1
|
UDP-sugars activate P2Y 14 receptors to mediate vasoconstriction of the porcine coronary artery. Vascul Pharmacol 2017; 103-105:36-46. [PMID: 29253618 PMCID: PMC5906693 DOI: 10.1016/j.vph.2017.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Aims UDP-sugars can act as extracellular signalling molecules, but relatively little is known about their cardiovascular actions. The P2Y14 receptor is a Gi/o-coupled receptor which is activated by UDP-glucose and related sugar nucleotides. In this study we sought to investigate whether P2Y14 receptors are functionally expressed in the porcine coronary artery using a selective P2Y14 receptor agonist, MRS2690, and a novel selective P2Y14 receptor antagonist, PPTN (4,7-disubstituted naphthoic acid derivative). Methods and results Isometric tension recordings were used to evaluate the effects of UDP-sugars in porcine isolated coronary artery segments. The effects of the P2 receptor antagonists suramin and PPADS, the P2Y14 receptor antagonist PPTN, and the P2Y6 receptor antagonist MRS2578, were investigated. Measurement of vasodilator-stimulated phosphoprotein (VASP) phosphorylation using flow cytometry was used to assess changes in cAMP levels. UDP-glucose, UDP-glucuronic acid UDP-N-acetylglucosamine (P2Y14 receptor agonists), elicited concentration-dependent contractions of the porcine coronary artery. MRS2690 was a more potent vasoconstrictor than the UDP-sugars. Concentration dependent contractile responses to MRS2690 and UDP-sugars were enhanced in the presence of forskolin (activator of cAMP), where the level of basal tone was maintained by addition of U46619, a thromboxane A2 mimetic. Contractile responses to MRS2690 were blocked by PPTN, but not by MRS2578. Contractile responses to UDP-glucose were also attenuated by PPTN and suramin, but not by MRS2578. Forskolin-induced VASP-phosphorylation was reduced in porcine coronary arteries exposed to UDP-glucose and MRS2690, consistent with P2Y14 receptor coupling to Gi/o proteins and inhibition of adenylyl cyclase activity. Conclusions Our data support a role of UDP-sugars as extracellular signalling molecules and show for the first time that they mediate contraction of porcine coronary arteries via P2Y14 receptors.
Collapse
|
2
|
Sharma U, Singh SK, Rajendra P. Inverse correlation of intracellular calcium and cyclic AMP levels in renal cell carcinoma. Cell Biochem Funct 2012; 30:619-22. [PMID: 23034870 DOI: 10.1002/cbf.2913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 02/01/2023]
Abstract
Renal cell carcinoma (RCC) is the most common renal tumour in adults. Altered levels of secondary messengers, that is, intracellular calcium and cyclic AMP (cAMP), have been implicated in the pathogenesis of various malignancies. In the present study, we measured levels of intracellular calcium and cAMP in RCC. The intracellular calcium level was significantly reduced, whereas the cAMP level was significantly augmented in RCC as compared with adjacent grossly normal renal parenchyma.
Collapse
|
3
|
Brooker G. Laboratory of ion and second messenger imaging: a tribute to the memory of Erminio Costa. Pharmacol Res 2011; 64:319-20. [PMID: 21704165 DOI: 10.1016/j.phrs.2011.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 11/16/2022]
Abstract
When we lost Ermino Costa last year, the end of an era was marked. "Mimo" as we affectionately called him, was looked upon by scores of students, post-doctoral scholars and colleagues with respect and admiration and he was a scientific father figure to many. In this article I reflect upon his time at Georgetown University including his recruitment, formation and leadership of the Fidia-Georgetown Institute for Neuroscience (FGIN). The founding of FGIN created a focus upon neurosciences at the university and fostered many new collaborations. My laboratory became associated with the Institute and was involved in common interests concerning ion and second messenger studies and single cell imaging. Mimo's critical support of work and people during his long and illustrious career has significantly impacted not only neuroscience but the people who were so fortunate to have traveled with him along the road to many important and exciting discoveries.
Collapse
Affiliation(s)
- Gary Brooker
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University Microscopy Center, Johns Hopkins University, 9605 Medical Center Drive Suite 240, Rockville, MD 20850, USA.
| |
Collapse
|
4
|
Memo M, Pizzi M, Belloni M, Benarese M, Spano P. Activation of Dopamine D2 Receptors Linked to Voltage-Sensitive Potassium Channels Reduces Forskolin-Induced Cyclic AMP Formation in Rat Pituitary Cells. J Neurochem 2006; 59:1829-35. [PMID: 1357100 DOI: 10.1111/j.1471-4159.1992.tb11016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptor agonists, including BHT 920 and bromocriptine, and the potassium channel opener minoxidil share the property of hyperpolarizing the plasma membrane by activating voltage-dependent potassium channels. These drugs were tested for their ability to inhibit the cyclic AMP formation induced by forskolin either in intact or in broken pituitary cells. In contrast to bromocriptine, which was active in both experimental systems, BHT 920 and minoxidil inhibited the forskolin-induced cyclic AMP formation in intact-cell but not in broken-cell preparations. The effects of BHT 920 were (a) concentration dependent, with a calculated IC50 of 0.7 microM, (b) dopaminergic in nature, being specifically antagonized by sulpiride, (c) not additive with those induced by minoxidil, and (d) less effective in the presence of potassium channel blockers, such as 4-aminopyridine and tetraethylammonium. These data indicate that the inhibition of forskolin-induced cyclic AMP formation by BHT 920 in intact pituitary cells is not a primary consequence of receptor occupation, but a late event, possibly related to the opening of voltage-dependent potassium channels elicited by this drug through the activation of a subtype of dopamine D2 receptors uncoupled to adenylyl cyclase.
Collapse
Affiliation(s)
- M Memo
- Department of Biomedical Sciences and Biotechnologies, School of Medicine, University of Brescia, Italy
| | | | | | | | | |
Collapse
|
5
|
Han S, Kim TD, Ha DC, Kim KT. Rhythmic expression of adenylyl cyclase VI contributes to the differential regulation of serotonin N-acetyltransferase by bradykinin in rat pineal glands. J Biol Chem 2005; 280:38228-34. [PMID: 16166080 DOI: 10.1074/jbc.m508130200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rhythmic nocturnal production of melatonin in pineal glands is controlled by the periodic release of norepinephrine from the superior cervical ganglion. Norepinephrine binds to the beta-adrenergic receptor and stimulates an increase in intracellular cAMP levels, leading to the transcriptional activation of serotonin N-acetyltransferase, which in turn promotes melatonin production. In the present study, we report that bradykinin inhibits basal- and forskolin-stimulated adenylyl cyclase activity, norepinephrine-induced cAMP generation, and N-acetyltransferase expression in a calcium-dependent manner. These effects were blocked by pretreatment with U73122 (a selective phospholipase C inhibitor), and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (a Ca(2+) chelator), but not pertussis toxin. The calcium ionophore, ionomycin, inhibited isoproterenol-mediated cAMP generation, similar to bradykinin. Interestingly, the inhibitory effect of bradykinin was evident only during the daytime. At midday, bradykinin inhibited the cAMP level by approximately 50% but markedly stimulated cAMP production (by approximately 50%) at night. Northern blotting and immunoblotting data disclosed circadian expression of calcium-inhibitable adenylyl cyclase type 6. Expression of adenylyl cyclase type 6 was maximal at Zeitgeber Time (ZT) 01 and very low at ZT 13. Our results suggest that bradykinin-induced calcium inhibits melatonin synthesis through the mediation of adenylyl cyclase type 6 expression.
Collapse
Affiliation(s)
- Sung Han
- System Bio-Dynamics NCRC, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
6
|
Goraya TA, Cooper DMF. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): Current perspectives. Cell Signal 2005; 17:789-97. [PMID: 15763421 DOI: 10.1016/j.cellsig.2004.12.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Ca2+-calmodulin-dependent phosphodiesterases (PDE1), like Ca2+-sensitive adenylyl cyclases (AC), are key enzymes that play a pivotal role in mediating the cross-talk between cAMP and Ca2+ signalling. Our understanding of how ACs respond to Ca2+ has advanced greatly, with significant breakthroughs at both the molecular and functional level. By contrast, little is known of the mechanisms that might underlie the regulation of PDE1 by Ca2+ in the intact cell. In living cells, Ca2+ signals are complex and diverse, exhibiting different spatial and temporal properties. The potential therefore exists for dynamic changes in the subcellular distribution and activation of PDE1 in relation to intracellular Ca2+ dynamics. PDE1s are a large family of multiply-spliced gene products. Therefore, it is possible that a cell-type specific response to elevation in [Ca2+]i can occur, depending on the isoform of PDE1 expressed. In this article, we summarize current knowledge on Ca2+ regulation of PDE1 in the intact cell and discuss approaches that might be undertaken to delineate the responses of this important group of enzymes to changes in [Ca2+]i.
Collapse
Affiliation(s)
- Tasmina A Goraya
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | |
Collapse
|
7
|
Goraya TA, Masada N, Ciruela A, Cooper DMF. Sustained entry of Ca2+ is required to activate Ca2+-calmodulin-dependent phosphodiesterase 1A. J Biol Chem 2004; 279:40494-504. [PMID: 15272012 DOI: 10.1074/jbc.m313441200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of adenylyl cyclases (ACs) by Ca2+ requires capacitative Ca2+ entry (CCE) (Cooper, D. M. F. (2003) Biochem. J. 375, 517-529), but whether Ca2+-sensitive phosphodiesterases (PDEs) are similarly discriminating has never been addressed. In the present study, a variety of conditions were devised to manipulate [Ca2+]i so that we could ask whether PDE1 selectively responds to different modes of elevating [Ca2+]i, viz. Ca2+ released from intracellular stores and various modes of Ca2+ entry. In 1321N1 human astrocytoma cells, the endogenous PDE1 (identified as PDE1A by reverse transcriptase-PCR) was largely insensitive to Ca2+ released from carbachol-sensitive stores but was robustly stimulated by a similar rise in [Ca2+]i due to carbachol-induced Ca2+ influx. Gd3+, which effectively blocked thapsigargin-induced CCE and its effect on PDE1A, also inhibited the activation of PDE1A by carbachol-induced Ca2+ entry. However, non-selective ionomycin-mediated Ca2+ entry also activated PDE1A, so that, unlike Ca2+-sensitive ACs, PDE1A cannot discriminate between the different sources of Ca2+ entry. Fractionation of the cells revealed that the Ca2+-calmodulin-stimulated PDE activity was not present at the plasma membrane but was associated with the cytosol and the organellar compartments of the cell. Therefore, the apparent disparity between PDE1A and ACs is likely to be the consequence of their differential subcellular localization. Nevertheless, in a physiological context, where artificial modes of elevating [Ca2+]i are not available, as with ACs, a dependence on CCE would be evident, and it would be the duration of this influx of Ca2+ that would determine how long PDE1A was activated.
Collapse
Affiliation(s)
- Tasmina A Goraya
- Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge, CB2 1PD, United Kingdom
| | | | | | | |
Collapse
|
8
|
Miguel JC, Abdel-Wahab YHA, Green BD, Mathias PCF, Flatt PR. Cooperative enhancement of insulinotropic action of GLP-1 by acetylcholine uncovers paradoxical inhibitory effect of beta cell muscarinic receptor activation on adenylate cyclase activity. Biochem Pharmacol 2003; 65:283-92. [PMID: 12504804 DOI: 10.1016/s0006-2952(02)01482-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cooperative effect of glucagon-like peptide 1 (GLP-1) and acetylcholine (ACh) was evaluated in a beta cell line model (BRIN BD11). GLP-1 (20 nM) and ACh (100 microM) increased insulin secretion by 24-47%, whereas in combination there was a further 89% enhancement of insulin release. Overnight culture with 100 ng/mL pertussis toxin (PTX) or 10nM PMA significantly reduced the combined insulinotropic action (P<0.05 and P<0.001, respectively) and the sole stimulatory effects of GLP-1 (PTX treatment; P<0.01) or ACh (PMA treatment; P<0.05). Under control conditions, ACh (50nM-1mM) concentration-dependently inhibited by up to 40% (P<0.001) the 10-fold (P<0.001) elevation of cyclic 3',5'-adenosine monophosphate (cAMP) induced by 20 nM GLP-1. The paradoxical inhibitory action of ACh was abolished by PTX pre-treatment, suggesting involvement of G(i) and/or G(o) G protein alpha subunit. Effects of selective muscarinic receptor antagonists on the concentration-dependent insulinotropic actions of ACh (50 nM-1 mM) on 20 nM GLP-1 induced insulin secretion revealed inhibition by rho-FHHSiD (M3 antagonist, P<0.05), stimulation with pirenzepine (M1 antagonist, P<0.001) and no significant effects of either methoctramine (M2 antagonist) or MT-3 (M4 antagonist). Antagonism of M2, M3 and M4 muscarinic receptor effects with methoctramine (3-100 nM), rho-FHHSiD (3-30 nM) or MT-3 (10-300 nM) did not significantly affect the inhibitory action of ACh on GLP-1 stimulated cAMP production. In contrast, M1 receptor antagonism with pirenzepine (3-30 0nM) resulted in a concentration-dependent decrease in the inhibitory action of ACh on GLP-1 stimulated cAMP production (P<0.001). These data indicate an important functional cooperation between the cholinergic neurotransmitter ACh and the incretin hormone GLP-1 on insulin secretion mediated through the M3 muscarinic receptor subtype. However, the insulinotropic action of ACh was associated with a paradoxical inhibitory effect on GLP-1 stimulated cAMP production, achieved through a novel PTX- and pirenzepine-sensitive M1 muscarinic receptor activated pathway. An imbalance between these pathways may contribute to dysfunctional insulin secretion.
Collapse
Affiliation(s)
- João C Miguel
- School of Biomedical Sciences, University of Ulster, Coleraine, Co Londonderry, Northern Ireland, BT52 1SA, UK.
| | | | | | | | | |
Collapse
|
9
|
Chabardès D, Imbert-Teboul M, Elalouf JM. Functional properties of Ca2+-inhibitable type 5 and type 6 adenylyl cyclases and role of Ca2+ increase in the inhibition of intracellular cAMP content. Cell Signal 1999; 11:651-63. [PMID: 10530873 DOI: 10.1016/s0898-6568(99)00031-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among the different adenylyl cyclase (AC) isoforms, type 5 and type 6 constitute a subfamily which has the remarkable property of being inhibited by submicromolar Ca2+ concentrations in addition to Galphai-mediated processes. These independent and cumulative negative regulations are associated to a low basal enzymatic activity which can be strongly activated by Galphas-mediated interactions or forskolin. These properties ensure possible wide changes of cAMP synthesis. Regulation of cAMP synthesis by Ca2+ was studied in cultured or native cells which express naturally type 5 and/or type 6 AC, including well-defined renal epithelial cells. The results underline two characteristics of the inhibition due to agonist-elicited increase of intracellular Ca2+: i) Ca2+ rises achieved through capacitive Ca2+ entry or intracellular Ca2+ release can inhibit AC to a similar extent; and ii) in a same cell type, different agonists inducing similar overall Ca2+ rises elicit a variable inhibition of AC activity. The results suggest that a high efficiency of AC regulation by Ca2+ is linked to a requisite close localization of AC enzyme and Ca2+ rises.
Collapse
Affiliation(s)
- D Chabardès
- URA 1859 CNRS, Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, Gif sur Yvette, France.
| | | | | |
Collapse
|
10
|
Fagan KA, Mons N, Cooper DM. Dependence of the Ca2+-inhibitable adenylyl cyclase of C6-2B glioma cells on capacitative Ca2+ entry. J Biol Chem 1998; 273:9297-305. [PMID: 9535924 DOI: 10.1074/jbc.273.15.9297] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of adenylyl cyclases to be regulated by physiological transitions in Ca2+ provides a key point for integration of cytosolic Ca2+ concentration ([Ca2+]i) and cAMP signaling. Ca2+-sensitive adenylyl cyclases, whether endogenously or heterologously expressed, require Ca2+ entry for their regulation, rather than Ca2+ release from intracellular stores (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K., Mahey, R., and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444). The present study compared the regulation by capacitative Ca2+ entry versus ionophore-mediated Ca2+ entry of an endogenously expressed Ca2+-inhibitable adenylyl cyclase in C6-2B cells. Even in the face of a dramatic [Ca2+]i rise generated by ionophore, Ca2+ entry via capacitative Ca2+ entry channels was solely responsible for the regulation of the adenylyl cyclase. Selective efficacy of BAPTA over equal concentrations of EGTA in blunting the regulation of the cyclase by capacitative Ca2+ entry defined the intimacy between the adenylyl cyclase and the capacitative Ca2+ entry sites. This association could not be impaired by disruption of the cytoskeleton by a variety of strategies. These results not only establish an intimate spatial relationship between an endogenously expressed Ca2+-inhibitable adenylyl cyclase with capacitative Ca2+ entry sites but also provide a physiological role for capacitative Ca2+ entry other than store refilling.
Collapse
Affiliation(s)
- K A Fagan
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
11
|
Taussig R, Zimmermann G. Type-specific regulation of mammalian adenylyl cyclases by G protein pathways. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:81-98. [PMID: 9421586 DOI: 10.1016/s1040-7952(98)80006-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Taussig
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0636, USA
| | | |
Collapse
|
12
|
DeBernardi MA, Brooker G. Simultaneous fluorescence ratio imaging of cyclic AMP and calcium kinetics in single living cells. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:195-213. [PMID: 9421592 DOI: 10.1016/s1040-7952(98)80012-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M A DeBernardi
- Department of Cell Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
13
|
Zhang WM, Wong TM. Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C82-7. [PMID: 9458715 DOI: 10.1152/ajpcell.1998.274.1.c82] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To determine whether the phosphoinositol/Ca2+ pathway interacts with the adenylate cyclase/adenosine 3',5'-cyclic monophosphate (cAMP) pathway in the cardiac kappa-receptor, the effects of U-50488, a specific kappa-receptor agonist, on the intracellular Ca2+ concentration ([Ca2+]i) and forskolin-induced accumulation of cAMP in rat ventricular myocytes were determined after interference of the phosphoinositol/Ca2+ pathway. U-50488 suppressed the forskolin-induced accumulation of cAMP and elevated [Ca2+]i, which were blocked by norbinaltorphimine, a specific kappa-receptor antagonist, and pertussis toxin. The effects of U-50488 were qualitatively similar to those of A-23187, a Ca2+ ionophore, but opposite to those of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (AM), a [Ca2+]i chelator. Abolition of U-50488-induced elevation of [Ca2+]i by BAPTA-AM also abolished the effect of U-50488 on forskolin-induced accumulation of cAMP. Inhibition of the phospholipase C by specific inhibitors, U-73122 and neomycin, abolished the effects of U-50488 on both [Ca2+]i and forskolin-induced accumulation of cAMP. The results showed for the first time that kappa-receptor stimulation may suppress cAMP accumulation via activation of the phosphoinositol/Ca2+ pathway in the rat heart.
Collapse
Affiliation(s)
- W M Zhang
- Department of Physiology, Faculty of Medicine, University of Hong Kong, Hong Kong
| | | |
Collapse
|
14
|
Koto H, Mak JC, Haddad EB, Xu WB, Salmon M, Barnes PJ, Chung KF. Mechanisms of impaired beta-adrenoceptor-induced airway relaxation by interleukin-1beta in vivo in the rat. J Clin Invest 1996; 98:1780-7. [PMID: 8878428 PMCID: PMC507616 DOI: 10.1172/jci118977] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We studied the in vivo mechanism of beta-adrenergic receptor (beta-AR) hyporesponsiveness induced by intratracheal instillation of interleukin-1beta (IL-1beta, 500 U) in Brown-Norway rats. Tracheal and bronchial smooth muscle responses were measured under isometric conditions ex vivo. Contractile responses to electrical field stimulation and to carbachol were not altered, but maximal relaxation induced by isoproterenol (10(-6)-10(-5) M) was significantly reduced 24 h after IL-1beta treatment in tracheal tissues and to a lesser extent, in the main bronchi. Radioligand binding using [125I]iodocyanopindolol revealed a 32+/-7% reduction in beta-ARs in lung tissues from IL-1beta-treated rats, without any significant changes in beta2-AR mRNA level measured by Northern blot analysis. Autoradiographic studies also showed significant reduction in beta2-AR in the airways. Isoproterenol-stimulated cyclic AMP accumulation was reduced by IL-1beta at 24 h in trachea and lung tissues. Pertussis toxin reversed this hyporesponsiveness to isoproterenol but not to forskolin in lung tissues. Western blot analysis revealed an IL-1beta-induced increase in Gi(alpha) protein expression. Thus, IL-1beta induces an attenuation of beta-AR-induced airway relaxation through mechanisms involving a reduction in beta-ARs, an increase in Gi(alpha) subunit, and a defect in adenylyl cyclase activity.
Collapse
Affiliation(s)
- H Koto
- Thoracic Medicine, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Wei J, Wayman G, Storm DR. Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo. J Biol Chem 1996; 271:24231-5. [PMID: 8798667 DOI: 10.1074/jbc.271.39.24231] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inhibition of type III adenylyl cyclase (III-AC) by intracellular Ca2+ in vivo provides a mechanism for attenuation of hormone-stimulated cAMP signals in olfactory epithelium, heart, and other tissues (Wayman, G. A., Impey, S., and Storm, D. R. (1995) J. Biol. Chem. 270, 21480-21486). Although the mechanism for Ca2+ inhibition of III-AC in vivo has not been defined, inhibition is not mediated by Gi, cAMP-dependent protein kinase, or protein kinase C. However, Ca2+ inhibition of III-AC is antagonized by KN-62, a CaM-dependent kinase inhibitor. In addition, constitutively activated CaM kinase II inhibits the enzyme. These data suggest that CaM kinase II regulates the activity of III-AC by direct phosphorylation or by an indirect mechanism involving phosphorylation of a protein that inhibits III-AC. Here we report that III-AC is phosphorylated in vivo when intracellular Ca2+ is increased and that phosphorylation is prevented by CaM-dependent kinase inhibitors. Site-directed mutagenesis of a CaM kinase II consensus site (Ser-1076 to Ala-1076) in III-AC greatly reduced Ca2+-stimulated phosphorylation and inhibition of III-AC in vivo. These data support the hypothesis that Ca2+ inhibition of III-AC is due to direct phosphorylation of the enzyme by CaM kinase II in vivo.
Collapse
Affiliation(s)
- J Wei
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7820, USA
| | | | | |
Collapse
|
16
|
Chabardès D, Firsov D, Aarab L, Clabecq A, Bellanger AC, Siaume-Perez S, Elalouf JM. Localization of mRNAs encoding Ca2+-inhibitable adenylyl cyclases along the renal tubule. Functional consequences for regulation of the cAMP content. J Biol Chem 1996; 271:19264-71. [PMID: 8702608 DOI: 10.1074/jbc.271.32.19264] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of Ca2+-inhibitable types V and VI adenylyl cyclases was studied by reverse transcription-polymerase chain reaction in rat renal glomeruli and nephron segments isolated by microdissection. Quantitation of each mRNA was achieved using a mutant cRNA which differed from the wild type by substituting two bases to create a new restriction site in the corresponding cDNA. Type VI mRNA was present all along the nephron but was more abundant in distal than in proximal segments. The expression of type V mRNA was restricted to the glomerulus and to the initial portions of the collecting duct. Expression of the Ca2+-insensitive type IV mRNA studied on the same samples was evidenced only in the glomerulus. The functional relevance of the expression of Ca2+-inhibitable isoforms was studied by measuring cAMP content in the microdissected outer medullary collecting duct which expressed both type V mRNA (2367 +/- 178 molecules/mm tubular length; n = 8) and type VI mRNA (5658 +/- 543 molecules/mm, n = 8). Agents known to increase intracellular Ca2+ in this segment induced a Ca2+-dependent inhibition on either arginine vasopressin- or glucagon-stimulated cAMP level. The characteristics of these inhibitions suggest a functional and differential expression of types V and VI adenylyl cyclases in two different cell types of the rat outer medullary collecting duct.
Collapse
Affiliation(s)
- D Chabardès
- Département de Biologie Cellulaire et Moléculaire, CEA Saclay 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Kohn EC, Alessandro R, Probst J, Jacobs W, Brilley E, Felder CC. Identification and molecular characterization of a m5 muscarinic receptor in A2058 human melanoma cells. Coupling to inhibition of adenylyl cyclase and stimulation of phospholipase A2. J Biol Chem 1996; 271:17476-84. [PMID: 8663391 DOI: 10.1074/jbc.271.29.17476] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report the identification and biochemical characterization of an endogenous m5 muscarinic acetylcholine receptor (mAChR) in the A2058 human melanoma cell line. This is the first demonstration of a m5AChR outside the central nervous system. The unusual effector coupling of this endogenous m5AChR is presented. The coding region amplified by polymerase chain reaction was identical to the known m5AChR sequence. Binding studies indicated a Kd of 99 +/- 6 pM and a Bmax of 45 +/- 4 fmol/mg membrane protein. This m5AChR coupled to stimulation of arachidonic acid release and to a 50% inhibition of forskolin-stimulated cAMP accumulation. The inhibition of cAMP production was insensitive to pertussis toxin treatment, but was dependent upon extracellular calcium. In contrast to the odd mAChR pattern, no cAMP was produced in response to carbachol (CC) stimulation. Moreover, no release of inositol phosphates could be measured after CC treatment despite the presence of at least 2 phospholipase C isoforms in A2058 cells. CC-stimulated arachidonic acid release (EC50 = 17.8 +/- 0.1 microM) was dependent upon external Ca2+, with marked reduction after coincubation with EGTA, Co2+, or high doses of verapamil (IC50 = 166 microM) or diltiazem (IC50 = 243 microM). Brief exposure to phorbol 12-myristate 13-acetate augmented CC-stimulated arachidonic acid release, whereas prolonged phorbol 12-myristate 13-acetate treatment resulted in down-regulation of release. Activation of the m5AChR resulted in Ca2+ influx that was attenuated by muscarinic antagonism and removal of extracellular Ca2+. A2058 cells exposed to CC had no alteration of cell shape or growth potential in monolayer culture, however, a statistically significant reduction in density-independent growth was observed over the range of CC concentrations from 0.1 to 100 microM. This endogenous m5AChR has a novel signal transduction coupling profile and receptor activation reduces clonogenic potential.
Collapse
Affiliation(s)
- E C Kohn
- Signal Transduction and Prevention Unit, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lochner A, Tromp E, Mouton R. Signal transduction in myocardial ischaemia and reperfusion. Mol Cell Biochem 1996; 160-161:129-36. [PMID: 8901466 DOI: 10.1007/bf00240042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies in the non-ischaemic myocardium indicated that drugs stimulating cAMP formation inhibit alpha 1-mediated inositol phosphate generation, while alpha 1-adrenergic stimulation lowered tissue cAMP levels, implicating cross-talk between alpha 1- and beta-adrenergic signalling pathways in normal physiological conditions. Massive amounts of endogenous catecholamines, predominantly noradrenaline, are released during myocardial ischaemia and reperfusion, causing stimulation of both alpha 1- and beta-adrenergic receptors which, in turn, may contribute to intracellular Ca2+ overload and subsequent cell damage. Since no information is available regarding cross-talk in pathophysiological conditions, the aim of this study was to evaluate the interactions between alpha 1- and beta-adrenergic signalling pathways during different periods of ischaemia and reperfusion. Isolated rat hearts were perfused retrogradely for 30 min before being subjected to (i) 5-25 min global ischaemia and (ii) 1-5 min of reperfusion after 20 min global ischaemia. Drugs (prazosin, 10(-7) M; propranolol, 10(-6) M; phenylephrine 3 x 10(-5) M; isoproterenol 10(-9) M) were added 10 min before the onset of ischaemia and were present during reperfusion. Increasing periods of ischaemia caused an immediate rise and progressive lowering in tissue cAMP and Ins(1,4,5)P3 levels respectively. In contrast, reperfusion caused an elevation in Ins(1,4,5)P3 levels and reduced cAMP. Prazosin elevated cAMP levels during both ischaemia and reperfusion, while propranolol had no effects on tissue Ins(1,4,5)P3. The activity of the alpha 1-adrenergic signal transduction pathway appears to have an inhibitory effect on the activity of the beta-adrenergic system during ischaemia and reperfusion.
Collapse
Affiliation(s)
- A Lochner
- Department of Medical Physiology and Biochemistry, University of Stellenbosch Faculty of Medicine, Tygerberg, Republic of South Africa
| | | | | |
Collapse
|
19
|
DeBernardi MA, Brooker G. Single cell Ca2+/cAMP cross-talk monitored by simultaneous Ca2+/cAMP fluorescence ratio imaging. Proc Natl Acad Sci U S A 1996; 93:4577-82. [PMID: 8643446 PMCID: PMC39319 DOI: 10.1073/pnas.93.10.4577] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The spatial and temporal dynamics of two intracellular second messengers, cAMP and Ca2+, were simultaneously monitored in living cells by digital fluorescence ratio imaging using FlCRhR, a single-excitation dual-emission cAMP indicator, and fura-2, a dual-excitation single-emission Ca2+ probe. In single C6-2B glioma cells, isoproterenol- or forskolin-evoked cAMP accumulation (measured in vivo as an increased FlCRhR emission ratio) was reduced when cytosolic free Ca2+ concentration was elevated before, simultaneously with, or after cAMP activation. However, in REF-52 fibroblasts, Ca2+ neither prevented nor reduced forskolin-stimulated cAMP production. These results provide novel in vivo evidence for the Ca2+ modulation of the cAMP transduction pathway in C6-2B cells. The simultaneous microscopic measurement of cAMP and Ca2+ kinetics in single cells makes it now possible to study the regulatory interactions between these second messengers at the cellular and even the subcellular level.
Collapse
Affiliation(s)
- M A DeBernardi
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | |
Collapse
|
20
|
Nagai K, Murakami T, Iwase T, Tomita T, Sasayama S. Digoxin reduces beta-adrenergic contractile response in rabbit hearts. Ca(2+)-dependent inhibition of adenylyl cyclase activity via Na+/Ca2+ exchange. J Clin Invest 1996; 97:6-13. [PMID: 8550851 PMCID: PMC507056 DOI: 10.1172/jci118407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Whereas mobilization of intracellular Ca2+ stimulates neuronal adenylyl cyclase via Ca2+/calmodulin, mobilized Ca2+ directly inhibits adenylyl cyclase in other tissues. To determine the physiologic role of the Ca(2+)-dependent interaction between Na+/Ca2+ exchange and beta-adrenergic signal transduction in the intact heart, digoxin (0.3 mg/kg) was administered intravenously in rabbits. 30 min after the administration, digoxin impaired the peak left ventricular dP/dt response to dobutamine infusions by up to 38% as compared with control rabbits. This impairment was not caused by changes in either beta-adrenergic receptor number or in the functional activity of stimulatory guanine nucleotide-binding protein. It was associated with 33-36% reductions in basal and stimulated adenylyl cyclase activities. Animals treated with calcium gluconate (20 mg/kg/min for 30 min) also demonstrated similar reductions in adenylyl cyclase activities. In addition, increasing the free Ca2+ concentration progressively inhibited adenylyl cyclase activity in the control, digoxin-treated, and calcium gluconate-treated sarcolemma preparations in vitro. Moreover, digoxin and calcium gluconate pretreatment blunted the increase in cAMP in myocardial tissue after dobutamine infusion in vivo. Thus, digoxin rapidly reduces beta-adrenergic contractile response in rabbit hearts. This reduction may reflect an inhibition of adenylyl cyclase by Ca2+ mobilized via Na+/Ca2+ exchange.
Collapse
Affiliation(s)
- K Nagai
- Department of Internal Medicine, Kyoto University Hospital, Japan
| | | | | | | | | |
Collapse
|
21
|
Sipma H, den Hertog A, Nelemans A. Ca(2+)-dependent and -independent mechanism of cyclic-AMP reduction: mediation by bradykinin B2 receptors. Br J Pharmacol 1995; 115:937-44. [PMID: 7582524 PMCID: PMC1909031 DOI: 10.1111/j.1476-5381.1995.tb15901.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Bradykinin caused a transient reduction of about 25% in the cyclic AMP level in forskolin prestimulated DDT1 MF-2 smooth muscle cells (IC50: 36.4 +/- 4.9 nM) and a pronounced, sustained inhibition (40%) of the isoprenaline-stimulated cyclic AMP level (IC50: 37.5 +/- 1.1 nM). 2. The Ca2+ ionophore, ionomycin, mimicked both the bradykinin-induced transient reduction in the forskolin-stimulated cyclic AMP level and the sustained reduction in the isoprenaline-stimulated cyclic AMP level. 3. The Ca(2+)-dependent effect on cyclic AMP induced by bradykinin was mediated solely by Ca2+ release from internal stores, since inhibition of Ca2+ entry with LaCl3 did not reduce the response to bradykinin. 4. The involvement of calmodulin-dependent enzyme activities, protein kinase C or an inhibitory GTP binding protein in the bradykinin-induced responses was excluded since a calmodulin inhibitor, calmidazolium, a PKC inhibitor, staurosporine and pertussis toxin, respectively did not affect the decline in the cyclic AMP level. 5. Bradykinin enhanced the rate of cyclic AMP breakdown in intact cells, which effect was not mimicked by ionomycin. This suggested a Ca(2+)-independent activation of phosphodiesterase activity by bradykinin in DDT1 MF-2 cells. 6. The bradykinin B1 receptor agonist, desArg9-bradykinin, did not affect cyclic AMP formation in isoprenaline prestimulated cells, while the bradykinin B2 receptor antagonists, Hoe 140 (D-Arg[Hyp3, Thi5, D-Tic7, Oic8]-BK) and D-Arg[Hyp3, Thi5,8, D-Phe7]-BK completely abolished the bradykinin response in both forskolin and isoprenaline prestimulated cells. 7. Bradykinin caused an increase in intracellular Ca2+, which was antagonized by the bradykinin B2 receptor antagonists, Hoe 140 and D-Arg[Hyp3, Thi5,8, D-Phe7]-BK. The bradykinin B2 receptor agonist,desArg9-bradykinin, did not evoke a rise in cytoplasmic Ca2 .8. It is concluded, that stimulation of bradykinin B2 receptors causes a reduction in cellular cyclic AMP in DDT1, MF-2 cells. This decline in cyclic AMP is partly mediated by a Ca2+/calmodulin independent activation of phosphodiesterase activity. The increase in [Ca2+], mediated by bradykinin B2 receptors inhibited forskolin- and isoprenaline-activated adenylyl cyclase differently, most likely by interfering with different components of the adenylyl cyclase signalling pathway.
Collapse
Affiliation(s)
- H Sipma
- Groningen Institute for Drugs Studies GIDS, Department of Clinical Pharmacology, University of Groningen, The Netherlands
| | | | | |
Collapse
|
22
|
Vogel WK, Mosser VA, Bulseco DA, Schimerlik MI. Porcine m2 muscarinic acetylcholine receptor-effector coupling in Chinese hamster ovary cells. J Biol Chem 1995; 270:15485-93. [PMID: 7797541 DOI: 10.1074/jbc.270.26.15485] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The relationship between porcine m2 muscarinic receptor coupling to inhibition of cAMP formation and stimulation of phosphatidylinositol metabolism in Chinese hamster ovary cells was examined. Reduction of the number of receptors per cell with the slowly dissociating antagonist (-)-quinuclidinyl benzilate caused a decrease in maximal response with no effect on EC50 for coupling to phosphatidylinositol metabolism. Inhibition of cAMP formation showed the opposite dependence with no effect on maximal response but an increase in EC50 value as receptor density decreased. Pilocarpine appeared to be a partial agonist at low cell receptor density but displayed full agonism at higher receptor density. These results are compatible with a two-state model describing m2 muscarinic receptor acting via two different G proteins. This model is compatible with observations of negative antagonism where antagonists stimulated cAMP formation in adenylyl cyclase inhibition assays, and can also be used to estimate receptor affinities for G proteins in systems which display negative antagonism.
Collapse
Affiliation(s)
- W K Vogel
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305, USA
| | | | | | | |
Collapse
|
23
|
Alblas J, van Etten I, Khanum A, Moolenaar WH. C-terminal truncation of the neurokinin-2 receptor causes enhanced and sustained agonist-induced signaling. Role of receptor phosphorylation in signal attenuation. J Biol Chem 1995; 270:8944-51. [PMID: 7721803 DOI: 10.1074/jbc.270.15.8944] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The G protein-linked receptor for neurokinin A (NKA) couples to stimulation of phospholipase C and, in some cells, adenylyl cyclase. We have examined the function of the C-terminal cytoplasmic domain in receptor signaling and desensitization. We constructed C-terminal deletion mutants of the human NK-2 receptor (epitope tagged) to remove potential Ser/Thr phosphorylation sites, and expressed them in both mammalian and insect cells. When activated, truncated receptors mediate stronger and more prolonged phosphoinositide hydrolysis than wild-type receptor; however, the amplitude and kinetics of the NKA-induced rise in cytosolic Ca2+ remain unaltered. Protein kinase C (PKC)-activating phorbol ester abolishes wild-type receptor signaling but not mutant receptor signaling. Mutant receptors also mediate enhanced and prolonged cAMP generation, at least in part via PKC activation. When expressed in COS cells or Sf9 insect cells, the wild-type receptor is phosphorylated; receptor phosphorylation increases after addition of either NKA or phorbol ester. In contrast, mutant receptors are not phosphorylated by either treatment. Our results suggest that C-terminal Ser/Thr phosphorylation sites in the NK-2 receptor have a critical role in both homologous and heterologous desensitization. Removal of these phosphorylation sites results in a receptor that mediates sustained activation of signaling pathways and is insensitive to inhibition by PKC.
Collapse
Affiliation(s)
- J Alblas
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
24
|
Cooper DM, Mons N, Karpen JW. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 1995; 374:421-4. [PMID: 7700350 DOI: 10.1038/374421a0] [Citation(s) in RCA: 458] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adenylyl cyclase is the prototypical second messenger generator. Nearly all of the eight cloned adenylyl cyclases are regulated by one or other arm of the phospholipase C pathway. Functional and ultrastructural investigations have shown that adenylyl cyclases are intimately associated with sites of calcium ion entry into the cell. Oscillations in cellular cyclic AMP levels are predicted to arise because of feedback inhibition of adenylyl cyclase by Ca2+. Such findings inextricably intertwine cellular signalling by cAMP and internal Ca2+ and extend the known regulatory modes available to cAMP.
Collapse
Affiliation(s)
- D M Cooper
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
25
|
Abstract
There is now wide acceptance that ATP and other nucleotides are ubiquitous extracellular chemical messengers. ATP and diadenosine polyphosphates can be released from synaptosomes. They act on a large and diverse family of P2 purinoceptors, four of which have been cloned. This receptor family can be divided into two distinct classes: ligand-gated ion channels for P2X receptors and G protein-coupled receptors for P2Y, P2U, P2T and P2D receptors. The P2Y, P2U and P2D receptors have a fairly wide tissue distribution, while the P2X receptor is mainly found in neurons and muscles and the P2T and P2Z receptors confined to platelets and immune cells, respectively. Inositol phosphate and calcium signalling appear to be the predominant mechanisms for transducing the G-protein linked P2 receptor signals. Multiple P2 receptors are expressed by neurons and glia in the CNS and also in neuroendocrine cells. ATP and other nucleotides may therefore have important roles not only as a neurotransmitter but also as a neuroendocrine regulatory messenger.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | |
Collapse
|
26
|
Chiono M, Mahey R, Tate G, Cooper DM. Capacitative Ca2+ entry exclusively inhibits cAMP synthesis in C6-2B glioma cells. Evidence that physiologically evoked Ca2+ entry regulates Ca(2+)-inhibitable adenylyl cyclase in non-excitable cells. J Biol Chem 1995; 270:1149-55. [PMID: 7836373 DOI: 10.1074/jbc.270.3.1149] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Elevation of cytosolic free Ca2+ inhibits the type VI adenylyl cyclase that predominates in C6-2B cells. However, it is not known whether there is any selective requirement for Ca2+ entry or release for inhibition of cAMP accumulation to occur. In the present study, the effectiveness of intracellular Ca2+ release evoked by three independent methods (thapsigargin, ionomycin, and UTP) was compared with the capacitative Ca2+ entry that was triggered by these treatments. In each situation, only Ca2+ entry could inhibit cAMP accumulation (La3+ ions blocked the effect); Ca2+ release, which was substantial in some cases, was without effect. A moderate inhibition, as was elicited by a modest degree of Ca2+ entry, could be rendered substantial in the absence of phosphodiesterase inhibitors. Such conditions more closely mimic the physiological situation of normal cells. These results are particularly significant, in demonstrating not only that Ca2+ entry mediates the inhibitory effects of Ca2+ on cAMP accumulation, but also that diffuse elevations in [Ca2+]i are ineffective in modulating cAMP synthesis. This property suggests that, as with certain Ca(2+)-sensitive ion channels, Ca(2+)-sensitive adenylyl cyclases may be functionally colocalized with Ca2+ entry channels.
Collapse
Affiliation(s)
- M Chiono
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- R Taussig
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
28
|
A redox factor protein, ref1, is involved in negative gene regulation by extracellular calcium. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46865-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Debernardi MA, Munshi R, Yoshimura M, Cooper DM, Brooker G. Predominant expression of type-VI adenylate cyclase in C6-2B rat glioma cells may account for inhibition of cyclic AMP accumulation by calcium. Biochem J 1993; 293 ( Pt 2):325-8. [PMID: 8393657 PMCID: PMC1134362 DOI: 10.1042/bj2930325] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In C6-2B cells, agonist-stimulated cyclic AMP accumulation is inhibited when the cytosolic Ca2+ concentration is increased. We now demonstrate that in C6-2B cells: (i) the early kinetics of the cyclic AMP inhibition by substance K (t1/2 = 35 s) and thapsigargin (t1/2 = 1.6 min) closely mimic the kinetics of the cytosolic Ca2+ increase evoked by either agent (t1/2 = 25 s and 1.5 min respectively); (ii) the Ca2+ rise and cyclic AMP inhibition by substance K or thapsigargin are similarly affected in EGTA-containing medium; (iii) PCR detects type-III and type-VI adenylate cyclase cDNAs, and RNAase protection assays show that the mRNA for type-VI adenylate cyclase, an isoform inhibitable by submicromolar Ca2+ concentrations, is the predominant species, strongly suggesting that type-VI adenylate cyclase is probably the target molecule for Ca(2+)-mediated inhibition of cyclic AMP accumulation.
Collapse
Affiliation(s)
- M A Debernardi
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007
| | | | | | | | | |
Collapse
|
30
|
Eistetter HR, Mills A, Arkinstall SJ. Signal transduction mechanisms of recombinant bovine neurokinin-2 receptor stably expressed in baby hamster kidney cells. J Cell Biochem 1993; 52:84-91. [PMID: 8391539 DOI: 10.1002/jcb.240520112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bovine neurokinin-2 (NK-2) receptor gene was stably transfected into Baby hamster kidney (BHK-21) fibroblasts and one recombinant clone expressing 17,700 high-affinity [125I]neurokinin A (NKA) binding sites/cell characterized further. [125I]NKA binding was displaced by unlabeled NKA with an IC50 of 8.26 +/- 2 nM (n = 5) and with the rank order of potency NKA > neurokinin B (NKB) > Substance P (SP) confirming pharmacological characteristics of an NK-2 receptor subtype. Stimulation with NKA resulted in a rapid and dose-dependent increase in inositol 1,4,5-trisphosphate (IP3) levels (EC50 = 32 +/- 10 nM; n = 7) which was paralleled by a transient biphasic rise in intracellular free calcium concentration [Ca2+]i (EC50 = 35 +/- 20 nM; n = 3). In addition to phosphoinositide (PI) hydrolysis and Ca2+ mobilization, NKA was found to stimulate both cyclic AMP formation (EC50 = 1.02 +/- 0.26 microM; n = 7) and [3H]arachidonic acid mobilization (EC50 = 0.65 +/- 0.45 microM; n = 4). Interestingly, cyclic AMP levels also rose after addition of an exogenous arachidonic acid metabolite, prostaglandin E2 (PGE2) (EC50 = 11.5 +/- 2 microM). Similar observations of NKA-induced IP3 production, Ca2+ mobilization, arachidonic acid liberation, and cAMP formation have been made previously following expression of the bovine NK-2 receptor in Chinese hamster ovary (CHO) epithelial cells. The present results suggest that activation of NK-2 receptors leads to characteristic and reproducible intracellular second messenger responses in a subclass of cell types which includes fibroblasts and epithelial cells irrespective of their genetic and phenotypic background.
Collapse
Affiliation(s)
- H R Eistetter
- Glaxo Institute for Molecular Biology S.A., Plan-les-Ouates, Geneva, Switzerland
| | | | | |
Collapse
|
31
|
Zhang Y, Snell W. Differential regulation of adenylylcyclases in vegetative and gametic flagella of Chlamydomonas. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53922-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Krupinski J, Lehman T, Frankenfield C, Zwaagstra J, Watson P. Molecular diversity in the adenylylcyclase family. Evidence for eight forms of the enzyme and cloning of type VI. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35842-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Garritsen A, Zhang Y, Firestone JA, Browning MD, Cooper DM. Inhibition of cyclic AMP accumulation in intact NCB-20 cells as a direct result of elevation of cytosolic Ca2+. J Neurochem 1992; 59:1630-9. [PMID: 1328528 DOI: 10.1111/j.1471-4159.1992.tb10992.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Earlier studies established that adenylyl cyclase in NCB-20 cell plasma membranes is inhibited by concentrations of Ca2+ that are achieved in intact cells. The present studies were undertaken to prove that agents such as bradykinin and ATP, which elevate the cytosolic Ca2+ concentration ([Ca2+]i) from internal stores in NCB-20 cells, could inhibit cyclic AMP (cAMP) accumulation as a result of their mobilization of [Ca2+]i and not by other mechanisms. Both bradykinin and ATP transiently inhibited [3H]cAMP accumulation in parallel with their transient mobilization of [Ca2+]i. The [Ca2+]i rise stimulated by bradykinin could be blocked by treatment with thapsigargin; this thapsigargin treatment precluded the inhibition of cAMP accumulation mediated by bradykinin (and ATP). A rapid rise in [Ca2+]i, as elicited by bradykinin, rather than the slow rise evoked by thapsigargin was required for inhibition of [3H]cAMP accumulation. Desensitization of protein kinase C did not modify the inhibitory action of bradykinin on [3H]cAMP. Effects of Ca2+ on phosphodiesterase were also excluded in the present studies. The accumulated data are consistent with the hypothesis that hormonal mobilization of [Ca2+]i leads directly to the inhibition of cAMP accumulation in these cells and presumably in other cells that express the Ca(2+)-inhibitable form of adenylyl cyclase.
Collapse
Affiliation(s)
- A Garritsen
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|
34
|
Takeda Y, Blount P, Sachais BS, Hershey AD, Raddatz R, Krause JE. Ligand binding kinetics of substance P and neurokinin A receptors stably expressed in Chinese hamster ovary cells and evidence for differential stimulation of inositol 1,4,5-trisphosphate and cyclic AMP second messenger responses. J Neurochem 1992; 59:740-5. [PMID: 1321234 DOI: 10.1111/j.1471-4159.1992.tb09430.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stably transfected Chinese hamster ovary cells expressing either the substance P receptor or neurokinin A receptor were constructed, isolated, and characterized. Equilibrium ligand binding studies performed on whole cells demonstrated that cell lines expressing either of these receptors contained a single class of high-affinity binding sites with an apparent KD of 0.16 nM for the substance P receptor and an apparent KD of 2.1 nM for the neurokinin A receptor. The higher affinity of substance P for its receptor was accounted for by both a greater association rate constant and a lesser dissociation rate constant. The time course and extent of ligand-stimulated inositol 1,4,5-trisphosphate mass increases in both cell lines were similar and displayed rapid and transient kinetics. Ligand-stimulated cyclic AMP accumulation was also apparent in the cell lines, although the time course and magnitude of the responses were substantially different, with the neurokinin A receptor mediating a greater and more prolonged response. These studies establish the presence of functional substance P receptors and neurokinin A receptors in the stably transfected cell lines and provide evidence for agonist-dependent differential stimulation of second messenger responses.
Collapse
Affiliation(s)
- Y Takeda
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | | | |
Collapse
|
35
|
Yoshimura M, Cooper DM. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci U S A 1992; 89:6716-20. [PMID: 1379717 PMCID: PMC49574 DOI: 10.1073/pnas.89.15.6716] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A cDNA that encodes an adenylyl cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] has been cloned from NCB-20 cells, in which adenylyl cyclase activity is inhibited by Ca2+ at physiological concentrations. The cDNA clone (5.8 kilobases) was isolated by polymerase chain reaction (PCR) using degenerate primers designed by comparison of three adenylyl cyclase sequences (types I, II, and III) and subsequent library screening. Northern analysis revealed expression of mRNA (6.1 kilobases) corresponding to this cDNA in cardiac tissue, which is a prominent source of Ca(2+)-inhibitable adenylyl cyclase. The clone encodes a protein of 1165 amino acids, whose hydrophilicity profile was very similar to those of other mammalian adenylyl cyclases that have recently been cloned. A noticeable difference between this protein and other adenylyl cyclases was a lengthy aminoterminal region before the first transmembrane span. Transient expression of this cDNA in the human embryonic kidney cell line 293 revealed a 3-fold increase in cAMP production in response to forskolin compared with control transfected cells. In purified plasma membranes from transfected cells, increased adenylyl cyclase activity was also detected, which was susceptible to inhibition by submicromolar Ca2+. Thus, this adenylyl cyclase seems to represent the Ca(2+)-inhibitable form that is encountered in NCB-20 cells, cardiac tissue, and elsewhere. Its identification should permit a determination of the structural features that determine the mode of regulation of adenylyl cyclase by Ca2+.
Collapse
Affiliation(s)
- M Yoshimura
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|