1
|
Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021; 14:pharmaceutics14010010. [PMID: 35056904 PMCID: PMC8780674 DOI: 10.3390/pharmaceutics14010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
2
|
Enzymatic preparation of high-specific-activity beta-D-[6,6'-3H]fructose-2,6-bisphosphate: Application to a sensitive assay for fructose-2,6-bisphosphatase. Anal Biochem 2010; 406:97-104. [PMID: 20541516 DOI: 10.1016/j.ab.2010.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022]
Abstract
beta-D-Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is an important regulator of eukaryotic glucose homeostasis, functioning as a potent activator of 6-phosphofructo-1-kinase and inhibitor of fructose-1,6-bisphosphatase. Pharmaceutical manipulation of intracellular Fru-2,6-P(2) levels, therefore, is of interest for the treatment of certain diseases, including diabetes and cancer. [2-(32)P]Fru-2,6-P(2) has been the reagent of choice for studying the metabolism of this effector molecule; however, its short half-life necessitates frequent preparation. Here we describe a convenient, economical, one-pot enzymatic preparation of high-specific-activity tritium-labeled Fru-2,6-P(2). The preparation involves conversion of readily available, carrier-free d-[6,6'-(3)H]glucose to [6,6'-(3)H]Fru-2,6-P(2) using hexokinase, glucose-6-phosphate isomerase, and 6-phosphofructo-2-kinase. The key reagent in this preparation, bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from human liver, was produced recombinantly in Escherichia coli and purified in a single step using an appendant C-terminal hexa-His affinity tag. Following purification by anion exchange chromatography using triethylammonium bicarbonate as eluant, radiochemically pure [6,6'-(3)H]Fru-2,6-P(2) having a specific activity of 50 Ci/mmol was obtained in yields averaging 35%. [6,6'-(3)H]Fru-2,6-P(2) serves as a stable, high-specific-activity substrate in a facile assay capable of detecting fructose-2,6-bisphosphatase in the range of 10(-14) to 10(-15) mol, and it should prove to be useful in many studies of the metabolism of this important biofactor.
Collapse
|
3
|
Fernández de Mattos S, Alemany V, Aligué R, Tauler A. Increase in Fru-2,6-P(2) levels results in altered cell division in Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:144-52. [PMID: 17900713 DOI: 10.1016/j.bbamcr.2007.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022]
Abstract
Mitogenic response to growth factors is concomitant with the modulation they exert on the levels of Fructose 2,6-bisphosphate (Fru-2,6-P2), an essential activator of the glycolytic flux. In mammalian cells, decreased Fru-2,6-P2 concentration causes cell cycle delay, whereas high levels of Fru-2,6-P2 sensitize cells to apoptosis. In order to analyze the cell cycle consequences due to changes in Fru-2,6-P2 levels, the bisphosphatase-dead mutant (H258A) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzyme was over-expressed in Schizosaccharomyces pombe cells and the variation in cell phenotype was studied. The results obtained demonstrate that the increase in Fru-2,6-P2 levels results in a defective division of S. pombe, as revealed by an altered multisepted phenotype. The H258A-expressing cells showed impairment of cytokinesis, but normal nuclear division. In order to identify cellular mediators responsible for this effect, we transformed different S. pombe strains and observed that the cytokinetic defect was absent in cells defective for Wee1 kinase function. Therefore, in S. pombe, Wee1 integrates the metabolic signal emerging from changes in Fru-2,6-P2 content, thus coupling metabolism with cell proliferation. As the key regulators of the cell cycle checkpoints are conserved throughout evolution, these results may help to understand the experimental evidences obtained by manipulation of Fru-2,6-P2 levels in mammalian cells.
Collapse
Affiliation(s)
- Silvia Fernández de Mattos
- Cancer Cell Biology and Translational Oncology Group, Institut Universitari d'Investigació en Ciències de la Salut, Departament de Biologia Fonamental, Universitat de les Illes Balears, Illes Balears, Spain.
| | | | | | | |
Collapse
|
4
|
Smith WE, Langer S, Wu C, Baltrusch S, Okar DA. Molecular Coordination of Hepatic Glucose Metabolism by the 6-Phosphofructo-2-Kinase/Fructose-2,6- Bisphosphatase:Glucokinase Complex. Mol Endocrinol 2007; 21:1478-87. [PMID: 17374851 DOI: 10.1210/me.2006-0356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucokinase (GK) and 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBP-2) are each powerful regulators of hepatic carbohydrate metabolism that have been reported to influence each other's expression, activities, and cellular location. Here we present the first physical evidence for saturable and reversible binding of GK to the FBP-2 domain of PFK-2/FBP-2 in a 1:1 stoichiometric complex. We confirmed complex formation and stoichiometry by independent methods including affinity resin pull-down assays and fluorescent resonance energy transfer. All suggest that the binding of GK to PFK-2/FBP-2 is weak. Enzymatic assays of the GK:PFK-2/FBP-2 complex suggest a concomitant increase of the kinase-to-bisphosphatase ratio of bifunctional enzyme and activation of GK upon binding. The kinase-to-bisphosphatase ratio is increased by activation of the PFK-2 activity whereas FBP-2 activity is unchanged. This means that the GK-bound PFK-2/FBP-2 produces more of the biofactor fructose-2,6-bisphosphate, a potent activator of 6-phosphofructo-1-kinase, the committing step to glycolysis. Therefore, we conclude that the binding of GK to PFK-2/FBP-2 promotes a coordinated up-regulation of glucose phosphorylation and glycolysis in the liver, i.e. hepatic glucose disposal. The GK:PFK-2/FBP-2 interaction may also serve as a metabolic signal transduction pathway for the glucose sensor, GK, in the liver. Demonstration of molecular coordination of hepatic carbohydrate metabolism has fundamental relevance to understanding the function of the liver in maintaining fuel homeostasis, particularly in managing excursions in glycemia produced by meal consumption.
Collapse
Affiliation(s)
- W Ed Smith
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, Minnesota 55417, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Fructose 2,6-bisphosphate is a potent metabolic regulator in eukaryotic organisms; it affects the activity of key enzymes of the glycolytic and gluconeogenic pathways. The enzymes responsible for its synthesis and hydrolysis, 6-phosphofructo-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (FBPase-2) are present in representatives of all major eukaryotic taxa. Results from a bioinformatics analysis of genome databases suggest that very early in evolution, in a common ancestor of all extant eukaryotes, distinct genes encoding PFK-2 and FBPase-2, or related enzymes with broader substrate specificity, fused resulting in a bifunctional enzyme both domains of which had, or later acquired, specificity for fructose 2,6-bisphosphate. Subsequently, in different phylogenetic lineages duplications of the gene of the bifunctional enzyme occurred, allowing the development of distinct isoenzymes for expression in different tissues, at specific developmental stages or under different nutritional conditions. Independently in different lineages of many unicellular eukaryotes one of the domains of the different PFK-2/FBPase-2 isoforms has undergone substitutions of critical catalytic residues, or deletions rendering some enzymes monofunctional. In a considerable number of other unicellular eukaryotes, mainly parasitic organisms, the enzyme seems to have been lost altogether. Besides the catalytic core, the PFK-2/FBPase-2 has often N- and C-terminal extensions which show little sequence conservation. The N-terminal extension in particular can vary considerably in length, and seems to have acquired motifs which, in a lineage-specific manner, may be responsible for regulation of catalytic activities, by phosphorylation or ligand binding, or for mediating protein-protein interactions.
Collapse
Affiliation(s)
- Paul A M Michels
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
6
|
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PAM. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 2005; 272:3542-60. [PMID: 16008555 DOI: 10.1111/j.1742-4658.2005.04774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.
Collapse
Affiliation(s)
- Nathalie Chevalier
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Baltrusch S, Lenzen S, Okar DA, Lange AJ, Tiedge M. Characterization of glucokinase-binding protein epitopes by a phage-displayed peptide library. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel interaction partner. J Biol Chem 2001; 276:43915-23. [PMID: 11522786 DOI: 10.1074/jbc.m105470200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low affinity glucose-phosphorylating enzyme glucokinase shows the phenomenon of intracellular translocation in beta cells of the pancreas and the liver. To identify potential binding partners of glucokinase by a systematic strategy, human beta cell glucokinase was screened by a 12-mer random peptide library displayed by the M13 phage. This panning procedure revealed two consensus motifs with a high binding affinity for glucokinase. The first consensus motif, LSAXXVAG, corresponded to the glucokinase regulatory protein of the liver. The second consensus motif, SLKVWT, showed a complete homology to the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), which acts as a key regulator of glucose metabolism. Through yeast two-hybrid analysis it became evident that the binding of glucokinase to PFK-2/FBPase-2 is conferred by the bisphosphatase domain, whereas the kinase domain is responsible for dimerization. 5'-Rapid amplification of cDNA ends analysis and Northern blot analysis revealed that rat pancreatic islets express the brain isoform of PFK-2/FBPase-2. A minor portion of the islet PFK-2/FBPase-2 cDNA clones comprised a novel splice variant with 8 additional amino acids in the kinase domain. The binding of the islet/brain PFK-2/ FBPase-2 isoform to glucokinase was comparable with that of the liver isoform. The interaction between glucokinase and PFK-2/FBPase-2 may provide the rationale for recent observations of a fructose-2,6-bisphosphate level-dependent partial channeling of glycolytic intermediates between glucokinase and glycolytic enzymes. In pancreatic beta cells this interaction may have a regulatory function for the metabolic stimulus-secretion coupling. Changes in fructose-2,6-bisphosphate levels and modulation of PFK-2/FBPase-2 activities may participate in the physiological regulation of glucokinase-mediated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- S Baltrusch
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
9
|
Yang QH, Wu CL, Lin K, Li L. Low concentration of inducer favors production of active form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Protein Expr Purif 1997; 10:320-4. [PMID: 9268678 DOI: 10.1006/prep.1997.0749] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of chicken and rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, in Escherichia coli encountered two common problems: the chicken enzyme was liable to proteolysis and the rat enzyme was prone to form inclusion bodies. Reducing the rate of protein synthesis by lowering either growth temperature or isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration alleviated these two problems. Growth at 22 degrees C was optimum for expression of both enzymes. The optimum range of IPTG concentration for expression was 0.1-1 microM for the chicken liver bifunctional enzyme and 10 microM for rat liver enzyme. The components of growth medium also influenced the production. Compared with Luria-Bertani medium, an enriched medium-tryptone-phosphate medium-tripled the production of the active enzymes. Addition of glucose (0.2%) doubled the expression level of active chicken liver enzyme, but reduced the production of active rat liver enzyme to half the maximal level, while the phosphate in tryptone-phosphate medium had no effect on the production of the two enzymes.
Collapse
Affiliation(s)
- Q H Yang
- Shanghai Institute of Biochemistry, Academia Sinica, China
| | | | | | | |
Collapse
|
10
|
Boles E, Göhlmann HW, Zimmermann FK. Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Mol Microbiol 1996; 20:65-76. [PMID: 8861205 DOI: 10.1111/j.1365-2958.1996.tb02489.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have identified a new gene, PFK27, that encodes a second inducible 6-phosphofructo-2-kinase in the yeast Saccharomyces cerevisiae. Sequencing shows an open reading frame of 397 amino acids and 45.3 kDa. Amino acid sequence comparisons with other bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoenzymes of various organisms revealed similarities only to the kinase domains. Expression of PFK27 was induced severalfold by glucose and sucrose, but not by galactose or maltose, suggesting that sugar transport might be involved in triggering the induction signal. We have constructed a mutant strain devoid of any fructose-2,6-bisphosphate. The mutant strain grew well on several kinds and concentrations of carbon sources. The levels of hexose phosphates in the cells were increased, but flux rates for glucose utilization and ethanol production were similar to the wild-type strain. However, after the transfer of the mutant cells from respiratory to fermentative growth conditions, growth, glucose consumption and ethanol production were delayed in a transition phase. Our results show that fructose-2,6-bisphosphate is an important effector in vivo of the 6-phosphofructo-1-kinase/fructose-1 ,6-bisphosphatase enzyme pair, and is involved in the initiation of glycolysis during the transition to a fermentative mode of metabolism. Nevertheless, it can be effectively replaced by other effectors and regulatory mechanisms during growth on glucose.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie und Genetik, Technische Hochschule Darmstadt, Germany
| | | | | |
Collapse
|
11
|
Joaquin M, Rosa JL, Salvadó C, López S, Nakamura T, Bartrons R, Gil J, Tauler A. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures. Biochem J 1996; 314 ( Pt 1):235-40. [PMID: 8660288 PMCID: PMC1217030 DOI: 10.1042/bj3140235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation.
Collapse
Affiliation(s)
- M Joaquin
- Unitat de Bioquímica, Departament de Ciències Fisiòlogiques Humanes i de la Nutrició, Universitat de Barcelona, Catalunya, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Volpe F, Ballantine SP, Delves CJ. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxymethyldihydropterin pyrophosphokinase and dihydropteroate synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:449-58. [PMID: 8397083 DOI: 10.1111/j.1432-1033.1993.tb18163.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide sequence of a folic acid synthesis (fas) gene from Pneumocystis carinii contains an open reading frame (ORF) that predicts a protein of 740 amino acids with an M(r) of 83,979. A recombinant baculovirus was constructed which directed expression of the predicted Fas740 polypeptide in cultured Spodoptera frugiperda (SF9) insect cells. The overexpressed 'full-length' protein migrated anomalously in sodium dodecyl sulfate/polyacrylamide gels, with an apparent molecular mass of 71.5 kDa. An abundant 69-kDa species was also recognized by polyclonal sera specific for the Fas protein in immunoblotting analyses. Dihydroneopterin aldolase, dihydropterin pyrophosphokinase and dihydropteroate synthase activities were readily detected in SF9 extracts in which the 71.5/69-kDa immunoreactive species were overproduced, demonstrating that three enzyme functions involved in catalysing three sequential steps of the folate biosynthetic pathway are encoded by a single gene in P. carinii. Importantly, the polyclonal sera recognize a single 69-kDa species in P. carinii extracts suggesting that the three activities are indeed properties of a single polypeptide, although the nature of the suggested post-translational modification is unknown. Location of the individual enzyme domains with the Fas polypeptide based upon amino acid sequence similarity to their bacterial counterparts is discussed. Furthermore, expression of various truncated fas gene constructs demonstrates that the complete fas ORF, including the N-terminus of the predicted polypeptide (FasA domain) whose enzyme function is unknown, must be expressed for maximum dihydroneopterin aldolase (FasB domain) and dihydropteroate synthase (FasD domain) activities. This suggests interactions between the domains within the larger polypeptide to stabilize the functions of these two enzymes. The FasC domain, which contains 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity, is able to fold and function independently of the other domains. The requirement by mammalian cells for preformed folates, and the absence of dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and dihydropteroate synthase from these tissues opens up the possibility of designing highly selective drugs which inhibit these unique targets.
Collapse
Affiliation(s)
- F Volpe
- Department of Molecular Sciences, Wellcome Research Laboratories, Beckenham, England
| | | | | |
Collapse
|
13
|
Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Arg-257 and Arg-307 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase bind the C-2 phospho group of fructose-2,6-bisphosphate in the fructose-2,6-bisphosphatase domain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41756-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Lysine 356 is a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42054-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Lin K, Li L, Correia J, Pilkis S. Glu327 is part of a catalytic triad in rat liver fructose-2,6-bisphosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50463-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Kurland I, el-Maghrabi M, Correia J, Pilkis S. Rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Properties of phospho- and dephospho- forms and of two mutants in which Ser32 has been changed by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42851-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
18
|
Site-directed mutagenesis in rat liver 6-phosphofructo-2-kinase. Mutation at the fructose 6-phosphate binding site affects phosphate activation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42847-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Lange AJ, Xu LZ, Van Poelwijk F, Lin K, Granner DK, Pilkis SJ. Expression and site-directed mutagenesis of hepatic glucokinase. Biochem J 1991; 277 ( Pt 1):159-63. [PMID: 1854332 PMCID: PMC1151205 DOI: 10.1042/bj2770159] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Soluble rat liver glucokinase was expressed at high levels at 22 degrees C in the BL21(DE3)pLysS strain of Escherichia coli. Aspartate-211 of yeast hexokinase has been implicated as a catalytic residue from crystallographic data. The corresponding residue in rat liver glucokinase, aspartate-205, was mutated to alanine and the expressed mutant had 1/500th of the activity of the wild type, with no change in the Km values for glucose or ATP. The results support a role for this residue as a base catalyst in the glucokinase reaction and, most probably, a similar role in the reactions of all members of the hexokinase family.
Collapse
Affiliation(s)
- A J Lange
- Department of Physiology and Biophysics, SUNY, Stony Brook, NY 11794
| | | | | | | | | | | |
Collapse
|
20
|
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Use of site-directed mutagenesis to evaluate the roles of His-258 and His-392 in catalysis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55442-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Bazan JF, Fletterick RJ, Pilkis SJ. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A 1989; 86:9642-6. [PMID: 2557623 PMCID: PMC298557 DOI: 10.1073/pnas.86.24.9642] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bifunctional rat liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (ATP:D-fructose-6-phosphate 2-phosphotransferase/D-fructose-2,6-bisphosphate 2-phosphohydrolase, EC 2.7.1.105/EC 3.1.3.46) is constructed of two independent catalytic domains. We present evidence that the kinase and bisphosphatase halves of the bifunctional enzyme are, respectively, structurally similar to the glycolytic enzymes 6-phosphofructo-1-kinase and phosphoglycerate mutase. Computer-assisted modeling of the C-terminal bisphosphatase domain reveals a hydrophobic core and active site residue constellation equivalent to the yeast mutase structure; structural differences map to length-variable, surface-located loops. Sequence patterns derived from the structural alignment of mutases and the bisphosphatase further detect a significant similarity to a family of acid phosphatases. The N-terminal kinase domain, in turn, is predicted to form a nucleotide-binding fold that is analogous to a segment of 6-phosphofructo-1-kinase, suggesting that these unrelated enzymes bind fructose 6-phosphate and ATP substrates in a similar geometry. This analysis indicates that the bifunctional enzyme is the likely product of gene fusion of kinase and mutase/phosphatase catalytic units.
Collapse
Affiliation(s)
- J F Bazan
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | |
Collapse
|