1
|
Schaap P. From environmental sensing to developmental control: cognitive evolution in dictyostelid social amoebas. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190756. [PMID: 33487113 PMCID: PMC7934950 DOI: 10.1098/rstb.2019.0756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dictyostelid social amoebas respond to starvation by self-organizing into multicellular slugs that migrate towards light to construct spore-bearing structures. These behaviours depend on excitable networks that enable amoebas to produce propagating waves of the chemoattractant cAMP, and to respond by directional movement. cAMP additionally regulates cell differentiation throughout development, with differentiation and cell movement being coordinated by interaction of the stalk inducer c-di-GMP with the adenylate cyclase that generates cAMP oscillations. Evolutionary studies indicate how the manifold roles of cAMP in multicellular development evolved from a role as intermediate for starvation-induced encystation in the unicellular ancestor. A merger of this stress response with the chemotaxis excitable networks yielded the developmental complexity and cognitive capabilities of extant Dictyostelia. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| |
Collapse
|
2
|
Baumgardner K, Lin C, Firtel RA, Lacal J. Phosphodiesterase PdeD, dynacortin, and a Kelch repeat-containing protein are direct GSK3 substrates in Dictyostelium that contribute to chemotaxis towards cAMP. Environ Microbiol 2019; 20:1888-1903. [PMID: 29626371 DOI: 10.1111/1462-2920.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA- (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.
Collapse
Affiliation(s)
- Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Connie Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jesus Lacal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.,Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
3
|
Lacal Romero J, Shen Z, Baumgardner K, Wei J, Briggs SP, Firtel RA. The Dictyostelium GSK3 kinase GlkA coordinates signal relay and chemotaxis in response to growth conditions. Dev Biol 2018; 435:56-72. [PMID: 29355521 DOI: 10.1016/j.ydbio.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
GSK3 plays a central role in orchestrating key biological signaling pathways, including cell migration. Here, we identify GlkA as a GSK3 family kinase with functions that overlap with and are distinct from those of GskA. We show that GlkA, as previously shown for GskA, regulates the cell's cytoskeleton through MyoII assembly and control of Ras and Rap1 function, leading to aberrant cell migration. However, there are both qualitative and quantitative differences in the regulation of Ras and Rap1 and their downstream effectors, including PKB, PKBR1, and PI3K, with glkA- cells exhibiting a more severe chemotaxis phenotype than gskA- cells. Unexpectedly, the severe glkA- phenotypes, but not those of gskA-, are only exhibited when cells are grown attached to a substratum but not in suspension, suggesting that GlkA functions as a key kinase of cell attachment signaling. Using proteomic iTRAQ analysis we show that there are quantitative differences in the pattern of protein expression depending on the growth conditions in wild-type cells. We find that GlkA expression affects the cell's proteome during vegetative growth and development, with many of these changes depending on whether the cells are grown attached to a substratum or in suspension. These changes include key cytoskeletal and signaling proteins known to be essential for proper chemotaxis and signal relay during the aggregation stage of Dictyostelium development.
Collapse
Affiliation(s)
- Jesus Lacal Romero
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jing Wei
- JadeBio, Inc., 505 Coast Boulevard South Suite 206, La Jolla, CA 92037, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
4
|
Pergolizzi B, Bracco E, Bozzaro S. A new HECT ubiquitin ligase regulating chemotaxis and development in Dictyostelium discoideum. J Cell Sci 2017; 130:551-562. [PMID: 28049717 DOI: 10.1242/jcs.194225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023] Open
Abstract
Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano (TO) 10043, Italy
| |
Collapse
|
5
|
Sgro AE, Schwab DJ, Noorbakhsh J, Mestler T, Mehta P, Gregor T. From intracellular signaling to population oscillations: bridging size- and time-scales in collective behavior. Mol Syst Biol 2015; 11:779. [PMID: 25617347 PMCID: PMC4332153 DOI: 10.15252/msb.20145352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective behavior in cellular populations is coordinated by biochemical signaling networks within individual cells. Connecting the dynamics of these intracellular networks to the population phenomena they control poses a considerable challenge because of network complexity and our limited knowledge of kinetic parameters. However, from physical systems, we know that behavioral changes in the individual constituents of a collectively behaving system occur in a limited number of well-defined classes, and these can be described using simple models. Here, we apply such an approach to the emergence of collective oscillations in cellular populations of the social amoeba Dictyostelium discoideum. Through direct tests of our model with quantitative in vivo measurements of single-cell and population signaling dynamics, we show how a simple model can effectively describe a complex molecular signaling network at multiple size and temporal scales. The model predicts novel noise-driven single-cell and population-level signaling phenomena that we then experimentally observe. Our results suggest that like physical systems, collective behavior in biology may be universal and described using simple mathematical models.
Collapse
Affiliation(s)
- Allyson E Sgro
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David J Schwab
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | - Troy Mestler
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Cell substratum adhesion during early development of Dictyostelium discoideum. PLoS One 2014; 9:e106574. [PMID: 25247557 PMCID: PMC4172474 DOI: 10.1371/journal.pone.0106574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/30/2022] Open
Abstract
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.
Collapse
|
7
|
Loomis WF. Cell signaling during development of Dictyostelium. Dev Biol 2014; 391:1-16. [PMID: 24726820 PMCID: PMC4075484 DOI: 10.1016/j.ydbio.2014.04.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Continuous communication between cells is necessary for development of any multicellular organism and depends on the recognition of secreted signals. A wide range of molecules including proteins, peptides, amino acids, nucleic acids, steroids and polylketides are used as intercellular signals in plants and animals. They are also used for communication in the social ameba Dictyostelium discoideum when the solitary cells aggregate to form multicellular structures. Many of the signals are recognized by surface receptors that are seven-transmembrane proteins coupled to trimeric G proteins, which pass the signal on to components within the cytoplasm. Dictyostelium cells have to judge when sufficient cell density has been reached to warrant transition from growth to differentiation. They have to recognize when exogenous nutrients become limiting, and then synchronously initiate development. A few hours later they signal each other with pulses of cAMP that regulate gene expression as well as direct chemotactic aggregation. They then have to recognize kinship and only continue developing when they are surrounded by close kin. Thereafter, the cells diverge into two specialized cell types, prespore and prestalk cells, that continue to signal each other in complex ways to form well proportioned fruiting bodies. In this way they can proceed through the stages of a dependent sequence in an orderly manner without cells being left out or directed down the wrong path.
Collapse
Affiliation(s)
- William F Loomis
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Kim JS, Seo JH, Kang SO. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:664-74. [PMID: 24373846 DOI: 10.1016/j.bbamcr.2013.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
Reduced glutathione (GSH) is an essential metabolite that performs multiple indispensable roles during the development of Dictyostelium. We show here that disruption of the gene (gcsA-) encoding y-glutamylcysteine synthetase, an essential enzyme in GSH biosynthesis, inhibited aggregation, and that this developmental defect was rescued by exogenous GSH, but not by other thiols or antioxidants. In GSH-depleted gcsA- cells, the expression ofa growth-stage-specific gene (cprD) was not inhibited, and we did not detect the expression of genes that encode proteins required for early development (cAMP receptor, carA/cAR1; adenylyl cyclase, acaA/ACA; and the catalytic subunit of protein kinase A, pkaC/PKA-C). The defects in gcsA cells were not restored by cAMP stimulation or by cAR1 expression. Further, the expression of yakA, which initiates development and induces the expression of PKA-C, ACA, and cAR1, was regulated by the intracellular concentration of GSH. Constitutive expression of YakA in gcsA- cells (YakA(OE)/gcsA-) rescued the defects in developmental initiation and the expression of early developmental genes in the absence of GSH. Taken together, these findings suggest that GSH plays an essential role in the transition from growth to development by modulating the expression of the genes encoding YakA as well as components thatact downstream in the YakA signaling pathway.
Collapse
|
9
|
Corrigan AM, Chubb JR. Regulation of transcriptional bursting by a naturally oscillating signal. Curr Biol 2014; 24:205-211. [PMID: 24388853 PMCID: PMC3928820 DOI: 10.1016/j.cub.2013.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/04/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022]
Abstract
Transcription is highly stochastic, occurring in irregular bursts. For temporal and spatial precision of gene expression, cells must somehow deal with this noisy behavior. To address how this is achieved, we investigated how transcriptional bursting is entrained by a naturally oscillating signal, by direct measurement of transcription together with signal dynamics in living cells. We identify a Dictyostelium gene showing rapid transcriptional oscillations with the same period as extracellular cAMP signaling waves. Bursting approaches antiphase to cAMP waves, with accelerating transcription cycles during differentiation. Although coupling between signal and transcription oscillations was clear at the population level, single-cell transcriptional bursts retained considerable heterogeneity, indicating that transcription is not governed solely by signaling frequency. Previous studies implied that burst heterogeneity reflects distinct chromatin states. Here we show that heterogeneity is determined by multiple intrinsic and extrinsic cues and is maintained by a transcriptional persistence. Unusually for a persistent transcriptional behavior, the lifetime was only 20 min, with rapid randomization of transcriptional state by the response to oscillatory signaling. Linking transcription to rapid signaling oscillations allows reduction of gene expression heterogeneity by temporal averaging, providing a mechanism to generate precision in cell choices during development.
Collapse
Affiliation(s)
- Adam M Corrigan
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Sultana H, Neelakanta G, Rivero F, Blau-Wasser R, Schleicher M, Noegel AA. Ectopic expression of cyclase associated protein CAP restores the streaming and aggregation defects of adenylyl cyclase a deficient Dictyostelium discoideum cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:3. [PMID: 22239817 PMCID: PMC3316131 DOI: 10.1186/1471-213x-12-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/12/2012] [Indexed: 12/02/2022]
Abstract
Background Cell adhesion, an integral part of D. discoideum development, is important for morphogenesis and regulated gene expression in the multicellular context and is required to trigger cell-differentiation. G-protein linked adenylyl cyclase pathways are crucially involved and a mutant lacking the aggregation specific adenylyl cyclase ACA does not undergo multicellular development. Results Here, we have investigated the role of cyclase-associated protein (CAP), an important regulator of cell polarity and F-actin/G-actin ratio in the aca- mutant. We show that ectopic expression of GFP-CAP improves cell polarization, streaming and aggregation in aca- cells, but it fails to completely restore development. Our studies indicate a requirement of CAP in the ACA dependent signal transduction for progression of the development of unicellular amoebae into multicellular structures. The reduced expression of the cell adhesion molecule DdCAD1 together with csA is responsible for the defects in aca- cells to initiate multicellular development. Early development was restored by the expression of GFP-CAP that enhanced the DdCAD1 transcript levels and to a lesser extent the csA mRNA levels. Conclusions Collectively, our data shows a novel role of CAP in regulating cell adhesion mechanisms during development that might be envisioned to unravel the functions of mammalian CAP during animal embryogenesis.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Köln, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L. Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011; 13:1793-811. [PMID: 21824247 DOI: 10.1111/j.1462-5822.2011.01662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
12
|
Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27. [DOI: 10.1111/j.1440-169x.2011.01267.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Abstract
The social amoeba Dictyostelium discoideum is one of the leading model systems used to study how cells count themselves to determine the number and/or density of cells. In this review, we describe work on three different cell-density sensing systems used by Dictyostelium. The first involves a negative feedback loop in which two secreted signals inhibit cell proliferation during the growth phase. As the cell density increases, the concentrations of the secreted factors concomitantly increase, allowing the cells to sense their density. The two signals act as message authenticators for each other, and the existence of two different signals that require each other for activity may explain why previous efforts to identify autocrine proliferation-inhibiting signals in higher eukaryotes have generally failed. The second system involves a signal made by growing cells that is secreted only when they starve. This then allows cells to sense the density of just the starving cells, and is an example of a mechanism that allows cells in a tissue to sense the density of one specific cell type. The third cell density counting system involves cells in aggregation streams secreting a signal that limits the size of fruiting bodies. Computer simulations predicted, and experiments then showed, that the factor increases random cell motility and decreases cell-cell adhesion to cause streams to break up if there are too many cells in the stream. Together, studies on Dictyostelium cell density counting systems will help elucidate how higher eukaryotes regulate the size and composition of tissues.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, ILSB MS 3474, Texas A&M University, College Station, Texas 77843-3474, USA.
| | | | | |
Collapse
|
14
|
Salger K, Wetterauer B. Aberrant folate response and premature development in a mutant of Dictyostelium discoideum. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660406.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lardy B, Bof M, Aubry L, Paclet MH, Morel F, Satre M, Klein G. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:199-212. [PMID: 15950752 DOI: 10.1016/j.bbamcr.2005.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/25/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Membrane-associated NADPH oxidase complexes catalyse the production of the superoxide anion radical from oxygen and NADPH. In mammalian systems, NADPH oxidases form a family of at least seven isoforms that participate in host defence and signalling pathways. We report here the cloning and the characterisation of slime mould Dictyostelium discoideum homologs of the mammalian heme-containing subunit of flavocytochrome b (gp91(phox)) (NoxA, NoxB and NoxC), of the small subunit of flavocytochrome b (p22(phox)) and of the cytosolic factor p67(phox). Null-mutants of either noxA, noxB, noxC or p22(phox) show aberrant starvation-induced development and are unable to produce spores. The overexpression of NoxA(myc2) in noxA null strain restores spore formation. Remarkably, the gene alg-2B, coding for one of the two penta EF-hand proteins in Dictyostelium, acts as a suppressor in noxA, noxB, and p22(phox) null-mutant strains. Knockout of alg-2B allows noxA, noxB or p22(phox) null-mutants to return to normal development. However, the knockout of gene encoding NoxC, which contains two penta EF-hands, is not rescued by the invalidation of alg-2B. These data are consistent with a hypothesis connecting superoxide and calcium signalling during Dictyostelium development.
Collapse
Affiliation(s)
- Bernard Lardy
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR5092 CNRS), Département de Réponse et Dynamique Cellulaires, CEA-Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Iranfar N, Fuller D, Loomis WF. Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum. EUKARYOTIC CELL 2003; 2:664-70. [PMID: 12912885 PMCID: PMC178357 DOI: 10.1128/ec.2.4.664-670.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using genome-wide microarrays, we recognized 172 genes that are highly expressed at one stage or another during multicellular development of Dictyostelium discoideum. When developed in shaken suspension, 125 of these genes were expressed if the cells were treated with cyclic AMP (cAMP) pulses at 6-min intervals between 2 and 6 h of development followed by high levels of exogenous cAMP. In the absence of cAMP treatment, only three genes, carA, gbaB, and pdsA, were consistently expressed. Surprisingly, 14 other genes were induced by cAMP treatment of mutant cells lacking the activatable adenylyl cyclase, ACA. However, these genes were not cAMP induced if both of the developmental adenylyl cyclases, ACA and ACR, were disrupted, showing that they depend on an internal source of cAMP. Constitutive activity of the cAMP-dependent protein kinase PKA was found to bypass the requirement of these genes for adenylyl cyclase and cAMP pulses, demonstrating the critical role of PKA in transducing the cAMP signal to early gene expression. In the absence of constitutive PKA activity, expression of later genes was strictly dependent on ACA in pulsed cells.
Collapse
Affiliation(s)
- Negin Iranfar
- Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, California 92093-0368, USA
| | | | | |
Collapse
|
17
|
Pergolizzi B, Peracino B, Silverman J, Ceccarelli A, Noegel A, Devreotes P, Bozzaro S. Temperature-sensitive inhibition of development in Dictyostelium due to a point mutation in the piaA gene. Dev Biol 2002; 251:18-26. [PMID: 12413895 DOI: 10.1006/dbio.2002.0809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Dictyostelium mutant HSB1 is temperature-sensitive for development, undergoing aggregation and fruiting body formation at temperatures below 18 degrees C but not above. In vivo G protein-linked adenylyl cyclase activation is defective in HSB1, and the enzyme is not stimulated in vitro by GTPgammaS; stimulation is restored upon addition of wild-type cytosol. Transfection with the gene encoding the cytosolic regulator PIA rescued the mutant. We excluded the possibility that HSB1 cells fail to express PIA and show that the HSB1 piaA gene harbors a point mutation, resulting in the amino acid exchange G(917)D. Both wild-type and HSB1 cells were also transfected with the HSB1 piaA gene. The piaA(HSB1) gene product displayed a partial inhibitory effect on wild-type cell development. We hypothesize that PIA couples the heterotrimeric G protein to adenylyl cyclase via two binding sites, one of which is altered in a temperature-sensitive way by the HSB1 mutation. When overexpressed in the wild-type background, PIA(HSB1) competes with wild-type PIA via the nonmutated binding site, resulting in dominant-negative inhibition of development. Expression of GFP-fused PIA shows that PIA is homogeneously distributed in the cytoplasm of chemotactically moving cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale S. Luigi, 10043, Orbassano, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Deery WJ, Gao T, Ammann R, Gomer RH. A single cell density-sensing factor stimulates distinct signal transduction pathways through two different receptors. J Biol Chem 2002; 277:31972-9. [PMID: 12070170 DOI: 10.1074/jbc.m204539200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Dictyostelium discoideum, cell density is monitored by levels of a secreted protein, conditioned medium factor (CMF). CMFR1 is a putative CMF receptor necessary for CMF-induced G protein-independent accumulation of the SP70 prespore protein but not for CMF-induced G protein-dependent inositol 1,4,5-trisphosphate production. Using recombinant fragments of CMF, we find that stimulation of the inositol 1,4,5-trisphosphate pathway requires amino acids 170-180, whereas SP70 accumulation does not, corroborating a two-receptor model. Cells lacking CMFR1 do not aggregate, due to the lack of expression of several important early developmentally regulated genes, including gp80. Although many aspects of early developmental cAMP-stimulated signal transduction are mediated by CMF, CMFR1 is not essential for cAMP-stimulated cAMP and cGMP production or Ca(2+) uptake, suggesting the involvement of a second CMF receptor. Exogenous application of antibodies against either the region between a first and second or a second and third possible transmembrane domain of CMFR1 induces SP70 accumulation. Antibody- and CMF-induced gene expression can be inhibited by recombinant CMFR1 corresponding to the region between the first and third potential transmembrane domains, indicating that this region is extracellular and probably contains the CMF binding site. These observations support a model where a one- or two-transmembrane CMFR1 regulates gene expression and a G protein-coupled CMF receptor mediates cAR1 signal transduction.
Collapse
Affiliation(s)
- William J Deery
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | |
Collapse
|
19
|
Mu X, Spanos SA, Shiloach J, Kimmel A. CRTF is a novel transcription factor that regulates multiple stages of Dictyostelium development. Development 2001; 128:2569-79. [PMID: 11493573 DOI: 10.1242/dev.128.13.2569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During aggregation, Dictyostelium establish nanomolar oscillation waves of extracellular cAMP, but as development progresses, cells become responsive to higher, non-fluctuating concentrations of cAMP. The regulation of the promoter responsible for expression of cAMP receptor subtype 1, CAR1, during aggregation reflects these signaling variations. Transcription of CAR1 from the early, aggregation promoter is activated by cAMP pulsing, but is repressed by continuous exposure to micromolar concentrations of cAMP. Deletion and mutation analyses of this promoter had defined an element essential for cAMP-regulated expression, and mobility shift assay, DNA crosslinking and DNase I footprinting experiments had identified a nuclear protein (CRTF) with zinc-dependent sequence binding specificity. In our study, CRTF was purified to homogeneity, peptides were sequenced and full-length cDNAs were obtained. The deduced CRTF protein is ∼100 kDa with a C-terminal, zinc finger-like motif required for DNA binding; CRTF purified from cells, however, represents only a 40 kDa C-terminal fragment that retains DNA-binding activity.
As might have been predicted if CRTF were essential for the regulation of CAR1, crtf-null strains fail to develop under standard conditions or to exhibit induced expression of CAR1 or other cAMP-regulated genes. Furthermore, crtf-nulls also fail to sporulate, even under conditions that bypass the dependence on early cAMP signaling pathways. In addition, early developmental events of crtf-null strains could be rescued with exogenous cAMP treatment, constitutive expression of CAR1 or co-development with wild-type cells; however, these treatments were insufficient to promote sporulation. This suggests a cell-autonomous role for CRTF during late development that is separate from its capacity to control CAR1 expression. Finally, ablation of CRTF promotes a precocious induction of certain cAMP-dependent gene expression pathways. We suggest that CRTF may function to help insulate distinct pathways from simultaneous and universal activation by cAMP. CRTF, thus, exhibits multiple complex and independent regulatory functions during Dictyostelium development.
Collapse
Affiliation(s)
- X Mu
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-8028, USA
| | | | | | | |
Collapse
|
20
|
Briscoe C, Moniakis J, Kim JY, Brown JM, Hereld D, Devreotes PN, Firtel RA. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation. Dev Biol 2001; 233:225-36. [PMID: 11319871 DOI: 10.1006/dbio.2001.0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on multicellular development when expressed in wild-type cells. These findings suggest that the phosphorylated C-terminus of cAR1 may be involved in regulating aspects of receptor-mediated processes, is not essential for GBF function, and may play a role in mediating subsequent development.
Collapse
Affiliation(s)
- C Briscoe
- Section of Cell and Developmental Biology, Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0634, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The cellular slime mold Dictyostelium discoideum is a fascinating organism, not only for biologists, but also for physicists. Since the Belousov-Zhabotinskii reaction pattern, a well-known non-linear phenomenon in chemistry, was observed during aggregation of Dictyostelium amoebae, Dictyostelium has been one of the major subjects of non-linear dynamics studies. Macroscopic theory, such as continuous cell density approximation, has been a common approach to studying pattern formation since the pioneering work of Turing. Recently, promising microscopic approaches, such as the cellular dynamics method, have emerged. They have shown that Dictyostelium is useful as a model system in biology, The synchronization mechanism of oscillatory production of cyclic adenosine 3',5'-monophosphate in Dictyostelium is discussed in detail to show how it is a universal feature that can explain synchronization in other organisms.
Collapse
Affiliation(s)
- S Nagano
- Fundamental Research Labs, NEC Corporation, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
22
|
Wang J, Hou L, Awrey D, Loomis WF, Firtel RA, Siu CH. The membrane glycoprotein gp150 is encoded by the lagC gene and mediates cell-cell adhesion by heterophilic binding during Dictyostelium development. Dev Biol 2000; 227:734-45. [PMID: 11071787 DOI: 10.1006/dbio.2000.9881] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
gp150 is a membrane glycoprotein which has been implicated in cell-cell adhesion in the postaggregation stages of Dictyostelium development. An analysis of its tryptic peptides by mass spectrometry has identified gp150 as the product of the lagC gene, which was previously shown to play a role in morphogenesis and cell-type specification. Antibodies raised against the GST-LagC fusion protein specifically recognized gp150 in wild-type cells and showed that it is missing in lagC-null cells. Immunolocalization studies have confirmed its enrichment in cell-cell contact regions. In mutant cells that lack the aggregation stage-specific cell adhesion molecule gp80, gp150 is expressed precociously. Moreover, these cells acquire EDTA-resistant cell-cell binding during aggregation, suggesting a role for gp150 in this process. Cells in which the genes encoding gp80 and gp150 are both inactivated do not acquire EDTA-resistant cell adhesion during aggregation. Strains transformed with an actin 15::lagC construct express gp150 precociously, but do not show EDTA-resistant adhesion during early development. However, vegetative cells expressing gp150 can be recruited into aggregates of 16-h lagC-null cells. These results, together with those obtained with the cell-to-substratum binding assay, indicate that gp150 mediates cell-cell adhesion via heterophilic interactions with another component that accumulates during the aggregation stage.
Collapse
Affiliation(s)
- J Wang
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Chien S, Chung CY, Sukumaran S, Osborne N, Lee S, Ellsworth C, McNally JG, Firtel RA. The Dictyostelium LIM domain-containing protein LIM2 is essential for proper chemotaxis and morphogenesis. Mol Biol Cell 2000; 11:1275-91. [PMID: 10749929 PMCID: PMC14846 DOI: 10.1091/mbc.11.4.1275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified limB, a gene encoding a novel LIM domain-containing protein, LIM2, in a screen for genes required for morphogenesis. limB null cells aggregate, although poorly, but they are unable to undergo morphogenesis, and the aggregates arrest at the mound stage. limB null cells exhibit an aberrant actin cytoskeleton and have numerous F-actin-enriched microspikes. The cells exhibit poor adhesion to a substratum and do not form tight cell-cell agglomerates in suspension. Furthermore, limB null cells are unable to properly polarize in chemoattractant gradients and move very poorly. Expression of limB from a prestalk-specific but not a prespore-specific promoter complements the morphogenetic defects of the limB null strain, suggesting that the limB null cell developmental defect results from an inability to properly sort prestalk cells. LIM2 protein is enriched in the cortex of wild-type cells, although it does not colocalize with the actin cytoskeleton. Our analysis indicates that LIM2 is a new regulatory protein that functions to control rearrangements of the actin cytoskeleton and is required for cell motility and chemotaxis. Our findings may be generally applicable to understanding pathways that control cell movement and morphogenesis in all multicellular organisms. Structure function studies on the LIM domains are presented.
Collapse
Affiliation(s)
- S Chien
- Section of Cell and Developmental Biology, Division of Biology, Center for Molecular Genetics, University of California, San Diego, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Aubry L, Firtel R. Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 1999; 15:469-517. [PMID: 10611970 DOI: 10.1146/annurev.cellbio.15.1.469] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Dictyostelium amoebae, cell-type differentiation, spatial patterning, and morphogenesis are controlled by a combination of cell-autonomous mechanisms and intercellular signaling. A chemotactic aggregation of approximately 10(5) cells leads to the formation of a multicellular organism. Cell-type differentiation and cell sorting result in a small number of defined cell types organized along an anteroposterior axis. Finally, a mature fruiting body is created by the terminal differentiation of stalk and spore cells. Analysis of the regulatory program demonstrates a role for several molecules, including GSK-3, signal transducers and activators of transcription (STAT) factors, and cAMP-dependent protein kinase (PKA), that control spatial patterning in metazoans. Unexpectedly, two component systems containing histidine kinases and response regulators also play essential roles in controlling Dictyostelium development. This review focuses on the role of cAMP, which functions intracellularly to mediate the activity of PKA, an essential component in aggregation, cell-type specification, and terminal differentiation. Cytoplasmic cAMP levels are controlled through both the regulated activation of adenylyl cyclases and the degradation by a phosphodiesterase containing a two-component system response regulator. Extracellular cAMP regulates G-protein-dependent and -independent pathways to control aggregation as well as the activity of GSK-3 and the transcription factors GBF and STATa during multicellular development. The integration of these pathways with others regulated by the morphogen DIF-1 to control cell fate decisions are discussed.
Collapse
Affiliation(s)
- L Aubry
- CEA-Grenoble DBMS/BBSI, France
| | | |
Collapse
|
25
|
Abstract
Starving Dictyostelium amoebae use cAMP as a chemoattractant to gather into aggregates, as a hormone-like signal to induce cell differentiation, and as an intracellular messenger to control stalk- and spore cell maturation and germination of spores. In this chapter we describe the respective roles of the three adenylyl cyclases ACA, ACB and ACG in controlling cAMP signaling during development and we discuss how cAMP signals are processed by the cells to trigger the large repertoire of gene regulatory events that is under control of this signal molecule.
Collapse
Affiliation(s)
- M Meima
- Department of Biochemistry, University of Dundee, Dow Street, Dundee, Scotland, DD1 5EH, UK
| | | |
Collapse
|
26
|
Verkerke-Van Wijk I, Kim JY, Brandt R, Devreotes PN, Schaap P. Functional promiscuity of gene regulation by serpentine receptors in Dictyostelium discoideum. Mol Cell Biol 1998; 18:5744-9. [PMID: 9742091 PMCID: PMC109160 DOI: 10.1128/mcb.18.10.5744] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 06/30/1998] [Indexed: 11/20/2022] Open
Abstract
Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. In Dictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or whether specificity results from the different developmental regulation of individual cARs. To distinguish between these possibilities, we measured gene induction in car1 car3 double mutant cell lines that express equal levels of either cAR1, cAR2, or cAR3 under a constitutive promoter. We found that all cARs efficiently mediate both aggregative gene induction by cAMP pulses and induction of postaggregative and prespore genes by persistent cAMP stimulation. Two exceptions to this functional promiscuity were observed. (i) Only cAR1 can mediate adenosine inhibition of cAMP-induced prespore gene expression, a phenomenon that was found earlier in wild-type cells. cAR1's mediation of adenosine inhibition suggests that cAR1 normally mediates prespore gene induction. (ii) Only cAR2 allows entry into the prestalk pathway. Prestalk gene expression is induced by differentiation-inducing factor (DIF) but only after cells have been prestimulated with cAMP. We found that DIF-induced prestalk gene expression is 10 times higher in constitutive cAR2 expressors than in constitutive cAR1 or cAR3 expressors (which still have endogenous cAR2), suggesting that cAR2 mediates induction of DIF competence. Since in wild-type slugs cAR2 is expressed only in anterior cells, this could explain the so far puzzling observations that prestalk cells differentiate at the anterior region but that DIF levels are actually higher at the posterior region. After the initial induction of DIF competence, cAMP becomes a repressor of prestalk gene expression. This function can again be mediated by cAR1, cAR2, and cAR3.
Collapse
Affiliation(s)
- I Verkerke-Van Wijk
- Cell Biology Section, Institute for Molecular Plant Sciences, University of Leiden, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Mu X, Lee B, Louis JM, Kimmel AR. Sequence-specific protein interaction with a transcriptional enhancer involved in the autoregulated expression of cAMP receptor 1 in Dictyostelium. Development 1998; 125:3689-98. [PMID: 9716534 DOI: 10.1242/dev.125.18.3689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major stages of Dictyostelium development are regulated by secreted, extracellular cAMP through activation of a serpentine receptor family. During early development, oscillations of extracellular cAMP mobilize cells for aggregation; later, continuous exposure to higher extracellular cAMP concentrations downregulates early gene expression and promotes cytodifferentiation and cell-specific gene expression. The cAMP receptor 1 gene CAR1 has two promoters that are differentially responsive to these extracellular cAMP stimuli. The early CAR1 promoter is induced by nM pulses of cAMP, which in turn are generated by CAR1-dependent activation of adenylyl cyclase (AC). Higher, non-fluctuating concentrations of cAMP will adapt this AC stimulus-response, repress the activated early promoter and induce the dormant late promoter. We now identify a critical element of the pulse-induced CAR1 promoter and a nuclear factor with sequence-specific interaction. Mutation of four nucleotides within the element prevents both in vitro protein binding and in vivo expression of an otherwise fully active early CAR1 promoter and multimerization of the wild-type, but not mutant, sequence will confer cAMP regulation to a quiescent heterologous promoter. These cis and trans elements, thus, constitute a part of the molecular response to the cAMP transmembrane signal cascade that regulates early development of Dictyostelium.
Collapse
Affiliation(s)
- X Mu
- Laboratory of Cellular and Developmental Biology, NIDDK (Bldg 6/B1-22) and Howard Hughes Medical Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Cubitt AB, Reddy I, Lee S, McNally JG, Firtel RA. Coexpression of a constitutively active plasma membrane calcium pump with GFP identifies roles for intracellular calcium in controlling cell sorting during morphogenesis in Dictyostelium. Dev Biol 1998; 196:77-94. [PMID: 9527882 DOI: 10.1006/dbio.1997.8831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the potential role of calcium in regulating Dictyostelium development, we reduced free cytosolic and total cell Ca2+ in Dictyostelium cells by expressing a constitutively active form of a human erythrocyte plasma membrane calcium pump. The pump-expressing cells lacked a thapsigargin-mediated increase in cytoplasmic calcium, consistent with a reduced level of total cellular Ca2+. During aggregation, the cells initially formed a large number of aggregation centers, many of which coalesced to form mounds that were smaller than those of wild-type cells, and the cells did not exhibit the normal formation of elongated aggregation streams. The majority of the mounds either arrested at this stage with the formation of small protrusions or formed very aberrant finger-like structures, indicating an essential role for cellular calcium in morphogenesis. We used pump and wild-type cells differentially labeled by expressing different wavelength (green and blue) forms of green fluorescent protein and three-dimensional (3-D) reconstruction of serial fluorescent imaging to visualize the movement of pump and wild-type cells within the aggregate. The results showed that the pump cells exhibited very aberrant cell movement and sorting within the forming mound, suggesting that the reduced cytosolic calcium affects movement required for tip formation. When allowed to form chimeric organisms with wild-type cells, pump cells preferentially localized to two bands, one at the prestalk/prespore boundary and the other in the very posterior of the organism, suggesting that pump cells are unable to properly sort. Expression of the calcium pump had little effect on the induction of prestalk- or prespore-specific genes, whereas extended treatment with EGTA blocked induction of both classes of cell-type-specific genes. Our results suggest a role for intracellular Ca2+ in controlling cell sorting and morphogenesis in Dictyostelium.
Collapse
Affiliation(s)
- A B Cubitt
- Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, California 92093-0634, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The Dictyostelium discoideum developmental program is initiated by starvation and its progress depends on G-protein-regulated transmembrane signaling. Disruption of the Dictyostelium G-protein alpha-subunit G alpha 3 (g alpha 3-) blocks development unless the mutant is starved in the presence of artificial cAMP pulses. The function of G alpha 3 was investigated by examining the expression of several components of the cAMP transmembrane signaling system in the g alpha 3- mutant. cAMP receptor 1 protein, cyclic nucleotide phosphodiesterase, phosphodiesterase inhibitor, and aggregation-stage adenylyl cyclase mRNA expression were absent or greatly reduced when cells were starved without exogenously applied pulses of cAMP. However, cAMP receptor 1 protein and aggregation-stage adenylyl cyclase mRNA expression were restored by starving the g alpha 3- cells in the presence of exogenous cAMP pulses. Adenylyl cyclase activity was also reduced in g alpha 3- cells starved without exogenous cAMP pulses compared with similarly treated wild-type cells but was elevated to a level twofold greater than wild-type cells in g alpha 3- cells starved in the presence of exogenous cAMP pulses. These results suggest that G alpha 3 is essential in early development because it controls the expression of components of the transmembrane signaling system.
Collapse
Affiliation(s)
- M A Brandon
- Department of Surgery, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
30
|
Yang C, Brar SK, Desbarats L, Siu CH. Synthesis of the Ca(2+)-dependent cell adhesion molecule DdCAD-1 is regulated by multiple factors during Dictyostelium development. Differentiation 1997; 61:275-84. [PMID: 9342838 DOI: 10.1046/j.1432-0436.1997.6150275.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Dictyostelium discoideum, the cadA gene encodes the cell adhesion molecule DdCAD-1, a protein of M(r) 24,000, which mediates Ca(2+)-dependent cell-cell adhesion during development. We have examined the effects of cAMP, cell-cell contact, and growth conditions on cadA expression. cadA has a unique pattern of expression, which appears to be a combination of the expression patterns of early genes and aggregation-stage genes. Expression of the cadA gene in bacterially grown cells is activated at the beginning of the developmental cycle, followed by a period of rapid DdCAD-1 accumulation. The mRNA level reaches its maximum at 9 h of development and then declines to the basal level at approximately 18 h, while the protein level remains constant after reaching its maximum at 12 h. Pulse-chase experiments have demonstrated that DdCAD-1 has a significantly longer half-life than the average cellular protein. Transcription of the cadA gene is stimulated by exogenous cAMP pulses, leading to a 3- to 5-fold increase in the transcription rate. In the fgdA mutant, which lacks a functional G alpha 2, cAMP fails to enhance cadA expression, suggesting that cAMP stimulates cadA transcription via a G protein-dependent pathway. However, inhibition of cell-cell contact has no effect on the synthesis of DdCAD-1. Growth conditions also have a major influence on cadA expression. Axenically grown cells produce a high level of cadA transcripts during vegetative growth. The mRNA level shows a steady decrease during development and is reduced to the basal level by 12 h. In contrast, the level of DdCAD-1 remains relatively high throughout development, suggesting that axenic growth affects the accumulation of cadA mRNA but not the stability of the protein. These results indicate that multiple mechanisms are involved to maintain a high level of DdCAD-1 during development.
Collapse
Affiliation(s)
- C Yang
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Firtel RA. Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev 1996; 6:545-54. [PMID: 8939724 DOI: 10.1016/s0959-437x(96)80082-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
cAMP functions as the key extracellular signaling molecule controlling Dictyostelium development acting through classic G-protein-coupled/serpentine receptors. Whereas aggregation is controlled by nanomolar pulses of cAMP, a more continuous micromolar signal controls multicellular differentiation by activating a transcriptional cascade via a receptor-mediated but non G-protein-coupled pathway. Potential mechanisms by which extracellular cAMP functions to differentially control aggregation followed by morphogenesis and cell-type differentiation are discussed. This review also summarizes new findings elucidating pathways controlling cell-type regulation in this organism, including signaling cascades mediated by glycogen synthase kinase 3 and cAMP-dependent protein kinase, key regulators of cell-type differentiation in metazoans, and newly identified transcription factors.
Collapse
Affiliation(s)
- R A Firtel
- Department of Biology, Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0634, USA.
| |
Collapse
|
32
|
Affiliation(s)
- B M Sager
- Rowland Institute for Science, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
33
|
Wong EF, Brar SK, Sesaki H, Yang C, Siu CH. Molecular cloning and characterization of DdCAD-1, a Ca2+-dependent cell-cell adhesion molecule, in Dictyostelium discoideum. J Biol Chem 1996; 271:16399-408. [PMID: 8663243 DOI: 10.1074/jbc.271.27.16399] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dictyostelium discoideum expresses EDTA-sensitive cell-cell adhesion sites soon after the initiation of development, and a Ca2+-binding protein of Mr 24,000 (designated DdCAD-1) has been implicated in this type of adhesiveness. We have previously purified DdCAD-1 to homogeneity and characterized its cell binding activity (Brar, S. K., and Siu, C.-H. (1993) J. Biol. Chem. 268, 24902-24909). In this report, we describe the cloning of DdCAD-1 cDNAs. DNA sequencing revealed a single open reading frame coding for a polypeptide containing 213 amino acids. The identity of the cDNA was confirmed by amino acid sequences of two cyanogen bromide peptides. The deduced amino acid sequence of DdCAD-1 exhibits a relatively high degree of sequence similarity with members of the cadherin family and protein S of Myxococcus xanthus. Unlike the other cadherins, the carboxyl-terminal region of DdCAD-1 contains a Ca2+-binding motif. Although analyses of the sequence suggest that the polypeptide lacks a signal peptide sequence and a transmembrane domain, immunofluorescence microscopy demonstrates the association of DdCAD-1 with the ecto-surface of the plasma membrane. To investigate the structure/function relationships of DdCAD-1, glutathione S-transferase fusion proteins containing different DdCAD-1 fragments were expressed and assayed for their 45Ca2+ and cell binding activities. These studies revealed that the cell binding activity is dependent on the amino-terminal segment and not the carboxyl-terminal Ca2+-binding domain and showed additional Ca2+-binding site(s) within the amino-terminal segment.
Collapse
Affiliation(s)
- E F Wong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Gaskins C, Clark AM, Aubry L, Segall JE, Firtel RA. The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways. Genes Dev 1996; 10:118-28. [PMID: 8557190 DOI: 10.1101/gad.10.1.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We showed previously that the MAP kinase ERK2 is essential for aggregation. erk2 null cells lack cAMP stimulation of adenylyl cyclase and thus cannot relay the cAMP chemotactic signal, although the cells chemotax to cAMP (Segall et al. 1995). In this paper we have examined the role of ERK2 in controlling developmental gene expression and morphogenesis during the multicellular stages, making use of a temperature-sensitive ERK2 mutation. Using suspension assays, we show that ERK2 is not essential for aggregation-stage, cAMP pulse-induced gene expression, or for the expression of postaggregative genes, which are induced at the onset of mound formation in response to cAMP in wild-type cells. In contrast, the prespore-specific gene SP60 is not induced and the prestalk-specific gene ecmA is induced but at a significantly reduced level. Chimeric organisms, comprised of wild-type and erk2 null cells expressing the prestalk-specific ecmA/lacZ reporter, show an abnormal spatial patterning, in which Erk2ts/erk2 cells are excluded from the very anterior prestalk A region. To further examine the function of ERK2 during the multicellular stages, we bypassed the requirement of ERK2 for aggregation by creating an ERK2 temperature-sensitive mutant. erk2 null cells expressing the ERK2ts mutant develop normally at 20 degrees C and express cell-type-specific genes but do not aggregate at temperatures above 25 degrees C. Using temperature shift experiments, we showed that ERK2 is essential for proper morphogenesis and for the induction and maintenance of prespore but not prestalk gene expression. Our results indicate that ERK2 functions at independent stages during Dictyostelium development to control distinct developmental programs: during aggregation, ERK2 is required for the activation of adenylyl cyclase and during multicellular development, ERK2 is essential for morphogenesis and cell-type-specific gene expression. Analysis of these results and other supports the conclusion that the requirement of ERK2 for cell-type differentiation is independent of its role in the activation of adenylyl cyclase.
Collapse
Affiliation(s)
- C Gaskins
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | | | |
Collapse
|
36
|
Reymond CD, Schaap P, Véron M, Williams JG. Dual role of cAMP during Dictyostelium development. EXPERIENTIA 1995; 51:1166-74. [PMID: 8536804 DOI: 10.1007/bf01944734] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
cAMP plays an essential role during Dictyostelium development both outside and inside the cell. Membrane-bound receptors and adenylyl cyclase are responsible for sensing and producing extracellular cAMP, whereas a phosphodiesterase is responsible for maintaining a low basal level. The molecular events underlying this type of hormone like signalling, which are now beginning to be deciphered, will be presented, in the light of cAMP analogue studies. The importance of intracellular cAMP for cell differentiation has been demonstrated by the central role of the cAMP dependent protein kinase. Mutants as well as strains obtained by reverse genetics will be reviewed which lead to our current understanding of the role of intracelluar cAMP in the differentiation of both stalk and spore cells.
Collapse
Affiliation(s)
- C D Reymond
- University of Lausanne, Institut d'Histologie et d'Embryologie, Switzerland
| | | | | | | |
Collapse
|
37
|
Abstract
Three forms of cell adhesion determine the life cycle of Dictyostelium: i) adhesion of bacteria to the surface of the growing amoebae, as the prerequisite for phagocytosis; ii) cell-substrate adhesion, necessary for both locomotion of the amoebae and migration of the slug; iii) cell-cell adhesion, essential for transition from the unicellular to the multicellular stage. Intercellular adhesion has received the most attention, and fruitful approaches have been developed over the past 25 years to identify, purify and characterize cell adhesion molecules. The csA glycoprotein, in particular, which mediates adhesion during the aggregation stage, is one of the best defined cell adhesion molecules. The molecular components involved in phagocytosis and cell-substratum adhesion are less well understood, but the basis has been laid for a systematic investigation of both topics in the near future.
Collapse
Affiliation(s)
- S Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S. Luigi, Italy
| | | |
Collapse
|
38
|
Firtel RA. Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev 1995; 9:1427-44. [PMID: 7601348 DOI: 10.1101/gad.9.12.1427] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R A Firtel
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| |
Collapse
|
39
|
Yuen IS, Jain R, Bishop JD, Lindsey DF, Deery WJ, Van Haastert PJ, Gomer RH. A density-sensing factor regulates signal transduction in Dictyostelium. J Cell Biol 1995; 129:1251-62. [PMID: 7775572 PMCID: PMC2120463 DOI: 10.1083/jcb.129.5.1251] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Dictyostelium discoideum initiates development when cells overgrow their bacterial food source and starve. To coordinate development, the cells monitor the extracellular level of a protein, conditioned medium factor (CMF), secreted by starved cells. When a majority of the cells in a given area have starved, as signaled by CMF secretion, the extracellular level of CMF rises above a threshold value and permits aggregation of the starved cells. The cells aggregate using relayed pulses of cAMP as the chemoattractant. Cells in which CMF accumulation has been blocked by antisense do not aggregate except in the presence of exogenous CMF. We find that these cells are viable but do not chemotax towards cAMP. Videomicroscopy indicates that the inability of CMF antisense cells to chemotax is not due to a gross defect in motility, although both video and scanning electron microscopy indicate that CMF increases the frequency of pseudopod formation. The activations of Ca2+ influx, adenylyl cyclase, and guanylyl cyclase in response to a pulse of cAMP are strongly inhibited in cells lacking CMF, but are rescued by as little as 10 s exposure of cells to CMF. The activation of phospholipase C by cAMP is not affected by CMF. Northern blots indicate normal levels of the cAMP receptor mRNA in CMF antisense cells during development, while cAMP binding assays and Scatchard plots indicate that CMF antisense cells contain normal levels of the cAMP receptor. In Dictyostelium, both adenylyl and guanylyl cyclases are activated via G proteins. We find that the interaction of the cAMP receptor with G proteins in vitro is not measurably affected by CMF, whereas the activation of adenylyl cyclase by G proteins requires cells to have been exposed to CMF. CMF thus appears to regulate aggregation by regulating an early step of cAMP signal transduction.
Collapse
Affiliation(s)
- I S Yuen
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Dharmawardhane S, Cubitt AB, Clark AM, Firtel RA. Regulatory role of the G alpha 1 subunit in controlling cellular morphogenesis in Dictyostelium. Development 1994; 120:3549-61. [PMID: 7821221 DOI: 10.1242/dev.120.12.3549] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the function of the Dictyostelium G alpha 1 subunit during aggregation and multicellular development, we analyzed the phenotypes of g alpha 1 null cells and strains overexpressing either wild-type G alpha 1 or two putative constitutively active mutations of G alpha 1. Strains overexpressing the wild-type or mutant G alpha 1 proteins showed very abnormal culmination with an aberrant stalk differentiation. The similarity of the phenotypes between G alpha 1 overexpression and expression of a putative constitutively active G alpha 1 subunit suggests that these phenotypes are due to increased G alpha 1 activity rather than resulting from a non-specific interference of other pathways. In contrast, g alpha 1 null strains showed normal morphogenesis except that the stalks were thinner and longer than those of wild-type culminants. Analysis of cell-type-specific gene expression using lacZ reporter constructs indicated that strains overexpressing G alpha 1 show a loss of ecmB expression in the central core of anterior prestalk AB cells. However, expression of ecmB in anterior-like cells and the expression of prestalk A-specific gene ecmA and the prespore-specific gene SP60/cotC appeared normal. Using a G alpha 1/lacZ reporter construct, we show that G alpha 1 expression is cell-type-specific during the multicellular stages, with a pattern of expression similar to ecmB, being preferentially expressed in the anterior prestalk AB cells and anterior-like cells. The developmental and molecular phenotypes of G alpha 1 overexpression and the cell-type-specific expression of G alpha 1 suggest that G alpha 1-mediated signaling pathways play an essential role in regulating multicellular development by controlling prestalk morphogenesis, possibly by acting as a negative regulator of prestalk AB cell differentiation. During the aggregation phase of development, g alpha 1 null cells display a delayed peak in cAMP-stimulated accumulation of cGMP compared to wild-type cells, while G alpha 1 overexpressors and dominant activating mutants show parallel kinetics of activation but decreased levels of cGMP accumulation compared to that seen in wild-type cells. These data suggest that G alpha 1 plays a role in the regulation of the activation and/or adaptation of the guanylyl cyclase pathway. In contrast, the activation of adenylyl cyclase, another pathway activated by cAMP stimulation, was unaffected in g alpha 1 null cells and cell lines overexpressing wild-type G alpha 1 or the G alpha 1 (Q206L) putative dominant activating mutation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Dharmawardhane
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | | | |
Collapse
|
41
|
Desbarats L, Brar SK, Siu CH. Involvement of cell-cell adhesion in the expression of the cell cohesion molecule gp80 in Dictyostelium discoideum. J Cell Sci 1994; 107 ( Pt 6):1705-12. [PMID: 7962211 DOI: 10.1242/jcs.107.6.1705] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soon after the initiation of the developmental cycle of Dictyostelium discoideum, cells acquire EDTA-sensitive cell-cell binding sites mediated by the glycoprotein gp24. Cells at the aggregation stage display a second type of cell adhesion site, the EDTA-resistant cell-cell binding sites, mediated by the glycoprotein gp80. The gene encoding gp80 is first turned on to a low basal level of expression in the preaggregation stage. At the onset of the aggregation stage, cells produce pulses of low levels of cAMP, which greatly augment the expression of gp80. To investigate the role of cell-cell adhesion in the regulation of gp80 expression, cells were developed in the presence of EDTA or carnitine to block the EDTA-sensitive cell binding sites. Alternatively, cell cohesion was disrupted by shaking low-density cultures at high shearing forces. In all three instances, gp80 was expressed at a substantially reduced level. In addition, exogenous cAMP pulses, which normally were capable of stimulating a precocious and enhanced expression of gp80, failed to restore the high level of gp80 expression. However, if the formation of cell-cell contact was permitted, exogenous cAMP pulses were able to rescue the expression of gp80 even when the cAMP signal relay was blocked. These results indicate that previous cell-cell contact, provided by the EDTA-sensitive binding sites, is required for the activation of the cAMP-mediated signal transduction pathway producing high levels of gp80 expression.
Collapse
Affiliation(s)
- L Desbarats
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Brar SK, Siu CH. Characterization of the cell adhesion molecule gp24 in Dictyostelium discoideum. Mediation of cell-cell adhesion via a Ca(2+)-dependent mechanism. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74550-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Schatzle J, Bush J, Dharmawardhane S, Firtel R, Gomer R, Cardelli J. Characterization of the signal transduction pathways and cis-acting DNA sequence responsible for the transcriptional induction during growth and development of the lysosomal alpha-mannosidase gene in Dictyostelium discoideum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36563-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
44
|
Affiliation(s)
- W F Loomis
- Department of Biology, University of California, San Diego, La Jolla 92093
| |
Collapse
|
45
|
Molecular cloning of casein kinase II alpha subunit from Dictyostelium discoideum and its expression in the life cycle. Mol Cell Biol 1992. [PMID: 1448100 DOI: 10.1128/mcb.12.12.5711] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Dictyostelium discoideum cDNA encoding an alpha-type subunit of casein kinase II was isolated, and its cDNA was used to study developmental expression of casein kinase II during the Dictyostelium life cycle. The 1.3-kb cDNA insert contained an open reading frame of 337 amino acids (M(r) 39,900). The deduced amino acid sequence has high homology with those of casein kinase II alpha subunits from other species. Genomic Southern blot analysis suggested that there is a single gene encoding casein kinase II alpha subunit in D. discoideum. Northern (RNA) blot analysis showed that the casein kinase II alpha-subunit gene is expressed constitutively as a 1.9-kb mRNA throughout vegetative growth and multicellular development. Casein kinase purified from normal vegetative cells contained a major protein band of approximately 36 kDa, which was recognized by antisera raised against rat testis casein kinase II. Comparison of the in vitro transcription/translation product of the alpha-subunit cDNA clone and the purified 36-kDa protein by partial proteolysis indicated that the isolated cDNA clone encodes the Dictyostelium casein kinase II alpha subunit. No protein corresponding to a beta subunit was detected in purified casein kinase. Immunoblot analysis using anti-rat casein kinase II sera showed that the alpha subunit of casein kinase II is expressed constitutively like its mRNA during the life cycle of D. discoideum. Casein kinase II activity measured by using a specific peptide substrate paralleled the level of alpha subunit detected by immunoblotting during the life cycle, with a maximum variation of approximately 2-fold. We were unable to obtain disruptants of the casein kinase II alpha gene, suggesting that there is a single casein kinase II alpha gene, which is essential for vegetative growth of D. discoideum.
Collapse
|
46
|
Kikkawa U, Mann SK, Firtel RA, Hunter T. Molecular cloning of casein kinase II alpha subunit from Dictyostelium discoideum and its expression in the life cycle. Mol Cell Biol 1992; 12:5711-23. [PMID: 1448100 PMCID: PMC360511 DOI: 10.1128/mcb.12.12.5711-5723.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A Dictyostelium discoideum cDNA encoding an alpha-type subunit of casein kinase II was isolated, and its cDNA was used to study developmental expression of casein kinase II during the Dictyostelium life cycle. The 1.3-kb cDNA insert contained an open reading frame of 337 amino acids (M(r) 39,900). The deduced amino acid sequence has high homology with those of casein kinase II alpha subunits from other species. Genomic Southern blot analysis suggested that there is a single gene encoding casein kinase II alpha subunit in D. discoideum. Northern (RNA) blot analysis showed that the casein kinase II alpha-subunit gene is expressed constitutively as a 1.9-kb mRNA throughout vegetative growth and multicellular development. Casein kinase purified from normal vegetative cells contained a major protein band of approximately 36 kDa, which was recognized by antisera raised against rat testis casein kinase II. Comparison of the in vitro transcription/translation product of the alpha-subunit cDNA clone and the purified 36-kDa protein by partial proteolysis indicated that the isolated cDNA clone encodes the Dictyostelium casein kinase II alpha subunit. No protein corresponding to a beta subunit was detected in purified casein kinase. Immunoblot analysis using anti-rat casein kinase II sera showed that the alpha subunit of casein kinase II is expressed constitutively like its mRNA during the life cycle of D. discoideum. Casein kinase II activity measured by using a specific peptide substrate paralleled the level of alpha subunit detected by immunoblotting during the life cycle, with a maximum variation of approximately 2-fold. We were unable to obtain disruptants of the casein kinase II alpha gene, suggesting that there is a single casein kinase II alpha gene, which is essential for vegetative growth of D. discoideum.
Collapse
Affiliation(s)
- U Kikkawa
- Molecular Biology and Virology Laboratory, Salk Institute, San Diego, California 92186-5800
| | | | | | | |
Collapse
|
47
|
Okaichi K, Cubitt AB, Pitt GS, Firtel RA. Amino acid substitutions in the Dictyostelium G alpha subunit G alpha 2 produce dominant negative phenotypes and inhibit the activation of adenylyl cyclase, guanylyl cyclase, and phospholipase C. Mol Biol Cell 1992; 3:735-47. [PMID: 1355376 PMCID: PMC275631 DOI: 10.1091/mbc.3.7.735] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies have demonstrated that the Dictyostelium G alpha subunit G alpha 2 is essential for the cAMP-activation of adenylyl cyclase and guanylyl cyclase and that g alpha 2 null mutants do not aggregate. In this manuscript, we extend the analysis of the function of G alpha 2 in regulating downstream effectors by examining the in vivo developmental and physiological phenotypes of both wild-type and g alpha 2 null cells carrying a series of mutant G alpha 2 subunits expressed from the cloned G alpha 2 promoter. Our results show that wild-type cells expressing G alpha 2 subunits carrying mutations G40V and Q208L in the highly conserved GAGESG (residues 38-43) and GGQRS (residues 206-210) domains, which are expected to reduce the intrinsic GTPase activity, are blocked in multicellular development. Analysis of down-stream effector pathways essential for mediating aggregation indicates that cAMP-mediated activation of guanylyl cyclase and phosphatidylinositol-phospholipase C (PI-PLC) is almost completely inhibited and that there is a substantial reduction of cAMP-mediated activation of adenylyl cyclase. Moreover, neither mutant G alpha 2 subunit can complement g alpha 2 null mutants. Expression of G alpha 2(G43V) and G alpha 2(G207V) have little or no effect on the effector pathways and can partially complement g alpha 2 null cells. Our results suggest a model in which the dominant negative phenotypes resulting from the expression of G alpha 2(G40V) and G alpha 2(Q208L) are due to a constitutive adaptation of the effectors through a G alpha 2-mediated pathway. Analysis of PI-PLC in g alpha 2 null mutants and in cell lines expressing mutant G alpha 2 proteins also strongly suggests that G alpha 2 is the G alpha subunit that directly activates PI-PLC during aggregation. Moreover, overexpression of wild-type G alpha 2 results in the ability to precociously activate guanylyl cyclase by cAMP in vegetative cells, suggesting that G alpha 2 may be rate limiting in the developmental regulation of guanylyl cyclase activation. In agreement with previous results, the activation of adenylyl cyclase, while requiring G alpha 2 function in vivo, does not appear to be directly carried out by the G alpha 2 subunit. Our data are consistent with adenylyl cyclase being directly activated by either another G alpha subunit or by beta gamma subunits released on activation of the G protein containing G alpha 2.
Collapse
Affiliation(s)
- K Okaichi
- Department of Biology, University of California, San Diego, La Jolla 92093-0634
| | | | | | | |
Collapse
|
48
|
Identification of a unique cAMP-response element in the gene encoding the cell adhesion molecule gp80 in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41825-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Jain R, Yuen IS, Taphouse CR, Gomer RH. A density-sensing factor controls development in Dictyostelium. Genes Dev 1992; 6:390-400. [PMID: 1547939 DOI: 10.1101/gad.6.3.390] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For an unknown reason, several genes expressed during Dictyostelium development are regulated by cell density. This is mediated by an 80-kD glycoprotein, conditioned medium factor (CMF), which is slowly secreted and simultaneously sensed by starved cells. To examine further this eukaryotic cell density-sensing mechanism, we have isolated a cDNA encoding CMF. The derived amino acid sequence of CMF shows no obvious similarity to any known protein and thus may represent a new class of eukaryotic intercellular signal. CMF antisense transformants do not aggregate, whereas normal development is restored by the addition of purified CMF protein. This suggests that CMF might synchronize the onset of development in Dictyostelium by triggering aggregation when a majority of the cells in a given area have starved, as signaled by CMF secretion.
Collapse
Affiliation(s)
- R Jain
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77251-1892
| | | | | | | |
Collapse
|
50
|
Bozzaro S. Dictyostelium: From Unicellularity to Multicellularity. Development 1992. [DOI: 10.1007/978-3-642-77043-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|