1
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Animal Models of Neointimal Hyperplasia and Restenosis: Species-Specific Differences and Implications for Translational Research. JACC Basic Transl Sci 2021; 6:900-917. [PMID: 34869956 PMCID: PMC8617545 DOI: 10.1016/j.jacbts.2021.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022]
Abstract
Neointimal hyperplasia is the major factor contributing to restenosis after angioplasty procedures. Multiple animal models exist to study basic and translational aspects of restenosis formation. Animal models differ substantially, and species-specific differences have major impact on the pathophysiology of the model. Genetic, dietary, and mechanical interventions determine the translational potential of the animal model used and have to be considered when choosing the model.
The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.
Collapse
Key Words
- Apo, apolipoprotein
- CETP, cholesteryl ester transferase protein
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- LDLr, LDL receptor
- PDGF, platelet-derived growth factor
- TGF, transforming growth factor
- VLDL, very low-density lipoprotein
- VSMC, vascular smooth muscle cell
- angioplasty
- animal model
- neointimal hyperplasia
- restenosis
Collapse
|
3
|
Li SS, Gao S, Chen Y, Bao H, Li ZT, Yao QP, Liu JT, Wang Y, Qi YX. Platelet-derived microvesicles induce calcium oscillations and promote VSMC migration via TRPV4. Theranostics 2021; 11:2410-2423. [PMID: 33500733 PMCID: PMC7797689 DOI: 10.7150/thno.47182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Abnormal migration of vascular smooth muscle cells (VSMCs) from the media to the interior is a critical process during the intimal restenosis caused by vascular injury. Here, we determined the role of platelet-derived microvesicles (PMVs) released by activated platelets in VSMC migration. Methods: A percutaneous transluminal angioplasty balloon dilatation catheter was used to establish vascular intimal injury. Collagen I was used to activate PMVs, mimicking collagen exposure during intimal injury. To determine the effects of PMVs on VSMC migration in vitro, scratch wound healing assays were performed. Fluorescence resonance energy transfer was used to detect variations of calcium dynamics in VSMCs. Results: Morphological results showed that neointimal hyperplasia was markedly increased after balloon injury of the carotid artery in rats, and the main component was VSMCs. PMVs significantly promoted single cell migration and wound closure in vitro. Fluorescence resonance energy transfer revealed that PMVs induced temporal and dynamic calcium oscillations in the cytoplasms of VSMCs. The influx of extracellular calcium, but not calcium from intracellular stores, was involved in the process described above. The channel antagonist GSK219 and specific siRNA revealed that a membrane calcium channel, transient receptor potential vanilloid 4 (TRPV4), participated in the calcium oscillations and VSMC migration induced by PMVs. Conclusions: TRPV4 participated in the calcium oscillations and VSMC migration induced by PMVs. PMVs and the related molecules might be novel therapeutic targets for vascular remodeling during vascular injury.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shuang Gao
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Ting Liu
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, United States
| | - Ying-Xin Qi
- Institute of Mechanobiology& Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
4
|
The quest for effective pharmacological suppression of neointimal hyperplasia. Curr Probl Surg 2020; 57:100807. [PMID: 32771085 DOI: 10.1016/j.cpsurg.2020.100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
5
|
Zhan Y, Lu R, Meng H, Hou J, Huang W, Wang X, Hu W. Platelets as inflammatory mediators in a murine model of periodontitis. J Clin Periodontol 2020; 47:572-582. [DOI: 10.1111/jcpe.13265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Yalin Zhan
- First Clinical Division Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Ruifang Lu
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Huanxin Meng
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Jianxia Hou
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Wenxue Huang
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Xian'e Wang
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Wenjie Hu
- Department of Periodontology Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology Beijing China
| |
Collapse
|
6
|
Abstract
The proliferation of vascular smooth muscle cells is a key event in the development of arterial lesions. In experimental models, loss of arterial endothelium followed by platelet adherence does not necessarily stimulate smooth muscle cell proliferation. Furthermore, using animals deficient in platelets, smooth muscle cell proliferation was induced to an equal extent as in control animals following injury with a balloon catheter. Modulation of the smooth muscle response, however, was achieved by totally denuding arteries with a technique which did not traumatize medial cells. These data suggested that injury and cell death might induce proliferation of cells by release of endogenous mitogen. Basic FGF is present in the arterial wall and addition of this mitogen to denuded arteries was found to cause a highly significant increase in smooth muscle cell proliferation. These studies suggest that smooth muscle cell proliferation could be induced by factors present in the arterial wall and does not require exogenous factors. Smooth muscle cell proliferation following balloon catheter injury is significantly reduced by administration of calcium antagonists. Repeated administration of nifedipine caused a significant reduction in intimal lesion size induced by injury. The anti-proliferative. effect was not observed in other tissues. Influx of Ca++ ions into medial smooth muscle cells may therefore be an obligatory step for replication.
Collapse
Affiliation(s)
- Michael A. Reidy
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
7
|
Bettoni J, Balédent O, Petruzzo P, Duisit J, Kanitakis J, Devauchelle B, Lengelé B, Constans JM, Morelon E, Dakpé S. Role of flow magnetic resonance imaging in the monitoring of facial allotransplantations: preliminary results on graft vasculopathy. Int J Oral Maxillofac Surg 2020; 49:169-175. [DOI: 10.1016/j.ijom.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/21/2019] [Indexed: 11/24/2022]
|
8
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018; 52:48-64. [PMID: 30172025 DOI: 10.1016/j.cellsig.2018.08.019] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
Collapse
Affiliation(s)
- Agne Frismantiene
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Abstract
Objective: Invasive coronary interventions can fail due to intimal hyperplasia and restenosis.
Endothelial cell (EC) seeding to the vessel lumen, accelerating re-endothelialization,
or local release of mTOR pathway inhibitors have helped reduce intimal hyperplasia after
vessel injury. While animal models are powerful tools, they are complex and expensive,
and not always reflective of human physiology. Therefore, we developed an in
vitro 3D vascular model validating previous in vivo animal
models and utilizing isolated human arteries to study vascular remodeling after injury.
Approach: We utilized a bioreactor that enables the control of intramural
pressure and shear stress in vessel conduits to investigate the vascular response in
both rat and human arteries to intraluminal injury. Results: Culturing rat aorta segments in vitro, we show that vigorous removal
of luminal ECs results in vessel injury, causing medial proliferation by Day-4 and
neointima formation, with the observation of SCA1+ cells (stem cell
antigen-1) in the intima by Day-7, in the absence of flow. Conversely, when
endothelial-denuded rat aortae and human umbilical arteries were subjected to arterial
shear stress, pre-seeding with human umbilical ECs decreased the number and
proliferation of smooth muscle cell (SMC) significantly in the media of both rat and
human vessels. Conclusion: Our bioreactor system provides a novel platform for correlating ex
vivo findings with vascular outcomes in vivo. The present
in vitro human arterial injury model can be helpful in the study of
EC-SMC interactions and vascular remodeling, by allowing for the separation of
mechanical, cellular, and soluble factors.
Collapse
Affiliation(s)
- Mehmet H Kural
- 1 Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.,2 Department of Anesthesiology, Yale University, New Haven, CT, USA
| | - Guohao Dai
- 3 Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Laura E Niklason
- 1 Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.,2 Department of Anesthesiology, Yale University, New Haven, CT, USA.,4 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Liqiong Gui
- 1 Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.,2 Department of Anesthesiology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Assessment of HIF-1α expression and release following endothelial injury in-vitro and in-vivo. Mol Med 2018; 24:22. [PMID: 30134815 PMCID: PMC6016879 DOI: 10.1186/s10020-018-0026-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Endothelial injury is an early and enduring feature of cardiovascular disease. Inflammation and hypoxia may be responsible for this, and are often associated with the up-regulation of several transcriptional factors that include Hypoxia Inducible Factor-1 (HIF-1). Although it has been reported that HIF-1α is detectable in plasma, it is known to be unstable. Our aim was to optimize an assay for HIF-1α to be applied to in vitro and in vivo applications, and to use this assay to assess the release kinetics of HIF-1α following endothelial injury. Methods An ELISA for the measurement of HIF-1α in cell-culture medium and plasma was optimized, and the assay was used to determine the best conditions for sample collection and storage. The results of the ELISA were validated using Western blotting and immunohistochemistry (IHC). In vitro, a standardized injury was produced in a monolayer of rat aortic endothelial cells (RAECs) and intracellular HIF-1α was measured at intervals over 24 h. In vivo, a rat angioplasty model was used. The right carotid artery was injured using a 2F Fogarty balloon catheter. HIF-1α was measured in the plasma and in the arterial tissue (0, 1, 2, 3 and 5 days post injury). Results The HIF-1α ELISA had a limit of detection of 2.7 pg/mL and was linear up to 1000 pg/ mL. Between and within-assay, the coefficient of variation values were less than 15%. HIF-1α was unstable in cell lysates and plasma, and it was necessary to add a protease inhibitor immediately after collection, and to store samples at -80 °C prior to analysis. The dynamics of HIF-1α release were different for the in vitro and in vivo models. In vitro, HIF-1α reached maximum concentrations approximately 2 h post injury, whereas peak values in plasma and tissues occurred approximately 2 days post injury, in the balloon injury model. Conclusion HIF-1α can be measured in plasma, but this requires careful sample collection and storage. The carotid artery balloon injury model is associated with the transient release of HIF-1α into the circulation that probably reflects the hypoxia induced in the artery wall. Electronic supplementary material The online version of this article (10.1186/s10020-018-0026-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Pietro Ghezzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Manuela Mengozzi
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK
| | - Gordon Ferns
- Brighton and Sussex Medical School Department of Clinical and experimental investigation, University of Sussex, Falmer East Sussex, Brighton, BN1 9PS, UK. .,Brighton and Sussex Medical School Department of Medical Education, Mayfield House, Falmer East Sussex, Brighton, BN1 9PH, UK.
| |
Collapse
|
11
|
Swartbol P, Pärsson H, Nässberger L, Norgren L. Metabolic Response of Blood Cells to Synthetic Graft-Materials with Special Reference to a Fluoromer Passivated Dacron® Graft. An in Vitro Study Using Microcalorimetry. Int J Artif Organs 2018. [DOI: 10.1177/039139889501800705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microcalorimetry was used to study in vitro the metabolic response from human platelets and leukocytes when incubated with three different synthetic graft-materials. The graft to be studied primarily was Fluoromer Passivated Dacron (FPD) which was compared with ePTFE and with a knitted Teflon graft. A rapid increase in the metabolic activity of platelets was observed, followed by a steady-state for more than one hour, while the platelet metabolism did not differ among the various graft-materials. Leukocytes incubated with FPD showed a high initial metabolism, with a peak after about 15 minutes. After 60 minutes the metabolic response had reached control values. ePTFE and Teflon grafts differed significantly from FPD, without causing any peak metabolic activity. It may be concluded that FPD and ePTFE grafts, as evaluated in vitro, activate platelets to the same extent, while FPD causes a more extensive leukocyte activation. Whether these findings can be interpreted as differences in thrombogenicity and inflammatory responses has not been proven, but seems probable. This in vitro method should make it possible to further study human responses to synthetic materials a method possibly more reliable than animal experiments.
Collapse
Affiliation(s)
- P. Swartbol
- Departments of Surgery and Clinical Immunology, Lund University, Lund - Sweden
| | - H. Pärsson
- Departments of Surgery and Clinical Immunology, Lund University, Lund - Sweden
| | - L. Nässberger
- Departments of Surgery and Clinical Immunology, Lund University, Lund - Sweden
| | - L. Norgren
- Departments of Surgery and Clinical Immunology, Lund University, Lund - Sweden
| |
Collapse
|
12
|
Abstract
Coronary artery disease remains a major problem for Western societies. The advent of percutaneous interventions, including stents has brought clinical care to a new level of efficacy, yet problems remain. Restenosis following stenting in human coronary arteries appears at last to be yielding to therapeutic strategies, especially drug eluting stents. Because therapeutic percutaneous coronary intervention is widely dominated by the intracoronary stent, restenosis therapies must include the stented coronary artery. Animal models and in particular the porcine coronary model seem to represent the human coronary artery reaction to stenting. It mimics several clinical conditions including thrombosis and neointimal formation. A key question in the era of intravascular technologies is how well this and other models can predict clinical events. This paper discusses the models and their application.
Collapse
|
13
|
Reidy MA, Jackson C, Lindner V. Neointimal Proliferation: Control of Vascular Smooth Muscle Cell Growth. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1358863x9200300206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Affiliation(s)
- Jan Nilsson
- Karolinska Hospital and King Gustaf Vth Research Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery. Atherosclerosis 2016; 248:179-89. [PMID: 27018542 DOI: 10.1016/j.atherosclerosis.2016.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
AIMS Restenosis- an adverse consequence following angioplasty, and atherosclerosis are characterized by abnormal vascular smooth muscle cell (VSMC) proliferation and migration leading to neo-intima formation. In the present study, we investigated the inhibitory effects of alkaloid rich fraction (ARF) from Nelumbo nucifera and isolated compound neferine on platelet-derived growth factor (PDGF-BB) induced VSMC proliferation and migration in vitro and neo-intima formation in a rat carotid artery injury model. METHODS PDGF-BB induced VSMC proliferation and migration was assessed using colorimetric assay and modified Boyden chamber method respectively. Gene expression of cell cycle associated molecules was determined by reverse transcription-polymerase chain reaction (RT-PCR). The signaling molecules such as PDGF-Rβ, extracellular regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), P38, metalloproteinase (MMP)-9 and nuclear factor-kappa B (NF-κB) were determined by western blot analysis. Stress fiber formation was evaluated using immunofluorescence microscopy. The rat carotid artery balloon injury model was performed to assess the effect of ARF on neo-intima formation. RESULTS ARF possessed the strongest anti-oxidant activities. The anti-proliferative activity of both ARF and neferine was due to suppression of cyclin D1, cyclin E and cyclin-dependent kinase (Cdk) gene expression. Moreover, ARF and neferine inhibited PDGF-Rβ, ERK1/2, JNK and P38 activations and NF-κB translocation. Also, ARF and neferine inhibited VSMC migration by inhibiting MMP-9 activity without affecting cytoskeleton remodeling. In a rat carotid artery injury model, ARF inhibited neo-intima formation. CONCLUSION Our results indicate that ARF targets VSMC proliferation and migration to attenuate neo-intima formation by inhibition of PDGF-Rβ mediated signaling.
Collapse
|
16
|
Slee JB, Alferiev IS, Nagaswami C, Weisel JW, Levy RJ, Fishbein I, Stachelek SJ. Enhanced biocompatibility of CD47-functionalized vascular stents. Biomaterials 2016; 87:82-92. [PMID: 26914699 DOI: 10.1016/j.biomaterials.2016.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/27/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022]
Abstract
The effectiveness of endovascular stents is hindered by in-stent restenosis (ISR), a secondary re-obstruction of treated arteries due to unresolved inflammation and activation of smooth muscle cells in the arterial wall. We previously demonstrated that immobilized CD47, a ubiquitously expressed transmembrane protein with an established role in immune evasion, can confer biocompatibility when appended to polymeric surfaces. In present studies, we test the hypothesis that CD47 immobilized onto metallic surfaces of stents can effectively inhibit the inflammatory response thus mitigating ISR. Recombinant CD47 (recCD47) or a peptide sequence corresponding to the Ig domain of CD47 (pepCD47), were attached to the surfaces of both 316L-grade stainless steel foils and stents using bisphosphonate coordination chemistry and thiol-based conjugation reactions to assess the anti-inflammatory properties of CD47-functionalized surfaces. Initial in vitro and ex vivo analysis demonstrated that both recCD47 and pepCD47 significantly reduced inflammatory cell attachment to steel surfaces without impeding on endothelial cell retention and expansion. Using a rat carotid stent model, we showed that pepCD47-functionalized stents prevented fibrin and platelet thrombus deposition, inhibited inflammatory cell attachment, and reduced restenosis by 30%. It is concluded that CD47-modified stent surfaces mitigate platelet and inflammatory cell attachment, thereby disrupting ISR pathophysiology.
Collapse
Affiliation(s)
- Joshua B Slee
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Ivan S Alferiev
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, The University of Pennsylvania, USA
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA
| | - Ilia Fishbein
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA.
| | - Stanley J Stachelek
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, USA; Perelman School of Medicine, The University of Pennsylvania, USA.
| |
Collapse
|
17
|
|
18
|
Rodriguez MP, Tsihlis ND, Emond ZM, Wang Z, Varu VN, Jiang Q, Vercammen JM, Kibbe MR. Nitric oxide affects UbcH10 levels differently in type 1 and type 2 diabetic rats. J Surg Res 2015; 196:180-9. [PMID: 25801975 DOI: 10.1016/j.jss.2015.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) more effectively inhibits neointimal hyperplasia in type 2 diabetic versus nondiabetic and type 1 diabetic rodents. NO also decreases the ubiquitin-conjugating enzyme UbcH10, which is critical to cell-cycle regulation. This study seeks to determine whether UbcH10 levels in the vasculature of diabetic animal models account for the differential efficacy of NO at inhibiting neointimal hyperplasia. MATERIALS AND METHODS Vascular smooth muscle cells (VSMCs) harvested from nondiabetic lean Zucker (LZ) and type 2 diabetic Zucker diabetic fatty (ZDF) rats were exposed to high glucose (25 mM) and high insulin (24 nM) conditions to mimic the diabetic environment in vitro. LZ, streptozotocin-injected LZ (STZ, type 1 diabetic), and ZDF rats underwent carotid artery balloon injury (±10 mg PROLI/NO), and vessels were harvested at 3 and 14 d. UbcH10 was assessed by Western blotting and immunofluorescent staining. RESULTS NO more effectively reduced UbcH10 levels in LZ versus ZDF VSMCs; however, addition of insulin and glucose dramatically potentiated the inhibitory effect of NO on UbcH10 in ZDF VSMCs. Three days after balloon injury, Western blotting showed NO decreased free UbcH10 and increased polyubiquitinated UbcH10 levels by 35% in both STZ and ZDF animals. Fourteen days after injury, immunofluorescent staining showed increased UbcH10 levels throughout the arterial wall in all animal models. NO decreased UbcH10 levels in LZ and STZ rats but not in ZDF. CONCLUSIONS These data suggest a disconnect between UbcH10 levels and neointimal hyperplasia formation in type 2 diabetic models and contribute valuable insight regarding differential efficacy of NO in these models.
Collapse
Affiliation(s)
- Monica P Rodriguez
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Nick D Tsihlis
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zachary M Emond
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zheng Wang
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vinit N Varu
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qun Jiang
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Janet M Vercammen
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Melina R Kibbe
- Division of Vascular Surgery, Department of Surgery, and Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Division of Vascular Surgery, Department of Surgery, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
19
|
von Rossum A, Laher I, Choy JC. Immune-mediated vascular injury and dysfunction in transplant arteriosclerosis. Front Immunol 2015; 5:684. [PMID: 25628623 PMCID: PMC4290675 DOI: 10.3389/fimmu.2014.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Solid organ transplantation is the only treatment for end-stage organ failure but this life-saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels within transplanted organs are targeted by the immune system and the resultant vascular damage is a main contributor to acute and chronic graft failure. The vasculature is a unique tissue with specific immunological properties. This review discusses the interactions of the immune system with blood vessels in transplanted organs and how these interactions lead to the development of transplant arteriosclerosis, a leading cause of heart transplant failure.
Collapse
Affiliation(s)
- Anna von Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| | - Ismail Laher
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC , Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| |
Collapse
|
20
|
Gregory EK, Webb AR, Vercammen JM, Flynn ME, Ameer GA, Kibbe MR. Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats. Am J Physiol Heart Circ Physiol 2014; 307:H1419-29. [PMID: 25239800 DOI: 10.1152/ajpheart.00914.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oral all-trans retinoic acid (atRA) has been shown to reduce the formation of neointimal hyperplasia; however, the dose required was 30 times the chemotherapeutic dose, which already has reported side effects. As neointimal formation is a localized process, new approaches to localized delivery are required. This study assessed whether atRA within a citrate-based polyester, poly(1,8 octanediolcitrate) (POC), perivascular membrane would prevent neointimal hyperplasia following arterial injury. atRA-POC membranes were prepared and characterized for atRA release via high-performance liquid chromatography with mass spectrometry detection. Rat adventitial fibroblasts (AF) and vascular smooth muscle cells (VSMC) were exposed to various concentrations of atRA; proliferation, apoptosis, and necrosis were assessed in vitro. The rat carotid artery balloon injury model was used to evaluate the impact of the atRA-POC membranes on neointimal formation, cell proliferation, apoptosis, macrophage infiltration, and vascular cell adhesion molecule 1 (VCAM-1) expression in vivo. atRA-POC membranes released 12 μg of atRA over 2 wk, with 92% of the release occurring in the first week. At 24 h, atRA (200 μmol/l) inhibited [(3)H]-thymidine incorporation into AF and VSMC by 78% and 72%, respectively (*P = 0.001), with negligible apoptosis or necrosis. Histomorphometry analysis showed that atRA-POC membranes inhibited neointimal formation after balloon injury, with a 56%, 57%, and 50% decrease in the intimal area, intima-to-media area ratio, and percent stenosis, respectively (P = 0.001). atRA-POC membranes had no appreciable effect on apoptosis or proliferation at 2 wk. Regarding biocompatibility, we found a 76% decrease in macrophage infiltration in the intima layer (P < 0.003) in animals treated with atRA-POC membranes, with a coinciding 53% reduction in VCAM-1 staining (P < 0.001). In conclusion, perivascular delivery of atRA inhibited neointimal formation and restenosis. These data suggest that atRA-POC membranes may be suitable as localized therapy to inhibit neointimal hyperplasia following open cardiovascular procedures.
Collapse
Affiliation(s)
- Elaine K Gregory
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois
| | - Antonio R Webb
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern University, Evanston, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois; VesselTek Biomedical, Chicago, Illinois; University of Florida, Gainesville, Florida
| | - Janet M Vercammen
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois
| | - Megan E Flynn
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois
| | - Guillermo A Ameer
- Biomedical Engineering Department, McCormick School of Engineering, Northwestern University, Evanston, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Illinois;
| |
Collapse
|
21
|
Alagem-Shafir M, Kivovich E, Tzchori I, Lanir N, Falah M, Flugelman M, Dinnar U, Beyar R, Lotan N, Sivan S. The formation of an anti-restenotic/anti-thrombotic surface by immobilization of nitric oxide synthase on a metallic carrier. Acta Biomater 2014; 10:2304-12. [PMID: 24389316 DOI: 10.1016/j.actbio.2013.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
Coronary stenosis due to atherosclerosis, the primary cause of coronary artery disease, is generally treated by balloon dilatation and stent implantation, which can result in damage to the endothelial lining of blood vessels. This leads to the restenosis of the lumen as a consequence of migration and proliferation of smooth muscle cells (SMCs). Nitric oxide (NO), which is produced and secreted by vascular endothelial cells (ECs), is a central anti-inflammatory and anti-atherogenic player in the vasculature. The goal of the present study was to develop an enzymatically active surface capable of converting the prodrug l-arginine, to the active drug, NO, thus providing a targeted drug delivery interface. NO synthase (NOS) was chemically immobilized on the surface of a stainless steel carrier with preservation of its activity. The ability of this functionalized NO-producing surface to prevent or delay processes involved in restenosis and thrombus formation was tested. This surface was found to significantly promote EC adhesion and proliferation while inhibiting that of SMCs. Furthermore, platelet adherence to this surface was markedly inhibited. Beyond the application considered here, this approach can be implemented for the local conversion of any systemically administered prodrug to the active drug, using catalysts attached to the surface of the implant.
Collapse
|
22
|
Lei J, Vodovotz Y, Tzeng E, Billiar TR. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013; 35:175-85. [DOI: 10.1016/j.niox.2013.09.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/02/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
|
23
|
Tang R, Cui XB, Wang JN, Chen SY. CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair. Arterioscler Thromb Vasc Biol 2013; 33:2336-44. [PMID: 24008161 DOI: 10.1161/atvbaha.113.301561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular remodeling as a result of smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, antineointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, because of their nonspecific effect on endothelial cells (ECs). The objective of this study is to identify a therapeutic target that differentially regulates SMC and EC proliferation. APPROACH AND RESULTS Using both rat balloon injury and mouse wire injury models, we identified CTP synthase 1 (CTPS1) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization as a result of induction of CTP synthesis salvage pathway enzymes nucleoside-diphosphate kinase A and B in ECs. Diphosphate kinase B seemed to preserve EC proliferation via use of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelialization in vivo. CONCLUSIONS Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair after injury.
Collapse
Affiliation(s)
- Rui Tang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, GA (R.T., X.-B.C., J.-N.W., S.-Y.C.); and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.)
| | | | | | | |
Collapse
|
24
|
Ly KH, Liozon E, Fauchais AL, Vidal E. Physiopathologie de l’artérite à cellules géantes. Rev Med Interne 2013; 34:392-402. [DOI: 10.1016/j.revmed.2013.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
|
25
|
Karki R, Ho OM, Kim DW. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2013; 1830:2619-28. [PMID: 23274740 DOI: 10.1016/j.bbagen.2012.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/19/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. METHODS Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. RESULTS Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. CONCLUSION Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. GENERAL SIGNIFICANCE Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, USA
| | | | | |
Collapse
|
26
|
Nelumbo nucifera leaf extract inhibits neointimal hyperplasia through modulation of smooth muscle cell proliferation and migration. Nutrition 2013; 29:268-75. [DOI: 10.1016/j.nut.2012.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/22/2012] [Accepted: 04/29/2012] [Indexed: 11/21/2022]
|
27
|
Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, Telljohann R, Zhao M, Krug AW, Pikilidou M, Monticone RE, Wersto R, Van Eyk J, Lakatta EG. MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell 2012; 11:500-8. [PMID: 22385834 PMCID: PMC3350574 DOI: 10.1111/j.1474-9726.2012.00813.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An accumulation of milk fat globule EGF-8 protein (MFG-E8) occurs within the context of arterial wall inflammatory remodeling during aging, hypertension, diabetes mellitus, or atherosclerosis. MFG-E8 induces VSMC invasion, but whether it affects VSMC proliferation, a salient feature of arterial inflammation, is unknown. Here, we show that in the rat arterial wall in vivo, PCNA and Ki67, markers of cell cycle activation, increase with age between 8 and 30 months. In fresh and early passage VSMC isolated from old aortae, an increase in CDK4 and PCNA, an increase in the acceleration of cell cycle S and G2 phases, decrease in the G1/G0 phase, and an increase in PDGF and its receptors confer elevated proliferative capacity, compared to young VSMC. Increased coexpression and physical interaction of MFG-E8 and integrin αvβ5 occur with aging in both the rat aortic wall in vivo and in VSMC in vitro. In young VSMC in vitro, MFG-E8 added exogenously, or overexpressed endogenously, triggers phosphorylation of ERK1/2, augmented levels of PCNA and CDK4, increased BrdU incorporation, and promotes proliferation, via αvβ5 integrins. MFG-E8 silencing, or its receptor inhibition, or the blockade of ERK1/2 phosphorylation in these cells reduces PCNA and CDK4 levels and decelerates the cell cycle S phase, conferring a reduction in proliferative capacity. Collectively, these results indicate that MFG-E8 in a dose-dependent manner coordinates the expression of cell cycle molecules and facilitates VSMC proliferation via integrin/ERK1/2 signaling. Thus, an increase in MFG-E8 signaling is a mechanism of the age-associated increase in aortic VSMC proliferation.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cell Growth Processes/physiology
- Immunohistochemistry
- Integrins/metabolism
- MAP Kinase Signaling System
- Male
- Milk Proteins/biosynthesis
- Milk Proteins/genetics
- Milk Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation
- Platelet-Derived Growth Factor/metabolism
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging-National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaufman CL, Ouseph R, Blair B, Kutz JE, Tsai TM, Scheker LR, Tien HY, Moreno R, Ozyurekoglu T, Banegas R, Murphy E, Burns CB, Zaring R, Cook DF, Marvin MR. Graft vasculopathy in clinical hand transplantation. Am J Transplant 2012; 12:1004-16. [PMID: 22325051 DOI: 10.1111/j.1600-6143.2011.03915.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allogeneic hand transplantation is now a clinical reality. While results have been encouraging, acute rejection rates are higher than in their solid-organ counterparts. In contrast, chronic rejections, as defined by vasculopathy and/or fibrosis and atrophy of skin and other tissues, as well as antibody mediated rejection, have not been reported in a compliant hand transplant recipient. Monitoring vascularized composite allograft (VCA) hand recipients for rejection has routinely involved punch skin biopsies, vascular imaging and graft appearance. Our program, which has transplanted a total of 6 hand recipients, has experience which challenges these precepts. We present evidence that the vessels, both arteries and veins may also be a primary target of rejection in the hand. Two of our recipients developed severe intimal hyperplasia and vasculopathy early post-transplant. An analysis of events and our four other patients has shown that the standard techniques used for surveillance of rejection (i.e. punch skin biopsies, DSA and conventional vascular imaging studies) are inadequate for detecting the early stages of vasculopathy. In response, we have initiated studies using ultrasound biomicroscopy (UBM) to evaluate the vessel wall thickness. These findings suggest that vasculopathy should be a focus of frequent monitoring in VCA of the hand.
Collapse
Affiliation(s)
- C L Kaufman
- Christine M. Kleinert Institute, Louisville, KY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Magnoliae Cortex inhibits intimal thickening of carotid artery through modulation of proliferation and migration of vascular smooth muscle cells. Food Chem Toxicol 2012; 50:634-40. [DOI: 10.1016/j.fct.2011.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022]
|
30
|
Torres RA, Drake DA, Solodushko V, Jadhav R, Smith E, Rocic P, Weber DS. Slingshot isoform-specific regulation of cofilin-mediated vascular smooth muscle cell migration and neointima formation. Arterioscler Thromb Vasc Biol 2012; 31:2424-31. [PMID: 21868701 DOI: 10.1161/atvbaha.111.232769] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We hypothesized that cofilin activation by members of the slingshot (SSH) phosphatase family is a key mechanism regulating vascular smooth muscle cell (VSMC) migration and neoinitima formation following vascular injury. METHODS AND RESULTS Scratch wound and modified Boyden chamber assays were used to assess VSMC migration following downregulation of the expression of cofilin and each SSH phosphatase isoform (SSH1, SSH2, and SSH3) by small interfering RNA (siRNA), respectively. Cofilin siRNA greatly attenuated the ability of VSMC migration into the "wound," and platelet-derived growth factor (PDGF)-induced migration was virtually eliminated versus a 3.5-fold increase in nontreated VSMCs, establishing a critical role for cofilin in VSMC migration. Cofilin activation (dephosphorylation) was increased in PDGF-stimulated VSMCs. Thus, we assessed the role of the SSH family of phosphatases on cofilin activation and VSMC migration. Treatment with either SSH1 or SSH2 siRNA attenuated cofilin activation, whereas SSH3 siRNA had no effect. Only SSH1 siRNA significantly reduced wound healing and PDGF-induced VSMC migration. Both SSH1 expression (4.7-fold) and cofilin expression (3.9-fold) were increased in balloon injured versus noninjured carotid arteries, and expression was prevalent in the neointima. CONCLUSION These studies demonstrate that the regulation of VSMC migration by cofilin is SSH1 dependent and that this mechanism potentially contributes to neointima formation following vascular injury in vivo.
Collapse
Affiliation(s)
- Rebecca A Torres
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kogushi M, Matsuoka T, Kuramochi H, Murakami K, Kawata T, Kimura A, Chiba K, Musha T, Suzuki S, Kawahara T, Kajiwara A, Hishinuma I. Oral administration of the thrombin receptor antagonist E5555 (atopaxar) attenuates intimal thickening following balloon injury in rats. Eur J Pharmacol 2011; 666:158-64. [PMID: 21635884 DOI: 10.1016/j.ejphar.2011.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022]
Abstract
Thrombin is a powerful agonist for a variety of cellular responses including platelet aggregation and vascular smooth muscle cell (SMC) proliferation. These actions are mediated by a thrombin receptor known as protease-activated receptor-1 (PAR-1). Recently we discovered that 1-(3-tert-butyl-4-methoxy-5-morpholinophenyl)-2-(5,6-diethoxy-7-fluoro-1-imino-1,3-dihydro-2H-isoindol-2-yl)ethanone hydrobromide (E5555, atopaxar) is a potent and selective thrombin receptor antagonist. This study characterized the pharmacological effects of E5555 on SMC proliferation in vitro and in a rat model of intimal thickening after balloon injury in vivo. E5555 selectively inhibited rat aortic SMC proliferation induced by thrombin and thrombin receptor-activating peptide (TRAP) with half maximal inhibitory concentration (IC(50)) values of 0.16 and 0.038 μM, respectively. E5555 did not inhibit rat SMC proliferation induced by basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) at concentrations up to 1μM. In addition, E5555 inhibited human aortic SMC proliferation induced by thrombin at concentrations of 0.3 and 3units/ml with IC(50) values of 0.028 and 0.079 μM, respectively, whereas it did not affect bFGF-induced proliferation at concentrations up to 1μM. Repeated oral administration of 30 mg/kg E5555 (once daily for 16 days) significantly reduced neointimal formation in the balloon-injured rat arterial model. These results suggested that a PAR-1 antagonist could be effective for treating restenosis following vascular intervention in addition to preventing thrombus formation. E5555 could thus have therapeutic potential for restenosis and chronic atherothrombotic disease.
Collapse
Affiliation(s)
- Motoji Kogushi
- Eisai Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kulik A, Le May MR, Voisine P, Tardif JC, Delarochelliere R, Naidoo S, Wells GA, Mesana TG, Ruel M. Aspirin plus clopidogrel versus aspirin alone after coronary artery bypass grafting: the clopidogrel after surgery for coronary artery disease (CASCADE) Trial. Circulation 2010; 122:2680-7. [PMID: 21135365 DOI: 10.1161/circulationaha.110.978007] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND clopidogrel inhibits intimal hyperplasia in animal studies and therefore may reduce saphenous vein graft (SVG) intimal hyperplasia after coronary artery bypass grafting. The Clopidogrel After Surgery for Coronary Artery DiseasE (CASCADE) study was undertaken to evaluate whether the addition of clopidogrel to aspirin inhibits SVG disease after coronary artery bypass grafting, as assessed at 1 year by intravascular ultrasound. METHODS AND RESULTS in this double-blind phase II trial, 113 patients undergoing coronary artery bypass grafting with SVGs were randomized to receive aspirin 162 mg plus clopidogrel 75 mg daily or aspirin 162 mg plus placebo daily for 1 year. The primary outcome was SVG intimal hyperplasia (mean intimal area) as determined by intravascular ultrasound at 1 year. Secondary outcomes were graft patency, major adverse cardiovascular events, and major bleeding. One-year intravascular ultrasound and coronary angiography were performed in 92 patients (81.4%). At 1 year, SVG intimal area did not differ significantly between the 2 groups (4.1 ± 2.0 versus 4.5 ± 2.1 mm(2), aspirin-clopidogrel versus aspirin-placebo, P=0.44). Overall 1-year graft patency was 95.2% in the aspirin-clopidogrel group compared with 95.5% in the aspirin-placebo group (P=0.90), and SVG patency was 94.3% in the aspirin-clopidogrel group versus 93.2% in the aspirin-placebo group (P=0.69). Freedom from major adverse cardiovascular events at 1 year was 92.9 ± 3.4% in the aspirin-clopidogrel group and 91.1 ± 3.8% in the aspirin-placebo group (P=0.76). The incidence of major bleeding at 1 year was similar for the 2 groups (1.8% versus 0%, aspirin-clopidogrel versus aspirin-placebo, P=0.50). CONCLUSIONS compared with aspirin monotherapy, the combination of aspirin plus clopidogrel did not significantly reduce the process of SVG intimal hyperplasia 1 year after coronary artery bypass grafting.
Collapse
Affiliation(s)
- Alexander Kulik
- Lynn Heart and Vascular Institute, University of Ottawa Heart Institute, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Winkelmann BR, von Holt K, Unverdorben M. Smoking and atherosclerotic cardiovascular disease: Part I: atherosclerotic disease process. Biomark Med 2010; 3:411-28. [PMID: 20477486 DOI: 10.2217/bmm.09.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The normal endothelium inhibits platelet and leukocyte adhesion to the vascular surface maintaining a balance of profibrinolytic and prothrombotic activity. Endothelial function is assessed largely as endothelium-dependent vasomotion, partly based on the assumption that impaired endothelium-dependent vasodilation reflects the alteration of important endothelial functions. Atherosclerotic risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, are associated with endothelial dysfunction. In the diseased endothelium, the balance between pro- and antithrombotic, pro- and anti-inflammatory, pro- and antiadhesive or pro- and antioxidant effects shifts towards a proinflammatory, prothrombotic, pro-oxidative and proadhesive phenotype of the endothelium. A common mechanism underlying endothelial dysfunction is related to the increased vascular production of reactive oxygen species. Recent studies suggest that inflammation per se, and C-reactive protein in particular, may contribute directly to endothelial dysfunction. The loss of endothelial integrity is a hallmark of atherosclerosis and the causal possible link between each individual risk factor, the development of atherosclerosis and the subsequent clinical events, such as myocardial infarction or stroke.
Collapse
|
34
|
Spiguel LRP, Chandiwal A, Vosicky JE, Weichselbaum RR, Skelly CL. Concomitant proliferation and caspase-3 mediated apoptosis in response to low shear stress and balloon injury. J Surg Res 2010; 161:146-55. [PMID: 19482308 PMCID: PMC2906117 DOI: 10.1016/j.jss.2008.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/28/2008] [Accepted: 11/03/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arterial remodeling occurs as a response to hemodynamic change and direct vessel wall injury through the process of neointimal hyperplasia (NH). A concomitant response of vascular smooth muscle cell (VSMC) proliferation and apoptosis exists. The purpose of this study is to assess the cellular response of vessels following exposure to low shear stress (tau) and balloon injury in order to further elucidate the mechanisms underlying vascular injury. Our hypothesis is that the combination of low tau and balloon injury results in NH approximating that seen in clinical arterial restenosis, and that quantitative analysis of VSMC proliferation and apoptosis correlates with the associated increase in arterial remodeling. METHODS AND RESULTS New Zealand White rabbits underwent surgery on the carotid artery creating low tau (n =11), balloon injury (n = 11), combined low tau and balloon injury (n =11), and sham (n = 13) groups. Experiments were terminated at 1, 3, and 28 d. Day 1 and 3 arteries were analyzed with immunohistochemistry for apoptotic markers, terminal transferase dUTP nick end labeling (TUNEL), and activated caspase-3, and a cellular proliferation marker, accumulated proliferating cell nuclear antigen (PCNA), as well as immunoblot analysis for activated caspase-3 and PCNA at day 3. There was significantly greater apoptosis in the combined group as compared with the other groups assessed by quantitative TUNEL and activated caspase-3 levels at both days 1 and 3. Similarly, an increase in cellular proliferation assessed by PCNA expression, was significantly greater in the combined group as compared with the other groups. At 28 d there was no difference in NH observed in the low tau (26 +/- 3 microm) and balloon injury (51 +/- 17 microm) groups. However, significantly more NH was observed in the combined group (151 +/- 35 microm) as compared with the other groups. CONCLUSIONS An increase in VSMC apoptosis via a caspase-3 dependent pathway is up-regulated by 24 h in the face of combined low shear stress and balloon-induced vessel wall injury. Paradoxically, this increase in VSMC apoptosis is associated with a significant increase in neointimal thickening at 28 d. The concomitant increase of both apoptosis and proliferation are indicative of a robust arterial remodeling response.
Collapse
Affiliation(s)
- Lisa R P Spiguel
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
35
|
Pathogenesis of giant cell arteritis: More than just an inflammatory condition? Autoimmun Rev 2010; 9:635-45. [PMID: 20457278 DOI: 10.1016/j.autrev.2010.05.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 11/21/2022]
Abstract
Giant cell arteritis (GCA) is characterized by intimal hyperplasia and luminal obstruction leading to ischemic manifestations involving extra-cranial branches of carotid arteries and aorta. Histopathological lesions involve all layers of the arterial wall and are associated with multinucleated giant cells, fragmented internal elastic lamina and polymorphic cellular infiltrates, including T lymphocytes and macrophages. The pathophysiology of GCA is still poorly understood. After dendritic cell activation, CD4(+) T lymphocytes, T helper 1 (Th1) cells, produce interferon gamma and modulate macrophage activation and functions, and Th17 cells produce interleukin 17 (IL-17), which can induce cytokine production by macrophages and fibroblasts. Macrophages in the adventitia produce pro-inflammatory cytokines such as IL-1, IL-6 and tumor necrosis factor alpha. These cytokines promote arterial wall and systemic inflammation. Questions remain regarding the nature of the antigen(s) triggering dendritic cell activation and the mechanisms underlying vascular remodeling. Here we review recent advances in the pathogenesis of GCA, with emphasis on the interactions between cells of the immune system and components of the vessel wall, including vascular smooth muscle cells and endothelial cells, leading to vascular remodeling. Finally, we propose new areas of investigation that could help understand the triggering factors and key pathogenic events in GCA.
Collapse
|
36
|
Weber AA, Schrör K. The significance of platelet-derived growth factors for proliferation of vascular smooth muscle cells. Platelets 2010. [DOI: 10.1080/09537109909169169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Shirotani M, Yui Y, Kawai C. Restenosis after Coronary Angioplasty: Pathogenesis of Neointimal Thickening Initiated by Endothelial Loss. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329309100951] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Serruys PW, Heyndrickx GR, Patel J, Cummins PA, Kleijne JA, Clowes AW. Effect of an anti‐PDGF‐β‐receptor‐blocking antibody on restenosis in patients undergoing elective stent placement. ACTA ACUST UNITED AC 2009; 5:214-22. [PMID: 14630567 DOI: 10.1080/14628840310017177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM The aim of the study was to determine whether a single intravenous infusion of 25 mg/kg CDP860, a humanized di-Fab' fragment against PDGF-beta receptor, leads to a reduction of in-stent restenosis. METHODS In this phase II, double-blind, placebo-controlled, multicentre study 145 patients presenting with stable or unstable angina were randomized to a single infusion of placebo or active drug (CDP860) before undergoing stenting. Quantitative angiography and 3D intravascular ultrasound (IVUS) were obtained at baseline and follow-up. Primary endpoint was the IVUS assessment of percentage in-stent volume obstruction. RESULTS At six-month follow-up, the placebo group and CDP860 group did not differ significantly regarding minimal luminal diameter (1.75 +/- 0.68 versus 1.82 +/--0.66 mm), restenosis rate (16.2 versus 14.1%), minimal lumen area (4.71 +/- 1.85 versus 4.41 +/- 1.77 mm(2) ), in-stent neointimal volume (30 +/- 23 versus 31 +/- 31 mm(3)) and in-stent obstruction volume (23.8 +/- 14.4 versus 22.1 +/- 15.3%). Major adverse cardiac events at 210 days were similar in both groups: death 1.5 versus 1.4%, myocardial infarction 5.9 versus 8.1% and target vessel revascularization 16.4 versus 17.6%. CONCLUSION A single intravenous administration of monoclonal antibody against PDGF-beta receptor failed to reduce the amount of neointimal hyperplasia after stent implantation.
Collapse
|
39
|
Hawrylowicz CM. Viewpoint: A Potential Role for Platelet Derived Cytokines in the Inflammatory Response. Platelets 2009; 4:1-10. [DOI: 10.3109/09537109309013189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
McCarthy HO, Coulter JA, Robson T, Hirst DG. Gene therapy via inducible nitric oxide synthase: a tool for the treatment of a diverse range of pathological conditions. J Pharm Pharmacol 2008; 60:999-1017. [PMID: 18644193 DOI: 10.1211/jpp.60.8.0007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO(.)) is a reactive nitrogen radical produced by the NO synthase (NOS) enzymes; it affects a plethora of downstream physiological and pathological processes. The past two decades have seen an explosion in the understanding of the role of NO(.) biology, highlighting various protective and damaging modes of action. Much of the controversy surrounding the role of NO(.) relates to the differing concentrations generated by the three isoforms of NOS. Both calcium-dependent isoforms of the enzyme (endothelial and neuronal NOS) generate low-nanomolar/picomolar concentrations of NO(.). By contrast, the calcium-independent isoform (inducible NOS (iNOS)) generates high concentrations of NO(.), 2-3 orders of magnitude greater. This review summarizes the current literature in relation to iNOS gene therapy for the therapeutic benefit of various pathological conditions, including various states of vascular disease, wound healing, erectile dysfunction, renal dysfunction and oncology. The available data provide convincing evidence that manipulation of endogenous NO(.) using iNOS gene therapy can provide the basis for future clinical trials.
Collapse
Affiliation(s)
- Helen O McCarthy
- School of Pharmacy, McClay Research Centre, Queen's University, Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| | | | | | | |
Collapse
|
41
|
Lu CJ, Du H, Wu J, Jansen DA, Jordan KL, Xu N, Sieck GC, Qian Q. Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 2008; 31:171-84. [PMID: 18483460 DOI: 10.1159/000132462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022] Open
Abstract
Although primary cilia are increasingly recognized to play sensory roles in several cellular systems, their role in vascular smooth muscle cells (VSMCs) has not been defined. We examined in situ position/orientation of primary cilia and ciliary proteins in VSMCs and tested the hypothesis that primary cilia of VSMCs exert sensory functions. By immunofluorescence and electron microscopic imaging, primary cilia of VSMCs were positioned with their long axis aligned at 58.3 degrees angle in relation to the cross-sectional plane of the artery, projecting into the extracellular matrix (ECM). Polycystin-1, polycystin-2 and alpha 3- and beta1-integrins are present in cilia. In scratch wound experiments, the majority of cilia were repositioned to the cell-wound interface. Such repositioning was largely abolished by a beta1-integrin blocker. Moreover, compared to non-ciliated/deciliated cells, ciliated VSMCs showed more efficient migration in wound repair. Lastly, when directly stimulated with collagen (an ECM component and cognate ligand for alpha 3beta1-integrins) or induced ciliary deflection, VSMCs responded with a rise in [Ca(2+)](i) that is dependent on the presence of cilia. Taken together, primary cilia of VSMCs are preferentially oriented, possess proteins critical for cell-ECM interaction and mechanosensing and respond to ECM protein and mechanical stimulations. These observations suggest a role for primary cilia in mechanochemical sensing in vasculature.
Collapse
Affiliation(s)
- C J Lu
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine and Mayo Graduate School, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lawton MT, Arnold CM, Kim YJ, Bogarin EA, Stewart CL, Wulfstat AA, Derugin N, Deen D, Young WL. RADIATION ARTERIOPATHY IN THE TRANSGENIC ARTERIOVENOUS FISTULA MODEL. Neurosurgery 2008. [DOI: 10.1227/01.neu.0000313579.15666.8d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Lawton MT, Arnold CM, Kim YJ, Bogarin EA, Stewart CL, Wulfstat AA, Derugin N, Deen D, Young WL. RADIATION ARTERIOPATHY IN THE TRANSGENIC ARTERIOVENOUS FISTULA MODEL. Neurosurgery 2008; 62:1129-38; discussion 138-9. [PMID: 18580811 DOI: 10.1227/01.neu.0000325875.82999.3c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael T Lawton
- Department of Neurological Surgery, Center for Cerebrovascular Research, University of California at San Francisco, San Francisco, California 94143-0112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
WAKSMAN RON, PAKALA RAJBABU, ROY PROBAL, BAFFOUR RICHARD, HELLINGA DAVID, SEABRON RUFUS, CHAN ROSANNA, SCHEINOWITZ MICKEY, KOLODGIE FRANK, VIRMANI RENU. Effect of Clopidogrel on Neointimal Formation and Inflammation in Balloon-Denuded and Radiated Hypercholesterolemic Rabbit Iliac Arteries. J Interv Cardiol 2008; 21:122-8. [DOI: 10.1111/j.1540-8183.2008.00347.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Kim TK, Kim YJ, Park CS, Park HJ, Kim DB, Jang SW, Kim PJ, Jung HO, Baek SH, Seung KB, Choi KB. Effect of High Dose External Irradiation on the Matrix Metalloprotease-2 Expression in a Rat Carotid Artery Injury Model. Korean Circ J 2008. [DOI: 10.4070/kcj.2008.38.4.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tae Kyoon Kim
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Joo Kim
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chan Seok Park
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Bin Kim
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Won Jang
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pum-Joon Kim
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Ok Jung
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hong Baek
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Bae Seung
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyu-Bo Choi
- Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
46
|
Kapadia MR, Chow LW, Tsihlis ND, Ahanchi SS, Eng JW, Murar J, Martinez J, Popowich DA, Jiang Q, Hrabie JA, Saavedra JE, Keefer LK, Hulvat JF, Stupp SI, Kibbe MR. Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg 2008; 47:173-82. [PMID: 18178471 PMCID: PMC2268106 DOI: 10.1016/j.jvs.2007.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 08/30/2007] [Accepted: 09/03/2007] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Nitric oxide (NO) has been shown to inhibit neointimal hyperplasia after arterial interventions in several animal models. To date, however, NO-based therapies have not been used in the clinical arena. Our objective was to combine nanofiber delivery vehicles with NO chemistry to create a novel, more potent NO-releasing therapy that can be used clinically. Thus, the aim of this study was to evaluate the perivascular application of spontaneously self-assembling NO-releasing nanofiber gels. Our hypothesis was that this application would prevent neointimal hyperplasia. METHODS Gels consisted of a peptide amphiphile, heparin, and a diazeniumdiolate NO donor (1-[N-(3-Aminopropyl)-N-(3-ammoniopropyl)]diazen-1-ium-1,2-diolate [DPTA/NO] or disodium 1-[(2-Carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate [PROLI/NO]). Nitric oxide release from the gels was evaluated by the Griess reaction, and scanning electron microscopy confirmed nanofiber formation. Vascular smooth muscle cell (VSMC) proliferation and cell death were assessed in vitro by (3)H-thymidine incorporation and Personal Cell Analysis (PCA) system (Guava Technologies, Hayward, Calif). For the in vivo work, gels were modified by reducing the free-water content. Neointimal hyperplasia after periadventitial gel application was evaluated using the rat carotid artery injury model at 14 days (n = 6 per group). Inflammation and proliferation were examined in vivo with immunofluorescent staining against CD45, ED1, and Ki67 at 3 days (n = 2 per group), and graded by blinded observers. Endothelialization was assessed by Evans blue injection at 7 days (n = 3 per group). RESULTS Both DPTA/NO and PROLI/NO, combined with the peptide amphiphile and heparin, formed nanofiber gels and released NO for 4 days. In vitro, DPTA/NO inhibited VSMC proliferation and induced cell death to a greater extent than PROLI/NO. However, the DPTA/NO nanofiber gel only reduced neointimal hyperplasia by 45% (intima/media [I/M] area ratio, 0.45 +/- 0.07), whereas the PROLI/NO nanofiber gel reduced neointimal hyperplasia by 77% (I/M area ratio, 0.19 +/- 0.03, P < .05) vs control (injury alone I/M area ratio, 0.83 +/- 0.07; P < .05). Both DPTA/NO and PROLI/NO nanofiber gels significantly inhibited proliferation in vivo (1.06 +/- 0.30 and 0.19 +/- 0.11 vs injury alone, 2.02 +/- 0.20, P < .05), yet had minimal effect on apoptosis. Only the PROLI/NO nanofiber gel inhibited inflammation (monocytes and leukocytes). Both NO-releasing nanofiber gels stimulated re-endothelialization. CONCLUSIONS Perivascular application of NO-releasing self-assembling nanofiber gels is an effective and simple therapy to prevent neointimal hyperplasia after arterial injury. Our study demonstrates that the PROLI/NO nanofiber gel most effectively prevented neointimal hyperplasia and resulted in less inflammation than the DPTA/NO nanofiber gel. This therapy has great clinical potential to prevent neointimal hyperplasia after open vascular interventions in patients.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carotid Arteries/drug effects
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Death/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Delayed-Action Preparations
- Disease Models, Animal
- Drug Carriers
- Drug Compounding
- Endothelium, Vascular/drug effects
- Gels
- Hyperplasia
- Male
- Models, Molecular
- Molecular Structure
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nanotechnology/methods
- Nitric Oxide/metabolism
- Nitric Oxide Donors/chemistry
- Nitric Oxide Donors/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Donors/therapeutic use
- Proline/analogs & derivatives
- Proline/pharmacology
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Muneera R Kapadia
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Lesley W Chow
- Department of Material Science and Engineering, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Nick D Tsihlis
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Sadaf S Ahanchi
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Jason W Eng
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Jozef Murar
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Janet Martinez
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Daniel A Popowich
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Qun Jiang
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Joseph A Hrabie
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Building 538, Frederick, MD
| | - Joseph E Saavedra
- Basic Research Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Building 538, Frederick, MD
| | - Larry K Keefer
- Laboratory for Comparative Carcinogenesis/Center for Cancer Research, National Cancer Institute-Frederick, Building 538, Frederick, MD
| | - James F Hulvat
- Department of Material Science and Engineering, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Samuel I Stupp
- Department of Material Science and Engineering, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| | - Melina R Kibbe
- Division of Vascular Surgery, Northwestern University, Chicago, IL
- Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
47
|
Inoue S, Nakazawa T, Cho A, Dastvan F, Davastan F, Shilling D, Daum G, Reidy M. Regulation of arterial lesions in mice depends on differential smooth muscle cell migration: a role for sphingosine-1-phosphate receptors. J Vasc Surg 2007; 46:756-63. [PMID: 17903653 DOI: 10.1016/j.jvs.2007.05.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/20/2007] [Indexed: 10/22/2022]
Abstract
The response of mice arteries to injury varies significantly between strains. FVB mice develop large neointimas after injury, whereas very small lesions form in C57BL/6 mice. After injury, platelet interaction with the denuded artery and early smooth muscle (SMC) replication are identical in both strains; however, the migration of SMCs differs significantly. FVB cells readily move into the developing neointima, whereas only the occasional C57BL/6 cells migrate. Injured arteries showed no difference in matrix metalloproteinases (MMP-2 and MMP-9) and plasminogen activator activities. In vitro, sphingosine-1-phosphate (S1P) in combination with platelet-derived growth factor (PDGF) stimulates migration of FVB cells but inhibits migration of C57BL/6 SMCs. Both SMCs migrate equally well to PDGF alone. One explanation is that the SMCs express different S1P receptors. Real-time polymerase chain reaction shows that FVB cells express higher levels of S1P receptor-1 (S1P(1)) compared with C57BL/6 cells, which express higher levels of S1P receptor-2 (S1P(2)). In addition, the migration of C57BL/6 cells can be increased by inhibiting S1P(2), whereas inhibiting S1P(1) expression slows the migration of FVB cells. Taken together these studies suggest that expression of S1P receptors vary within inbred mouse strains and that S1P is critical for SMC migration and lesion formation after injury.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/physiopathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- In Vitro Techniques
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Plasminogen Activators/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/metabolism
Collapse
Affiliation(s)
- Shinya Inoue
- Department of Pathology, University of Washington, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kapadia MR, Aalami OO, Najjar SF, Jiang Q, Murar J, Lyle B, Eng JW, Kane B, Carroll T, Cahill PM, Kibbe MR. A reproducible porcine ePTFE arterial bypass model for neointimal hyperplasia. J Surg Res 2007; 148:230-7. [PMID: 18028957 DOI: 10.1016/j.jss.2007.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Late failure of prosthetic vascular bypass grafting using expanded polytetrafluoroethylene (ePTFE) is secondary to the development of neointimal hyperplasia, most commonly at the distal anastomosis. To develop therapies that can improve upon current prosthetic vascular bypass grafting, a large animal model of prosthetic bypass grafting that results in reproducible neointimal hyperplasia is necessary. METHODS We performed bilateral end-to-side carotid artery bypasses with 6 mm ePTFE in a porcine model (n = 11). We studied graft patency using magnetic resonance angiography (MRA, 3 wk), duplex ultrasonography (4 wk), and digital-subtraction contrast angiography (4 wk). Animals were sacrificed at 4 wk and morphometric analysis was performed. RESULTS Of the 11 animals that underwent surgery, one pig died from respiratory compromise; of the remaining 10, graft patency was 90% at 4 wk. Peak systolic and end diastolic velocities were established for this model using ultrasonography. MRA, ultrasonography, and angiography confirmed graft patency and were complimentary tools to evaluate the grafts. Development of neointimal hyperplasia was reproducible at 4 wk in both the proximal and distal anastomoses (2.5 to 3 mm(2)) of the ePTFE bypass grafts. CONCLUSION We developed a reproducible porcine ePTFE carotid artery bypass model for studying neointimal hyperplasia. Not only does this model allow for the manipulation and evaluation of potential therapies, but patency and neointimal hyperplasia can be easily evaluated by traditional means, such as MRA, ultrasonography, and angiography. This preclinical model is ideal for evaluation of novel therapies in vivo designed to inhibit neointimal hyperplasia following arterial reconstruction with prosthetic bypass grafting.
Collapse
Affiliation(s)
- Muneera R Kapadia
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ahanchi SS, Tsihlis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg 2007; 45 Suppl A:A64-73. [PMID: 17544026 DOI: 10.1016/j.jvs.2007.02.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/11/2007] [Indexed: 12/19/2022]
Abstract
Since its discovery, nitric oxide (NO) has emerged as a biologically important molecule and was even named Molecule of the Year by Science magazine in 1992. Specific to our interests, NO has been implicated in the regulation of vascular pathology. This review begins with a summary of the molecular biology of NO, from its discovery to the mechanisms of endogenous production. Next, we turn our attention to describing the arterial injury response of neointimal hyperplasia, and we review the role of NO in the pathophysiology of neointimal hyperplasia. Finally, we review the literature regarding NO-based therapies. This includes the development of inhalational-based NO therapies, systemically administered L-arginine and NO donors, NO synthase gene therapy, locally applied NO donors, and NO-releasing prosthetic materials. By reviewing the current literature, we emphasize the tremendous clinical potential that NO-based therapies can have on the development of neointimal hyperplasia.
Collapse
Affiliation(s)
- Sadaf S Ahanchi
- Division of Vascular Surgery, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
50
|
Hwang JH, Tu J, Brayman AA, Matula TJ, Crum LA. Correlation between inertial cavitation dose and endothelial cell damage in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:1611-9. [PMID: 17045882 DOI: 10.1016/j.ultrasmedbio.2006.07.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/27/2006] [Accepted: 07/11/2006] [Indexed: 05/03/2023]
Abstract
Previous in vivo studies have demonstrated that vascular endothelial damage can result when vessels containing gas-based microbubble ultrasound contrast agent (UCA) are exposed to MHz-frequency pulsed ultrasound (US) of sufficient pressure amplitudes, presumably as a result of inertial cavitation (IC). The hypothesis guiding this research was that IC is the primary mechanism by which the vascular endothelium (VE) is damaged when a vessel is exposed to pulsed 1-MHz frequency US in the presence of circulating UCA. The expectation was that a correlation should exist between the magnitude and duration of IC activity and the degree of VE damage. Rabbit auricular vessels were exposed in vivo to 1.17-MHz focused US of variable peak rarefaction pressure amplitude (1, 3, 6.5 or 9 MPa), using low duty factors (0.04% or 0.4%), pulse lengths of 500 or 5000 cycles, with varying treatment durations and with or without infusion of a shelled microbubble contrast agent. A broadband passive cavitation detection system was used to measure IC activity in vivo within the targeted segment of the blood vessel. The magnitude of the detected IC activity was quantified using a previously reported measure of IC dose. Endothelial damage was assessed via scanning electron microscopy image analysis. The results supported the hypothesis and demonstrate that the magnitude of the measured IC dose correlates with the degree of VE damage when UCA is present. These results have implications for therapeutic US-induced vascular occlusion.
Collapse
Affiliation(s)
- Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|