1
|
Mayer MP. Hsf1 and Hsf2 in normal, healthy human tissues: Immunohistochemistry provokes new questions. Cell Stress Chaperones 2024; 29:437-439. [PMID: 38641046 PMCID: PMC11067330 DOI: 10.1016/j.cstres.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany.
| |
Collapse
|
2
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Tokunaga Y, Otsuyama KI, Kakuta S, Hayashida N. Heat Shock Transcription Factor 2 Is Significantly Involved in Neurodegenerative Diseases, Inflammatory Bowel Disease, Cancer, Male Infertility, and Fetal Alcohol Spectrum Disorder: The Novel Mechanisms of Several Severe Diseases. Int J Mol Sci 2022; 23:ijms232213763. [PMID: 36430241 PMCID: PMC9691173 DOI: 10.3390/ijms232213763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
HSF (heat shock transcription factor or heat shock factor) was discovered as a transcription factor indispensable for heat shock response. Although four classical HSFs were discovered in mammals and two major HSFs, HSF1 and HSF2, were cloned in the same year of 1991, only HSF1 was intensively studied because HSF1 can give rise to heat shock response through the induction of various HSPs' expression. On the other hand, HSF2 was not well studied for some time, which was probably due to an underestimate of HSF2 itself. Since the beginning of the 21st century, HSF2 research has progressed and many biologically significant functions of HSF2 have been revealed. For example, the roles of HSF2 in nervous system protection, inflammation, maintenance of mitosis and meiosis, and cancer cell survival and death have been gradually unveiled. However, we feel that the fact HSF2 has a relationship with various factors is not yet widely recognized; therefore, the biological significance of HSF2 has been underestimated. We strongly hope to widely communicate the significance of HSF2 to researchers and readers in broad research fields through this review. In addition, we also hope that many readers will have great interest in the molecular mechanism in which HSF2 acts as an active transcription factor and gene bookmarking mechanism of HSF2 during cell cycle progression, as is summarized in this review.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan
| | - Ken-Ichiro Otsuyama
- Department of Clinical Laboratory Science, Faculty of Health Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 755-8505, Japan
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
4
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
5
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
6
|
Tokunaga Y, Otsuyama KI, Hayashida N. Cell Cycle Regulation by Heat Shock Transcription Factors. Cells 2022; 11:cells11020203. [PMID: 35053319 PMCID: PMC8773920 DOI: 10.3390/cells11020203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cell division and cell cycle mechanism has been studied for 70 years. This research has revealed that the cell cycle is regulated by many factors, including cyclins and cyclin-dependent kinases (CDKs). Heat shock transcription factors (HSFs) have been noted as critical proteins for cell survival against various stresses; however, recent studies suggest that HSFs also have important roles in cell cycle regulation-independent cell-protective functions. During cell cycle progression, HSF1, and HSF2 bind to condensed chromatin to provide immediate precise gene expression after cell division. This review focuses on the function of these HSFs in cell cycle progression, cell cycle arrest, gene bookmarking, mitosis and meiosis.
Collapse
Affiliation(s)
- Yasuko Tokunaga
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Ken-Ichiro Otsuyama
- Department of Laboratory Science, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
| | - Naoki Hayashida
- Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Yamaguchi University, Ube 7558505, Japan;
- Correspondence: ; Tel.: +81-836-22-2359
| |
Collapse
|
7
|
Peng-Winkler Y, Büttgenbach A, Rink L, Weßels I. Zinc supplementation prior to heat shock enhances HSP70 synthesis through HSF1 phosphorylation at serine 326 in human peripheral mononuclear cells. Food Funct 2022; 13:9143-9152. [DOI: 10.1039/d2fo01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc supplementation prior to heat shock increases HSP70 (Heat shock protein 70) expression, which has cytoprotective effects in tissue cells during inflammation. Effects of zinc deficiency in this regard are...
Collapse
|
8
|
Malik JA, Lone R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 2021; 48:6959-6969. [PMID: 34498161 DOI: 10.1007/s11033-021-06676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Javid Ahmad Malik
- Pharmacology and Toxicology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Rafiq Lone
- Department of Botany, Central University of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Heat Shock Factor 1 as a Prognostic and Diagnostic Biomarker of Gastric Cancer. Biomedicines 2021; 9:biomedicines9060586. [PMID: 34064083 PMCID: PMC8224319 DOI: 10.3390/biomedicines9060586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Identification of effective prognostic and diagnostic biomarkers is needed to improve the diagnosis and treatment of gastric cancer. Early detection of gastric cancer through diagnostic markers can help establish effective treatments. Heat shock factor 1 (HSF1), presented in this review, is known to be regulated by a broad range of transcription factors, including those characterized in various malignant tumors, including gastric cancer. Particularly, it has been demonstrated that HSF1 regulation in various cancers is correlated with different processes, such as cell death, proliferation, and metastasis. Due to the effect of HSF1 on the initiation, development, and progression of various tumors, it is considered as an important gene for understanding and treating tumors. Additionally, HSF1 exhibits high expression in various cancers, and its high expression adversely affects the prognosis of various cancer patients, thereby suggesting that it can be used as a novel, predictive, prognostic, and diagnostic biomarker for gastric cancer. In this review, we discuss the literature accumulated in recent years, which suggests that there is a correlation between the expression of HSF1 and prognosis of gastric cancer patients through public data. Consequently, this evidence also indicates that HSF1 can be established as a powerful biomarker for the prognosis and diagnosis of gastric cancer.
Collapse
|
10
|
Are Heat Shock Proteins an Important Link between Type 2 Diabetes and Alzheimer Disease? Int J Mol Sci 2020; 21:ijms21218204. [PMID: 33147803 PMCID: PMC7662599 DOI: 10.3390/ijms21218204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer’s disease (AD) are growing in prevalence worldwide. The development of T2D increases the risk of AD disease, while AD patients can show glucose imbalance due to an increased insulin resistance. T2D and AD share similar pathological features and underlying mechanisms, including the deposition of amyloidogenic peptides in pancreatic islets (i.e., islet amyloid polypeptide; IAPP) and brain (β-Amyloid; Aβ). Both IAPP and Aβ can undergo misfolding and aggregation and accumulate in the extracellular space of their respective tissues of origin. As a main response to protein misfolding, there is evidence of the role of heat shock proteins (HSPs) in moderating T2D and AD. HSPs play a pivotal role in cell homeostasis by providing cytoprotection during acute and chronic metabolic stresses. In T2D and AD, intracellular HSP (iHSP) levels are reduced, potentially due to the ability of the cell to export HSPs to the extracellular space (eHSP). The increase in eHSPs can contribute to oxidative damage and is associated with various pro-inflammatory pathways in T2D and AD. Here, we review the role of HSP in moderating T2D and AD, as well as propose that these chaperone proteins are an important link in the relationship between T2D and AD.
Collapse
|
11
|
Shen C, Yuan J. Genome-wide characterization and expression analysis of the heat shock transcription factor family in pumpkin (Cucurbita moschata). BMC PLANT BIOLOGY 2020; 20:471. [PMID: 33054710 PMCID: PMC7557022 DOI: 10.1186/s12870-020-02683-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Crop quality and yield are affected by abiotic and biotic stresses, and heat shock transcription factors (Hsfs) are considered to play important roles in regulating plant tolerance under various stresses. To investigate the response of Cucurbita moschata to abiotic stress, we analyzed the genome of C. moschata. RESULTS In this research, a total of 36 C. moschata Hsf (CmHsf) members were identified and classified into three subfamilies (I, II, and III) according to their amino acid sequence identity. The Hsfs of the same subfamily usually exhibit a similar gene structure (intron-exon distribution) and conserved domains (DNA-binding and other functional domains). Chromosome localization analysis showed that the 36 CmHsfs were unevenly distributed on 18 of the 21 chromosomes (except for Cm_Chr00, Cm_Chr08 and Cm_Chr20), among which 18 genes formed 9 duplicated gene pairs that have undergone segmental duplication events. The Ka/Ks ratio showed that the duplicated CmHsfs have mainly experienced strong purifying selection. High-level synteny was observed between C. moschata and other Cucurbitaceae species. CONCLUSIONS The expression profile of CmHsfs in the roots, stems, cotyledons and true leaves revealed that the CmHsfs exhibit tissue specificity. The analysis of cis-acting elements and quantitative real-time polymerase chain reaction (qRT-PCR) revealed that some key CmHsfs were activated by cold stress, heat stress, hormones and salicylic acid. This study lays the foundation for revealing the role of CmHsfs in resistance to various stresses, which is of great significance for the selection of stress-tolerant C. moschata.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| |
Collapse
|
12
|
Jin J, Li Y, Zhou Z, Zhang H, Guo J, Wan F. Heat Shock Factor Is Involved in Regulating the Transcriptional Expression of Two Potential Hsps ( AhHsp70 and AhsHsp21) and Its Role in Heat Shock Response of Agasicles hygrophila. Front Physiol 2020; 11:562204. [PMID: 33041860 PMCID: PMC7522579 DOI: 10.3389/fphys.2020.562204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins are molecular chaperones that are involved in numerous normal cellular processes and stress responses, and heat shock factors are transcriptional activators of heat shock proteins. Heat shock factors and heat shock proteins are coordinated in various biological processes. The regulatory function of heat shock factors in the expression of genes encoding heat shock proteins (Hsps) has been documented in some model insects, however, the role of transcription factors in modulating Hsps in other insects is still limited. In this study, one heat shock factor gene (AhHsf) was isolated and its two potential target genes (AhHsp70 and AhsHsp21) were confirmed from Agasicles hygrophila. AhHsf sequence analysis indicated that it belongs to the Hsfs gene family. RT-qPCR showed that expression levels of heat shock factors and of two heat shock proteins significantly increased under heat stress. Injection with double-stranded Hsf RNA in freshly emerged adult beetles significantly inhibited expression of AhHsp70 and AhsHsp21, shortened the adult survival, drastically reduced egg production, and ultimately led to a decrease in fecundity. RNA interference (RNAi)-mediated suppression of AhHsp70 or AhsHsp21 expression also significantly affected expression of AhHsf. Our findings revealed a potential transcriptional function of AhHsf to regulate expression of AhHsp70 and AhsHsp21, which may play a key role in A. hygrophila thermotolerance. Our results improve our understanding of the molecular mechanisms of the AhHsf - AhHsps signaling pathway in A. hygrophila.
Collapse
Affiliation(s)
- Jisu Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youzhi Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- College of Plant Protection, Hunan Agricultural University, Changsha, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020; 9:cells9051202. [PMID: 32408596 PMCID: PMC7290425 DOI: 10.3390/cells9051202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant transformation is accompanied by alterations in the key cellular pathways that regulate development, metabolism, proliferation and motility as well as stress resilience. The members of the transcription factor family, called heat shock factors (HSFs), have been shown to play important roles in all of these biological processes, and in the past decade it has become evident that their activities are rewired during tumorigenesis. This review focuses on the expression patterns and functions of HSF1, HSF2, and HSF4 in specific cancer types, highlighting the mechanisms by which the regulatory functions of these transcription factors are modulated. Recently developed therapeutic approaches that target HSFs are also discussed.
Collapse
Affiliation(s)
- Mikael Christer Puustinen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland;
- Turku Bioscience, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-2215-3311
| |
Collapse
|
14
|
Kimotho RN, Baillo EH, Zhang Z. Transcription factors involved in abiotic stress responses in Maize ( Zea mays L.) and their roles in enhanced productivity in the post genomics era. PeerJ 2019; 7:e7211. [PMID: 31328030 PMCID: PMC6622165 DOI: 10.7717/peerj.7211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in various regions around the world, and recently, this has become a constant threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activities of transcription factors (TFs), which are families of genes coding for specific TF proteins. TF target genes form a regulon that is involved in the repression/activation of genes associated with abiotic stress responses. Therefore, it is of utmost importance to have a systematic study on each TF family, the downstream target genes they regulate, and the specific TF genes involved in multiple abiotic stress responses in maize and other staple crops. METHOD In this review, the main TF families, the specific TF genes and their regulons that are involved in abiotic stress regulation will be briefly discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from different plants like rice, Arabidopsis, wheat, and barley will be used. RESULTS We have described in detail the main TF families in maize that take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning, and RNA-Seq. CONCLUSION In conclusion, it is expected that all the information provided in this review will in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elamin Hafiz Baillo
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang Y, Zhou Z, Wang L, Huang B. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis. Cell Stress Chaperones 2018; 23:711-721. [PMID: 29435724 PMCID: PMC6045544 DOI: 10.1007/s12192-018-0883-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/29/2022] Open
Abstract
Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.
Collapse
Affiliation(s)
- Yidan Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China.
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China.
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, China.
| | - Lingui Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, China
| | - Bo Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
16
|
Fiumara CV, Scumaci D, Iervolino A, Perri AM, Concolino A, Tammè L, Petrillo F, Capasso G, Cuda G. Unraveling the Mechanistic Complexity of the Glomerulocystic Phenotype in Dicer Conditional KO Mice by 2D Gel Electrophoresis Coupled Mass Spectrometry. Proteomics Clin Appl 2017; 12:e1700006. [PMID: 29159954 DOI: 10.1002/prca.201700006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/31/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Dicer, an RNase III type endonuclease, is a key enzyme involved in miRNA biogenesis. It has been shown that this enzyme is essential for several aspects of postnatal kidney functions and homeostasis. In this study, we have examined conditional knockout (cKO) mice for Dicer in Pax8 (Paired-box gene 8) expressing cells to investigate the kidney protein profile. This specific model develops a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria, and severe renal failure. EXPERIMENTAL DESIGN Proteomic analysis was performed on kidney tissue extracts from cKO and control (Ctr) mice by 2D Gel Electrophoresis coupled with mass spectrometry. RESULTS The analysis highlighted 120 protein spots differentially expressed in Dicer cKO tissue compared with control; some of these proteins were validated by Western blotting. Ingenuity Pathway Analysis led to the identification of some interesting networks; among them, the one having ERK as a central hub may explain, through the modulation of the expression of a number of identified protein targets, the metabolic and structural alterations occurring during kidney cyst development in Dicer cKO mouse model. CONCLUSIONS AND CLINICAL RELEVANCE Our results contribute to gain new insights into molecular mechanisms through which Dicer endonuclease controls kidney development and physiological functions.
Collapse
Affiliation(s)
- Claudia Vincenza Fiumara
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Anna Iervolino
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Angela Mena Perri
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Antonio Concolino
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Laura Tammè
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Federica Petrillo
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovambattista Capasso
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
17
|
Nieto A, Pérez Ishiwara DG, Orozco E, Sánchez Monroy V, Gómez García C. A Novel Heat Shock Element (HSE) in Entamoeba histolytica that Regulates the Transcriptional Activation of the EhPgp5 Gene in the Presence of Emetine Drug. Front Cell Infect Microbiol 2017; 7:492. [PMID: 29238701 PMCID: PMC5712549 DOI: 10.3389/fcimb.2017.00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Collapse
Affiliation(s)
- Alma Nieto
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David G Pérez Ishiwara
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Virginia Sánchez Monroy
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Consuelo Gómez García
- Laboratorio de Biomedicina Molecular I, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
Takii R, Fujimoto M, Matsuura Y, Wu F, Oshibe N, Takaki E, Katiyar A, Akashi H, Makino T, Kawata M, Nakai A. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards. PLoS One 2017; 12:e0180776. [PMID: 28686674 PMCID: PMC5501597 DOI: 10.1371/journal.pone.0180776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.
Collapse
Affiliation(s)
- Ryosuke Takii
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Mitsuaki Fujimoto
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Yuki Matsuura
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Fangxu Wu
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Namiko Oshibe
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Eiichi Takaki
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Arpit Katiyar
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
| | - Hiroshi Akashi
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Akira Nakai
- Departments of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Minami-Kogushi, Ube, Japan
- * E-mail:
| |
Collapse
|
19
|
Dayalan Naidu S, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. FEBS J 2017; 284:1606-1627. [PMID: 28052564 DOI: 10.1111/febs.13999] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
- Department of Pharmacology and Molecular Sciences, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Hayashida N. Set1/MLL complex is indispensable for the transcriptional ability of heat shock transcription factor 2. Biochem Biophys Res Commun 2015; 467:805-12. [PMID: 26478434 DOI: 10.1016/j.bbrc.2015.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/11/2015] [Indexed: 01/23/2023]
Abstract
Heat shock transcription factor 2 (HSF2) is one of four mammalian HSFs, and it is essential in neurogenesis and gametogenesis. However, other aspects of this transcription factor have not been thoroughly characterized. We recently demonstrated that HSF2 suppresses the aggregation caused by polyglutamine (polyQ) protein, and that the cell protective ability of HSF2 is mediated through the induction of the small HSP alphaB-crystallin (CRYAB). In the present study, we investigated the mechanism of HSF2-induced CRYAB expression. We demonstrated that HSF2 interacted with the core component of the Set1/MLL H3K4 histone methyltransferase complex, WDR5. Indeed, HSF2 up-regulated the H3K4me3, H3K14Ac, and H3K27Ac (active histone marks) of the CRYAB promoter. WDR5 bound to the HSF2 central domain (Domain X) in vitro and in vivo, and Cys278 of HSF2 was indispensable for HSF2-WDR5 interaction. HSF2 also interacted with the Set1/MLL complex. These results suggest that the interaction with the Set1/MLL complex via binding to WDR5 is critical for the transcriptional ability of HSF2.
Collapse
Affiliation(s)
- Naoki Hayashida
- Department of Biochemistry, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| |
Collapse
|
21
|
Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, Li Z, Shang X, Liu Y. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 2015; 6:19759-79. [PMID: 26078353 PMCID: PMC4637319 DOI: 10.18632/oncotarget.4331] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023] Open
Abstract
Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability.
Collapse
Affiliation(s)
- Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Bridges TM, Scheraga RG, Tulapurkar ME, Suffredini D, Liggett SB, Ramarathnam A, Potla R, Singh IS, Hasday JD. Polymorphisms in human heat shock factor-1 and analysis of potential biological consequences. Cell Stress Chaperones 2015; 20:47-59. [PMID: 25023647 PMCID: PMC4255257 DOI: 10.1007/s12192-014-0524-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 06/24/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
Abstract
The stress-activated transcription factor, heat shock factor-1 (HSF1), regulates many genes including cytoprotective heat shock proteins (HSPs). We hypothesized that polymorphisms in HSF1 may alter the level or function of HSF1 protein accounting for interindividual viability in disease susceptibility or prognosis. We searched for exomic variants in HSF1 by querying human genome databases and directly sequencing DNA from 80 anonymous genomic DNA samples. Overall, HSF1 sequence was highly conserved, with no common variations. We found 31 validated deviations from a reference sequence in the dbSNP database and an additional 5 novel variants by sequencing, with allele frequencies that were 0.06 or less. Of these 36, 2 were in 5'-untranslated region (5'UTR), 10 in 3'UTR, and 24 in the coding region. The potential effects of 5'UTR on secondary structure, protein structure/function, and 3'UTR targets of microRNAs were analyzed using RNAFold, PolyPhen-2, SIFT, and MicroSNiper. One of the 5'UTR variants was predicted to strengthen secondary structure. Eight of 3'UTR variants were predicted to modify microRNA target sequences. Eight of the coding region variants were predicted to modify HSF1 structure/function. Reducing HSF1 levels in A549 cells using short hairpin RNA (shRNA) increased sensitivity to heat-induced killing demonstrating the impact that genetic variants that reduce HSF1 levels might have. Using the pmirGLO expression system, we found that the wild-type HSF1 3'UTR suppressed translation of a firefly luciferase reporter plasmid by 65 %. Introducing two of four 3'UTR single nucleotide polymorphisms (SNPs) increased HSF1 3'UTR translational suppression by 27-44 % compared with the wild-type HSF1 3'UTR sequence while a third SNP reduced suppression by 25 %. HSF1 variants may alter HSF1 protein levels or function with potential effects on cell functions, including sensitivity to stress.
Collapse
Affiliation(s)
- Tiffany M. Bridges
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Rachel G. Scheraga
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Mohan E. Tulapurkar
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Dante Suffredini
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Stephen B. Liggett
- />Departments of Medicine and Molecular Physiology and Pharmacology, University of South Florida, Tampa, FL 22612 USA
| | - Aparna Ramarathnam
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Ratnakar Potla
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
| | - Ishwar S. Singh
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
- />Medicine and Research services of the Baltimore VA Medical Center, Baltimore, MD 21201 USA
| | - Jeffrey D. Hasday
- />Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Maryland School of Medicine, 110 S. Paca St. 2nd floor, Baltimore, Maryland USA
- />Medicine and Research services of the Baltimore VA Medical Center, Baltimore, MD 21201 USA
| |
Collapse
|
23
|
Abstract
The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided.
Collapse
Affiliation(s)
- Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine and the Baltimore V.A. Medical Center, Baltimore, Maryland
| | | | | |
Collapse
|
24
|
Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One 2014; 9:e96330. [PMID: 24800749 PMCID: PMC4011729 DOI: 10.1371/journal.pone.0096330] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.
Collapse
|
25
|
Getty A, Kovács AD, Lengyel-Nelson T, Cardillo A, Hof C, Chan CH, Pearce DA. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3. PLoS One 2013; 8:e66203. [PMID: 23840424 PMCID: PMC3688782 DOI: 10.1371/journal.pone.0066203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/05/2013] [Indexed: 12/25/2022] Open
Abstract
Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis) is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney) cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm), achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm), human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.
Collapse
Affiliation(s)
- Amanda Getty
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Attila D. Kovács
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Tímea Lengyel-Nelson
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Andrew Cardillo
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Caitlin Hof
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Chun-Hung Chan
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - David A. Pearce
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The kinesin motor protein KIF4 performs essential functions in mitosis. Like other mitotic kinesins, loss of KIF4 causes spindle defects, aneuploidy, genomic instability and ultimately tumor formation. However, KIF4 is unique among molecular motors in that it resides in the cell nucleus throughout interphase, suggesting a non-mitotic function as well. Here we identify a novel cellular function for a molecular motor protein by demonstrating that KIF4 acts as a modulator of large-scale chromatin architecture during interphase. KIF4 binds globally to chromatin and its absence leads to chromatin decondensation and loss of heterochromatin domains. KIF4-dependent chromatin decondensation has functional consequences by causing replication defects and global mis-regulation of gene expression programs. KIF4 exerts its function in chromatin architecture via regulation of ADP-ribosylation of core and linker histones and by physical interaction and recruitment of chromatin assembly proteins during S-phase. These observations document a novel function for a molecular motor protein in establishment and maintenance of higher order chromatin structure.
Collapse
Affiliation(s)
- Manjari Mazumdar
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN, USA.
| | | | | |
Collapse
|
27
|
Salamanca HH, Fuda N, Shi H, Lis JT. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster. Nucleic Acids Res 2011; 39:6729-40. [PMID: 21576228 PMCID: PMC3159435 DOI: 10.1093/nar/gkr206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Heat shock transcription factor (HSF1) is a conserved master regulator that orchestrates the protection of normal cells from stress. However, HSF1 also protects abnormal cells and is required for carcinogenesis. Here, we generate an highly specific RNA aptamer (iaRNAHSF1) that binds Drosophila HSF1 and inhibits HSF1 binding to DNA. In Drosophila animals, iaRNAHSF1 reduces normal Hsp83 levels and promotes developmental abnormalities, mimicking the spectrum of phenotypes that occur when Hsp83 activity is reduced. The HSF1 aptamer also effectively suppresses the abnormal growth phenotypes induced by constitutively active forms of the EGF receptor and Raf oncoproteins. Our results indicate that HSF1 contributes toward the morphological development of animal traits by controlling the expression of molecular chaperones under normal growth conditions. Additionally, our study demonstrates the utility of the RNA aptamer technology as a promising chemical genetic approach to investigate biological mechanisms, including cancer and for identifying effective drug targets in vivo.
Collapse
Affiliation(s)
- H Hans Salamanca
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
28
|
Al-Whaibi MH. Plant heat-shock proteins: A mini review. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2011. [PMID: 0 DOI: 10.1016/j.jksus.2010.06.022] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
29
|
Abstract
The heat shock response was originally characterized as the induction of a set of major heat shock proteins encoded by heat shock genes. Because heat shock proteins act as molecular chaperones that facilitate protein folding and suppress protein aggregation, this response plays a major role in maintaining protein homeostasis. The heat shock response is regulated mainly at the level of transcription by heat shock factors (HSFs) in eukaryotes. HSF1 is a master regulator of the heat shock genes in mammalian cells, as is HSF3 in avian cells. HSFs play a significant role in suppressing protein misfolding in cells and in ameliorating the progression of Caenorhabditis elegans, Drosophila and mouse models of protein-misfolding disorders, by inducing the expression of heat shock genes. Recently, numerous HSF target genes were identified, such as the classical heat shock genes and other heat-inducible genes, called nonclassical heat shock genes in this study. Importance of the expression of the nonclassical heat shock genes was evidenced by the fact that mouse HSF3 and chicken HSF1 play a substantial role in the protection of cells from heat shock without inducing classical heat shock genes. Furthermore, HSF2 and HSF4, as well as HSF1, shown to have roles in development, were also revealed to be necessary for the expression of certain nonclassical heat shock genes. Thus, the heat shock response regulated by the HSF family should consist of the induction of classical as well as of nonclassical heat shock genes, both of which might be required to maintain protein homeostasis.
Collapse
|
30
|
Wang S, Zhao X, Suran R, Vogt VM, Lis JT, Shi H. Knocking down gene function with an RNA aptamer expressed as part of an intron. Nucleic Acids Res 2010; 38:e154. [PMID: 20542918 PMCID: PMC2926621 DOI: 10.1093/nar/gkq529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We developed a powerful expression system to produce aptamers and other types of functional RNA in yeast to examine their effects. Utilizing the intron homing process, the aptamer-coding sequences were integrated into hundreds of rRNA genes, and the aptamers were transcribed at high levels by RNA polymerase I without any additional promoter being introduced into the cell. We used this system to express an aptamer against the heat shock factor 1 (HSF1), a conserved transcription factor responsible for mobilizing specific genomic expression programs in response to stressful conditions such as elevated temperature. We observed a temperature sensitive growth retardation phenotype and specific decrease of heat shock gene expression. As HSF1 enables and promotes malignant growth and metastasis in mammals, and this aptamer binds yeast HSF1 and its mammalian ortholog with equal affinity, the results presented here attest to the potential of this aptamer as a specific and effective inhibitor of HSF1 activity.
Collapse
Affiliation(s)
- Shengchun Wang
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoching Zhao
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Robert Suran
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Volker M. Vogt
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John T. Lis
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hua Shi
- Department of Biological Sciences and Institute for RNA Science and Technology, University at Albany, State University of New York, Albany, NY 12222 and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- *To whom correspondence should be addressed. Tel: +1 518 591 8840; Fax: +1 518 442 4767;
| |
Collapse
|
31
|
Xing H, Hong Y, Sarge KD. PEST sequences mediate heat shock factor 2 turnover by interacting with the Cul3 subunit of the Cul3-RING ubiquitin ligase. Cell Stress Chaperones 2010; 15:301-8. [PMID: 19768582 PMCID: PMC2866995 DOI: 10.1007/s12192-009-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 08/31/2009] [Indexed: 11/27/2022] Open
Abstract
Cullin-RING ubiquitin ligases promote the polyubiquitination and degradation of many important cellular proteins, which previous studies indicated can be targeted for degradation via interaction with BTB domain-containing subunits of this E3 ligase complex. PEST domains are known to promote the degradation of proteins that contain them. However, the molecular mechanism by which PEST sequences promote degradation of these proteins is not understood. Here we show that the PEST sequences of a short-lived protein called HSF2 interact with Cullin3, a subunit of a Cullin-RING E3 ubiquitin ligase, and that this interaction mediates the Cul3-dependent ubiquitination and degradation of HSF2. These results indicate how, at the molecular level, PEST sequences can promote the proteolysis of proteins that contain them. They also expand understanding of the mechanisms by which substrates can be recruited to Cullin-RING E3 ubiquitin ligases to include interactions between PEST sequences and Cul3.
Collapse
Affiliation(s)
- Hongyan Xing
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| | - Yiling Hong
- Department of Biology, University of Dayton, Dayton, OH 45469 USA
| | - Kevin D. Sarge
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
32
|
Wilkerson DC, Sarge KD. RNA polymerase II interacts with the Hspa1b promoter in mouse epididymal spermatozoa. Reproduction 2009; 137:923-9. [PMID: 19336471 DOI: 10.1530/rep-09-0015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Hspa1b (Hsp70.1) gene is one of the first genes expressed after fertilization, with expression occurring during the minor zygotic genome activation (ZGA) in the absence of stress. This expression can take place in the male pronucleus as early as the one-cell stage of embryogenesis. The importance of HSPA1B for embryonic viability during times of stress is supported by studies showing that depletion of this protein results in a significant reduction in embryos developing to the blastocyte stage. Recently, we have begun addressing the mechanism responsible for allowing expression of Hspa1b during the minor ZGA and found that heat shock transcription factor (HSF) 1 and 2 bind the Hspa1b promoter during late spermatogenesis. In this report, we have extended those studies using western blots and chromatin immunoprecipitation assays and found that RNA polymerase II (Pol II) is present in epididymal spermatozoa and bound to the Hspa1b promoter. These present results, in addition to our previous results, support a model in which the binding of HSF1, HSF2, SP1, and Pol II to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
33
|
Sarge KD, Park-Sarge OK. Mitotic bookmarking of formerly active genes: keeping epigenetic memories from fading. Cell Cycle 2009; 8:818-23. [PMID: 19221503 DOI: 10.4161/cc.8.6.7849] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In order for cell lineages to be maintained, daughter cells must have the same patterns of gene expression as the cells from which they were divided so that they can have the same phenotypes. However, during mitosis transcription ceases, chromosomal DNA is compacted, and most sequence-specific binding factors dissociate from DNA, making it difficult to understand how the "memory" of gene expression patterns is remembered and propagated to daughter cells. The process of remembering patterns of active gene expression during mitosis for transmission to daughter cells is called gene bookmarking. Here we discuss current knowledge concerning the factors and mechanisms involved in mediating gene bookmarking, including recent results on the mechanism by which the general transcription factor TBP participates in the mitotic bookmarking of formerly active genes.
Collapse
Affiliation(s)
- Kevin D Sarge
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | |
Collapse
|
34
|
Karapanagiotou EM, Syrigos K, Saif MW. Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin Investig Drugs 2009; 18:161-74. [DOI: 10.1517/13543780802715792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Singh IS, Shah NG, Almutairy E, Hasday JD. Role of HSF1 in Infectious Disease. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Voegeli TS, Wintink AJ, Chen Y, Currie RW. Heat shock proteins 27 and 70 regulating angiotensin II-induced NF-kappaB: a possible connection to blood pressure control? Appl Physiol Nutr Metab 2008; 33:1042-9. [PMID: 18923582 DOI: 10.1139/h08-068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Heat shock proteins (HSPs) are critical for cell survival and have several mechanisms of action. HSPs regulate protein folding, suppress apoptosis, and regulate anti-oxidative activity. In addition, HSPs are involved in the regulation of the pro-inflammatory transcription factor nuclear factor (NF)-kappaB. When angiotensin (Ang) II is infused into rats, there is a significant increase in systolic blood pressure, and NF-kappaB is activated in the heart. If rats are heat shocked to induce the heat shock response and HSPs before Ang II infusion, there is a significant suppression of both the Ang II-induced increase in blood pressure and NF-kappaB activation in the heart. Although the role of specific HSPs in the regulation of NF-kappaB is unclear, several HSPs, including Hsp27 and Hsp70, are thought to be involved in the regulation of Ang II-induced NF-kappaB. The role of Hsp27 and Hsp70 in NF-kappaB activation is reviewed here, along with evidence suggesting that HSPs regulate Ang II-induced blood pressure through the regulation of NF-kappaB.
Collapse
Affiliation(s)
- Tracy S Voegeli
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, NSB3H1X5, Canada
| | | | | | | |
Collapse
|
37
|
Wilkerson DC, Murphy LA, Sarge KD. Interaction of HSF1 and HSF2 with the Hspa1b promoter in mouse epididymal spermatozoa. Biol Reprod 2008; 79:283-8. [PMID: 18434628 DOI: 10.1095/biolreprod.107.066241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The Hspa1b gene is one of the first genes expressed after fertilization, with expression observed in the male pronucleus as early as the one-cell stage of embryogenesis. This expression can occur in the absence of stress and is initiated during the minor zygotic genome activation. There is a significant reduction in the number of embryos developing to the blastocyte stage when HSPA1B levels are depleted, which supports the importance of this protein for embryonic viability. However, the mechanism responsible for allowing expression of Hspa1b during the minor zygotic genome activation (ZGA) is unknown. In this report, we investigated the role of HSF1 and HSF2 in bookmarking Hspa1b during late spermatogenesis. Western blot results show that both HSF1 and HSF2 are present in epididymal spermatozoa, and immunofluorescence analysis revealed that some of the HSF1 and HSF2 proteins in these cells overlap the 4',6'-diamidino-2-phenylindole-stained DNA region. Results from chromatin immunoprecipitation assays showed that HSF1, HSF2, and SP1 are bound to the Hspa1b promoter in epididymal spermatozoa. Furthermore, we observed an increase in HSF2 binding to the Hspa1b promoter in late spermatids versus early spermatids, suggesting a likely period during spermatogenesis when transcription factor binding could occur. These results support a model in which the binding of HSF1, HSF2, and SP1 to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.
Collapse
Affiliation(s)
- Donald C Wilkerson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
38
|
Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics 2008; 35:105-18. [DOI: 10.1016/s1673-8527(08)60016-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/29/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
|
39
|
Xing H, Hong Y, Sarge KD. Identification of the PP2A-interacting region of heat shock transcription factor 2. Cell Stress Chaperones 2007; 12:192-7. [PMID: 17688198 PMCID: PMC1949333 DOI: 10.1379/csc-249r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous work in our laboratory demonstrated the existence of an association between heat shock transcription factor 2 (HSF2) and the serine/threonine phosphatase 2A, which is mediated by interaction between HSF2 and the A subunit (also called PR65) of this protein phosphatase. In light of the importance of HSF2-PP2A association for HSF2 cellular function, in this study, we have sought to dissect the sequences within HSF2 that are important for interaction with the A subunit of PP2A. The results of these experiments indicate that the HSF2 region comprising amino acids 343-363 is important for A subunit interaction. This region includes part of the C-terminal leucine zipper motif of HSF2 called heptad repeat C (HR-C). The results of transfection/immunoprecipitation experiments also show that deletion of the 6 amino acids from 343 to 348 from HSF2 (HSF2 (delta343-348)), is sufficient to prevent HSF2 from interacting with PP2A. These data provide insight into a new functional domain of HSF2, the PP2A A subunit-interacting region.
Collapse
Affiliation(s)
- Hongyan Xing
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S Limestone Streeet, Lexington, KY 40536, USA
| | | | | |
Collapse
|
40
|
Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. THE PLANT CELL 2007; 19:182-95. [PMID: 17220197 PMCID: PMC1820961 DOI: 10.1105/tpc.106.048165] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Within the Arabidopsis thaliana family of 21 heat stress transcription factors (Hsfs), HsfA9 is exclusively expressed in late stages of seed development. Here, we present evidence that developmental expression of HsfA9 is regulated by the seed-specific transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). Intriguingly, ABI3 knockout lines lack detectable levels of HsfA9 transcript and protein, and further ectopic expression of ABI3 conferred the ability to accumulate HsfA9 in response to abscisic acid in transgenic plantlets. Consequently, the most abundant heat stress proteins (Hsps) in seeds (Hsp17.4-CI, Hsp17.7-CII, and Hsp101) were not detectable in the ABI3 knockout lines, but their expression could be detected in plants ectopically expressing HsfA9 in vegetative tissues. Furthermore, this seed-specific transcription factor cascade was reconstructed in transient beta-glucuronidase reporter assays in mesophyll protoplasts by showing that ABI3 could activate the HsfA9 promoter, whereas HsfA9 in turn was shown to be a potent activator on the promoters of Hsp genes. Thus, our study establishes a genetic framework in which HsfA9 operates as a specialized Hsf for the developmental expression of Hsp genes during seed maturation.
Collapse
Affiliation(s)
- Sachin Kotak
- Institute of Molecular Biosciences, Biocenter N200/R306, Goethe University, D-60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
41
|
Wheeler DS, Wong HR. Heat shock response and acute lung injury. Free Radic Biol Med 2007; 42:1-14. [PMID: 17157189 PMCID: PMC1790871 DOI: 10.1016/j.freeradbiomed.2006.08.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022]
Abstract
All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e., exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury.
Collapse
Affiliation(s)
- Derek S. Wheeler
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center; Kindervelt Laboratory for Critical Care Medicine Research, Children’s Hospital Research Foundation;]Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
42
|
|
43
|
Sato Y, Yoshida K, Shinka T, Nozawa S, Nakahori Y, Iwamoto T. Altered expression pattern of heat shock transcription factor, Y chromosome (HSFY) may be related to altered differentiation of spermatogenic cells in testes with deteriorated spermatogenesis. Fertil Steril 2006; 86:612-8. [PMID: 16952509 DOI: 10.1016/j.fertnstert.2006.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 01/20/2006] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the expression patterns of heat shock transcription factor, Y chromosome (HSFY), in the testes showing deteriorated spermatogenesis. DESIGN Prospective study. SETTING University hospital, its branch hospital, and academic laboratory. PATIENT(S) Men undergoing testicular biopsy for the investigation of infertility and men undergoing orchiectomy for testicular cancer. INTERVENTION(S) After pathologic evaluation, specimens were subdivided into three groups: normal spermatogenesis (n = 8), maturation arrest (n = 5), and Sertoli cell-only syndrome (n = 4). Immunostaining and Western blotting techniques determined the expression of HSFY. MAIN OUTCOME MEASURE(S) Expression of HSFY in testes. RESULT(S) Western blotting data revealed HSFY in the testicular tissues with normal spermatogenesis, maturation arrest, and Sertoli cell-only syndrome, but the amount of the protein in the maturation arrest and Sertoli cell-only syndrome samples was altered. The immunohistochemical data demonstrated that HSFY was expressed in spermatogenic cells and Sertoli cells in all specimens. However, the expression of HSFY was low or absent in spermatogenic cells of maturation arrest specimens, and the ratio of HSFY expressed in Sertoli cells was different in the specimens with maturation arrest and with Sertoli cell-only syndrome. CONCLUSION(S) Altered expression of the HSFY in the testis showing deteriorated spermatogenesis may be associated with alteration of spermatogenic cell differentiation.
Collapse
Affiliation(s)
- Yoko Sato
- Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Shabtay A, Arad Z. Reciprocal activation of HSF1 and HSF3 in brain and blood tissues: is redundancy developmentally related? Am J Physiol Regul Integr Comp Physiol 2006; 291:R566-72. [PMID: 16497816 DOI: 10.1152/ajpregu.00685.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional induction of heat-shock genes in response to temperature elevation and other stresses is mediated by heat-shock transcription factors (HSFs). Avian cells express two redundant heat-shock responsive factors, HSF1 and HSF3, which differ in their activation kinetics and threshold induction temperature. Unlike the ubiquitous activation of HSF1, the DNA-binding activity of HSF3 is restricted to undifferentiated avian cells and embryonic tissues. Herein, we report a reciprocal activation of HSF1 and HSF3 in vivo. Whereas HSF1 mediates transcriptional activity only in the brain upon severe heat shock, HSF3 is exclusively activated in blood cells upon light, moderate, and severe heat shock, promoting induction of heat-shock genes. Although not activated, HSF1 is expressed in blood cell nuclei in a granular appearance, suggesting regulation of genes other than heat-shock genes. Intraspecific comparison of heat-sensitive and heat-resistant fowl strains indicates that the unique activation pattern of HSF3 in blood tissue is a general phenomenon, not related to thermal history. Taken together, HSF1 and HSF3 mediate transcriptional activity of adult tissues and differentiated cells in a nonredundant manner. Instead, an exclusive, tissue-specific activation is observed, implying that redundancy may be developmentally related. The physiological and developmental implications are discussed.
Collapse
Affiliation(s)
- Ariel Shabtay
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
45
|
Kajiya H, Ito M, Ohshima H, Kenmotsu SI, Ries WL, Benjamin IJ, Reddy SV. RANK ligand expression in heat shock factor-2 deficient mouse bone marrow stromal/preosteoblast cells. J Cell Biochem 2006; 97:1362-9. [PMID: 16365894 DOI: 10.1002/jcb.20737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat Shock Proteins (HSP) are molecular chaperones activated upon cellular stress/stimuli. HSP gene expression is regulated by Heat Shock Factors (HSF). We have recently demonstrated a functional role for heat shock factor-2 (HSF-2) in fibroblast growth factor-2 (FGF-2)-induced RANK ligand (RANKL), a critical osteoclastogenic factor expression on stromal/preosteoblast cells. In the present study, we show that FGF-2 treatment did not induce RANKL expression in HSF-2-/-stromal/preosteoblast cells. Interestingly, HSF-2 deficiency resulted in rapid induction of alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in these cells. Furthermore, FGF-2 did not induce osteoclast formation in co-culture of normal mouse spleen cells and HSF-2-/-stromal/preosteoblast cells. Electron microscopy analysis demonstrated that osteoclasts from HSF-2-/-mice have poorly developed ruffled borders. These data further confirm that HSF-2 plays an important role in FGF-2-induced RANKL expression in stromal/preosteoblast cells. HSF-2 deficiency has pleotropic effects on gene expression during osteoblast differentiation and osteoclastogenesis in the bone microenvironment. Novel therapeutic agents that modulate HSF-2 activation may have therapeutic utility against increased levels of FGF-2 and bone destruction associated with pathologic conditions.
Collapse
Affiliation(s)
- Hiroshi Kajiya
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Sawara-ku, Fukuoka, 814-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
MILLER GAD, MITTLER RON. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? ANNALS OF BOTANY 2006; 98:279-88. [PMID: 16740587 PMCID: PMC2803459 DOI: 10.1093/aob/mcl107] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are modular transcription factors encoded by a large gene family in plants. They bind to the consensus sequence 'nGAAnnTCCn' found in the promoters of many defence genes, and are thought to function as a highly redundant and flexible gene network that controls the response of plants to different environmental stress conditions, including biotic and abiotic stresses. Hsf proteins encoded by different genes exhibit a high degree of complexity in their interactions. They can potentially bind and activate their own promoters, as well as the promoters of other members of their gene family, and they can form homo- or heterotrimers resulting in altered nuclear localization, as well as enhanced or suppressed transcription. SCOPE In this review, we summarize recent studies on Hsf function in Arabidopsis and tomato and present evidence obtained from microarray expression studies in Arabidopsis that the Hsf gene network is highly flexible and specialized, with specific members and/or member combinations controlling the response of plants to particular stress conditions. In addition, we describe recent studies that support the hypothesis that certain Hsfs function as molecular sensors that directly sense reactive oxygen species (ROS) and control the expression of oxidative stress response genes during oxidative stress.
Collapse
|
47
|
Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2006; 10:86-103. [PMID: 16038406 PMCID: PMC1176476 DOI: 10.1379/csc-99r.1] [Citation(s) in RCA: 1013] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (Hsps) are overexpressed in a wide range of human cancers and are implicated in tumor cell proliferation, differentiation, invasion, metastasis, death, and recognition by the immune system. We review the current status of the role of Hsp expression in cancer with special emphasis on the clinical setting. Although Hsp levels are not informative at the diagnostic level, they are useful biomarkers for carcinogenesis in some tissues and signal the degree of differentiation and the aggressiveness of some cancers. In addition, the circulating levels of Hsp and anti-Hsp antibodies in cancer patients may be useful in tumor diagnosis. Furthermore, several Hsp are implicated with the prognosis of specific cancers, most notably Hsp27, whose expression is associated with poor prognosis in gastric, liver, and prostate carcinoma, and osteosarcomas, and Hsp70, which is correlated with poor prognosis in breast, endometrial, uterine cervical, and bladder carcinomas. Increased Hsp expression may also predict the response to some anticancer treatments. For example, Hsp27 and Hsp70 are implicated in resistance to chemotherapy in breast cancer, Hsp27 predicts a poor response to chemotherapy in leukemia patients, whereas Hsp70 expression predicts a better response to chemotherapy in osteosarcomas. Implication of Hsp in tumor progression and response to therapy has led to its successful targeting in therapy by 2 main strategies, including: (1) pharmacological modification of Hsp expression or molecular chaperone activity and (2) use of Hsps in anticancer vaccines, exploiting their ability to act as immunological adjuvants. In conclusion, the present times are of importance for the field of Hsps in cancer, with great contributions to both basic and clinical cancer research.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (CRICYT-CONICET), Mendoza, Argentina
| | | |
Collapse
|
48
|
Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 2006; 20:836-47. [PMID: 16600913 PMCID: PMC1472286 DOI: 10.1101/gad.366906] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heat-shock factors (HSFs) are associated with multiple developmental processes, but their mechanisms of action in these processes remain largely enigmatic. Hsf2-null mice display gametogenesis defects and brain abnormalities characterized by enlarged ventricles. Here, we show that Hsf2-/- cerebral cortex displays mispositioning of neurons of superficial layers. HSF2 deficiency resulted in a reduced number of radial glia fibers, the architectural guides for migrating neurons, and of Cajal-Retzius cells, which secrete the positioning signal Reelin. Therefore, we focused on the radial migration signaling pathways. The levels of Reelin and Dab1 tyrosine phosphorylation were reduced, suggesting that the Reelin cascade is affected in Hsf2-/- cortices. The expression of p35, an activator of cyclin-dependent kinase 5 (Cdk5), essential for radial migration, was dependent on the amount of HSF2 in gain- and loss-of-function systems. p39, another Cdk5 activator, displayed reduced mRNA levels in Hsf2-/- cortices, which, together with the lowered p35 levels, decreased Cdk5 activity. We demonstrate in vivo binding of HSF2 to the p35 promoter and thereby identify p35 as the first target gene for HSF2 in cortical development. In conclusion, HSF2 affects cellular populations that assist in radial migration and directly regulates the expression of p35, a crucial actor of radial neuronal migration.
Collapse
Affiliation(s)
- Yunhua Chang
- Biologie Moléculaire du Stress, Centre National de la Recherche Scientifique (CNRS) UMR8541, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pierzchalski P, Krawiec A, Ptak-Belowska A, Barańska A, Konturek SJ, Pawlik WW. The mechanism of heat-shock protein 70 gene expression abolition in gastric epithelium caused by Helicobacter pylori infection. Helicobacter 2006; 11:96-104. [PMID: 16579839 DOI: 10.1111/j.1523-5378.2006.00383.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The members of the family of heat shock factors coordinate the inducible transcription of heat shock genes in response to diverse stimuli. Any disturbances in signal transduction may lead to the attenuation of heat shock proteins synthesis and to cell death due to apoptosis. It has been shown by others that different nuclear factors, such as nuclear factor interleukin 6 or signal transducer and activator of transcription 3, co-operate with heat shock factors, mostly enhancing their activator effect on heat shock proteins genes expression. Therefore, we sought to determine whether apoptosis induced in the gastric epithelium exposed to live Helicobacter pylori might occur due to the elimination of HSP70 expression and deregulation of the heat shock response of the cell. MATERIALS AND METHODS Experiments were performed on KATO III gastric epithelial cells exposed to live cagA, vacA expressing Hp over different periods of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, western-blot, electrophoretic mobility shift assay, decoy and co-immunoprecipitation studies. RESULTS We found that in human gastric epithelium exposed to Helicobacter pylori, heat shock factor 1 is bound and restrained in complexes by phosphorylated signal transducer and activator of transcription 3 protein. In consequence, heat shock factor 1 bound up with phosphorylated signal transducer and activator of transcription 3 protein is unable to activate HSP70 protein synthesis in KATO III cells under stress conditions. Helicobacter pylori also causes changes in bax/bcl-2 cellular equilibrium, leading to the induction of apoptosis. CONCLUSIONS The observed phenomenon might be the mechanism whereby gastric epithelium adapts to the infection of Helicobacter pylori, eliminating cells which are damaged or altered by bacterial cytotoxic products from the tissue.
Collapse
Affiliation(s)
- Piotr Pierzchalski
- Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
50
|
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 60:759-72. [PMID: 16649111 DOI: 10.1007/s11103-005-5750-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 12/06/2005] [Indexed: 05/08/2023]
Abstract
Within the Arabidopsis family of 21 heat stress transcription factors (Hsfs) HsfA2 is the strongest expressed member under heat stress (hs) conditions. Irrespective of the tissue, HsfA2 accumulates under heat stress similarly to other heat stress proteins (Hsps). A SALK T-DNA insertion line with a complete HsfA2-knockout was analyzed with respect to the changes in the transcriptome under heat stress conditions. Ascorbate peroxidase 2 (APX2) was identified as the most affected transcript in addition to several sHsps, individual members of the Hsp70 and Hsp100 family, as well as many transcripts of genes with yet unknown functions. For functional validation, the transcription activation potential of HsfA2 on GUS reporter constructs containing 1 kb upstream promoter sequences of selected target genes were analyzed using transient reporter assays in mesophyll protoplasts. By deletion analysis the promoter region of the strongest affected target gene APX2 was functionally mapped in detail to verify potential HsfA2 binding sites. By electrophoretic mobility shift assays we identified TATA-Box proximal clusters of heat stress elements (HSE) in the promoters of selected target genes as potential HsfA2 binding sites. The results presented here demonstrate that the expression of HsfA2 in Arabidopsis is strictly heat stress-dependent and this transcription factor represents a regulator of a subset of stress response genes in Arabidopsis.
Collapse
Affiliation(s)
- Franziska Schramm
- Institute of Molecular Bio Sciences, Biocenter N200/R306, Goethe University, Marie-Curie-Str. 9, D-60439, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|