1
|
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, Butenko A, Lukeš J, Neri U, Záhonová K, Kostygov AY, Koonin EV, Yurchenko V. Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae). Virus Evol 2024; 10:veae037. [PMID: 38774311 PMCID: PMC11108086 DOI: 10.1093/ve/veae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 128 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 39040, Israel
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec 252 50, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Zoological Institute of the Ruian Academy of Sciences, St. Petersburg 199034, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| |
Collapse
|
2
|
Li Z, Xing J. Potential therapeutic applications of circular RNA in acute kidney injury. Biomed Pharmacother 2024; 174:116502. [PMID: 38569273 DOI: 10.1016/j.biopha.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome characterized by a rapid deterioration in renal function, manifested by a significant increase in creatinine and a sharp decrease in urine output. The incidence of morbidity and mortality associated with AKI is on the rise, with most patients progressing to chronic kidney disease or end-stage renal disease. Treatment options for patients with AKI remain limited. Circular RNA (circRNA) is a wide and diverse class of non-coding RNAs that are present in a variety of organisms and are involved in gene expression regulation. Studies have shown that circRNA acts as a competing RNA, is involved in disease occurrence and development, and has potential as a disease diagnostic and prognostic marker. CircRNA is involved in the regulation of important biological processes, including apoptosis, oxidative stress, and inflammation. This study reviews the current status and progress of circRNA research in the context of AKI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Niu M, Wang C, Zhang Z, Zou Q. A computational model of circRNA-associated diseases based on a graph neural network: prediction and case studies for follow-up experimental validation. BMC Biol 2024; 22:24. [PMID: 38281919 PMCID: PMC10823650 DOI: 10.1186/s12915-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been confirmed to play a vital role in the occurrence and development of diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for studying etiopathogenesis and treating diseases. To this end, based on the graph Markov neural network algorithm (GMNN) constructed in our previous work GMNN2CD, we further considered the multisource biological data that affects the association between circRNA and disease and developed an updated web server CircDA and based on the human hepatocellular carcinoma (HCC) tissue data to verify the prediction results of CircDA. RESULTS CircDA is built on a Tumarkov-based deep learning framework. The algorithm regards biomolecules as nodes and the interactions between molecules as edges, reasonably abstracts multiomics data, and models them as a heterogeneous biomolecular association network, which can reflect the complex relationship between different biomolecules. Case studies using literature data from HCC, cervical, and gastric cancers demonstrate that the CircDA predictor can identify missing associations between known circRNAs and diseases, and using the quantitative real-time PCR (RT-qPCR) experiment of HCC in human tissue samples, it was found that five circRNAs were significantly differentially expressed, which proved that CircDA can predict diseases related to new circRNAs. CONCLUSIONS This efficient computational prediction and case analysis with sufficient feedback allows us to identify circRNA-associated diseases and disease-associated circRNAs. Our work provides a method to predict circRNA-associated diseases and can provide guidance for the association of diseases with certain circRNAs. For ease of use, an online prediction server ( http://server.malab.cn/CircDA ) is provided, and the code is open-sourced ( https://github.com/nmt315320/CircDA.git ) for the convenience of algorithm improvement.
Collapse
Affiliation(s)
- Mengting Niu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 4 Block 2 North Jianshe Road, Chengdu, 610054, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
4
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
5
|
Yu L, Zheng J, Yu J, Zhang Y, Hu H. Circ_0067934: a circular RNA with roles in human cancer. Hum Cell 2023; 36:1865-1876. [PMID: 37592109 PMCID: PMC10587307 DOI: 10.1007/s13577-023-00962-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A circular RNA (circRNA) is a non-coding RNA (ncRNA) derived from reverse splicing from pre-mRNA and is characterized by the absence of a cap structure at the 5' end and a poly-adenylated tail at the 3' end. Owing to the development of RNA sequencing and bioinformatics approaches in recent years, the important clinical value of circRNAs has been increasingly revealed. Circ_0067934 is an RNA molecule of 170 nucleotides located on chromosome 3q26.2. Circ_0067934 is formed via the reverse splicing of exons 15 and 16 in PRKCI (protein kinase C Iota). Recent studies revealed the upregulation or downregulation of circ_0067934 in various tumors. The expression of circ_0067934 was found to be correlated with tumor size, TNM stage, and poor prognosis. Based on experiments with cancer cells, circ_0067934 promotes cancer cell proliferation, migratory activity, and invasion when overexpressed or downregulated. The potential mechanism involves the binding of circ_0067934 to microRNAs (miRNAs; miR-545, miR-1304, miR-1301-3p, miR-1182, miR-7, and miR-1324) to regulate the post-transcriptional expression of genes. Other mechanisms include inhibition of the Wnt/β-catenin and PI3K/AKT signaling pathways. Here, we summarized the biological functions and possible mechanisms of circ_0067934 in different tumors to enable further exploration of its translational applications in clinical diagnosis, therapy, and prognostic assessments.
Collapse
Affiliation(s)
- Liqing Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiacheng Zheng
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Jiali Yu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Yujun Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
- The First Clinical Medical College of Nanchang University, Nanchang, 330006 Jiangxi Province China
| | - Huoli Hu
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province China
| |
Collapse
|
6
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Fujimura T, Esteban R, Wickner RB. Genomic fold of a "naked" ssRNA virus is critical for stability and propagation. Proc Natl Acad Sci U S A 2023; 120:e2309329120. [PMID: 37440568 PMCID: PMC10372618 DOI: 10.1073/pnas.2309329120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca37007, Spain
| | - Rosa Esteban
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca37007, Spain
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| |
Collapse
|
8
|
Fang G, Xu D, Zhang T, Wang G, Qiu L, Gao X, Miao Y. Biological functions, mechanisms, and clinical significance of circular RNA in colorectal cancer. Front Oncol 2023; 13:1138481. [PMID: 36950552 PMCID: PMC10025547 DOI: 10.3389/fonc.2023.1138481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide due to the lack of effective diagnosis and prognosis biomarkers and therapeutic targets, resulting in poor patient survival rates. Circular RNA (circRNA) is a type of endogenous non-coding RNA (ncRNA) with a closed-loop structure that plays a crucial role in physiological processes and pathological diseases. Recent studies indicate that circRNAs are involved in the diagnosis, prognosis, drug resistance, and development of tumors, particularly in CRC. Therefore, circRNA could be a potential new target for improving CRC diagnosis, prognosis, and treatment. This review focuses on the origin and biological functions of circRNA, summarizes recent research on circRNA's role in CRC, and discusses the potential use of circRNAs as clinical biomarkers for cancer diagnosis and prognosis, as well as therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Guida Fang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Dalai Xu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
| | - Gang Wang
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xuzhu Gao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
- Institute of Clinical Oncology, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Gastrointestinal Surgery, Clinical College of Lianyungang Second People’s Hospital, Bengbu Medical College, Lianyungang, China
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Lianyungang City, Kangda College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
9
|
Shamsi W, Kondo H, Ulrich S, Rigling D, Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res 2022; 320:198901. [PMID: 36058013 DOI: 10.1016/j.virusres.2022.198901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
The native Japanese population of the fungus Hymenoscyphus fraxineus, the causal agent of ash dieback in Europe, was screened for viruses using a high-throughput sequencing method. Five RNA viruses were detected in 116 fungal isolates sequenced via Illumina RNA-seq platform, with an overall virus prevalence of 11.2%. The viruses were completely sequenced by RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) followed by Sanger sequencing. The sequences appear to represent new species from three established families (Mito-, Endorna- and Partitiviridae), one recognized genus (Botybirnavirus) and a negative-sense single-stranded RNA virus in the order Bunyavirales from the proposed family "Mybuviridae". The highest prevalence was found for the mitovirus (7.8%), that had two genomic forms (linear and circular), while the other viruses were detected each in one isolate. Co-infection of a mitovirus and an endornavirus was also observed in one of the infected isolates. Here we describe the molecular characterization of the identified viruses. This study expands the diversity of viruses in H. fraxineus and provides the basis for investigating the virus-mediated control of ash dieback in Europe.
Collapse
Affiliation(s)
- Wajeeha Shamsi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Sven Ulrich
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Daniel Rigling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf 8903, Switzerland
| |
Collapse
|
10
|
Niu M, Zou Q, Wang C. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks. Bioinformatics 2022; 38:2246-2253. [PMID: 35157027 DOI: 10.1093/bioinformatics/btac079] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION With the analysis of the characteristic and function of circular RNAs (circRNAs), people have realized that they play a critical role in the diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for searching the etiopathogenesis and treatment of diseases. Nevertheless, it is inefficient to learn new associations only through biotechnology. RESULTS Consequently, we present a computational method, GMNN2CD, which employs a graph Markov neural network (GMNN) algorithm to predict unknown circRNA-disease associations. First, used verified associations, we calculate semantic similarity and Gaussian interactive profile kernel similarity (GIPs) of the disease and the GIPs of circRNA and then merge them to form a unified descriptor. After that, GMNN2CD uses a fusion feature variational map autoencoder to learn deep features and uses a label propagation map autoencoder to propagate tags based on known associations. Based on variational inference, GMNN alternate training enhances the ability of GMNN2CD to obtain high-efficiency high-dimensional features from low-dimensional representations. Finally, 5-fold cross-validation of five benchmark datasets shows that GMNN2CD is superior to the state-of-the-art methods. Furthermore, case studies have shown that GMNN2CD can detect potential associations. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/nmt315320/GMNN2CD.git.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324000, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
11
|
Pei Y, Zhang H, Lu K, Tang X, Li J, Zhang E, Zhang J, Huang Y, Yang Z, Lu Z, Li Y, Zhang H, Dong L. Circular RNA circRNA_0067934 promotes glioma development by modulating the microRNA miR-7/ Wnt/β-catenin axis. Bioengineered 2022; 13:5792-5802. [PMID: 35213267 PMCID: PMC8973834 DOI: 10.1080/21655979.2022.2033382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glioma, one of the most prevalent malignant tumors, is well-known for its poor prognosis and low survival rate among patients. As a type of non-coding RNA, circular RNAs (circRNAs) play a significant role in tumor progression. However, the function and role of circRNAs in glioma development remain unclarified. In our experiments, the relative expression level of circRNA_0067934 and miR-7 in glioma tissue was detected by qRT-PCR, and specific gene knockdown was mediated by siRNA and miRNA-inhibitor. Dual-luciferase reporter assay was carried out to determine whether miR-7 successfully targeted circRNA_0067934. Also, CCK-8 and Transwell were performed to evaluate the malignant behaviors of glioma tissues. Western blotting and immunofluorescence were used to evaluate relative protein expression levels. The results of qRT-PCR indicated that circRNA_0067934 was over-expressed in glioma tissues, and down regulation of circRNA_0067934 reduced the tumor progression by inhibiting cell proliferation, invasion, and migration. The relative expression level of miR-7 was significantly reduced in glioma tissues, which showed a negative association with the expression of circRNA_0067934. CircRNA_0067934 could tagete the miR-7 to regulate progression of glioma cell. In addition, the Wnt/β-catenin signaling pathway might involve in down stream regulation of circRNA_0067934 and miR-7. In conclusion, our results revealed that circRNA_0067934 regulates glioma cells progression by targeting miR-7/ Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Yunlong Pei
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongying Zhang
- Department of Image, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Kongye Lu
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaojia Tang
- Department of Rehabilitation, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Jialing Li
- Department of clinical science, Ross University School of Medicine (RUSM), Bridgetown, Barbados
| | - Enpeng Zhang
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jun Zhang
- Department of Neurosurgery, Fudan University, Yangzhou, Jiangsu, China
| | - Yujia Huang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhijie Yang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenggang Lu
- Department of Clinical Medicine, Dalian Medical University, Dalian, Liaoning, China.,Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuping Li
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Hengzhu Zhang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
12
|
Wang Q, Sun Y, Zhao Q, Wu W, Wang L, Miao Y, Yuan P. Circular RNAs in pulmonary hypertension: Emerging biological concepts and potential mechanism. Animal Model Exp Med 2022; 5:38-47. [PMID: 35229989 PMCID: PMC8879624 DOI: 10.1002/ame2.12208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed single-stranded transcript. They are a novel class of genomic regulators that are linked to many important development and disease processes and are being pursued as clinical and therapeutic targets. Using the most powerful RNA sequencing and bioinformatics techniques, a large number of circRNAs have been identified and further functional studies have been performed. It is known that circRNAs act as potential biomarkers, sponges for microRNAs (miRNAs) and RNA-binding proteins (RBPs), and regulators of mRNA transcription. They also participate in the translation of peptides or proteins. Many types of circRNAs are dysregulated in plasma or lung tissues, and they may be involved in regulating the proliferation and apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs), leading to pulmonary vascular remodeling in pulmonary hypertension (PH). One possible mechanism is that circRNAs can regulate the function of PAECs and PASMCs by acting as miRNA sponge. However, other potential mechanisms of action of circRNAs are still being actively explored in PH. This paper presents a systematic review of the biogenesis, biological characterization, relevant underlying functions, and future perspectives for studies of circRNAs in the pathogenesis of PH.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
- Institute of Bismuth ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Yuanyuan Sun
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qinhua Zhao
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Wenhui Wu
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Lan Wang
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Yuqing Miao
- Institute of Bismuth ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Ping Yuan
- Department of Cardio‐Pulmonary CirculationShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
13
|
Liu W, Deng L, Xu A, Xiong X, Tao J, Chang J, Xu Y, Zhou Z. Identifying a novel IRF3/circUHRF1/miR-1306-5p/ARL4C axis in pancreatic ductal adenocarcinoma progression. Cell Cycle 2022; 21:392-405. [PMID: 34983293 PMCID: PMC8855851 DOI: 10.1080/15384101.2021.2020450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one most aggressive and lethal cancer types worldwide. While its underlying mechanisms are still poorly understood. CircRNAs play essential roles in various biological progression, including PDAC. Here, our results found that circUHRF1 was highly expressed in PDAC tumor tissues compared with normal tissues. Next, Cell or animal models were constructed, CCK-8, cell colony, EdU, flow cytometry assay, transwell migration, and Western blot assays were applied. CircUHRF1 knockdown influenced PDAC cell proliferation, apoptosis, migration and EMT level in vitro, and tumor growth in vivo. Subsequently, bioinformatics analysis, AGO2-RIP, RNA pull-down, and dual-luciferase reporter assays were used to explore the downstream targets in PDAC progression. Our findings suggest that circUHRF1 regulated ARL4C expression to promote PDAC progression through sponging miR-1306-5p. The role of miR-1306-5p in PDAC cellular progression has been elucidated, and the expression association between miR-1306-5p and circUHRF1 or ARL4C in PDAC tissues was analyzed. Furthermore, circUHRF1 expression in PDAC cells could be transcriptionally regulated by IRF3. Collectively, our study demonstrated the role of IRF3/circUHRF1/miR-1306-5p/ARL4C axis in PDAC progression. Our results suggest that circUHRF1 is one promising diagnosis or therapeutic target for PDAC management.Abbreviations : CircRNA; Circular RNAPDAC; pancreatic ductal adenocarcinomaUHRF1; Ubiquitin-like with PHD and RING finger domain 1ARL4C; ADP Ribosylation Factor Like GTPase 4CRIP; RNA immunoprecipitationEDU; 5-Ethynyl-2'-deoxyuridineEMT; epithelial to mesenchymal transitionAGO2; Argonaute RISC Catalytic Component 2CCK8; Cell counting Kit-8IRF3; Interferon Regulatory Factor 3.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medical Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Medical Management, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Lisha Deng
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Anchun Xu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Xingcheng Xiong
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Xu
- Obstetrics and Gynecology Department, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zhou
- Department of General Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Sato Y, Shahi S, Telengech P, Hisano S, Cornejo C, Rigling D, Kondo H, Suzuki N. A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe. Virus Res 2022; 307:198606. [PMID: 34688782 DOI: 10.1016/j.virusres.2021.198606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
Positive-sense (+), single-stranded (ss) RNA viruses with divided RNA-dependent RNA polymerase (RdRP) domains have been reported from diverse filamentous ascomycetes since 2020. These viruses are termed splipalmiviruses or polynarnaviruses and have been characterized largely at the sequence level, but ill-defined biologically. Cryphonectria naterciae, from which only one virus has been reported, is an ascomycetous fungus potentially plant-pathogenic to chestnut and oak trees. We molecularly characterized multiple viruses in a single Portuguese isolate (C0614) of C. naterciae, taking a metatranscriptomic and conventional double-stranded RNA approach. Among them are a novel splipalmivirus (Cryphonectria naterciae splipalmivirus 1, CnSpV1) and a novel fusagravirus (Cryphonectria naterciae fusagravirus 1, CnFGV1). This study focused on the former virus. CnSpV1 has a tetra-segmented, (+)ssRNA genome (RNA1 to RNA4). As observed for other splipalmiviruses reported in 2020 and 2021, the RdRP domain is separately encoded by RNA1 (motifs F, A and B) and RNA2 (motifs C and D). A hypothetical protein encoded by the 5'-proximal open reading frame of RNA3 shows similarity to a counterpart conserved in some splipalmiviruses. The other RNA3-encoded protein and RNA4-encoded protein show no similarity with known proteins in a blastp search. The tetra-segment nature was confirmed by the conserved terminal sequences of the four CnSpV1 segments (RNA1 to RNA4) and their 100% coexistence in over 100 single conidial isolates tested. The experimental introduction of CnSpV1 along with CnFGV1 into a virus free strain C0754 of C. naterciae vegetatively incompatible with C0614 resulted in no phenotypic alteration, suggesting asymptomatic infection. The protoplast fusion assay indicates a considerably narrow host range of CnSpV1, restricted to the species C. naterciae and C. carpinicola. This study contributes to better understanding of the molecular and biological properties of this unique group of viruses.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Paul Telengech
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Sakae Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Carolina Cornejo
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, Forest Health & Biotic Interactions, Zuercherstrasse 111, CH-8903 Birmensdorf
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan.
| |
Collapse
|
15
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Characterization of the Mycovirome from the Plant-Pathogenic Fungus Cercospora beticola. Viruses 2021; 13:v13101915. [PMID: 34696345 PMCID: PMC8537984 DOI: 10.3390/v13101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Cercospora leaf spot (CLS) caused by Cercospora beticola is a devastating foliar disease of sugar beet (Beta vulgaris), resulting in high yield losses worldwide. Mycoviruses are widespread fungi viruses and can be used as a potential biocontrol agent for fugal disease management. To determine the presence of mycoviruses in C. beticola, high-throughput sequencing analysis was used to determine the diversity of mycoviruses in 139 C. beticola isolates collected from major sugar beet production areas in China. The high-throughput sequencing reads were assembled and searched against the NCBI database using BLASTn and BLASTx. The results showed that the obtained 93 contigs were derived from eight novel mycoviruses, which were grouped into 3 distinct lineages, belonging to the families Hypoviridae, Narnaviridae and Botourmiaviridae, as well as some unclassified (−)ssRNA viruses in the order Bunyavirales and Mononegavirales. To the best of our knowledge, this is the first identification of highly diverse mycoviruses in C. beticola. The novel mycoviruses explored in this study will provide new viral materials to biocontrol Cercospora diseases. Future studies of these mycoviruses will aim to assess the roles of each mycovirus in biological function of C. beticola in the future.
Collapse
|
17
|
Cheng F, Zheng B, Si S, Wang J, Zhao G, Yao Z, Niu Z, He W. The Roles of CircRNAs in Bladder Cancer: Biomarkers, Tumorigenesis Drivers, and Therapeutic Targets. Front Cell Dev Biol 2021; 9:666863. [PMID: 34350174 PMCID: PMC8326561 DOI: 10.3389/fcell.2021.666863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Bladder cancer (BCa) is the most prevalent malignancy of the urinary system. Circular RNAs (circRNAs), a novel subtype of non-coding RNAs, play a crucial role in physiological and developmental processes. CircRNAs mainly function as regulators of splicing process and transcription, microRNA sponges, and protein brackets. Recent advances in understanding the pathogenesis of BCa have led to the identification of an abundance of dysregulated circRNAs associated with BCa. These aberrantly expressed circRNAs eventually lead to abnormalities in biological, genetic, and epigenetic information. In this review, we introduce the potential of circRNAs as biomarkers for BCa diagnosis and prognosis. Notably, diverse mechanisms have been proposed for circRNAs driving carcinogenesis, including increasing cell proliferation, promoting invasive and migratory capacity, enhancing endothelial–mesenchymal transition, sustaining stemness, and enabling resistance to chemotherapy. Importantly, a full understanding of circRNA mechanisms is needed to mine promising therapeutic approaches for targeting BCa. In this paper, we present the latest advances in circRNAs and systemically summarize the characteristics and mechanisms of circRNAs in BCa, providing potential perspectives for BCa treatment.
Collapse
Affiliation(s)
- Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Zheng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shubin Si
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Urology, People's Hospital of Yiyuan County, Zibo, China
| | - Jianwei Wang
- Department of Urology, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, China
| | - Guiting Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhongshun Yao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei He
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications. Cancers (Basel) 2021; 13:cancers13071555. [PMID: 33800703 PMCID: PMC8037102 DOI: 10.3390/cancers13071555] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Since the completion of the Human Genome Project, noncoding RNAs (ncRNAs) have emerged as an important class of genetic regulators. Several classes of ncRNAs, which include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), have been shown to play important roles in controlling developmental and disease processes. In this article, we discuss the potential roles of ncRNAs in regulating glioblastoma (GBM) formation and progression as well as potential strategies to exploit the diagnostic and therapeutic potential of ncRNAs in GBM. Abstract Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), which have been linked to many important developmental and disease processes and are being pursued as clinical and therapeutic targets. Molecular phenotyping studies of glioblastoma (GBM), the most common and lethal cancer of the adult brain, revealed that several ncRNAs are frequently dysregulated in its pathogenesis. Additionally, ncRNAs regulate many important aspects of glioma biology including tumour cell proliferation, migration, invasion, apoptosis, angiogenesis, and self-renewal. Here, we present an overview of the biogenesis of the different classes of ncRNAs, discuss their biological roles, as well as their relevance to gliomagenesis. We conclude by discussing potential approaches to therapeutically target the ncRNAs in clinic.
Collapse
|
19
|
Zhai X, Zhang Y, Xin S, Cao P, Lu J. Insights Into the Involvement of Circular RNAs in Autoimmune Diseases. Front Immunol 2021; 12:622316. [PMID: 33717126 PMCID: PMC7947908 DOI: 10.3389/fimmu.2021.622316] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, endogenous, non-coding RNA (ncRNA) molecules formed by the backsplicing of messenger RNA (mRNA) precursors and have covalently closed circular structures without 5′-end caps and 3′-end polyadenylation [poly(A)] tails. CircRNAs are characterized by abundant species, stable structures, conserved sequences, cell- or tissue-specific expression, and widespread and stable presence in many organisms. Therefore, circRNAs can be used as biomarkers for the prediction, diagnosis, and treatment of a variety of diseases. Autoimmune diseases (AIDs) are caused by defects in immune tolerance or abnormal immune regulation, which leads to damage to host organs. Due to the complexity of the pathophysiological processes of AIDs, clinical therapeutics have been suboptimal. The emergence of circRNAs sheds new light on the treatment of AIDs. In particular, circRNAs mainly participate in the occurrence and development of AIDs by sponging targets. This review systematically explains the formation, function, mechanism, and characteristics of circRNAs in the context of AIDs. With a deeper understanding of the pathophysiological functions of circRNAs in the pathogenesis of AIDs, circRNAs may become reasonable, accurate, and effective biomarkers for the diagnosis and treatment of AIDs in the future.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
20
|
Li J, Yang Y, Xu D, Cao L. hsa_circ_0023409 Accelerates Gastric Cancer Cell Growth and Metastasis Through Regulating the IRS4/PI3K/AKT Pathway. Cell Transplant 2021; 30:963689720975390. [PMID: 33439739 PMCID: PMC7809302 DOI: 10.1177/0963689720975390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a big threat to human life and health. Circular RNAs (circRNAs), a subclass of noncoding RNAs, were reported to play a critical role in GC progression. Here, we investigated the role of a novel circRNA named hsa_circ_0023409 in GC and its mechanism. Hsa_circ_0023409 expression in GC and adjacent tissues was examined by quantitative real-time polymerase chain reaction and in situ hybridization. The functions of hsa_circ_0023409 in GC cells were assessed both in vitro and in vivo. Immunofluorescence staining was performed for the localization of hsa_circ_0023409 and miR-542-3p in cells. The interaction between hsa_circ_0023409 and miR-542-3p, and miR-542-3p and insulin receptor substrate 4 (IRS4) was detected by dual-luciferase reporter assay. The effect of hsa_circ_0023409, miR-542-3p, and IRS4 on IRS4/phosphatidylinositol 3-kinase (PI3K)/AKT pathway was detected by western blot. The results showed that hsa_circ_0023409 was mainly located in cytoplasm and highly expressed in GC tissues and cells. Moreover, hsa_circ_0023409 showed positive correlation with tumor size, histological grade, and tumor–node–metastasis staging of GC patients. Functional studies showed that hsa_circ_0023409 promoted cell viability, proliferation, migration, and invasion and suppressed apoptosis in GC. Mechanism studies demonstrated that hsa_circ_0023409 upregulated IRS4 via sponging miR-542-3p in GC cells. Furthermore, IRS4 overexpression activated the PI3K/AKT pathway and reversed the inhibitory effect of hsa_circ_0023409 knockdown on the PI3K/AKT pathway. Taken together, we prove that hsa_circ_0023409 activates IRS4/PI3K/AKT pathway by acting as a sponge for miR-542-3p, thus promoting GC progression, indicating that hsa_circ_0023409 may serve as a potential target for treatment of GC and prognosis of GC patients.
Collapse
Affiliation(s)
- Jian Li
- Department of Gastrointestinal Surgery, 47861Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang city, Jiangxi Province, China
| | - Yongjing Yang
- Department of Radiation Oncology, Jilin Provincial Cancer Hospital, Changchun City, Jilin Province, China
| | - Dequan Xu
- Department of Radiation Oncology, Jilin Provincial Cancer Hospital, Changchun City, Jilin Province, China
| | - Ling Cao
- Department of Radiation Oncology, Jilin Provincial Cancer Hospital, Changchun City, Jilin Province, China
| |
Collapse
|
21
|
Wu Z, Sun H, Li J, Jin H. Circular RNAs in leukemia. Aging (Albany NY) 2020; 11:4757-4771. [PMID: 31306100 PMCID: PMC6660040 DOI: 10.18632/aging.102091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
Abstract
In pace with the development of gene sequencing technology and transcriptome research, it has been found that 70 to 90% of the human genome is transcribed into RNAs, while only 2% of RNAs encode proteins. This implies that non-coding RNAs (ncRNAs) may exert vital biological functions and a full analysis of non-coding transcriptomes is needed. Over the past decade, the advance in high-throughput sequencing and transcriptome profiling has enabled the identification of circular RNAs (circRNAs) involved in many biological processes and the occurrence and development of diseases. Accumulating evidence has revealed that circRNAs may serve as new biomarkers for diagnosis as well as provide promising therapeutic approaches and novel drug screening strategies for leukemia. A comprehensive understanding of circRNAs in leukemia is a prerequisite for the development of clinical translational research. In this review, we will discuss the general information of circRNAs and focus on the current advances in understanding the association between dysregulated circRNAs and leukemia.
Collapse
Affiliation(s)
- Zijuan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Handong Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| |
Collapse
|
22
|
Espino-Vázquez AN, Bermúdez-Barrientos JR, Cabrera-Rangel JF, Córdova-López G, Cardoso-Martínez F, Martínez-Vázquez A, Camarena-Pozos DA, Mondo SJ, Pawlowska TE, Abreu-Goodger C, Partida-Martínez LP. Narnaviruses: novel players in fungal-bacterial symbioses. ISME JOURNAL 2020; 14:1743-1754. [PMID: 32269378 DOI: 10.1038/s41396-020-0638-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Rhizopus microsporus is an early-diverging fungal species with importance in ecology, agriculture, food production, and public health. Pathogenic strains of R. microsporus harbor an intracellular bacterial symbiont, Mycetohabitans (formerly named Burkholderia). This vertically transmitted bacterial symbiont is responsible for the production of toxins crucial to the pathogenicity of Rhizopus and remarkably also for fungal reproduction. Here we show that R. microsporus can live not only in symbiosis with bacteria but also with two viral members of the genus Narnavirus. Our experiments revealed that both viruses replicated similarly in the growth conditions we tested. Viral copies were affected by the developmental stage of the fungus, the substrate, and the presence or absence of Mycetohabitans. Absolute quantification of narnaviruses in isolated asexual sporangiospores and sexual zygospores indicates their vertical transmission. By curing R. microsporus of its viral and bacterial symbionts and reinfecting bacteria to reestablish symbiosis, we demonstrate that these viruses affect fungal biology. Narnaviruses decrease asexual reproduction, but together with Mycetohabitans, are required for sexual reproductive success. This fungal-bacterial-viral system represents an outstanding model to investigate three-way microbial symbioses and their evolution.
Collapse
Affiliation(s)
- Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Roberto Bermúdez-Barrientos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - J Francisco Cabrera-Rangel
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Gonzalo Córdova-López
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.,Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Faviola Cardoso-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Azul Martínez-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - David A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, CO, 80521, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico.
| |
Collapse
|
23
|
Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer 2019; 18:6. [PMID: 30626395 PMCID: PMC6325800 DOI: 10.1186/s12943-018-0934-6] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/27/2018] [Indexed: 01/16/2023] Open
Abstract
Covalently closed single-stranded circular RNAs (circRNAs) consist of introns or exons and are widely present in eukaryotic cells. CircRNAs generally have low expression levels and relatively stable structures compared with messenger RNAs (mRNAs), most of which are located in the cytoplasm and often act in cell type and tissue-specific manners, indicating that they may serve as novel biomarkers. In recent years, circRNAs have gradually become a hotspot in the field of RNA and cancer research, but the functions of most circRNAs have not yet been discovered. Known circRNAs can affect the biogenesis of cancers in diverse ways, such as functioning as a microRNA (miRNA) sponges, combining with RNA binding proteins (RBPs), working as a transcription factor and translation of proteins. In this review, we summarize the characteristics and types of circRNAs, introduce the biogenesis of circRNAs, discuss the emerging functions and databases on circRNAs and present the current challenges of circRNAs studies.
Collapse
Affiliation(s)
- Qingfeng Shang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 320, Yueyang Road, Xuhui District, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 12, Lane 833, Zhizaoju Road, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
24
|
Lei B, Tian Z, Fan W, Ni B. Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 2019; 16:292-301. [PMID: 30745810 PMCID: PMC6367529 DOI: 10.7150/ijms.28047] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Circular (circ)RNAs, a newly recognized class of noncoding RNA, have been implicated in the occurrence and development of several diseases, including neurological and cardiovascular diseases. Studies of human tumors, including those of liver cancer, gastric cancer, lung cancer and colorectal cancer, have shown differential expression profiles of circRNAs, suggesting regulatory roles in cancer pathogenesis and metastasis. In this review, we discuss the most recent research into tumor-related circRNAs, providing a comprehensive summary of the expression or/and function of these circRNAs and proposing rational perspectives on the potential clinical application of circRNAs as helpful biomarkers or therapeutic targets in human tumors.
Collapse
Affiliation(s)
- Bo Lei
- Department of Pathophysiology, Third Military Medical University, Chongqing 400038, China.,Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan 030001, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
25
|
Kou P, Zhang C, Lin J, Wang H. Circular RNA hsa_circ_0078602 may have potential as a prognostic biomarker for patients with hepatocellular carcinoma. Oncol Lett 2018; 17:2091-2098. [PMID: 30675276 PMCID: PMC6341904 DOI: 10.3892/ol.2018.9863] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
Circular RNA (circRNA), a type of endogenous non-coding RNA, is a closed continuous loop of RNA with no poly(A) tail. Previously, studies have identified that circRNAs are closely associated with several cancer types. However, their function in hepatocellular carcinoma (HCC) has rarely been studied. Therefore, the aim of the current study was to screen differential circRNA expression between HCC tissues and adjacent non-cancerous tissues, and test the potential clinical value of individual circRNAs. CircRNA microarray was used to investigate global circRNA expression profiles. Attention was then focused on the top four circRNAs whose expression levels were reduced in HCC tissues as compared with non-cancerous tissues. Additionally, RNA expression was validated in 30 matched tissue samples using reverse transcription-quantitative polymerase chain reaction. The results revealed that the expression levels of hsa_circ_0078602 and hsa_circ_0018764 were consistent with microarray analysis (P<0.05). Between these two circRNAs, hsa_circ_0078602 demonstrated an association with a favorable diagnostic efficiency, with an area under the receiver operating characteristic curve of 0.787 (P<0.001). To further verify the expression level of hsa_circ_0078602, the patient sample size was increased to 79. The results supported the conclusion that circ_0078602 was downregulated in HCC tissue compared with non-cancerous tissue (P=0.015) and exhibited diagnostic potential. Notably, it was identified that a lower hsa_circ_0078602 expression level was associated with a worse prognosis among patients with HCC. In addition, it was revealed that 9.0×10−5 was the most efficient cut-off value of hsa_circ_0078602 expression to assess the outcomes of patients with HCC. The present study revealed that hsa_circ_0078602 may be a novel diagnostic biomarker of HCC and therefore have potential prognostic value.
Collapse
Affiliation(s)
- Peisi Kou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 45000, P.R. China
| | - Chenyue Zhang
- Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jiamao Lin
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
26
|
Jin C, Bao J, Wang Y, Chen W, Zou S, Wu T, Wang L, Lv X, Gao W, Wang B, Zhu G, Dai G, Shi D, Sun W. Changes in circRNA expression profiles related to the antagonistic effects of Escherichia coli F17 in lamb spleens. Sci Rep 2018; 8:14524. [PMID: 30266913 PMCID: PMC6162294 DOI: 10.1038/s41598-018-31719-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
Sheep colibacillosis is one of the most common bacterial diseases in large-scale sheep farms. In this study, we orally administered Escherichia coli F17 (E. coli F17) to lambs to obtain antagonistic and sensitive individuals. We used RNA-seq to screen for differential circRNAs in the spleens of both antagonist and sensitive individuals to explore the effect of circRNA on anti-diarrhoea in sheep. The results showed that 60 differentially expressed (DE) circRNAs were screened by RNA-seq in the spleen of antagonistic and sensitive lambs, among which 31 were up-regulated and 29 were down-regulated; q-PCR was used to validate the relative expression levels of six randomly selected circRNAs in antagonist and susceptible lambs and found to be consistent with the results of RNA-seq. Using Miranda analysis of circRNA-miRNA-mRNA interactions, we found a certain target relationship between 6 circRNAs, 5 miRNAs and 9 mRNAs. The relative expression levels of mRNA in antagonistic and sensitive lambs were verified by q-PCR and were consistent with the results of RNA-seq. This study explored the expression profile of circRNA in the spleen of an antagonistic and susceptible lamb with diarrhoea and found that differentially expressed circRNAs were helpful for determining how the lambs resist the pathogenesis of diarrhoea and provided a scientific basis for lambs to resist diarrhoea.
Collapse
Affiliation(s)
- Chengyan Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Jianjun Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yue Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Weihao Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Shuangxia Zou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Tianyi Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Lihong Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaoyang Lv
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Buzhong Wang
- Jiangsu Xilaiyuan Ecological Agriculture Co., Ltd. Taizhou, Taizhou, 225300, Jiangsu, P. R. China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Guojun Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| |
Collapse
|
27
|
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X, Li X. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:177. [PMID: 30064461 PMCID: PMC6069563 DOI: 10.1186/s13046-018-0822-3] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies show that exosomes are involved in intercellular communication and that abundant circular RNAs (circRNAs) are present within exosomes. However, whether these exosomal circRNAs contribute to tumor invasion and metastasis remains unclear, as do their associated mechanisms. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to measure the expression levels of circ-IARS in 85 pancreatic ductal adenocarcinoma (PDAC) tissues, plasma exosomes, and Hs 766 T, Hs 766 T-L2 and human microvascular vein endothelial (HUVECs) cells. RhoA, ZO-1 and RhoA-GTP levels were detected by qRT-PCR and western blotting (WB); RhoA activity analysis was also performed. Transwell assays were performed to examine changes in endothelial monolayer permeability, and immunofluorescence and WB were employed to evaluate F-actin expression and focal adhesion. Finally, an animal experiment was performed to detect the contribution of circ-IARS to cancer metastasis. RESULTS circ-IARS expression was up-regulated in pancreatic cancer tissues and in plasma exosomes of patients with metastatic disease. Circ-IARS was found to enter HUVECs through exosomes and promote tumor invasion and metastasis. Circ-IARS expression was positively correlated with liver metastasis, vascular invasion, and tumor-node-metastasis (TNM) stage and negatively correlated with postoperative survival time. Overexpression of circ-IARS significantly down-regulated miR-122 and ZO-1 levels, up-regulated RhoA and RhoA-GTP levels, increased F-actin expression and focal adhesion, enhanced endothelial monolayer permeability, and promoted tumor invasion and metastasis. CONCLUSIONS circ-IRAS accesses HUVECs via exosomes derived from pancreatic cancer cells followed by increased endothelial monolayer permeability. Furthermore, this process promotes tumor invasion and metastasis. The results of this study suggest that the presence of circRNAs in exosomes may be important indicator for early diagnosis and prognostic prediction in PDAC.
Collapse
Affiliation(s)
- Jie Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhonghu Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Peng Jiang
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Minjie Peng
- Current address: Hepatobiliary Surgery & Carson International Cancer Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Xi Zhang
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Kai Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hui Liu
- Current address: Hepatobiliary Surgery & Carson International Cancer Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Huaqiang Bi
- Current address: Hepatobiliary Surgery & Carson International Cancer Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Xiangde Liu
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Xiaowu Li
- Hepatobiliary Surgery Institute, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. .,Current address: Hepatobiliary Surgery & Carson International Cancer Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
28
|
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018; 187:31-44. [PMID: 29406246 DOI: 10.1016/j.pharmthera.2018.01.010] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emerging recognition of the functional roles of circular RNAs (circRNAs) has given rise to a new perspective regarding our understanding of cellular physiology and disease pathogenesis. Unlike linear RNAs, circRNAs are covalently closed continuous loops that act as gene regulators in mammals, and their sequence composition determines the mode of circRNA biogenesis. The availability and integrated use of advanced genome analysis platforms have allowed the identification of a large number of these molecules. Their high abundance, stability and evolutionary conservation among species endow circRNAs with numerous potential functions, such as acting as microRNA (miRNA) sponges or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. Moreover, circRNAs have been shown to be expressed in a tissue-specific manner and in pathological conditions, which has stimulated significant interest in their role in human disease and cancer. In this concise review, we outline the characteristics, functions and mechanisms of action of circRNAs as well as their involvement in different diseases. Although their exact roles and mechanisms of gene regulation remain to be clarified, circRNAs have potential applications as disease biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Functional Role of Circular RNA in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:299-308. [PMID: 30259376 DOI: 10.1007/978-981-13-1426-1_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Every year, millions of people around the world suffer from different forms of tissue trauma. Regenerative medicine refers to therapy that replaces the injured organ or cells. Stem cells are the frontiers and hotspots of current regenerative medicine research. Circular RNAs (circRNAs) are essential for the early development of many species. It was found that they could guide stem cell differentiation through interacting with certain microRNAs (miRNAs). Based on this concept, it is meaningful to look into how circRNAs influence stem cells and its role in regenerative medicine. In this chapter we will discuss the functional roles of circRNAs in the prevention, repair, or progression of chronic diseases, through the communication between stem cells.
Collapse
|
30
|
He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett 2017; 396:138-144. [PMID: 28342987 DOI: 10.1016/j.canlet.2017.03.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA molecules that lack a 5'-terminal cap and 3'-terminal poly A tail. A large number of circRNAs have been identified through biological experiments, computational methods and high-throughput sequencing. CircRNA sequence composition determines if a given circRNA is exonic, intronic or retained-intronic. CircRNAs are more abundant and stable than linear mRNAs, and their expression is both step- and location-specific. CircRNAs mediate transcriptional and post-transcriptional regulation of gene and protein expression. CircRNAs regulate cancer development via multiple mechanisms, including miRNA sponges, modulating Wnt signaling pathway and epithelial-mesenchymal transition. An in-depth study of circRNA will provide a better understanding of carcinogenesis and assist in developing clinical diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China.
| | - Qichao Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hailin Xu
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China
| | - Jiantian Li
- Department of General Surgery, Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiande, Zhejiang 311600, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
31
|
Vega L, Sevillano L, Esteban R, Fujimura T. Resting complexes of the persistent yeast 20S RNA Narnavirus consist solely of the 20S RNA viral genome and its RNA polymerase p91. Mol Microbiol 2014; 93:1119-29. [PMID: 25048081 DOI: 10.1111/mmi.12724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 11/30/2022]
Abstract
The positive strand 20S RNA narnavirus persistently infects Saccharomyces cerevisiae. The 20S RNA genome has a single gene that encodes the RNA-dependent RNA polymerase (p91). 20S RNA forms ribonucleoprotein resting complexes (RNPs) with p91 and resides in the cytoplasm. Here we found no host proteins stoichiometrically associated with the RNP by pull-down experiments. Furthermore, 20S RNA, when expressed from a vector in Escherichia coli, formed RNPs with p91 in the absence of yeast proteins. This interaction required the 3' cis signal for complex formation. Moreover, when 23S RNA, the genome of another narnavirus, was expressed in E. coli, it also formed RNPs with its RNA polymerase p104. Finally, when both RNAs were expressed in the same E. coli cell, they formed RNPs only with their cognate RNA polymerases. These results altogether indicate that narnaviruses RNPs consist of only the viral genomes and their cognate RNA polymerases. Because the copy number of the RNPs can be induced almost equivalent to those of rRNAs in some yeast strains, the absence of host proteins may alleviate the burden on the host by not sequestering proteins into the RNPs. It may also contribute to the persistent infection of narnaviruses by decreasing their visibility.
Collapse
Affiliation(s)
- Lorena Vega
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | | | | | | |
Collapse
|
32
|
Abstract
Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast.
Collapse
|
33
|
Abstract
Members of the virus family Narnaviridae contain the simplest genomes of any RNA virus, ranging from 2.3 to 3.6 kb and encoding only a single polypeptide that has an RNA-dependent RNA polymerase domain. The family is subdivided into two genera based on subcellular location: members of the genus Narnavirus have been found in the yeast Saccharomyces cerevisiae and in the oomycete Phytophthora infestans and are confined to the cytosol, while members of the genus Mitovirus have been found only in filamentous fungi and are found in mitochondria. None identified thus far encodes a capsid protein; like several other RNA viruses of lower eukaryotes, their genomes are confined within lipid vesicles. As more family members are discovered, their importance as genetic elements is becoming evident. The unique association of the genus Mitovirus with mitochondria renders them potentially valuable tools to study biology of lower eukaryotes.
Collapse
|
34
|
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
35
|
Ramírez-Garrastacho M, Esteban R. Yeast RNA viruses as indicators of exosome activity: human exosome hCsl4p participates in RNA degradation in Saccharomyces cerevisiae'. Yeast 2011; 28:821-32. [PMID: 22068837 DOI: 10.1002/yea.1909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/26/2011] [Indexed: 11/07/2022] Open
Abstract
The exosome is an evolutionarily conserved 10-mer complex involved in RNA metabolism, located in both the nucleus and the cytoplasm. The cytoplasmic exosome plays an important role in mRNA turnover through its 3'→5' exonucleolytic activity. The superkiller (SKI) phenotype of yeast was originally identified as an increase of killer toxin production due to elevated levels of the L-A double-stranded RNA (dsRNA) Totivirus and its satellite toxin-encoding M dsRNA. Most SKI genes were later shown to be either components of the exosome or modulators of its activity. Variations in the amount of Totivirus are, thus, good indicators of yeast exosome activity, and can be used to analyse its components. Furthermore, if exosome proteins of higher eukaryotes were functional in S. cerevisiae, these viruses would provide a simple tool to analyse their function. In this work, we have found that hCSL4, the human orthologue of SKI4 in the yeast exosome, rescues the null phenotype of the deletion mutant. hCsl4p shares with Ski4p conserved S1 RNA-binding domains, but lacks the N-terminal third of Ski4p. Nevertheless, it interacts with the Dis3p exonuclease of yeast exosome, and partially complements the superkiller phenotype of ski4-1 mutation. The elimination of the N-terminal third of Ski4p does not affect its activity, indicating that it is dispensable for RNA degradation. We have also identified the point mutation G152E in hCSL4, equivalent to the ski4-1 mutation G253E, which impairs the activity of the protein, thus validating our approach of using yeast RNA virus to analyse the exosome of higher eukaryotes.
Collapse
Affiliation(s)
- Manuel Ramírez-Garrastacho
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Spain
| | | |
Collapse
|
36
|
Abstract
Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, "naked" RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3' and the cytoplasmic 5' RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd.
Collapse
|
37
|
Wilson MA, Meaux S, van Hoof A. Diverse aberrancies target yeast mRNAs to cytoplasmic mRNA surveillance pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:550-7. [PMID: 18554525 DOI: 10.1016/j.bbagrm.2008.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 02/29/2008] [Accepted: 05/06/2008] [Indexed: 12/25/2022]
Abstract
Eukaryotic gene expression is a complex, multistep process that needs to be executed with high fidelity and two general methods help achieve the overall accuracy of this process. Maximizing accuracy in each step in gene expression increases the fraction of correct mRNAs made. Fidelity is further improved by mRNA surveillance mechanisms that degrade incorrect or aberrant mRNAs that are made when a step is not perfectly executed. Here, we review how cytoplasmic mRNA surveillance mechanisms selectively recognize and degrade a surprisingly wide variety of aberrant mRNAs that are exported from the nucleus into the cytoplasm.
Collapse
Affiliation(s)
- Marenda A Wilson
- University of Texas Health Science Center-Houston, Department of Microbiology and Molecular Genetics, 6431 Fannin Street MSB 1.212, Houston, TX 77030, USA
| | | | | |
Collapse
|
38
|
Fujimura T, Esteban R. Interactions of the RNA polymerase with the viral genome at the 5'- and 3'-ends contribute to 20S RNA narnavirus persistence in yeast. J Biol Chem 2007; 282:19011-9. [PMID: 17478418 DOI: 10.1074/jbc.m702432200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
20S RNA narnavirus is a positive strand RNA virus found in the yeast Saccharomyces cerevisiae. The viral genome (2514 nucleotides) only encodes a single protein (p91), the RNA-dependent RNA polymerase and does not have capsid proteins to form intracellular virions. The genomic RNA has no 3' poly(A) tail and perhaps no cap structure at the 5'-end; thus resembling an intermediate of mRNA degradation. The virus, however, escapes the host surveillance and replicates in the yeast cytoplasm persistently. The viral genome is not naked but exists in the form of a ribonucleoprotein complex with p91 in a 1:1 stoichiometry. Here we investigated interactions between p91 and the viral genome. Our results indicate that p91 directly or indirectly interacts with the RNA at the 5'- and 3'-end regions and to a lesser extent at a central part. The 3'-end site is identical to or overlaps with the 3' cis signal for replication identified previously. The 5'-site is at the second stem loop structure from the 5'-end (nucleotides 72-104), and this structure also contains a cis signal for replication. Analysis of mutants in the structure revealed a tight correlation between replication and formation of complexes. These results highlight the importance of ribonucleoprotein complexes for the viral life cycle. We will discuss implications of these findings especially on how the virus escapes from mRNA degradation pathways and resides in the cytoplasm persistently despite the lack of a protective capsid.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
39
|
Fujimura T, Esteban R. The bipartite 3'-cis-acting signal for replication is required for formation of a ribonucleoprotein complex in vivo between the viral genome and its RNA polymerase in yeast 23 S RNA virus. J Biol Chem 2004; 279:44219-28. [PMID: 15308662 DOI: 10.1074/jbc.m408530200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 S RNA narnavirus is a persistent positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.9 kb) encodes only its RNA-dependent RNA polymerase, p104, and forms a ribonucleoprotein complex with p104 in vivo. Previously we succeeded in generating 23 S RNA virus in yeast from an expression vector containing the entire viral cDNA sequence. Using this system, we have recently identified a bipartite 3' cis-acting signal for replication. The signal consists of a stretch of four cytidines (Cs) at the 3' end and a mismatched pair of purines in a stem-loop structure that partially overlaps the terminal four Cs. Although the 3' terminal and penultimate Cs are not essential for virus launching, the generated viruses efficiently recovered these terminal nucleotides. In this work, we expressed RNA transcripts containing the entire 23 S RNA genome but incapable of generating the virus because of the presence of non-viral extra sequences at the 3' ends. These transcripts could form complexes with p104 in vivo, and a detailed analysis indicated that the mismatched pair of purines as well as the third and fourth Cs from the viral 3' end was essential for this complex-forming activity. Given that 23 S RNA virus does not have genes for capsid proteins, the binding of p104 to the viral 3' end, in addition to the efficient 3' terminal repair, may play a crucial role in virus persistence by protecting and maintaining the correct viral 3' end in vivo.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Spain
| | | |
Collapse
|
40
|
Esteban R, Fujimura T. Launching the yeast 23S RNA Narnavirus shows 5' and 3' cis-acting signals for replication. Proc Natl Acad Sci U S A 2003; 100:2568-73. [PMID: 12591948 PMCID: PMC151381 DOI: 10.1073/pnas.0530167100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narnavirus 23S RNA is a persistent positive-stranded RNA virus found in yeast Saccharomyces cerevisiae. The viral genome (2.9 kb) only encodes its RNA-dependent RNA polymerase, p104. Here we report the generation of 23S RNA virus, with high frequency, from a vector containing the entire viral cDNA sequence. When the conserved GDD (Gly-Asp-Asp) motif of RNA-dependent RNA polymerase was modified, the vector failed to generate the virus, indicating that an active p104 is essential for replication. Successful launching required transcripts having the proper viral 3' terminus generated in vivo. This was accomplished through in vivo processing of the primary transcripts by the hepatitis delta virus antigenomic ribozyme directly fused to the 3' terminus of the 23S RNA genome. Although the primary transcripts also contained extra nucleotides at their 5' ends derived from the vector, the launched virus possessed the authentic 5' terminus of the viral genome without these extra nucleotides. Modifications of the genome sequence at the 5' and 3' termini abolished viral generation, indicating that the viral genome has cis-acting signals for replication at both termini. The great ease to generate the virus will facilitate the identification of these cis-acting signals. Furthermore, the virus, once generated, can be transmitted to daughter cells indefinitely without the vector or any selection, which makes the 23S RNA virus-launching system particularly useful for investigating the basis for RNA virus persistence.
Collapse
Affiliation(s)
- Rosa Esteban
- Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones CientificasUniversidad de Salamanca, 37007 Salamanca, Spain.
| | | |
Collapse
|
41
|
López V, Gil R, Vicente Carbonell J, Navarro A. Occurrence of 20S RNA and 23S RNA replicons in industrial yeast strains and their variation under nutritional stress conditions. Yeast 2002; 19:545-52. [PMID: 11921103 DOI: 10.1002/yea.848] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have characterized industrial yeast strains used in the brewing, baking, and winemaking industries for the presence or absence of cytoplasmic single-stranded 20S and 23S RNAs. Furthermore, the variation of intracellular concentrations of these replicons in brewing and laboratory strains under nutritional stress conditions was determined. Our results show a correlation between the relative abundance of these replicons and exposure of yeast to nutritionally stressful conditions, indicating that these RNAs could be employed as molecular probes to evaluate the exposure of 20S(+) and/or 23S(+) yeast strains to stress situations during industrial manipulation. During this study, several 20S(-)23S(+) Saccharomyces cerevisiae strains were isolated and identified. This is the first time that a yeast strain containing only 23S RNA has been reported, demonstrating that 20S RNA is not required for 23S RNA replication.
Collapse
Affiliation(s)
- Victoria López
- Asociación de Investigación de Cerveza y Malta (INVESCEMA),C/ Almagro 24, 8010 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Solorzano A, Rodríguez-Cousiño N, Esteban R, Fujimura T. Persistent yeast single-stranded RNA viruses exist in vivo as genomic RNA.RNA polymerase complexes in 1:1 stoichiometry. J Biol Chem 2000; 275:26428-35. [PMID: 10833519 DOI: 10.1074/jbc.m002281200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast narnavirus 20 S and 23 S RNAs encode RNA-dependent RNA polymerases p91 and p104, respectively, but do not encode coat proteins. Both RNAs form ribonucleoprotein complexes with their cognate polymerases. Here we show that these complexes are not localized in mitochondria, unlike the closely related mitoviruses, which reside in these organelles. Cytoplasmic localization of these polymerases was demonstrated by immunofluorescence and by fluorescence emitted from green fluorescent protein-fused polymerases. These fusion proteins were able to form ribonucleoprotein complexes as did the wild-type polymerases. Fluorescent observations and cell fractionation experiments suggested that the polymerases were stabilized by complex formation with their viral RNA genomes. Immunoprecipitation experiments with anti-green fluorescent protein antibodies demonstrated that a single polymerase molecule binds to a single viral RNA genome in the complex. Moreover, the majority (if not all) of 20 S and 23 S RNA molecules were found to form complexes with their cognate RNA polymerases. Since these viral RNAs were not encapsidated, ribonucleoprotein complex formation with their cognate RNA polymerases appears to be their strategy to survive in the host as persistent viruses.
Collapse
Affiliation(s)
- A Solorzano
- Departamento de Microbiologia y Genética, Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | | |
Collapse
|
43
|
Abstract
In wild-type cells, the 3' poly(A) structure is necessary for translation of mRNA and for mRNA stability. The superkiller 2 (ski2), ski3, ski6, ski7, and ski8 mutations enhance the expression of the poly(A)(-) mRNAs of yeast RNA viruses. Ski2p is a DEVH-box RNA helicase and Slh1p resembles Ski2p. Both repress L-A double-stranded RNA (dsRNA) virus copy number, further suggesting that their functions may overlap. We find that slh1Delta ski2Delta double mutants are healthy (in the absence of viruses) and show normal rates of turnover of several cellular mRNAs. The slh1Delta ski2Delta strains translate electroporated nonpoly(A) mRNA with the same kinetics as polyA(+) mRNA. Thus, the translation apparatus is inherently capable of efficiently using nonpoly(A) mRNA even in the presence of normal amounts of competing poly(A)(+) mRNA, but is normally prevented from doing so by the combined action of the nonessential proteins Ski2p and Slh1p.
Collapse
Affiliation(s)
- A M Searfoss
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, MSC 0830, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- A van Hoof
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
45
|
Dechampesme AM, Koroleva O, Leger-Silvestre I, Gas N, Camier S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J Cell Biol 1999; 145:1369-80. [PMID: 10385518 PMCID: PMC2133170 DOI: 10.1083/jcb.145.7.1369] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A collection of yeast strains surviving with mutant 5S RNA has been constructed. The mutant strains presented alterations of the nucleolar structure, with less granular component, and a delocalization of the 25S rRNA throughout the nucleoplasm. The 5S RNA mutations affected helix I and resulted in decreased amounts of stable 5S RNA and of the ribosomal 60S subunits. The shortage of 60S subunits was due to a specific defect in the processing of the 27SB precursor RNA that gives rise to the mature 25S and 5.8S rRNA. The processing rate of the 27SB pre-rRNA was specifically delayed, whereas the 27SA and 20S pre-rRNA were processed at a normal rate. The defect was partially corrected by increasing the amount of mutant 5S RNA. We propose that the 5S RNA is recruited by the pre-60S particle and that its recruitment is necessary for the efficient processing of the 27SB RNA precursor. Such a mechanism could ensure that all newly formed mature 60S subunits contain stoichiometric amounts of the three rRNA components.
Collapse
MESH Headings
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression
- Genes, Fungal
- Kinetics
- Molecular Weight
- Mutation
- Nucleic Acid Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
Collapse
Affiliation(s)
- A M Dechampesme
- Service de Biochimie et de Génétique Moléculaire, Commissariat á L'Energie Atomique (CEA)/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Benard L, Carroll K, Valle RC, Masison DC, Wickner RB. The ski7 antiviral protein is an EF1-alpha homolog that blocks expression of non-Poly(A) mRNA in Saccharomyces cerevisiae. J Virol 1999; 73:2893-900. [PMID: 10074137 PMCID: PMC104047 DOI: 10.1128/jvi.73.4.2893-2900.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We mapped and cloned SKI7, a gene that negatively controls the copy number of L-A and M double-stranded RNA viruses in Saccharomyces cerevisiae. We found that it encodes a nonessential 747-residue protein with similarities to two translation factors, Hbs1p and EF1-alpha. The ski7 mutant was hypersensitive to hygromycin B, a result also suggesting a role in translation. The SKI7 product repressed the expression of nonpolyadenylated [non-poly(A)] mRNAs, whether capped or uncapped, thus explaining why Ski7p inhibits the propagation of the yeast viruses, whose mRNAs lack poly(A). The dependence of the Ski7p effect on 3' RNA structures motivated a study of the expression of capped non-poly(A) luciferase mRNAs containing 3' untranslated regions (3'UTRs) differing in length. In a wild-type strain, increasing the length of the 3'UTR increased luciferase expression due to both increased rates and duration of translation. Overexpression of Ski7p efficiently cured the satellite virus M2 due to a twofold-increased repression of non-poly(A) mRNA expression. Our experiments showed that Ski7p is part of the Ski2p-Ski3p-Ski8p antiviral system because a single ski7 mutation derepresses the expression of non-poly(A) mRNA as much as a quadruple ski2 ski3 ski7 ski8 mutation, and the effect of the overexpression of Ski7p is not obtained unless other SKI genes are functional. ski1/xrn1Delta ski2Delta and ski1/xrn1Delta ski7Delta mutants were viable but temperature sensitive for growth.
Collapse
Affiliation(s)
- L Benard
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | |
Collapse
|
47
|
Moriyama H, Horiuchi H, Koga R, Fukuhara T. Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. J Biol Chem 1999; 274:6882-8. [PMID: 10066741 DOI: 10.1074/jbc.274.11.6882] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We completely sequenced 13,936 nucleotides (nt) of a double-stranded RNA (dsRNA) of wild rice (W-dsRNA). A single long open reading frame (13,719 nt) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase was located in the coding strand. The identity between entire nucleotide sequence of W-dsRNA and that of the dsRNA of temperate japonica rice (J-dsRNA, 13,952 nt) was 75.5%. A site-specific discontinuity (nick) was identified at nt 1,197 from the 5' end of the coding strand of W-dsRNA. This nick is also located at nt 1,211 from the 5' end in the coding strand of J-dsRNA. The dsRNA copy number was increased more than 10-fold in pollen grains of both rice plants. This remarkable increase may be responsible for the highly efficient transmission of J-dsRNA via pollen that we already reported. J-dsRNA and W-dsRNA were also efficiently transmitted to interspecific F1 hybrids. Seed-mediated dsRNA transmission to F2 plants was also highly efficient when the maternal parent was wild rice. The efficiency of dsRNA transmission to F2 plants was reduced when the maternal parent was temperate japonica rice; however, the reduced rates in F2 plants were returned to high levels in F3 plants.
Collapse
Affiliation(s)
- H Moriyama
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho, 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
48
|
Rodríguez-Cousiño N, Solórzano A, Fujimura T, Esteban R. Yeast positive-stranded virus-like RNA replicons. 20 S and 23 S RNA terminal nucleotide sequences and 3' end secondary structures resemble those of RNA coliphages. J Biol Chem 1998; 273:20363-71. [PMID: 9685388 DOI: 10.1074/jbc.273.32.20363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae strains carry single-stranded RNAs called 20 S RNA and 23 S RNA. These RNAs and their double-stranded counterparts, W and T dsRNAs, have been cloned and sequenced. A few nucleotides at both ends, however, remained unknown. These RNAs do not encode coat proteins but their own RNA-dependent RNA polymerases that share a high degree of conservation to each other. The polymerases are also similar to the replicases of RNA coliphages, such as Qbeta. Here we have determined the nucleotide sequences of W and T dsRNAs at both ends using reverse transcriptase polymerase chain reaction-generated cDNA clones. We confirmed the terminal sequences by primer-extension and RNase protection experiments. Furthermore, these analyses demonstrated that W and T dsRNAs and their single-stranded RNA counterparts (i) are linear molecules, (ii) have identical nucleotide sequences at their ends, and (iii) have no poly(A) tails at their 3' ends. Both 20 S and 23 S RNAs have GGGGC at the 5' ends and the complementary 5-nucleotides sequence, GCCCC-OH, at their 3' ends. S1 and V1 secondary structure-mapping of the 3' ends of 20 S and 23 S RNAs shows the presence of a stem-loop structure that partially overlaps with the conserved 3' end sequence. Nucleotide sequences and stem-loop structures similar to those described here have been found at the 3' ends of RNA coliphages. These data, together with the similarity of the RNA-dependent RNA polymerases encoded among these RNAs and RNA coliphages, suggest that 20 S and 23 S RNAs are plus-strand single-stranded virus-like RNA replicons in yeast.
Collapse
Affiliation(s)
- N Rodríguez-Cousiño
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, Salamanca 37007, Spain
| | | | | | | |
Collapse
|
49
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
50
|
Goodin MM, Schlagnhaufer B, Weir T, Romaine CP. Characterization of an RNA-dependent RNA polymerase activity associated with La France isometric virus. J Virol 1997; 71:2264-9. [PMID: 9032361 PMCID: PMC191334 DOI: 10.1128/jvi.71.3.2264-2269.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purified preparations of La France isometric virus (LIV), an unclassified, double-stranded RNA (dsRNA) virus of Agaricus bisporus, were associated with an RNA-dependent RNA polymerase (RDRP) activity. RDRP activity cosedimented with the 36-nm isometric particles and genomic dsRNAs of LIV during rate-zonal centrifugation in sucrose density gradients, suggesting that the enzyme is a constituent of the virion. Enzyme activity was maximal in the presence of all four nucleotides, a reducing agent (dithiothreitol or beta-mercaptoethanol), and Mg2+ and was resistant to inhibitors of DNA-dependent RNA polymerases (actinomycin D, alpha-amanitin, and rifampin). The radiolabeled enzyme reaction products were predominantly (95%) single-stranded RNA (ssRNA) as determined by cellulose column chromatography and ionic-strength-dependent sensitivity to hydrolysis by RNase A. Three major size classes of ssRNA transcripts of 0.95, 1.3, and 1.8 kb were detected by agarose gel electrophoresis, although the transcripts hybridized to all nine of the virion-associated dsRNAs. The RNA products synthesized in vitro appeared to be of a single polarity, as they hybridized to an ssDNA corresponding to one strand of a genomic dsRNA and not to the complementary strand. Similarly, reverse transcription-PCR with total cellular ssRNA as a template and strand-specific primers targeting a genomic dsRNA during synthesis of cDNA suggested that only the coding strand was transcribed in vivo. Our data indicate that the RDRP activity associated with virions of LIV is probably a transcriptase engaged in the synthesis of ssRNA transcripts corresponding to each of the virion-associated dsRNAs.
Collapse
Affiliation(s)
- M M Goodin
- Department of Plant Pathology, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|