1
|
El Nachef L, Bodgi L, Estavoyer M, Buré S, Jallas AC, Granzotto A, Restier-Verlet J, Sonzogni L, Al-Choboq J, Bourguignon M, Pujo-Menjouet L, Foray N. Prediction of Cancer Proneness under Influence of X-rays with Four DNA Mutability and/or Three Cellular Proliferation Assays. Cancers (Basel) 2024; 16:3188. [PMID: 39335159 PMCID: PMC11430126 DOI: 10.3390/cancers16183188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Context: Although carcinogenesis is a multi-factorial process, the mutability and the capacity of cells to proliferate are among the major features of the cells that contribute together to the initiation and promotion steps of cancer formation. Particularly, mutability can be quantified by hyper-recombination rate assessed with specific plasmid assay, hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations frequency rate, or MRE11 nuclease activities. Cell proliferation can be assessed by flow cytometry by quantifying G2/M, G1 arrests, or global cellular evasion. METHODS All these assays were applied to skin untransformed fibroblasts derived from eight major cancer syndromes characterized by their excess of relative cancer risk (ERR). RESULTS Significant correlations with ERR were found between hyper-recombination assessed by the plasmid assay and G2/M arrest and described a third-degree polynomial ERR function and a sigmoidal ERR function, respectively. The product of the hyper-recombination rate and capacity of proliferation described a linear ERR function that permits one to better discriminate each cancer syndrome. CONCLUSIONS Hyper-recombination and cell proliferation were found to obey differential equations that better highlight the intrinsic bases of cancer formation. Further investigations to verify their relevance for cancer proneness induced by exogenous agents are in progress.
Collapse
Affiliation(s)
- Laura El Nachef
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Larry Bodgi
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Maxime Estavoyer
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Simon Buré
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Anne-Catherine Jallas
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Joëlle Al-Choboq
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
- Département de Biophysique et Médecine Nucléaire, Université Paris Saclay-Versailles St. Quentin-en-Yvelines, 78035 Versailles, France
| | - Laurent Pujo-Menjouet
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, Inria, 69622 Villeurbanne, France
| | - Nicolas Foray
- INSERM U1296 Unit "Radiation: Defense, Health, Environment", Centre Léon-Bérard, 69008 Lyon, France
| |
Collapse
|
2
|
Bahal R, Gupta A, Glazer PM. Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
4
|
Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 2014; 10:e1004299. [PMID: 24901438 PMCID: PMC4046920 DOI: 10.1371/journal.pgen.1004299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. Cancer is a disease of the genome, caused by accumulated genetic changes, such as point mutations and large-scale sequence rearrangements. Homologous recombination (HR) is a critical DNA repair pathway. While generally accurate, HR between misaligned sequences or between homologous chromosomes can lead to insertions, deletions, and loss of heterozygosity, all of which are known to promote cancer. Indeed, most cancers harbor sequence changes caused by HR, and genetic and environmental conditions that induce or suppress HR are often carcinogenic. To enable studies of HR in vivo, we created the Rosa26 Direct Repeat-Green Fluorescent Protein (RaDR-GFP) mice that carry an integrated transgenic recombination reporter targeted to the ubiquitously expressed Rosa26 locus. Being able to detect recombinant cells by fluorescence reveals that the frequency of recombination is highly variable among tissues. Furthermore, new recombination events accumulate over time, which contributes to our understanding of why our risk for cancer increases with age. This mouse model provides new understanding of this important DNA repair pathway in vivo, and also enables future studies of genetic, environmental and physiological factors that impact the risk of HR-induced sequence rearrangements in vivo.
Collapse
|
5
|
Effect of the overexpression of BRCA2 unclassified missense variants on spontaneous homologous recombination in human cells. Breast Cancer Res Treat 2011; 129:1001-9. [PMID: 21671020 DOI: 10.1007/s10549-011-1607-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Breast Cancer 2 gene (BRCA2) mutation carriers have a 45% chance of developing breast cancer and a 11% risk of developing ovarian cancer by the age of 70. While hundreds of BRCA2-truncating mutations have been associated with an increased cancer risk in carriers, the contribution of unclassified variants (UCVs) to cancer risk remains largely undefined. BRCA2-defective cells show a high degree of chromosome instability. Although a functional assay based on the BRCA2 capability to stimulate DSB-induced homologous recombination (HR) as a way to classify UCVs has been proposed, so far no data are available concerning the effect of BRCA2 UCVs on spontaneous HR. In this study, we proposed a novel functional HR-based assay that determines the effect of the transient overexpression of the BRCA2 variant on spontaneous HR. This assay will help one in the difficult task of classifying UCVs, and it will give more information on how BRCA2 may induce genome instability and on the basic mechanism of BRCA2-induced tumourigenesis. We chose 11 BRCA2 UCVs not previously described or classified in other articles, and distributed along the entire BRCA2-coding region. They are as follows: G173V, D191V, S286P, M927V, T1011R, L1019V, N1878K, S2006R, R2108C, G2353R and V3091I. Basically, because the expression of BRCA2wt and the neutral variants did not increase spontaneous HR, we classified the variants G173V, S286P, M927V, T1011R and L1019V as HR-negative and presumed that they were not pathogenic. The HR-positive variants, D191V, N1878K, S2006R, R2108C, G2353R, and V3091I, which increased HR as much as the cancer-associated variant G2748D, could probably be classified as pathogenic. We observed that all our variants in the C-terminus of the protein behaved differently from the wt, suggesting a role for this protein region in spontaneous HR.
Collapse
|
6
|
Spampinato CP, Gomez RL, Galles C, Lario LD. From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 2009; 682:110-28. [PMID: 19622396 DOI: 10.1016/j.mrrev.2009.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/16/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Mismatch repair (MMR) system maintains genome integrity by correcting mispaired or unpaired bases which have escaped the proofreading activity of DNA polymerases. The basic features of the pathway have been highly conserved throughout evolution, although the nature and number of the proteins involved in the mechanism vary from prokaryotes to eukaryotes and even between humans and plants. Cells deficient in MMR genes have been observed to display a mutator phenotype characterized by an increased rate in spontaneous mutation, instability of microsatellite sequences and illegitimate recombination between diverged DNA sequences. Studies of the mutator phenotype have demonstrated a critical role for the MMR system in mutation avoidance and genetic stability. Here, we briefly review our current knowledge of the MMR mechanism and then focus on the in vivo biochemical and genetic assays used to investigate the function of the MMR proteins in processing DNA mismatches generated during replication and mitotic recombination in Escherichia coli, Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana. An overview of the biochemical assays developed to study mismatch correction in vitro is also provided.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | | | | | | |
Collapse
|
7
|
Nimura Y, Prithivarajsingh S, Ismail SM, Nairn RS, Tucker SL, Allen PK, Stevens CW. Nucleotide excision repair proteins and their importance for radiation‐enhanced transfection. Int J Radiat Biol 2009; 79:663-9. [PMID: 14555349 DOI: 10.1080/0955300031000150611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Irradiated cells transfect more efficiently than unirradiated cells because of a radiation-induced increase in plasmid integration. However, the molecular mechanism is unclear. Because of recent observations that nucleotide excision repair (NER) proteins can be involved in certain types of recombination in yeast, it was hypothesized that NER proteins might play a role in this radiation-enhanced integration. MATERIALS AND METHODS Hamster and human cells with inactivating mutations in NER genes were irradiated at doses from 0 to 6 Gy and then immediately transfected with a linearized selectable marker plasmid. Transfection-enhancement ratios (TERs) were calculated as the ratio of the number of drug-resistant colonies in unirradiated cells to the number of transfectants in irradiated cells, corrected for cytotoxicity from radiation. RESULTS Transfection into unirradiated rodent cells was unaffected by NER mutation status. Transfection into unirradiated human cells, however, was increased by NER mutation. The TERs were 5 and 100 for CHO and primary human fibroblasts, respectively, after exposure of the cells to 6 Gy. Mutations in ERCC1, XPA, XPB, XPC, XPF, XPG and CSB dramatically reduced TER. Mutations in ERCC1, XPC, XPF, XPG and CSB suppressed transfection so that the TER was significantly below 1. CONCLUSIONS The mechanism of radiation-enhanced plasmid integration was distinct from that of plasmid integration in unirradiated cells, and NER gene products were critical for enhanced integration to occur.
Collapse
Affiliation(s)
- Y Nimura
- Department of Experimental Radiation Oncology, University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Joubert A, Zimmerman KM, Bencokova Z, Gastaldo J, Chavaudra N, Favaudon V, Arlett CF, Foray N. DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity? Int J Radiat Biol 2008; 84:107-25. [PMID: 18246480 DOI: 10.1080/09553000701797039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Human diseases associated with acute radiation responses are rare genetic disorders with common clinical and biological features including radiosensitivity, genomic instability, chromosomal aberrations, and frequently immunodeficiency. To determine what molecular assays are predictive of cellular radiosensitivity whatever the genes mutations, the existence of a quantitative correlation between cellular radiosensitivity and unrepaired DNA double-strand breaks (DSB) repair defects was examined in a collection of 40 human fibroblasts representing 8 different syndromes. MATERIALS AND METHODS A number of techniques such as pulsed-field gel electrophoresis, plasmid assay and immunofluorescence with antibodies against MRE11, MDC1, 53BP1 and phosphorylated forms of H2AX, DNA-PK were applied systematically. RESULTS AND CONCLUSIONS Survival fraction at 2 Gy was found to be inversely proportional to the amount of unrepaired DSB, whatever the genes mutations and the assay applied. However, no single assay discriminates the full range of human radiosensitivity. Particularly, nuclear foci formed by the phosphorylation of H2AX do not predict well moderate radiosensitivities. Our findings suggest the existence of an ATM-dependent interplay between the activation of DNA-PK and MRE11. A classification of diseases according their cellular radiosensitivity, their molecular response to radiation and the functional assays permitting their evaluation is proposed.
Collapse
Affiliation(s)
- Aurélie Joubert
- Inserm, U647, ID17, European Synchrotron Radiation Facility, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Majumdar A, Muniandy PA, Liu J, Liu JL, Liu ST, Cuenoud B, Seidman MM. Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide. J Biol Chem 2008; 283:11244-52. [PMID: 18303025 DOI: 10.1074/jbc.m800607200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammalian cells. Co-introduction of duplex DNA with target region homology resulted in precise knock in of the donor at frequencies 2-3 orders of magnitude greater than with donor alone. Knock-in was eliminated in cells deficient in ERCC1-XPF, which is involved in recombinational pathways as well as cross-link repair. Separately, single strand oligonucleotide donors (SSO) were co-introduced with the pso-TFO. These were 10-fold more active than the duplex knock-in donor. SSO efficacy was further elevated in cells deficient in ERCC1-XPF, in contrast to the duplex donor. Resected single strand ends have been implicated as critical intermediates in sequence modulation by SSO, as well as duplex donor knock in. We asked whether there would be a competition between the donor species for these ends if both were present with the pso-TFO. The frequency of duplex donor knock in was unaffected by a 100-fold molar excess of the SSO. The same result was obtained when the homing endonuclease I-SceI was used to initiate HDR at the target site. We conclude that the entry of double strand breaks into distinct HDR pathways is controlled by factors other than the nucleic acid partners in those pathways.
Collapse
Affiliation(s)
- Alokes Majumdar
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
UvrD, a highly conserved helicase involved in mismatch repair, nucleotide excision repair (NER), and recombinational repair, plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species. In this report, we focus on the UvrD homolog in Helicobacter pylori, a genetically diverse organism that lacks many known DNA repair proteins, including those involved in mismatch repair and recombinational repair, and that is noted for high levels of inter- and intragenomic recombination and mutation. H. pylori contains numerous DNA repeats in its compact genome and inhabits an environment rich in DNA-damaging agents that can lead to increased rearrangements between such repeats. We find that H. pylori UvrD functions to repair DNA damage and limit homologous recombination and DNA damage-induced genomic rearrangements between DNA repeats. Our results suggest that UvrD and other NER pathway proteins play a prominent role in maintaining genome integrity, especially after DNA damage; thus, NER may be especially critical in organisms such as H. pylori that face high-level genotoxic stress in vivo.
Collapse
Affiliation(s)
- Josephine Kang
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
11
|
Courcelle CT, Courcelle J. Monitoring DNA replication following UV-induced damage in Escherichia coli. Methods Enzymol 2006; 409:425-41. [PMID: 16793416 DOI: 10.1016/s0076-6879(05)09025-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The question of how the replication machinery accurately copies the genomic template in the presence of DNA damage has been intensely studied for more than forty years. A large number of genes has been characterized that, when mutated, are known to impair the ability of the cell to replicate in the presence of DNA damage. This chapter describes three techniques that can be used to monitor the progression, degradation, and structural properties of replication forks following UV-induced DNA damage in Escherichia coli.
Collapse
|
12
|
Di Primio C, Galli A, Cervelli T, Zoppè M, Rainaldi G. Potentiation of gene targeting in human cells by expression of Saccharomyces cerevisiae Rad52. Nucleic Acids Res 2005; 33:4639-48. [PMID: 16106043 PMCID: PMC1187822 DOI: 10.1093/nar/gki778] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
When exogenous DNA is stably introduced in mammalian cells, it is typically integrated in random positions, and only a minor fraction enters a pathway of homologous recombination (HR). The complex Rad51/Rad52 is a major player in the management of exogenous DNA in eukaryotic organisms and plays a critical role in the choice of repair system. In Saccharomyces cerevisiae, the pathway of choice is HR, mediated by Rad52 (ScRad52), which differs slightly from its human homologue. Here, we present an approach that utilizes ScRad52 to enhance HR in human cells containing a specific substrate for recombination. Clones of HeLa cells were produced expressing functional ScRad52. These cells showed enhanced resistance to DNA damaging treatments and revealed a different distribution of Rad51 foci (a marker of recombination complex formation). More significantly, ScRad52 expression resulted in an up to 37-fold increase in gene targeting by HR. In the same cells, random integration of exogenous DNA was significantly reduced, consistent with the view that HR and non-homologous end joining are alternative competing pathways. Expression of ScRad52 could offer a major improvement for experiments requiring gene targeting by HR, both in basic research and in gene therapy studies.
Collapse
Affiliation(s)
| | | | | | | | - Giuseppe Rainaldi
- To whom correspondence should be addressed. Tel: +39 050 3153108; Fax: +39 050 3153327;
| |
Collapse
|
13
|
Jonnalagadda VS, Matsuguchi T, Engelward BP. Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions. DNA Repair (Amst) 2005; 4:594-605. [PMID: 15811631 DOI: 10.1016/j.dnarep.2005.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Homology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs. We describe the creation of two fluorescence-based direct repeat recombination substrates that have been targeted to the ROSA26 locus of embryonic stem cells, and that detect the major pathways of homologous recombination events, e.g., gene conversions with or without crossing over, repair of broken replication forks, and single strand annealing (SSA). SSA can be distinguished from other pathways by application of a matched pair of site-specifically integrated substrates, one of which allows detection of SSA, and one that does not. We show that SSA is responsible for a significant proportion of spontaneous homologous recombination events at these substrates, suggesting that two-ended DSBs are a common spontaneous recombinogenic lesion. Interestingly, exposure to mitomycin C (an agent that induces ICLs) increases the proportion of HDR events associated with deletions and insertions. Given that many chemotherapeutics induce ICLs, these results have important implications in terms of the risk of chemotherapy-induced deleterious sequence rearrangements that could potentially contribute to secondary tumors.
Collapse
Affiliation(s)
- Vidya S Jonnalagadda
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Ave., 56-631, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
14
|
Limoli CL, Giedzinski E, Cleaver JE. Alternative recombination pathways in UV-irradiated XP variant cells. Oncogene 2005; 24:3708-14. [PMID: 15750628 DOI: 10.1038/sj.onc.1208515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 01/11/2023]
Abstract
XP variant (XP-V) cells lack the damage-specific polymerase eta and exhibit prolonged replication arrest after UV irradiation due to impaired bypass of UV photoproducts. To analyse the outcome of the arrested replication forks, homologous recombination (HR, Rad51 events) and fork breakage (Rad50 events) were assayed by immunofluorescent detection of foci-positive cells. Within 1 h of irradiation, XP-V cells showed more Rad51-positive cells than normal cells, while neither cell type showed an increase in Rad50 foci. Beyond 1 h, the frequency of Rad51-positive cells reached similar levels in both cell types, then declined at higher UV doses. At these later times, Rad50-positive cells increased with dose and to a greater extent in XP-V cells. Few cells were simultaneously positive for both sets of foci, suggesting a mutually exclusive recruitment of recombination proteins, or that these pathways operate at different stages during S phase. Analysis of cells containing a vector of tandemly arranged enhanced green fluorescent protein genes also showed that UV-induced HR was higher in XP-V cells. These results suggest that cells make an early commitment to HR, and that at later times a subset of arrested forks degrade into double-strand breaks, two alternative pathways that are greater in XP-V cells.
Collapse
Affiliation(s)
- Charles L Limoli
- 1Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of California, 1855 Folsom St., MCB-200, San Francisco, CA 94103-0806, USA
| | | | | |
Collapse
|
15
|
Abrahams PJ, Houweling A, Schouten R, van der Eb AJ, Terleth C. Abnormal kinetics of induction of UV-stimulated recombination in human DNA repair disorders. DNA Repair (Amst) 2003; 2:1211-25. [PMID: 14599743 DOI: 10.1016/s1568-7864(03)00141-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombination can result in genetic instability, and thus constitutes an important factor in the carcinogenic conversion of mammalian cells. Here we describe the occurrence of UV-stimulated recombination called enhanced recombination (EREC), measured with the use of Herpes Simplex Viruses type 1 mutants. In normal diploid human cells, EREC is induced by UV-C, mitomycin C and ENU, but not by X-ray or MMS. The kinetics of induction of EREC is similar to that of other SOS-like responses such as enhanced reactivation (ER) and enhanced mutagenesis (EM). In contrast to the latter responses, EREC is induced to higher levels and persists for longer periods in DNA repair deficient fibroblasts derived from xeroderma pigmentosum (XP), Cockayne syndrome (CS) and Trichothiodystrophy (TTD) patients. This observation indicates that EREC is a distinct SOS-like response. Apparently, the presence of unrepaired DNA lesions in the host genome is a strongly inducing signal for EREC. On the other hand, in cells derived from patients suffering from Bloom, Werner or Rothmund-Thomson syndrome (RTS) the EREC response is absent. These data indicate that determining EREC is a useful assay to investigate diploid human fibroblasts for abnormalities in UV-stimulated recombination.
Collapse
Affiliation(s)
- Peter J Abrahams
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 Al Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Courcelle J, Donaldson JR, Chow KH, Courcelle CT. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 2003; 299:1064-7. [PMID: 12543983 DOI: 10.1126/science.1081328] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA lesions that block replication are a primary cause of rearrangements, mutations, and lethality in all cells. After ultraviolet (UV)-induced DNA damage in Escherichia coli, replication recovery requires RecA and several other recF pathway proteins. To characterize the mechanism by which lesion-blocked replication forks recover, we used two-dimensional agarose gel electrophoresis to show that replication-blocking DNA lesions induce a transient reversal of the replication fork in vivo. The reversed replication fork intermediate is stabilized by RecA and RecF and is degraded by the RecQ-RecJ helicase-nuclease when these proteins are absent. We propose that fork regression allows repair enzymes to gain access to the replication-blocking lesion, allowing processive replication to resume once the blocking lesion is removed.
Collapse
Affiliation(s)
- Justin Courcelle
- Department of Biological Sciences, Box GY, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
17
|
Lambert S, Lopez BS. Inactivation of the RAD51 recombination pathway stimulates UV-induced mutagenesis in mammalian cells. Oncogene 2002; 21:4065-9. [PMID: 12037689 DOI: 10.1038/sj.onc.1205535] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 03/07/2002] [Accepted: 03/27/2002] [Indexed: 11/09/2022]
Abstract
We have examined the impact of the RAD51 recombination pathway on recombination and mutagenesis induced by UV-C in mammalian cells. We used hamster CHO cell lines that express different forms of Rad51 protein, resulting in stimulation or inhibition of spontaneous gene conversion. Spontaneous mutagenesis was affected by none of the RAD51 forms. The wild-type mouse MmRAD51 affects neither UV-induced recombination nor UV-induced mutagenesis. In contrast, the dominant negative SMRAD51 strongly impairs UV-induced recombination while it stimulates UV-induced mutagenesis. Our results show that a defect in the RAD51 gene conversion pathway reveals (a) mutagenic alternative pathway(s) to repair UV-damage, in mammalian cells.
Collapse
Affiliation(s)
- Sarah Lambert
- UMR217 CNRS-CEA, CEA, Direction des Sciences du Vivant, Département de Radiobiologie et Radiopathologie, 60-68 avenue du Général Leclerc, 92 265 Fontenay aux Roses, cedex, France
| | | |
Collapse
|
18
|
Li Z, Xiao W, McCormick JJ, Maher VM. Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc Natl Acad Sci U S A 2002; 99:4459-64. [PMID: 11917106 PMCID: PMC123670 DOI: 10.1073/pnas.062047799] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
When DNA replication stalls at a fork-blocking lesion, cells use damage tolerance pathways to continue replication. One pathway, "translesion synthesis," involves specialized DNA polymerases that can use damaged DNA as a template. Translesion synthesis can result in mutations (i.e., can be error-prone), but it can also be error-free. An alternative pathway has been hypothesized (sometimes called "damage avoidance"), by which cells make temporary use of an undamaged copy of the blocked sequence as a template, i.e., the newly synthesized daughter strand of the sister duplex or the allelic copy. This pathway is error-free. Evidence of the use of the daughter strand of the sister duplex as a template in intact mammalian cells has not been available heretofore. To determine whether hMms2, a ubiquitin-conjugating enzyme-like protein, plays a critical role in such damage avoidance, a human fibroblast cell strain in which both error-prone translesion synthesis and error-free damage avoidance can be detected and quantified simultaneously, and several derivative strains in which expression of hMms2 protein had been eliminated or greatly decreased, were compared for their ability to avoid translesion synthesis past UV(254nm)-induced DNA photoproducts. Loss of hMms2 protein eliminated the ability of the latter strains to use an allelic copy of a target gene for damage avoidance, i.e., to produce a wild-type gene from two nonfunctional allelic copies of that gene. Molecular analysis of the wild-type gene showed that this process involves gene conversion unassociated with crossing-over. That the loss of hMms2 also eliminated use of the daughter strand of the sister duplex as a template for damage avoidance could be inferred from the fact that the frequency of mutations induced by UV in the single copy HPRT gene of the derivative strains was significantly higher than that observed in the parental strain. These data indicate that hMMS2 is essential for human cells to carry out damage avoidance by using either type of homolog, and that damage avoidance and translesion synthesis are alternative pathways for tolerating fork-blocking photoproducts.
Collapse
Affiliation(s)
- Ziqiang Li
- Carcinogenesis Laboratory, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
19
|
Bill CA, Nickoloff JA. Spontaneous and ultraviolet light-induced direct repeat recombination in mammalian cells frequently results in repeat deletion. Mutat Res 2001; 487:41-50. [PMID: 11595407 DOI: 10.1016/s0921-8777(01)00101-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination is enhanced by transcription and by DNA damage caused by ultraviolet light (UV). Recombination between direct repeats can occur by gene conversion without an associated crossover, which maintains the gross repeat structure. There are several possible mechanisms that delete one repeat and the intervening sequences (gene conversion associated with a crossover, unequal sister chromatid exchange, and single-strand annealing). We examined transcription-enhanced spontaneous recombination, and UV-induced recombination between neomycin (neo) direct repeats. One neo gene was driven by the inducible MMTV promoter. Multiple (silent) markers in the second neo gene were used to map conversion tracts. These markers are thought to inhibit spontaneous recombination, and our data suggest that this inhibition is partially overcome by high level transcription. Recombination was stimulated by transcription and by UV doses of 6-12J/m(2), but not by 18J/m(2). About 70% of spontaneous and UV-induced products were deletions. In contrast, only 3% of DSB-induced products were deletions. We propose that these product spectra differ because spontaneous and UV-induced recombination is replication-dependent, whereas DSB-induced recombination is replication-independent.
Collapse
Affiliation(s)
- C A Bill
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, Albuquerque, NM 87131, USA
| | | |
Collapse
|
20
|
Ries G, Buchholz G, Frohnmeyer H, Hohn B. UV-damage-mediated induction of homologous recombination in Arabidopsis is dependent on photosynthetically active radiation. Proc Natl Acad Sci U S A 2000; 97:13425-9. [PMID: 11069284 PMCID: PMC27240 DOI: 10.1073/pnas.230251897] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants are continuously subjected to UV-B radiation (UV-B; 280-320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a beta-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2-1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400-700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.
Collapse
Affiliation(s)
- G Ries
- Friedrich Miescher-Institut, Post Office Box 2543, CH-4002 Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Weng YS, Xing D, Clikeman JA, Nickoloff JA. Transcriptional effects on double-strand break-induced gene conversion tracts. Mutat Res 2000; 461:119-32. [PMID: 11018585 DOI: 10.1016/s0921-8777(00)00043-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription stimulates spontaneous homologous recombination, but prior studies have not investigated the effects of transcription on double-strand break (DSB)-induced recombination in yeast. We examined products of five ura3 direct repeat substrates in yeast using alleles that were transcribed at low or high levels. In each strain, recombination was stimulated by DSBs created in vivo at an HO site in one copy of ura3. Increasing transcription levels in donor or recipient alleles did not further stimulate DSB-induced recombination, nor did it alter the relative frequencies of conversion and deletion (pop-out) events. This result is consistent with the idea that transcription enhances spontaneous recombination by increasing initiation. Gene conversion tracts were measured using silent restriction fragment length polymorphisms (RFLPs) at approximately 100bp intervals. Transcription did not alter average tract lengths, but increased transcription in donor alleles increased both the frequency of promoter-proximal (5') unidirectional tracts and conversion of 5' markers. Increased transcription in recipient alleles increased the frequency of bidirectional tracts. We demonstrate that these effects are due to transcription per se, and not just transcription factor binding. These results suggest that transcription influences aspects of gene conversion after initiation, such as strand invasion and/or mismatch repair (MMR).
Collapse
Affiliation(s)
- Y S Weng
- Department of Cancer Biology, Harvard University, School of Public Health, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Zhang H, Marra G, Jiricny J, Maher VM, McCormick JJ. Mismatch repair is required for O(6)-methylguanine-induced homologous recombination in human fibroblasts. Carcinogenesis 2000; 21:1639-46. [PMID: 10964094 DOI: 10.1093/carcin/21.9.1639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
O:(6)-methylguanine is responsible for homologous recombination induced by N:-methyl-N:'-nitro-N:-nitrosoguanidine (MNNG) [H. Zhang et al. (1996) CARCINOGENESIS:, 17, 2229]. To test the hypothesis that mismatch repair is causally involved in this process, we generated mismatch repair-deficient strains from a human fibroblast line containing a substrate for detecting intrachromosomal homologous recombination. The four strains selected for study exhibited greatly increased resistance to the cytotoxic effects of MNNG, which was not affected by depletion of O:(6)-alkylguanine-DNA alkyltransferase, and greatly increased sensitivity to the mutagenic effect of MNNG, suggesting that the mutagenic base modifications induced in these four cell strains by MNNG persist in their genomic DNA. Tests showed that their extracts are deficient in the repair of G:T mismatches. The frequency of homologous recombination induced by MNNG in three of these strains was significantly (5-7-fold) lower than that induced in the parental cell strain. This was not the result of a generalized defect in recombination, because when (+/-)-7beta,8alpha-dihydroxy-9alpha,10alpha-epox y-7,8,9, 10-tetrahydrobenzo[a]pyrene was used to induce recombination, all three lines responded with a normal or even a somewhat higher frequency than that observed in the parental strain. The lack of recombination displayed by the fourth strain was shown to result from the loss of part of the recombination substrate. The results strongly suggest that functional mismatch repair is required for MNNG-induced homologous recombination.
Collapse
Affiliation(s)
- H Zhang
- Carcinogenesis Laboratory, Department of Microbiology, Department of Biochemistry and the Genetics Program, Food Safety and Toxicology Building, Michigan State University, East Lansing, MI 48824-1302, USA
| | | | | | | | | |
Collapse
|
23
|
Luo Z, Macris MA, Faruqi AF, Glazer PM. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci U S A 2000; 97:9003-8. [PMID: 10900269 PMCID: PMC16811 DOI: 10.1073/pnas.160004997] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the ability of triple helix-forming oligonucleotides (TFOs) to promote recombination within chromosomal sites in mammalian cells, a mouse LTK(-) cell line was established carrying two mutant copies of the herpes simplex virus thymidine kinase (TK) gene as direct repeats in a single chromosomal locus. Recombination between these repeats can produce a functional TK gene and occurs at a spontaneous frequency of 4 x 10(-6) under standard culture conditions. When cells were microinjected with TFOs designed to bind to a 30-bp polypurine site situated between the two TK genes, recombination was observed at frequencies in the range of 1%, 2,500-fold above the background. Recombination was induced efficiently by injection of both psoralen-conjugated TFOs (followed by long-wave UVA light; 1. 2%) and unconjugated TFOs alone (1.0%). Control oligomers of scrambled sequence but identical base composition were ineffective, and no TFO-induced recombination was seen in a control LTK(-) cell line carrying an otherwise identical dual TK gene construct lacking the 30-bp polypurine target site. TFOs transfected with cationic lipids also induced recombinants in a highly sequence-specific manner but were less effective, with induced recombination frequencies of 6- to 7-fold over background. Examination of the TFO-induced recombinants by genomic Southern blotting revealed gene conversion events in which both TK genes were retained, but either the upstream (57%) or the downstream gene (43%) was corrected to wild type. These results suggest that, with efficient intracellular delivery, TFOs may be effective tools to promote site-specific recombination and targeted modification of chromosomal loci.
Collapse
Affiliation(s)
- Z Luo
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
24
|
Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20:990-1000. [PMID: 10629056 PMCID: PMC85216 DOI: 10.1128/mcb.20.3.990-1000.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to stimulate recombination in a site-specific manner in mammalian cells may provide a useful tool for gene knockout and a valuable strategy for gene therapy. We previously demonstrated that psoralen adducts targeted by triple-helix-forming oligonucleotides (TFOs) could induce recombination between tandem repeats of a supF reporter gene in a simian virus 40 vector in monkey COS cells. Based on work showing that triple helices, even in the absence of associated psoralen adducts, are able to provoke DNA repair and cause mutations, we asked whether intermolecular triplexes could stimulate recombination. Here, we report that triple-helix formation itself is capable of promoting recombination and that this effect is dependent on a functional nucleotide excision repair (NER) pathway. Transfection of COS cells carrying the dual supF vector with a purine-rich TFO, AG30, designed to bind as a third strand to a region between the two mutant supF genes yielded recombinants at a frequency of 0.37%, fivefold above background, whereas a scrambled sequence control oligomer was ineffective. In human cells deficient in the NER factor XPA, the ability of AG30 to induce recombination was eliminated, but it was restored in a corrected subline expressing the XPA cDNA. In comparison, the ability of triplex-directed psoralen cross-links to induce recombination was only partially reduced in XPA-deficient cells, suggesting that NER is not the only pathway that can metabolize targeted psoralen photoadducts into recombinagenic intermediates. Interestingly, the triplex-induced recombination was unaffected in cells deficient in DNA mismatch repair, challenging our previous model of a heteroduplex intermediate and supporting a model based on end joining. This work demonstrates that oligonucleotide-mediated triplex formation can be recombinagenic, providing the basis for a potential strategy to direct genome modification by using high-affinity DNA binding ligands.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
25
|
Lambert S, Saintigny Y, Delacote F, Amiot F, Chaput B, Lecomte M, Huck S, Bertrand P, Lopez BS. Analysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences. Mutat Res 1999; 433:159-68. [PMID: 10343649 DOI: 10.1016/s0921-8777(99)00004-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In all the organisms, homologous recombination (HR) is involved in fundamental processes such as genome diversification and DNA repair. Several strategies can be devised to measure homologous recombination in mammalian cells. We present here the interest of using intrachromosomal tandem repeat sequences to measure HR in mammalian cells and we discuss the differences with the ectopic plasmids recombination. The present review focuses on the molecular mechanisms of HR between tandem repeats in mammalian cells. The possibility to use two different orientations of tandem repeats (direct or inverted repeats) in parallel constitutes also an advantage. While inverted repeats measure only events arising by strand exchange (gene conversion and crossing over), direct repeats monitor strand exchange events and also non-conservative processes such as single strand annealing or replication slippage. In yeast, these processes depend on different pathways, most of them also existing in mammalian cells. These data permit to devise substrates adapted to specific questions about HR in mammalian cells. The effect of substrate structures (heterologies, insertions/deletions, GT repeats, transcription) and consequences of DNA double strand breaks induced by ionizing radiation or endonuclease (especially the rare-cutting endonuclease ISce-I) on HR are discussed. Finally, transgenic mouse models using tandem repeats are briefly presented.
Collapse
Affiliation(s)
- S Lambert
- UMR 217 CNRS, CEA, DSV, DRR, Fontenay aux Roses, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wijnhoven SW, Van Sloun PP, Kool HJ, Weeda G, Slater R, Lohman PH, van Zeeland AA, Vrieling H. Carcinogen-induced loss of heterozygosity at the Aprt locus in somatic cells of the mouse. Proc Natl Acad Sci U S A 1998; 95:13759-64. [PMID: 9811874 PMCID: PMC24893 DOI: 10.1073/pnas.95.23.13759] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.
Collapse
Affiliation(s)
- S W Wijnhoven
- Medical Genetics Centre, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ciotta C, Ceccotti S, Aquilina G, Humbert O, Palombo F, Jiricny J, Bignami M. Increased somatic recombination in methylation tolerant human cells with defective DNA mismatch repair. J Mol Biol 1998; 276:705-19. [PMID: 9500919 DOI: 10.1006/jmbi.1997.1559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have studied whether spontaneous intrachromosomal recombination is altered in methylation tolerant human cells with a defect in mismatch repair. Somatic recombination was analysed in HeLaMR cells containing the vector pTPSN, which carries two copies of the gene for hygromycin resistance. The hygromycin genes are both inactivated by an inserted HindIII linker but hygromycin-resistant clones can arise by recombination. The spontaneous rate of recombination in a clone of HeLaMR cells containing a single integrated copy of pTPSN (HeLaG1) was 3.1x10(-6)/cell per generation. Two methylation tolerant variants from HeLaG1 cells (clone 12 and clone 15) were isolated by exposure to MNNG. Clone 12 cells exhibited a 16-fold increase in spontaneous mutation rate at the HPRT gene and extensive microsatellite instability at both mono- and dinucleotide repeats. Microsatellite instability limited to mononucleotide repeats was found in clone 15, whereas the mutation rate at HPRT was not significantly affected. A mismatch binding defect in extracts of clone 15 could be complemented by exogenous GTBP but not by purified hMSH2 protein. These data suggest that clone 15 is defective in GTBP. Extracts of clone 12 were unable to correct a single C:T mispair and complementation by extracts of human colorectal carcinoma cells with known deficiencies in mismatch repair indicated a defect in hMutLalpha. Western blotting with antibodies against different human mismatch repair proteins showed that clone 12 cells did not express hPMS2 protein, but expression of hMLH1, hMSH2 and GTBP appeared normal. The spontaneous recombination rate of clone 12 was 19-fold higher than the parental HeLaG1 cells, whereas no increase was observed in clone 15. Analysis of individual recombinants showed that hygromycin resistance arose exclusively by gene conversion. Our data indicate that mismatch correction regulates somatic recombination in human cells.
Collapse
Affiliation(s)
- C Ciotta
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, 00161, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Faruqi AF, Seidman MM, Segal DJ, Carroll D, Glazer PM. Recombination induced by triple-helix-targeted DNA damage in mammalian cells. Mol Cell Biol 1996; 16:6820-8. [PMID: 8943337 PMCID: PMC231685 DOI: 10.1128/mcb.16.12.6820] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy has been hindered by the low frequency of homologous recombination in mammalian cells. To stimulate recombination, we investigated the use of triple-helix-forming oligonucleotides (TFOs) to target DNA damage to a selected site within cells. By treating cells with TFOs linked to psoralen, recombination was induced within a simian virus 40 vector carrying two mutant copies of the supF tRNA reporter gene. Gene conversion events, as well as mutations at the target site, were also observed. The variety of products suggests that multiple cellular pathways can act on the targeted damage, and data showing that the triple helix can influence these pathways are presented. The ability to specifically induce recombination or gene conversion within mammalian cells by using TFOs may provide a new research tool and may eventually lead to novel applications in gene therapy.
Collapse
Affiliation(s)
- A F Faruqi
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | |
Collapse
|
29
|
Luo CM, Tang W, Mekeel KL, DeFrank JS, Anné PR, Powell SN. High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines. J Biol Chem 1996; 271:4497-503. [PMID: 8626804 DOI: 10.1074/jbc.271.8.4497] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The only specific DNA repair defect found in ataxia telangiectasia (A-T) cells is mis-repair of cleaved DNA. In this report we measured DNA recombination, given its role in DNA repair and genetic instability. Using plasmids containing selectable reporter genes, we found a higher frequency of both chromosomal recombination (>100 times) and extra-chromosomal recombination (27 times) in SV40-transformed A-T cell lines compared with in an SV40-transformed normal fibroblast cell line. Southern analysis of single A-T colonies exhibiting post-integration recombination revealed that 24/27 had undergone aberrant rearrangements; recombination in normal fibroblast colonies was achieved by gene conversion in 8/11 clones and 10/11 clones showed unchanged copies of the plasmid. Using co-transfection of two integrating plasmids, each containing a separate deletion in the xgprt reporter gene, the 27 times difference in extra-chromosomal recombination was found when the plasmids were cleaved at a distance from the reporter gene. When the plasmids were cleaved within the reporter gene, the co-transfection frequency was reduced in A-T, but was increased in normal cells. We conclude that A-T cell lines have not only a high frequency chromosomal and extra-chromosomal recombination, but also exhibit error-prone recombination of cleaved DNA.
Collapse
Affiliation(s)
- C M Luo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
30
|
Basic-Zaninovic T, Meschini R, Calcagnile AS, Palombo F, D'Errico M, Proietti-De Sanctis L, Dogliotti D, Proitti-De Sactis L. Strand bias of ultraviolet light-induced mutations in a transcriptionally active gene in human cells. Mol Carcinog 1995; 14:214-25. [PMID: 7576114 DOI: 10.1002/mc.2940140311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ultraviolet (UV)-induced repair and mutational spectra were analyzed in an inducible marker gene, the metallothionein-l/guamine-xanthine phosphoribosyl transferase (gpt) fusion gene, carried by an Epstein-Barr virus-derived shuttle vector episomically maintained in human cells. The repair rate of UV photodimers from the shuttle-vector molecules was typical of transcriptionally active sequences, 70% of the dimers being removed within 8 h after irradiation. The spectrum obtained under basal gene transcription was compared with that obtained under induced transcription. In both cases, base substitutions at dipyrimidine sequences predominated. Multiple mutations and deletions probably due to recombinational events induced by UV damage were also observed. Most of the UV-mutated dipyrimidine sites were located in the transcribed strand and were independent of the transcriptional activity of the target gene. In contrast, the distribution of mutations throughout the coding region of the gpt gene was affected by transcription, with a preferential clustering of mutations occurring in the 3' half of the gene after transcription induction. The strand bias observed in the UV spectra most likely reflects selection for nonfunctional gpt protein.
Collapse
Affiliation(s)
- T Basic-Zaninovic
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol 1994. [PMID: 8264607 DOI: 10.1128/mcb.14.1.400] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.
Collapse
|
32
|
Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994. [PMID: 8264606 DOI: 10.1128/mcb.14.1.391] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
|
33
|
Deng WP, Nickoloff JA. Preferential repair of UV damage in highly transcribed DNA diminishes UV-induced intrachromosomal recombination in mammalian cells. Mol Cell Biol 1994; 14:391-9. [PMID: 8264606 PMCID: PMC358388 DOI: 10.1128/mcb.14.1.391-399.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The relationships among transcription, recombination, DNA damage, and repair in mammalian cells were investigated. We monitored the effects of transcription on UV-induced intrachromosomal recombination between neomycin repeats including a promoterless allele and an inducible heteroallele regulated by the mouse mammary tumor virus promoter. Although transcription and UV light separately stimulated recombination, increasing transcription levels reduced UV-induced recombination. Preferential repair of UV damage in transcribed strands was shown in highly transcribed DNA, suggesting that recombination is stimulated by unrepaired UV damage and that increased DNA repair in highly transcribed alleles removes recombinogenic lesions. This study indicates that the genetic consequences of DNA damage depend on transcriptional states and provides a basis for understanding tissue- and gene-specific responses to DNA-damaging agents.
Collapse
Affiliation(s)
- W P Deng
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
34
|
Deng WP, Nickoloff JA. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol 1994; 14:400-6. [PMID: 8264607 PMCID: PMC358389 DOI: 10.1128/mcb.14.1.400-406.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous work indicated that extrachromosomal recombination in mammalian cells could be explained by the single-strand annealing (SSA) model. This model predicts that extrachromosomal recombination leads to nonconservative crossover products and that heteroduplex DNA (hDNA) is formed by annealing of complementary single strands. Mismatched bases in hDNA may subsequently be repaired to wild-type or mutant sequences, or they may remain unrepaired and segregate following DNA replication. We describe a system to examine the formation and mismatch repair of hDNA in recombination intermediates. Our results are consistent with extrachromosomal recombination occurring via SSA and producing crossover recombinant products. As predicted by the SSA model, hDNA was present in double-strand break-induced recombination intermediates. By placing either silent or frameshift mutations in the predicted hDNA region, we have shown that mismatches are efficiently repaired prior to DNA replication.
Collapse
Affiliation(s)
- W P Deng
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
35
|
Lebel EG, Masson J, Bogucki A, Paszkowski J. Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci U S A 1993; 90:422-6. [PMID: 11607349 PMCID: PMC45674 DOI: 10.1073/pnas.90.2.422] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Levels of induced homologous recombination between chromosomal repeats in plant somatic cells were examined. Transgenic plants of Nicotiana tabacum hemi- or homozygous for pairs of deletion derivatives of the neomycin phosphotransferase (nptII) marker gene integrated at a single genomic locus were produced. Homologous recombination within the overlapping parts of the nptII gene restored the function and the resulting kanamycin resistance was used for scoring recombination frequency. The recombination events were confirmed by the appearance of a characteristic 1245-base-pair EcoRV fragment detected in all kanamycin-resistant clones tested. The rate of spontaneous recombination was found to be related to the copy number of recombination substrates and was 9 x 10(-5) and 19 x 10(-5) for hemi- and homozygote strains, respectively. Ionizing radiation, mitomycin C, and heat shock markedly increased the frequency of intrachromosomal recombination. Low doses of x-rays (1.25 Gy) enhanced the relative recombination frequency to approximately twice the spontaneous value. The presence of mitomycin C increased the frequency of recombination 9-fold and exposure to an elevated temperature (50 degrees C) increased it 6.5-fold. The x-ray and heat shock treatments reduced cell viability to 53% and 8%, respectively. Mitomycin C treatment had no effect on cell survival.
Collapse
Affiliation(s)
- E G Lebel
- Institute of Plant Sciences, ETH-Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
36
|
X rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol Cell Biol 1992. [PMID: 1350323 DOI: 10.1128/mcb.12.6.2730] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have developed a human lymphoblast cell line for the study of interchromosomal homologous recombination at the endogenous thymidine kinase (tk) gene on chromosome 17 (M. B. Benjamin, H. Potter, D. W. Yandell, and J. B. Little, Proc. Natl. Acad. Sci. USA 88:6652-6656, 1991). This cell line (designated 6:86) carries unique heterozygous frameshift mutations in exons 4 and 7 of its endogenous tk alleles and can revert to TK+ by frame-restoring mutations, gene conversion, or reciprocal recombination. Line 6:86 reverts spontaneously to TK+ at a frequency of 10(-7) to 10(-8), and exposures to X-irradiation or the frameshift mutagen ICR-191 induce increased reversion frequencies in a dose-dependent manner. Another cell line (designated 4:2) carries a homozygous exon 7 frameshift and is not expected to revert through mechanisms other than frame-restoring mutation. Line 4:2 reverts to TK+ at a lower spontaneous frequency than does 6:86 but can be induced with similar kinetics by ICR-191. In contrast to line 6:86, however, X rays did not induce detectable reversion of line 4:2. We have characterized a number of 6:86-derived revertants by means of restriction fragment length polymorphism analysis at tk and linked loci, single-strand conformation polymorphisms, and direct transcript sequencing. For X rays, most revertants retain both original mutations in the genomic DNA, and a subset of these frameshift-retaining revertants produce frameshift-free message, indicating that reversion is the result of reciprocal recombination within the tk gene. Frame-restoring point mutations, restoration of original sequences, and phenocopy reversion by acquisition of aminopterin resistance were also found among X-ray-induced revertants, whereas the ICR-191-induced revertants examined show only loss of the exon 7 frameshift.
Collapse
|
37
|
Benjamin MB, Little JB. X rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol Cell Biol 1992; 12:2730-8. [PMID: 1350323 PMCID: PMC364467 DOI: 10.1128/mcb.12.6.2730-2738.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have developed a human lymphoblast cell line for the study of interchromosomal homologous recombination at the endogenous thymidine kinase (tk) gene on chromosome 17 (M. B. Benjamin, H. Potter, D. W. Yandell, and J. B. Little, Proc. Natl. Acad. Sci. USA 88:6652-6656, 1991). This cell line (designated 6:86) carries unique heterozygous frameshift mutations in exons 4 and 7 of its endogenous tk alleles and can revert to TK+ by frame-restoring mutations, gene conversion, or reciprocal recombination. Line 6:86 reverts spontaneously to TK+ at a frequency of 10(-7) to 10(-8), and exposures to X-irradiation or the frameshift mutagen ICR-191 induce increased reversion frequencies in a dose-dependent manner. Another cell line (designated 4:2) carries a homozygous exon 7 frameshift and is not expected to revert through mechanisms other than frame-restoring mutation. Line 4:2 reverts to TK+ at a lower spontaneous frequency than does 6:86 but can be induced with similar kinetics by ICR-191. In contrast to line 6:86, however, X rays did not induce detectable reversion of line 4:2. We have characterized a number of 6:86-derived revertants by means of restriction fragment length polymorphism analysis at tk and linked loci, single-strand conformation polymorphisms, and direct transcript sequencing. For X rays, most revertants retain both original mutations in the genomic DNA, and a subset of these frameshift-retaining revertants produce frameshift-free message, indicating that reversion is the result of reciprocal recombination within the tk gene. Frame-restoring point mutations, restoration of original sequences, and phenocopy reversion by acquisition of aminopterin resistance were also found among X-ray-induced revertants, whereas the ICR-191-induced revertants examined show only loss of the exon 7 frameshift.
Collapse
Affiliation(s)
- M B Benjamin
- Department of Cancer Biology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
38
|
Feng WY, Lee EH, Hays JB. Recombinagenic processing of UV-light photoproducts in nonreplicating phage DNA by the Escherichia coli methyl-directed mismatch repair system. Genetics 1991; 129:1007-20. [PMID: 1838344 PMCID: PMC1204766 DOI: 10.1093/genetics/129.4.1007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonreplicating lambda phage DNA in homoimmune Escherichia coli lysogens provides a useful model system for study of processes that activate DNA for homologous recombination. We measured recombination by extracting phage DNA from infected cells, using it to transfect recA recipient cells, and scoring the frequency of recombinant infective centers. With unirradiated phage, recombinant frequencies were less than 0.1%. However, recombination could be increased over 300-fold by prior UV irradiation of the phages. The dependence of recombination on UvrA function varied greatly with UV dose. With phage irradiated to 20 J/m2, recombinant frequencies in repressed infections of uvr+ bacteria were one-fifth those in uvrA infections; with phages irradiated to 100 J/m2, frequencies in uvr+ infections were thirty times higher than in uvrA infections. Most UV-stimulated recombination in uvrA infections appeared to depend on the bacterial methyl-directed mismatch-repair system: frequencies were depressed 5-20-fold in uvrA bacteria also lacking MutH, MutL or MutS functions, and recombinant frequencies decreased with increasing GATC-adenine methylation of phage stocks. The biological activity of nonreplicating UV-irradiated phage DNA declined with time after infection of uvrA cells; this decline was photoproduct-dependent, more marked for undermethylated than overmethylated phage DNA, and depended on host MutHLS functions. In uvr+ bacteria, where the UvrABC system provided an alternative, apparently less efficient, route to recombinagenic DNA, UV-stimulated recombinant frequencies were about twice as high in mutH or mutLS as in mut+ cells, in agreement with hyper-rec mut effects previously described by others.
Collapse
Affiliation(s)
- W Y Feng
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331
| | | | | |
Collapse
|
39
|
Nairn RS, Adair GM, Christmann CB, Humphrey RM. Ultraviolet stimulation of intermolecular homologous recombination in Chinese hamster ovary cells. Mol Carcinog 1991; 4:519-26. [PMID: 1793489 DOI: 10.1002/mc.2940040616] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously showed that ultraviolet (UV) irradiation of cotransfected plasmid DNA molecules stimulated genetic transformation that depended on intermolecular homologous recombination in Chinese hamster ovary (CHO) cells. Repair-proficient cells and an excision repair complementation class 1 (ERCC1) UV-sensitive DNA repair-deficient mutant responded similarly to UV stimulation in cotransfections with plasmids containing linker insertion-disrupted copies of the herpes simplex virus thymidine kinase (HSV-TK) gene. In this study, we cotransfected homologous DNA molecules containing nonoverlapping deletions of the hamster adenine phosphoribosyltransferase (APRT) gene into APRT-deficient CHO ERCC1 (UVL-10) and ERCC2 (UVL-1) excision-repair mutants and parental repair-proficient CHO cells. UV damage in cotransfected circular plasmid molecules stimulated transformation in repair-proficient cells and an ERCC1 mutant, but not in an ERCC2 mutant. Linearization of plasmids prior to cotransfection greatly enhanced transformation frequencies in all three cell lines, but UV stimulation using linear recombination substrates was no longer evident. Our results suggest (i) that the ERCC1 gene defect in CHO UVL-10 cells does not affect UV stimulation of homology-dependent extra-chromosomal recombination, and (ii) that a CHO cell ERCC2 excision-repair mutant, although recombination proficient, may exhibit altered recombination in response to UV damage.
Collapse
Affiliation(s)
- R S Nairn
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | |
Collapse
|