1
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
2
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
3
|
Heinicke LA, Bevilacqua PC. Activation of PKR by RNA misfolding: HDV ribozyme dimers activate PKR. RNA (NEW YORK, N.Y.) 2012; 18:2157-65. [PMID: 23105000 PMCID: PMC3504668 DOI: 10.1261/rna.034744.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/20/2012] [Indexed: 05/22/2023]
Abstract
Protein Kinase R (PKR), the double-stranded RNA (dsRNA)-activated protein kinase, plays important roles in innate immunity. Previous studies have shown that PKR is activated by long stretches of dsRNA, RNA pseudoknots, and certain single-stranded RNAs; however, regulation of PKR by RNAs with globular tertiary structure has not been reported. In this study, the HDV ribozyme is used as a model of a mostly globular RNA. In addition to a catalytic core, the ribozyme contains a peripheral 13-bp pairing region (P4), which, upon shortening, affects neither the catalytic activity of the ribozyme nor its ability to crystallize. We report that the HDV ribozyme sequence alone can activate PKR. To elucidate the RNA structural basis for this, we prepared a number of HDV variants, including those with shortened or lengthened P4 pairing regions, with the anticipation that lengthening the P4 extension would yield a more potent activator since it would offer more base pairs of dsRNA. Surprisingly, the variant with a shortened P4 was the most potent activator. Through native gel mobility and enzymatic structure mapping experiments we implicate misfolded HDV ribozyme dimers as the PKR-activating species, and show that the shortened P4 leads to enhanced occupancy of the RNA dimer. These observations have implications for how RNA misfolding relates to innate immune response and human disease.
Collapse
Affiliation(s)
- Laurie A. Heinicke
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C. Bevilacqua
- Department of Chemistry, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding authorE-mail
| |
Collapse
|
4
|
Abstract
HDV ribozymes catalyze their own scission from the transcript during rolling circle replication of the hepatitis delta virus. In vitro selection of self-cleaving ribozymes from a human genomic library revealed an HDV-like ribozyme in the second intron of the human CPEB3 gene and recent results suggest that this RNA affects episodic memory performance. Bioinformatic searches based on the secondary structure of the HDV/CPEB3 fold yielded numerous functional ribozymes in a wide variety of organisms. Genomic mapping of these RNAs suggested several biological roles, one of which is the 5' processing of non-LTR retrotransposons. The family of HDV-like ribozymes thus continues to grow in numbers and biological importance.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology, University of California, Irvine, CA, USA
| | | |
Collapse
|
5
|
The application of ribozymes and DNAzymes in muscle and brain. Molecules 2010; 15:5460-72. [PMID: 20714308 PMCID: PMC6257783 DOI: 10.3390/molecules15085460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/04/2022] Open
Abstract
The discovery of catalytic nucleic acids (CNAs) has provided scientists with valuable tools for the identification of new therapies for several untreated diseases through down regulation or modulation of endogenous gene expression involved in these ailments. These CNAs aim either towards the elimination or repair of pathological gene expression. Ribozymes, a class of CNAs, can be mostly used to down-regulate (by RNA cleavage) or repair (by RNA trans-splicing) unwanted gene expression involved in disease. DNAzymes, derived by in vitro selection processes are also able to bind and cleave RNA targets and therefore down-regulate gene expression. The purpose of this review is to present and discuss several applications of ribozymes and DNAzymes in muscle and brain. There are several diseases which affect muscle and brain and catalytic nucleic acids have been used as tools to target specific cellular transcripts involved in these groups of diseases.
Collapse
|
6
|
ERK1/2-mediated phosphorylation of small hepatitis delta antigen at serine 177 enhances hepatitis delta virus antigenomic RNA replication. J Virol 2008; 82:9345-58. [PMID: 18632853 DOI: 10.1128/jvi.00656-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.
Collapse
|
7
|
Abstract
This protocol describes a general method for the preparation of RNAs in which the reactivity or hydrogen-bonding properties of the molecule are modified in a photoreversible fashion by use of a caging strategy. A single caged adenosine, modified at the 2' position as a nitro-benzyl ether, can be incorporated into short RNAs by chemical synthesis or into long RNAs by a combination of chemical and enzymatic synthesis. The modified RNAs can be uncaged by photolysis under a variety of conditions including the use of a laser or xenon lamp, and the course of this uncaging reaction may be readily followed by HPLC or thin-layer chromatography.
Collapse
Affiliation(s)
- Steven G Chaulk
- Department of Biochemistry, University of Alberta Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
8
|
Affiliation(s)
- Paul D Berk
- The Division of Digestive Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
9
|
Alekseenkova VA, Belyanko TI, Lukin MA, Savochkina LP, Beabealashvili RS. Interaction between RNA molecules of a two-component trans analog of antigenomic HDV ribozyme. Mol Biol 2006. [DOI: 10.1134/s0026893306010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
DiPaolo JA, Alvarez-Salas LM. Advances in the development of therapeutic nucleic acids against cervical cancer. Expert Opin Biol Ther 2005; 4:1251-64. [PMID: 15268660 DOI: 10.1517/14712598.4.8.1251] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cervical cancer is the second most common neoplastic disease affecting women worldwide. Basic, clinical and epidemiological analyses indicate that expression of high-risk human papillomaviruses (HPVs) E6/E7 genes is the primary cause of cervical cancer and represent ideal targets for the application of therapeutic nucleic acids (TNAs). Antisense oligodeoxyribonucleotides (AS-ODNs) and ribozymes (RZs) are the most effective TNAs able to inhibit in vivo tumour growth by eliminating HPV-16 and HPV-18 E6/E7 transcripts. Expression of multiple RZs directed against alternative target sites by triplex expression systems may result in the abrogation of highly variable HPVs. More recently, RNA interference (RNAi) gene knockdown phenomenon, induced by small interfering RNA (siRNA), has demonstrated its potential value as an effective TNA for cervical cancer. siRNA and aptamers as TNAs will have a place in the armament for cervical cancer. TNAs against cervical cancer is in a dynamic state, and clinical trials will define the TNAs in preventive and therapeutic roles to control tumour growth, debulk tumour mass, prevent metastasis and facilitate immune interaction.
Collapse
MESH Headings
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Gene Targeting
- Genetic Therapy
- Humans
- Nucleic Acid Conformation
- Nucleic Acids/administration & dosage
- Nucleic Acids/genetics
- Nucleic Acids/therapeutic use
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Oncogene Proteins, Viral/antagonists & inhibitors
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomavirus Infections/genetics
- Papillomavirus Infections/therapy
- RNA Interference
- RNA, Catalytic/administration & dosage
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/therapy
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Joseph A DiPaolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
11
|
Tritz R, Habita C, Robbins JM, Gomez GG, Kruse CA. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system: Review Article. GENE THERAPY & MOLECULAR BIOLOGY 2005; 9A:89-106. [PMID: 16467915 PMCID: PMC1351129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleic acid enzymes have been used with great success for studying natural processes in the central nervous system (CNS). We first provide information on the structural and enzymatic differences of various ribozymes and DNAzymes. We then discuss how they have been used to explore new therapeutic approaches for treating diseases of the CNS. They have been tested in various systems modeling retinitis pigmentosum, proliferative vitreoretinopathy, Alzheimer's disease, and malignant brain tumors. For these models, effective targets for nucleic acid enzymes have been readily identified and the rules for selecting cleavage sites have been well established. The bulk of studies, including those from our laboratory, have emphasized their use for gliomas. With the availability of multiple excellent animal models to test glioma treatments, good progress has been made in the initial testing of nucleic acid enzymes for brain tumor therapy. However, opportunities still exist to significantly improve the delivery and efficacy of ribozymes to achieve effective treatment. The future holds significant potential for the molecular targeting and therapy of eye diseases, neurodegenerative disorders, and brain tumors with these unique treatment agents.
Collapse
Affiliation(s)
- Richard Tritz
- Division of Cancer Biology, La Jolla Institute for Molecular Medicine, San Diego, CA 92121
| | | | | | | | | |
Collapse
|
12
|
Alvarez-Salas LM, Benítez-Hess ML, DiPaolo JA. Advances in the Development of Ribozymes and Antisense Oligodeoxynucleotides as Antiviral Agents for Human Papillomaviruses. Antivir Ther 2003. [DOI: 10.1177/135965350300800402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urogenital human papillomavirus (HPV) infections are the most common viral sexually transmitted disease in women. On a worldwide basis cervical cancer is the second most prevalent cancer of women. Although HPV infection is not sufficient to induce cancer, the causal relation between high-risk HPV infection and cervical cancer is well established. Over 99% of cervical cancers are positive for high-risk HPV. Therefore, there is a need for newer approaches to treat HPV infection. Two novel approaches for inactivating gene expression involve ribozymes and oligonucleotides. Methods for identification of target genes involved in neoplastic transformation and tumour growth have been established, and these will lead to therapeutic approaches without any damage to normal cellular RNA molecules, which is often associated with conventional therapeutics. Ribozymes and oligonucleotides represent rational antiviral approaches for inhibiting the growth of cervical lesions and carcinomas by interfering with E6/E7 RNA production. The E6 and E7 genes of high-risk HPVs cooperate to immortalize primary epithelial cells and because they are found in cervical cancer are considered the hallmark of cervical cancer. The use and modification of ribozymes and antisense oligodeoxynucleotides can inhibit the growth of HPV-16 and HPV-18 immortalized cells, and tumour cells by eliminating E6/E7 transcript. Hammerhead and hairpin ribozymes have been widely studied because of their potential use for gene therapy and their place as therapeutic tools for cervical cancer is being evaluated. Although antiviral ribozymes and anti-sense molecules have been effective as in vitro or in vivo inhibitors of high-risk HPV-positive cells, none is currently in clinical trial. There are, however, a number of other antisense therapies in Phase I–III clinical trial for several oncogenes.
Collapse
Affiliation(s)
| | | | - Joseph A DiPaolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md., USA
| |
Collapse
|
13
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
14
|
Circle DA, Lyons AJ, Neel OD, Robertson HD. Recurring features of local tertiary structural elements in RNA molecules exemplified by hepatitis D virus RNA. RNA (NEW YORK, N.Y.) 2003; 9:280-286. [PMID: 12592001 PMCID: PMC1370394 DOI: 10.1261/rna.2173903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 11/11/2002] [Indexed: 05/24/2023]
Abstract
Elements of local tertiary structure in RNA molecules are important in understanding structure-function relationships. The loop E motif, first identified in several eukaryotic RNAs at functional sites which share an exceptional propensity for UV crosslinking between specific bases, was subsequently shown to have a characteristic tertiary structure. Common sequences and secondary structures have allowed other examples of the E-loop motif to be recognized in a number of RNAs at sites of protein binding or other biological function. We would like to know if more elements of local tertiary structure, in addition to the E-loop, can be identified by such common features. The highly structured circular RNA genome of the hepatitis D virus (HDV) provides an ideal test molecule because it has extensive internal structure, a UV-crosslinkable tertiary element, and specific sites for functional interactions with proteins including host PKR. We have now found a UV-crosslinkable element of local tertiary structure in antigenomic HDV RNA which, although differing from the E-loop, has a very similar pattern of sequence and secondary structure to the UV-crosslinkable element found in the genomic strand. Despite the fact that the two structures map close to one another, the sequences comprising them are not the templates for each other. Instead, the template regions for each element are additional sites for potential higher order structure on their respective complementary strands. This wealth of recurring sequences interspersed with base-paired stems provides a context to examine other RNA species for such features and their correlations with biological function.
Collapse
Affiliation(s)
- David A Circle
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
15
|
Ayre BG, Köhler U, Turgeon R, Haseloff J. Optimization of trans-splicing ribozyme efficiency and specificity by in vivo genetic selection. Nucleic Acids Res 2002; 30:e141. [PMID: 12490732 PMCID: PMC140090 DOI: 10.1093/nar/gnf141] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Revised: 10/09/2002] [Accepted: 10/20/2002] [Indexed: 11/14/2022] Open
Abstract
Trans-splicing ribozymes are RNA-based catalysts capable of splicing RNA sequences from one transcript specifically into a separate target transcript. In doing so, a chimeric mRNA can be produced, and new gene activities triggered in living cells dependent on the presence of the target mRNA. Based on this ability of trans-splicing ribozymes to deliver new gene activities, a simple and versatile plating assay was developed in Saccharomyces cerevisiae for assessing and optimizing constructs in vivo. Trans-splicing ribozymes were used to splice sequences encoding a GAL4-derived transcription activator into a target transcript from a prevalent viral pathogen. The transcription activator translated from this new mRNA in turn triggered the expression of genes under the regulatory control of GAL4 upstream-activating sequences. Two of the activated genes complemented metabolic deficiencies in the host strain, and allowed growth on selective media. A simple genetic assay based on phenotypic conversion from auxotrophy to prototrophy was established to select efficient and specific trans-splicing ribozymes from a ribozyme library. This simple assay may prove valuable for selecting optimal target sites for therapeutic agents such as ribozymes, antisense RNA and antisense oligodeoxyribonucleotides, and for optimizing the design of the therapeutic agents themselves, in higher eukaryotes.
Collapse
Affiliation(s)
- Brian G Ayre
- Plant Biology Department, Cornell University, Ithaca, NY 14853, USA and. Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | |
Collapse
|
16
|
Zamel R, Collins RA. Rearrangement of substrate secondary structure facilitates binding to the Neurospora VS ribozyme. J Mol Biol 2002; 324:903-15. [PMID: 12470948 DOI: 10.1016/s0022-2836(02)01151-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Neurospora VS ribozyme differs from other small, naturally occurring ribozymes in that it recognizes for trans cleavage or ligation a substrate that consists largely of a stem-loop structure. We have previously found that cleavage or ligation by the VS ribozyme requires substantial rearrangement of the secondary structure of stem-loop I, which contains the cleavage/ligation site. This rearrangement includes breaking the top base-pair of stem-loop I, allowing formation of a kissing interaction with loop V, and changing the partners of at least three other base-pairs within stem-loop I to adopt a conformation termed shifted. In the work presented, we have designed a binding assay and used mutational analysis to investigate the contribution of each of these structural changes to binding and ligation. We find that the loop I-V kissing interaction is necessary but not sufficient for binding and ligation. Constitutive opening of the top base-pair of stem-loop I has little, if any, effect on either activity. In contrast, the ability to adopt the shifted conformation of stem-loop I is a major determinant of binding: mutants that cannot adopt this conformation bind much more weakly than wild-type and mutants with a constitutively shifted stem-loop I bind much more strongly. These results implicate the adoption of the shifted structure of stem-loop I as an important process at the binding step in the VS ribozyme reaction pathway. Further investigation of features near the cleavage/ligation site revealed that sulphur substitution of the non-bridging phosphate oxygen atoms immediately downstream of the cleavage/ligation site, implicated in a putative metal ion binding site, significantly altered the cleavage/ligation equilibrium but did not perturb substrate binding significantly. This indicates that the substituted oxygen atoms, or an associated metal ion, affect a step that occurs after binding and that they influence the rates of cleavage and ligation differently.
Collapse
Affiliation(s)
- Ricardo Zamel
- Department of Molecular and Medical Genetics #4280, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, Ont., Canada
| | | |
Collapse
|
17
|
Abstract
Since their initial discovery, ribozymes have shown great promise not just as a tool in the manipulation of gene expression, but also as a novel therapeutic agent. This review discusses the promises and pitfalls of ribozyme technology, with a special emphasis on cancer-related applications, though relevance to skin disease will also be discussed.
Collapse
Affiliation(s)
- Mohammed Kashani-Sabet
- Auerback Melanoma Research Laboratory, Cutaneous Oncology Program, UCSF Cancer Center, and Department of Dermatology, University of California San Francisco, San Francisco, California 94115, USA.
| |
Collapse
|
18
|
Chia JS, Wu HL, Wang HW, Chen DS, Chen PJ. Inhibition of Hepatitis Delta Virus Genomic Ribozyme Self-Cleavage by Aminoglycosides. J Biomed Sci 2002; 4:208-216. [PMID: 12386382 DOI: 10.1007/bf02253420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.
Collapse
Affiliation(s)
- J.-S. Chia
- Graduate Institutes of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Venkat Gopalan
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
20
|
Lupták A, Ferré-D'Amaré AR, Zhou K, Zilm KW, Doudna JA. Direct pK(a) measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J Am Chem Soc 2001; 123:8447-52. [PMID: 11525650 DOI: 10.1021/ja016091x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatitis delta virus ribozymes have been proposed to perform self-cleavage via a general acid/base mechanism involving an active-site cytosine, based on evidence from both a crystal structure of the cleavage product and kinetic measurements. To determine whether this cytosine (C75) in the genomic ribozyme has an altered pK(a) consistent with its role as a general acid or base, we used (13)C NMR to determine its microscopic pK(a) in the product form of the ribozyme. The measured pK(a) is moderately shifted from that of a free nucleoside or a base-paired cytosine and has the same divalent metal ion dependence as the apparent reaction pK(a)'s measured kinetically. However, under all conditions tested, the microscopic pK(a) is lower than the apparent reaction pK(a), supporting a model in which C75 is deprotonated in the product form of the ribozyme at physiological pH. While additional results suggest that the pK(a) is not shifted in the reactant state of the ribozyme, these data cannot rule out elevation of the C75 pK(a) in an intermediate state of the transesterification reaction.
Collapse
Affiliation(s)
- A Lupták
- Department of Chemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
21
|
Turner PC. Ribozymes. Their design and use in cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:303-18. [PMID: 10810635 DOI: 10.1007/0-306-46817-4_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- P C Turner
- School of Biological Sciences, University of Liverpool, UK
| |
Collapse
|
22
|
Abstract
Infection with hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is associated with severe and sometimes fulminant hepatitis. The traditional methods for the diagnosis of HDV infection, such as detection of serum anti-HD antibodies, are sufficient for the clinical diagnosis of delta infection. However, such techniques lack the sensitivity and specificity required to more accurately characterize the nature of HDV infection and to assess the efficacy of therapies. Recent improvements in molecular techniques, such as HDV RNA hybridization and RT-PCR, have provided increased diagnostic precision and a more thorough understanding of the natural course of HDV infection. These advances have enhanced the clinician's ability to accurately evaluate the stage of HDV infection, response to therapy, and occurrence of reinfection after orthotopic liver transplant. This review focuses on the recent advances in the understanding of the molecular biology of HDV and in the laboratory diagnosis of HDV infection.
Collapse
Affiliation(s)
- L E Modahl
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Nishikawa F, Roy M, Fauzi H, Nishikawa S. Detailed analysis of stem I and its 5' and 3' neighbor regions in the trans-acting HDV ribozyme. Nucleic Acids Res 1999; 27:403-10. [PMID: 9862958 PMCID: PMC148193 DOI: 10.1093/nar/27.2.403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To determine the stem I structure of the human hepatitis delta virus (HDV) ribozyme, which is related to the substrate sequence in the trans -acting system, we kinetically studied stem I length and sequences. Stem I extension from 7 to 8 or 9 bp caused a loss of activity and a low amount of active complex with 9 bp in the trans -acting system. In a previous report, we presented cleavage in a 6 bp stem I. The observed reaction rates indicate that the original 7 bp stem I is in the most favorable location for catalytic reaction among the possible 6-8 bp stems. To test base specificity, we replaced the original GC-rich sequence in stem I with AU-rich sequences containing six AU or UA base pairs with the natural +1G.U wobble base pair at the cleavage site. The cis -acting AU-rich molecules demonstrated similar catalytic activity to that of the wild-type. In trans -acting molecules, due to stem I instability, reaction efficiency strongly depended on the concentration of the ribozyme-substrate complex and reaction temperature. Multiple turnover was observed at 37 degreesC, strongly suggesting that stem I has no base specificity and more efficient activity can be expected under multiple turnover conditions by substituting several UA or AU base pairs into stem I. We also studied the substrate damaging sequences linked to both ends of stem I for its development in therapeutic applications and confirmed the functions of the unique structure.
Collapse
Affiliation(s)
- F Nishikawa
- National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba Science City,Ibaraki 305-8566, Japan.
| | | | | | | |
Collapse
|
24
|
Mercure S, Lafontaine D, Ananvoranich S, Perreault JP. Kinetic analysis of delta ribozyme cleavage. Biochemistry 1998; 37:16975-82. [PMID: 9836591 PMCID: PMC2902526 DOI: 10.1021/bi9809775] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of delta ribozyme to catalyze the cleavage of an 11-mer RNA substrate was examined under both single- and multiple-turnover conditions. In both cases only small differences in the kinetic parameters were observed in the presence of either magnesium or calcium as cofactor. Under multiple-turnover conditions, the catalytic efficiency of the ribozyme (kcat/KM) was higher at 37 degreesC than at 56 degreesC. The cleavage reaction seems to be limited by the product release step at 37 degreesC and by the chemical cleavage step at 56 degreesC. We observed substrate inhibition at high concentrations of the 11-mer substrate. Cleavage rate constants were determined with a structural derivative characterized by an ultrastable L4 tetraloop. The kinetic parameters (kcat and KM) and dissociation constant (Kd) were almost identical for both ribozymes, suggesting that the stability of the L4 loop has a negligible impact on the catalytic activities of the examined ribozymes. Various cleavage inhibition and gel-shift assays with analogues, substrate, and both active and inactive ribozymes were performed. The 2'-hydroxyl group adjacent to the scissile phosphate was shown to be involved in binding with the ribozyme, while the essential cytosine residue of the J4/2 junction was shown to contribute to substrate association. We clearly show that substrate binding to the delta ribozyme is not restricted to the formation of a helix located downstream of the cleavage site. Using these results, we postulate a kinetic pathway involving a conformational transition step essential for the formation of the active ribozyme/substrate complex.
Collapse
|
25
|
Abstract
We report here the first photo-chemical control of a ribozyme reaction by the site-specific modification of the 2'-hydroxyl nucleophile in the hammerhead system with a caging functionality. Rapid laser photolysis of the O-(2-nitrobenzyl) caging group initiates an efficient and accurate hammerhead-catalyzed cleavage of substrate RNA under native conditions. RNAs in which reactive functionalities or recognition elements are caged in this manner will be useful tools to probe RNA reactivity and dynamics.
Collapse
Affiliation(s)
- S G Chaulk
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S-3HC, Canada
| | | |
Collapse
|
26
|
|
27
|
Abstract
The specificity of delta ribozyme cleavage was investigated using a trans-acting antigenomic delta ribozyme. Under single turnover conditions, the wild type ribozyme cleaved the 11-mer ribonucleotide substrate with a rate constant of 0.34 min-1, an apparent Km of 17.9 nM and an apparent second-order rate constant of 1.89 x 10(7) min-1 M-1. The substrate specificity of the delta ribozyme was thoroughly investigated using a collection of substrates that varied in either the length or the nucleotide sequence of their P1 stems. We observed that not only is the base pairing of the substrate and the ribozyme important to cleavage activity, but also both the identity and the combination of the nucleotide sequence in the substrates are essential for cleavage activity. We show that the nucleotides in the middle of the P1 stem are essential for substrate binding and subsequent steps in the cleavage pathway. The introduction of any mismatches at these positions resulted in a complete lack of cleavage by the wild type ribozyme. Our findings suggest that factors more complex than simple base pairing interactions, such as tertiary structure interactions, could play an important role in the substrate specificity of delta ribozyme cleavage.
Collapse
Affiliation(s)
| | - Jean-Pierre Perreault
- Medical Research Council scholar. To whom correspondence should be addressed. Tel.: 819-564-5310; Fax: 819-564-5340;
| |
Collapse
|
28
|
Affiliation(s)
- Robert G. Kuimelis
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167
| | | |
Collapse
|
29
|
Smith C, Sullenger BA. AIDS and HIV infection. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 5:195-236. [PMID: 9532568 DOI: 10.1007/978-94-011-0547-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Smith
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA
| | | |
Collapse
|
30
|
Lee CH, Chang SC, Chen CJ, Chang MF. The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J Biol Chem 1998; 273:7650-6. [PMID: 9516470 DOI: 10.1074/jbc.273.13.7650] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta antigens (HDAgs) are important for the replication and assembly of hepatitis delta virus (HDV). To understand the association between HDAgs and cellular proteins and the mechanism of viral multiplication, we have studied the interaction between HDAgs and nucleolin, a major nucleolar phosphoprotein. The interaction between HDAgs and nucleolin was first demonstrated by immunofluorescence staining studies. HDAgs and endogenous nucleolin were colocalized in the nucleoli of cultured cells transfected with plasmids encoding the small and large HDAg. Coimmunoprecipitation results indicated that the NH2-terminal domain of HDAg was essential for its binding to nucleolin. In vitro ligand binding assays revealed two nucleolin binding sites, NBS1 and NBS2. Each spanned amino acid residues 35-50 and 51-65, respectively, with a conserved core sequence K(K/R)XK. HDV replication was modulated by exogenous human nucleolin. In addition, a small HDAg mutant S-d65/75, which possesses both NBS1 and NBS2, was capable of transactivating HDV replication, whereas the small HDAg mutant S-d50/75, which retained NBS1 but not NBS2, was unable to support the replication of HDV. Thus, the nucleolin binding activity of HDAg is critical for its nucleolar targeting and is involved in the modulation of HDV replication.
Collapse
Affiliation(s)
- C H Lee
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
31
|
Abstract
AbstractRibozymes are catalytic RNA molecules that recognize their target RNA in a highly sequence-specific manner. They can therefore be used to inhibit deleterious gene expression (by cleavage of the target mRNA) or even repair mutant cellular RNAs. Targets such as the mRNAs of oncogenes (resulting from base mutations or chromosome translocations, eg, ras or bcr-abl) and viral genomes and transcripts (human immunodeficiency virus–type 1 [HIV-1]) are ideal targets for such sequence-specific agents. The aim of this review is therefore to introduce the different classes of ribozymes, highlighting some of the chemistry of the reactions they catalyze, to address the specific inhibition of genes by ribozymes, the problems yet to be resolved, and how new developments in the field give hope to the future for ribozymes in the therapeutic field.
Collapse
|
32
|
Abstract
Ribozymes are catalytic RNA molecules that recognize their target RNA in a highly sequence-specific manner. They can therefore be used to inhibit deleterious gene expression (by cleavage of the target mRNA) or even repair mutant cellular RNAs. Targets such as the mRNAs of oncogenes (resulting from base mutations or chromosome translocations, eg, ras or bcr-abl) and viral genomes and transcripts (human immunodeficiency virus–type 1 [HIV-1]) are ideal targets for such sequence-specific agents. The aim of this review is therefore to introduce the different classes of ribozymes, highlighting some of the chemistry of the reactions they catalyze, to address the specific inhibition of genes by ribozymes, the problems yet to be resolved, and how new developments in the field give hope to the future for ribozymes in the therapeutic field.
Collapse
|
33
|
Ribozymes as Biotherapeutic Tools for the Modulation of Gene Expression. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Abstract
The hepatitis D virus (HDV) relies on the helper hepatitis B virus (HBV) for the provision of its envelope, which consists of hepatitis B surface antigen (HBsAg). The RNA genome of HDV is a circular rod-like structure due to its extensive intramolecular base-pairing. HDV-RNA has ribozyme activity which includes autocatalytic cleavage and self-ligation properties, essential in virus replication via the rolling circle mechanism. Replication of the RNA is thought to be effected by cellular RNA polymerase II. Hepatitis D antigen (HDAg) is the only protein encoded by HDV-RNA and its long and short forms have a regulatory role in the replication and morphogenesis of the virus. Superinfected HBV carriers who become chronically infected with HDV are at increased risk of developing cirrhosis. Attempts to treat such carriers with interferon have not been particularly successful. In recent years the epidemiology of HDV has changed primarily due to the impact of HBV vaccination in preventing an increase in the pool of susceptible individuals. Copyright 1998 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- P Karayiannis
- Department of Medicine, Division of Medicine, Imperial College School of Medicine at St. Mary's, South Wharf Road, London W2 1NY, UK
| |
Collapse
|
35
|
Fauzi H, Kawakami J, Nishikawa F, Nishikawa S. Analysis of the cleavage reaction of a trans-acting human hepatitis delta virus ribozyme. Nucleic Acids Res 1997; 25:3124-30. [PMID: 9224614 PMCID: PMC146858 DOI: 10.1093/nar/25.15.3124] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cleavage reaction catalyzed by the trans -acting genomic ribozyme of human hepatitis delta virus (HDV) was analyzed with a 13mer substrate (R13) and thio-substituted [SR13(Rp) and SR13(Sp)] substrates under single-turnover conditions. The cleavage of RNA by the trans -acting HDV ribozyme proceeded as a first order reaction. The logarithm of the rate of cleavage (kclv) increased linearly (with a slope of approximately 1) between pH 4.0 and 6.0, an indication that a single deprotonation reaction occurred. This result suggests that kclv reflects the rate of the chemical cleavage step, at least around pH 5. The amount of active complex with the SR13(Sp) substrate was almost as large as with R13 (60-80%), whereas the amount of the corresponding active complex formed with the SR13(Rp) substrate was, at most, 20% of this value (with 0.5-100 mM Mg2+ions) at pH 5.0. Nonetheless, the value of kclv for all substrates was almost the same (0.4-0.5 min-1). Neither a 'thio effect' nor a 'Mn2+rescue effect' were observed. These results suggest that Mg2+ions do not interact with pro-R oxygen directly but are essential to the formation of the active complex of the ribozyme and its substrate.
Collapse
Affiliation(s)
- H Fauzi
- National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Tsukuba Science City 305, Japan
| | | | | | | |
Collapse
|
36
|
Been MD, Wickham GS. Self-cleaving ribozymes of hepatitis delta virus RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:741-53. [PMID: 9288893 DOI: 10.1111/j.1432-1033.1997.00741.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis delta virus (HDV) is a small single-stranded RNA satellite of hepatitis B virus. Although it is a human pathogen, it shares a number of features with a subset of the small plant satellite RNA viruses, including self-cleaving sequences in the genomic and antigenomic sequences of the viral RNA. The self-cleaving sequence is critical to viral replication and is thought to function as a ribozyme in vivo to process the products of rolling-circle replication to unit-length molecules. A divalent cation is required for cleavage and while a structural role is implicated for metal ions, a more direct role for a metal ion in catalysis has not yet been proven. A minimal natural ribozyme sequence with proficient in vitro self-cleavage activity is about 85 nucleotides long and adopts a secondary structure with four paired regions (P1-P4). The two pairings that define the 5' and 3' boundaries of the ribozyme, P1 and P2, form an atypical pseudoknot arrangement. This secondary structure places a number of constraints on the possible tertiary folding of the sequence, which together with chemical probing, photo-cross-linking, mutagenesis and computer-assisted modeling provides clues to the three-dimensional structure. The data are consistent with a model in which the cleavage site, located at the 5' end of P1, is in close proximity to three single-stranded regions, consisting of a hairpin loop at the end of P3 and two sequences joining P1 to P4 and P4 to P2. While the natural forms of the HDV ribozymes appear to be prone to misfolding, biochemical and mutagenesis studies from a number of laboratories has allowed the production of trans-acting ribozymes and smaller more active cis-acting ribozymes, both of which will aid in further mechanistic and structural studies of this RNA.
Collapse
Affiliation(s)
- M D Been
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Nishikawa F, Fauzi H, Nishikawa S. Detailed analysis of base preferences at the cleavage site of a trans-acting HDV ribozyme: a mutation that changes cleavage site specificity. Nucleic Acids Res 1997; 25:1605-10. [PMID: 9092669 PMCID: PMC146615 DOI: 10.1093/nar/25.8.1605] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In our previous attempt at in vitro selection of a trans - acting human hepatitis delta virus (HDV) ribozyme, we found that one of the variants, G10-68-725G, cleaved a 13 nt substrate, HDVS1, at two sites [Nishikawa,F., Kawakami,J., Chiba,A., Shirai,M., Kumar,P.K.R. and Nishikawa,S. (1996) Eur. J. Biochem., 237, 712-718]. One site was the normal cleavage site and the other site was shifted 1 nt toward the 3'-end. To clarify the interactions between nucleotides around the cleavage site of the trans -acting HDV ribozyme, we analyzed the efficiency of the reaction for every possible base pair between the substrate and the ribozyme at positions -1 (-1N:726N) and +1 (+1N:725N) relative to the cleavage site using the genomic HDV ribozyme, TdS4(Xho), and derivatives of the most active variant, G10-68. These mutagenesis analyses revealed that the +1 base of the substrate affects the structure of the catalytic core in the complex with G10-68-725G, substrate and divalent metal ions, and it shifts the cleavage site. In a comparison with other variants of the trans -acting HDV ribozyme, we found that this cleavage site shift occurred only with G10-68-725G.
Collapse
Affiliation(s)
- F Nishikawa
- 1 National Institute of Bioscience and Human Technology, AIST, MITI, 1-1 Higashi, Tsukuba Science City, Ibaraki 305, Japan. Japan
| | | | | |
Collapse
|
38
|
Irie A, Kijima H, Ohkawa T, Bouffard DY, Suzuki T, Curcio LD, Holm PS, Sassani A, Scanlon KJ. Anti-oncogene ribozymes for cancer gene therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 40:207-57. [PMID: 9217927 DOI: 10.1016/s1054-3589(08)60141-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Irie
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Some dominant genetic disorders, viral processes and neoplastic disorders base their pathogenicity on the production of protein or proteins that negatively affect cellular metabolism or environment. Thus, the inhibition of the synthesis of those proteins should prevent the biological damage. A promising approach to decreasing the level of the abnormal protein(s) is represented by specific interference with gene expression at the level of mRNA. The specific suppression of the expression of an mRNA can be achieved by using ribozymes. Ribozymes are RNA molecules able to break and form covalent bonds within a nucleic acid molecule. These molecules, with even greater potential advantages than antisense oligodeoxynucleotides, are able to bind specifically and cleave an mRNA substrate. There are advantages to using ribozymes instead of antisense oligodeoxynucleotides. Ribozymes can inactivate the target RNA without relying on the host cell's machinery and they have the capacity to cleave more than one copy of the target RNA by dissociating from the cleavage products and binding to another target molecule. Most of the studies performed to date have described the use of ribozymes as therapeutic agents for viral and cancer diseases. However, some dominant genetic disorders may also benefit from this approach. This is the case for some connective tissue disorders such as osteogenesis imperfecta, Marfan syndrome and the craniosynostotic syndromes.
Collapse
Affiliation(s)
- G Grassi
- Section on Connective Tissue Disorders, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | |
Collapse
|
40
|
Kawakami J, Yuda K, Suh YA, Kumar PK, Nishikawa F, Maeda H, Taira K, Ohtsuka E, Nishikawa S. Constructing an efficient trans-acting genomic HDV ribozyme. FEBS Lett 1996; 394:132-6. [PMID: 8843150 DOI: 10.1016/0014-5793(96)00941-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have engineered a genomic HDV ribozyme to construct several trans-acting ribozymes for use in trans to cleave target RNAs. Among the 10 different combinations attempted, only HDV88-Trans had cleavage activity on the 13-nucleotide substrate, R13, in vitro. To improve the cleavage efficiency, at least in vitro, of the HDV88-Trans ribozyme (kclv = 0.022 min(-1)), we have constructed several variants that differ in forming stem II (length) in the pseudoknot secondary structure model. When cleavage rate constants were analyzed and compared among variants of HDV88-Trans, HDV88-Trans-4 yielded kclv = 1.7 min(-1). HDV88-Trans-4 thus represents the highest active genomic HDV ribozyme that functions in trans thus far constructed, and has activity under physiological conditions (pH 7.1 at 37 degrees C with 1 mM of MgCl2).
Collapse
Affiliation(s)
- J Kawakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Robertson HD, Manche L, Mathews MB. Paradoxical interactions between human delta hepatitis agent RNA and the cellular protein kinase PKR. J Virol 1996; 70:5611-7. [PMID: 8764075 PMCID: PMC190521 DOI: 10.1128/jvi.70.8.5611-5617.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.
Collapse
Affiliation(s)
- H D Robertson
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
42
|
Nishikawa F, Kawakami J, Chiba A, Shirai M, Kumar PK, Nishikawa S. Selection in vitro of trans-acting genomic human hepatitis delta virus (HDV) ribozymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:712-8. [PMID: 8647117 DOI: 10.1111/j.1432-1033.1996.0712p.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In an effort to identify the functional structure as well as new active variants of the trans-acting genomic ribozyme of human hepatitis delta virus (HDV), we applied an in vitro selection procedure. A total of 14 rounds of selection and amplification was repeated and various mutant ribozymes in G10 and G14 pools analyzed. Active ribozymes which were isolated in the present study (from G10 and G14) all possessed conserved bases (that were identified earlier) in the cis-acting molecule. A dominant clone G10-68 variant was accumulated in generation 14. Interestingly, when base substitutions were analyzed in G10-68 variant, we found that this variant appears to be close to antigenome-like HDV ribozyme molecule. Further investigations of G10-68 confirmed that each mutated base was the most appropriate nucleotide at every position of the HDV ribozyme.
Collapse
Affiliation(s)
- F Nishikawa
- National Institute of Bioscience and Human Technology, Agency of Industrial Science & Technology, MITI, Tsukuba Science City, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Bravo C, Lescure F, Laugâa P, Fourrey JL, Favre A. Folding of the HDV antigenomic ribozyme pseudoknot structure deduced from long-range photocrosslinks. Nucleic Acids Res 1996; 24:1351-9. [PMID: 8614641 PMCID: PMC145789 DOI: 10.1093/nar/24.7.1351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A trans-acting system has been designed in order to explore the three-dimensional structure of the anti-genomic HDV ribozyme. In this system, the substrate (SANT) is associated by base-pairing to the catalytic RNA (RzANT) forming helix H1. RzANT is able to cleave specifically the RNA substrate as well as a deoxysubstrate analogue containing a single ribocytidine at the cleavage site (position -1). This demonstrates that such deoxysubstrate analogues are valuable tools for structural studies of this ribozyme domain. They form however weak complexes with RzANT which is due in part to their ability to fold as stable hairpins unlike the RNA substrate. Using a set of full deoxy or of mixed deoxy-ribo substrate analogues site-specific substituted with the photoaffinity probe deoxy-4-thiouridine, ds4U, at a defined position, we were able to determine a number of long range contacts between the substrate and the ribozyme core. In particular, crosslinks between substrate position -1 and position -2 with residues C15, G19 and C67, thought to be involved in the ribozyme catalytic site, were detected. A three dimensional model of the antigenomic ribozyme system, derived from the structure proposed by Tanner et al. [Current Biol (1994) 4, 488-498] for the genomic system was constructed. Apart from residue deletion or insertion, only minor accommodations were needed to account for all photocrosslinks but one which is attributed to an alternative hybridization of the substrate with the ribozyme. This study therefore further supports the structure proposed by Tanner et al. for the pseudoknot model.
Collapse
Affiliation(s)
- C Bravo
- Laboratoire de Photobiologie Moléculaire, Institute Jacque Monod, CNRS, Université Paris, France
| | | | | | | | | |
Collapse
|
44
|
Perrotta AT, Been MD. Core sequences and a cleavage site wobble pair required for HDV antigenomic ribozyme self-cleavage. Nucleic Acids Res 1996; 24:1314-21. [PMID: 8614636 PMCID: PMC145785 DOI: 10.1093/nar/24.7.1314] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The secondary structures proposed for the cis-acting hepatitis delta virus (HDV) ribozymes contain four duplex regions, three sequences joining the duplexes and two hairpin loops. The core and active site of the ribozyme could be formed by portions of the joining sequences, J1/4 and J4/2, together with one of the hairpin loops, L3. To establish the core region and define essential bases within this putative active site 28 single base changes at 15 positions were made and tested for effects on ribozyme cleavage. At 14 of the 15 positions all of the changes resulted in detectable decreased rates of cleavage. At seven of the positions one or more of the changes resulted in a 500-fold or greater decrease in the observed rate constant for cleavage. Mutations that resulted in 10(3)-fold effects were found in all three regions hypothesized to form the core. At the cleavage site substitutions of the cytosine 5' of the site of cleavage did not provide strong support for a sequence-specific interaction involving this nucleotide. In contrast, an A-C combination was the most effective substitution for a potential G-U pair 3' of the cleavage site, suggesting a requirement for a wobble pair at that position.
Collapse
Affiliation(s)
- A T Perrotta
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27707, USA
| | | |
Collapse
|
45
|
Jeng KS, Daniel A, Lai MM. A pseudoknot ribozyme structure is active in vivo and required for hepatitis delta virus RNA replication. J Virol 1996; 70:2403-10. [PMID: 8642668 PMCID: PMC190083 DOI: 10.1128/jvi.70.4.2403-2410.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle.
Collapse
Affiliation(s)
- K S Jeng
- Howard Hughes Medical Institute, University of Southern California School of Medicine, Los Angeles 90033-1054, USA
| | | | | |
Collapse
|
46
|
Branch AD, Polaskova JA, Schreiber DR. Tm studies of a tertiary structure from the human hepatitis delta agent which functions in vitro as a ribozyme control element. Nucleic Acids Res 1995; 23:4391-9. [PMID: 7501461 PMCID: PMC307395 DOI: 10.1093/nar/23.21.4391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Viroids and other circular subviral RNA pathogens, such as the hepatitis delta agent, use a rolling circle replication cycle requiring an intact circular RNA. However, many infectious RNAs have the potential to form self-cleavage structures, whose formation must be controlled in order to preserve the circular replication template. The native structure of delta RNA contains a highly conserved element of local tertiary structure which is composed of sequences partially overlapping those needed to form the self-cleavage motif. A bimolecular complex containing the tertiary structure can be made. We show that when it is part of this bimolecular complex the potential cleavage site is protected and is not cleaved by the delta ribozyme, demonstrating that the element of local tertiary structure can function as a ribozyme control element in vitro. Physical studies of the complex containing this element were carried out. The complex binds magnesium ions and is not readily dissociated by EDTA under the conditions tested; > 50% of the complexes remain following incubation in 1 mM EDTA at 60 degrees C for 81 min. The thermal stability of the complex is reduced in the presence of sodium ions. A DNA complex and a perfect RNA duplex studied in parallel showed a similar effect, but of lesser magnitude. The RNA complex melts at temperatures approximately 10 degrees C lower in buffers containing 0.5 mM MgCl2 and 100 mM NaCl than in buffers containing 0.5 mM MgCl2 with no NaCl (78.1 compared with 87.7 degrees C). The element of local tertiary structure in delta genomic RNA appears to be a molecular clamp whose stability is highly sensitive to ion concentration in the physiological range.
Collapse
Affiliation(s)
- A D Branch
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029, USA
| | | | | |
Collapse
|
47
|
Sullenger BA. Colocalizing ribozymes with substrate RNAs to increase their efficacy as gene inhibitors. Appl Biochem Biotechnol 1995; 54:57-61. [PMID: 7486985 DOI: 10.1007/bf02787911] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability to target ribozymes to specifically cleave viral RNAs in vitro has led to much speculation about their potential therapeutic value as antiviral agents in vivo. To transfer a ribozyme's potential as an antiviral agent from test tubes to cells and organisms successfully, the characteristics that distinguish these settings must be considered. In vitro, ribozymes and substrate RNAs freely diffuse in solution in test tubes, and trans-cleavage reactions are dependent on a diffusive step. In eukaryotic cells, by contrast, many RNAs do not appear to diffuse freely. Instead, they appear to be highly compartmentalized and actively sorted to specific cellular locations. Such RNA trafficking may result in localization of substrate RNAs in a different compartment than ribozymes, which would effectively reduce substrate RNA availability to ribozymes and therefore limit the effectiveness of ribozymes as gene inhibitors.
Collapse
Affiliation(s)
- B A Sullenger
- Department of Experimental Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
48
|
Branch AD, Levine BJ, Polaskova JA. An RNA tertiary structure of the hepatitis delta agent contains UV-sensitive bases U-712 and U-865 and can form in a bimolecular complex. Nucleic Acids Res 1995; 23:491-9. [PMID: 7885846 PMCID: PMC306702 DOI: 10.1093/nar/23.3.491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genomic RNA of the hepatitis delta agent has a highly conserved element of local tertiary structure. This element contains two nucleotides which become covalently crosslinked to each other upon irradiation with UV light. Using direct RNA analysis, we now identify the two nucleotides as U-712 and U-865 and show that the UV-induced crosslink can be broken by re-exposure to a 254 nm peak UV light source. In the rod-like secondary structural model of delta RNA, nucleotides U-712 and U-865 are off-set from each other by 5-6 bases, a distance too great to permit crosslinking. This model needs to be modified. Our data indicate that bases U-712 and U-865 closely approximate each other and suggest that the smooth helical contour proposed for delta RNA is interrupted by the UV-sensitive element. The nucleotide sequence shows that the UV-sensitive site does not have a particularly high density of conventional Watson-Crick base pairs compared to the rest of the genome. However, this element may have a number of non-Watson-Crick bonds which confer stability. Following UV-crosslinking and digestion with 1 mg/ml of RNase T1 at 37 degrees C for 45 min in 10 mM Tris-HCl, 1 mM EDTA (conditions expected to give complete digestion), this element can be isolated as part of a 54 nucleotide long partial digestion product containing at least 16 internal G residues. UV-crosslinking analysis shows that this unusual tertiary structural element can form in a bimolecular complex.
Collapse
Affiliation(s)
- A D Branch
- Center for Studies of the Addictive Diseases, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
49
|
Campbell TB, Sullenger BA. Alternative approaches for the application of ribozymes as gene therapies for retroviral infections. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 33:143-78. [PMID: 7495669 DOI: 10.1016/s1054-3589(08)60668-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T B Campbell
- Division of Infectious Diseases, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
50
|
Sioud M, Opstad A, Zhao JQ, Levitz R, Benham C, Drlica K. In vivo decay kinetic parameters of hammerhead ribozymes. Nucleic Acids Res 1994; 22:5571-5. [PMID: 7838709 PMCID: PMC310118 DOI: 10.1093/nar/22.25.5571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ribozymes offer a potentially important way to inactivate intracellular RNA from almost any gene whose nucleotide sequence is known. Recently, we found that hammerhead ribozymes directed against mRNA of tumour necrosis factor alpha (TNF alpha) and its derivatives, preferentially bind to a cellular protein(s). To better understand the effect of different 3'-terminal hairpins on ribozyme stability as well as their effect on the protein binding to the ribozyme, a mathematical treatment of the decay of three TNF alpha ribozymes that differed at their 3' ends was performed. One ribozyme contained a 3'-terminal hairpin derived from a transcription terminator of bacteriophage T7, another contained the same hairpin but modified to be highly enriched for G+C nucleotides, and a third lacked a hairpin. The TNF alpha ribozyme decay had two kinetic components. The slow component exhibited exponential decay with a half life of approximately 250 h in all cases. The 3'-terminal hairpin has no significant effect on this component. This slow phase accounted for 60-80% of ribozyme decay. The rapid phase also exhibited exponential decay. For this phase, a 3'-terminal hairpin roughly doubled the half-life (1.7-3.4). The slow phase of degradation was about three times faster for a ribozyme directed at the integrase mRNA of human immunodeficiency virus-1 than that seen with the TNF alpha ribozyme. Taken together, these results suggest that the ribozyme population is initially sensitive to degradation, with the presence of a hairpin provides some protection, and indicate that the addition of the hairpin to the ribozyme did not prevent the in vivo additional stabilizing effect of the protein(s).
Collapse
Affiliation(s)
- M Sioud
- Institute of Immunology and Rheumatology, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | |
Collapse
|