the developing prevertebra and reproductive tracts. These results provide a measure of the functional redundancy of Hoxa-10 and Hoxa-11 and a deeper understanding of the phenotypes resulting in the single mutants and help elucidate the regulatory interactions between these two genes.
Collapse
Affiliation(s)
- W W Branford
- Developmental Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
43
|
Bosse A, Stoykova A, Nieselt-Struwe K, Chowdhury K, Copeland NG, Jenkins NA, Gruss P. Identification of a novel mouse Iroquois homeobox gene, Irx5, and chromosomal localisation of all members of the mouse Iroquois gene family. Dev Dyn 2000; 218:160-74. [PMID: 10822268 DOI: 10.1002/(sici)1097-0177(200005)218:1<160::aid-dvdy14>3.0.co;2-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Drosophila genes of the Iroquois-Complex encode homeodomain containing transcription factors that positively regulate the activity of certain proneural Achaete/Scute-C (AS-C) genes during the formation of external sensory organs (J. L. Gomez-Skarmeta and J. Modolell, EMBO J 17:181-190, 1996). Previously, we have identified three highly-related genes of the mouse Iroquois gene family that exert specific expression patterns in the central nervous system (A. Bosse et al., Mech Dev 69:169-181, 1997). In the present paper, we report the identification of a novel member of the Iroquois gene family, Irx5, that shows a restricted spatio/temporal expression during early mouse embryogenesis, distinct from the expression of Irx1-3. An extensive sequence analysis of 20 Iroquois-like genes from seven organisms reveals a high conservation of the homeodomain. Phylogenetic tree reconstruction showed a clustering of the members of the Iroquois gene family into groups of orthologous genes. Together, with the data obtained from the chromosomal mapping analysis, the results indicate that these genes have appeared in vertebrates during evolution as a result of gene duplication.
Collapse
Affiliation(s)
- A Bosse
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Birnbaum D, Coulier F, Pébusque MJ, Pontarotti P. "Paleogenomics": looking in the past to the future. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:21-2. [PMID: 10750049 DOI: 10.1002/(sici)1097-010x(20000415)288:1<21::aid-jez2>3.0.co;2-q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The complete sequence of the human and other vertebrate and nonvertebrate genomes provide a wealth of information on the organization, relationships and evolution of the metazoans. Soon the fine structure of our innermost biological identity will be unveiled and what has so far remained deep and secret will shine like an unearthed treasure and shape and fuel our future quests. A key treasure, for many molecular scientists interested in molecular evolution and development would be the knowledge of the genome of the ancestral precursor of all metazoans. In the absence of fossil DNA, this knowledge will forever remain a yearning for dreamy molecular biologists. And yet, will not the power of deduction and reconstitution of information gained through man's sophisticated technologies one day recreate a "virtual" metazoan ancestor?
Collapse
|
45
|
Wraith A, Törnsten A, Chardon P, Harbitz I, Chowdhary BP, Andersson L, Lundin LG, Larhammar D. Evolution of the neuropeptide Y receptor family: gene and chromosome duplications deduced from the cloning and mapping of the five receptor subtype genes in pig. Genome Res 2000; 10:302-10. [PMID: 10720571 PMCID: PMC311425 DOI: 10.1101/gr.10.3.302] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neuropeptide Y (NPY) receptors mediate a variety of physiological responses including feeding and vasoconstriction. To investigate the evolutionary events that have generated this receptor family, we have sequenced and determined the chromosomal localizations of all five presently known mammalian NPY receptor subtype genes in the domestic pig, Sus scrofa (SSC). The orthologs of the Y(1) and Y(2) subtypes display high amino acid sequence identities between pig, human, and mouse (92%-94%), whereas the Y(4), Y(5), and y(6) subtypes display lower identities (76%-87%). The lower identity of Y(5) is due to high sequence divergence in the large third intracellular loop. The NPY1R, NPY2R, and NPY5R receptor genes were localized to SSC8, the NPY4R to SSC14, and NPY6R to SSC2. Our comparisons strongly suggest that the tight cluster of NPY1R, NPY2R, and NPY5R on human chromosome 4 (HSA4) represents the ancestral configuration, whereas the porcine cluster has been split by two inversions on SSC8. These 3 genes, along with adjacent genes from 14 other gene families, form a cluster on HSA4 with extensive similarities to a cluster on HSA5, where NPY6R and >13 other paralogs reside, as well as another large cluster on HSA10 that includes NPY4R. Thus, these gene families have expanded through large-scale duplications. The sequence comparisons show that the NPY receptor triplet NPY1R-NPY2R-NPY5R existed before these large-scale duplications.
Collapse
Affiliation(s)
- A Wraith
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Han YJ, Lee YH, Chun JY. Identification and characterization of Psx-2, a novel member of the Psx (placenta-specific homeobox) family. Gene 2000; 241:149-55. [PMID: 10607909 DOI: 10.1016/s0378-1119(99)00453-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psx (now designated as Psx-1) is a murine placenta-specific homeobox gene. Here, we report the isolation and characterization of a second mouse Psx gene (Psx-2). Although 29bp were absent towards the 3' end of Psx-2, Psx-2 and Psx-1 cDNA had identical 5' and 3' ends. Overall sequence identity between the two cDNAs was 91% at the nucleotide level and 81% at the amino acid level. Both Psx proteins contain 227 amino acids. These results suggest that they arose through a recent gene duplication. A surprising finding is that the 81% sequence identity between Psx-1 and Psx-2 proteins drops at the level of homeodomain to 78%. Further, the amino acid at position 51, which is invariably an asparagine in other homeodomains and is known to contact DNA directly, is a methionine in the homeodomains of both Psx-1 and Psx-2. This suggests that Psx proteins may interact with DNA sequences differently to those bound by other homeodomains. Southern blot analysis indicated that the two Psx genes occur on separate loci in the mouse genome. The Psx-2 gene spans approx. 2. 6kb of mouse genome, and contains four exons and three introns.
Collapse
Affiliation(s)
- Y J Han
- Kumho Life and Environmental Science Laboratory, 572 Sangam-Dong, Kwangsan-Gu, Kwangju, South Korea
| | | | | |
Collapse
|
47
|
Popovici C, Roubin R, Coulier F, Pontarotti P, Birnbaum D. The family of Caenorhabditis elegans tyrosine kinase receptors: similarities and differences with mammalian receptors. Genome Res 1999; 9:1026-39. [PMID: 10568743 DOI: 10.1101/gr.9.11.1026] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transmembrane receptors with tyrosine kinase activity (RTK) constitute a superfamily of proteins present in all metazoans that is associated with the control and regulation of cellular processes. They have been the focus of numerous studies and are a good subject for comparative analyses of multigene families in different species aimed at understanding metazoan evolution. The sequence of the genome of the nematode worm Caenorhabditis elegans is available. This offers a good opportunity to study the superfamily of nematode RTKs in its entirety and to compare it with its mammalian counterpart. We show that the C. elegans RTKs constitute various groups with different phylogenetic relationships with mammalian RTKs. A group of four RTKs show structural similarity with the three mammalian receptors for the vascular endothelial growth factors. Another group comprises RTKs with a short extracellular region, a feature not known in mammals; the genes encoding these RTKs are clustered on chromosome II with other gene families, including genes encoding chitinase-like proteins. Most of the C. elegans RTKs have no direct orthologous relationship with any mammalian RTK, providing an illustration of the importance of the separate evolution of the different phyla.
Collapse
Affiliation(s)
- C Popovici
- Laboratoire d'Oncologie Moléculaire, U.119 Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| | | | | | | | | |
Collapse
|
48
|
Abstract
The study of Hox gene clusters continues to serve as a paradigm for those interested in vertebrate genome evolution. Recent exciting discoveries about Hox gene composition in fishes challenges conventional views about vertebrate Hox gene evolution, and has initiated lively debates concerning the evolutionary events making the divergence of the major vertebrate lineages. Comparative analyses indicate that Hox cluster duplications occurred in early vertebrate evolution, and again within the order Cypriniformes of teleost fish. Loss of Hox genes was more widespread than duplication during fish evolution.
Collapse
Affiliation(s)
- E J Stellwag
- Department of Biology, East Carolina University, Greenville, NC 27858-4353, USA.
| |
Collapse
|
49
|
Snell EA, Scemama JL, Stellwag EJ. Genomic organization of theHoxa4-Hoxa10 region fromMorone saxatilis: Implications forHox gene evolution among vertebrates. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-010x(19990415)285:1<41::aid-jez5>3.0.co;2-d] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Abstract
Morphological differences between species, from simple single-character differences to large-scale variation in body plans, can be traced to changes in the timing and location of developmental events. This has led to a growing interest in understanding the genetic basis behind the evolution of developmental systems. Molecular evolutionary genetics provides one of several approaches to dissecting the evolution of developmental systems, by allowing us to reconstruct the history of developmental genetic pathways, infer the origin and diversification of developmental gene functions, and assess the relative contributions of various evolutionary forces in shaping regulatory gene evolution.
Collapse
Affiliation(s)
- M D Purugganan
- Department of Genetics, North Carolina State University, Raleigh 27695, USA. michaelp@unity,ncsu.edu
| |
Collapse
|