1
|
Adams KR, Chauhan S, Patel DB, Clements VK, Wang Y, Jay SM, Edwards NJ, Ostrand-Rosenberg S, Fenselau C. Ubiquitin Conjugation Probed by Inflammation in Myeloid-Derived Suppressor Cell Extracellular Vesicles. J Proteome Res 2018; 17:315-324. [PMID: 29061044 PMCID: PMC6137330 DOI: 10.1021/acs.jproteome.7b00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitinated proteins carried by the extracellular vesicles (EV) released by myeloid-derived suppressor cells (MDSC) have been investigated using proteomic strategies to examine the effect of tumor-associated inflammation. EV were collected from MDSC directly following isolation from tumor-bearing mice with low and high inflammation. Among the 1092 proteins (high inflammation) and 925 proteins (low inflammation) identified, more than 50% were observed as ubiquitinated proteoforms. More than three ubiquitin-attachment sites were characterized per ubiquitinated protein, on average. Multiple ubiquitination sites were identified in the pro-inflammatory proteins S100 A8 and S100 A9, characteristic of MDSC and in histones and transcription regulators among other proteins. Spectral counting and pathway analysis suggest that ubiquitination occurs independently of inflammation. Some ubiquitinated proteins were shown to cause the migration of MDSC, which has been previously connected with immune suppression and tumor progression. Finally, MDSC EV are found collectively to carry all the enzymes required to catalyze ubiquitination, and the hypothesis is presented that a portion of the ubiquitinated proteins are produced in situ.
Collapse
Affiliation(s)
- Katherine R. Adams
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sitara Chauhan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Divya B. Patel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Virginia K. Clements
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Yan Wang
- Proteomic Core Facility, College of Mathematics and Natural Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nathan J. Edwards
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington D.C. 20057, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Burke MC, Wang Y, Lee AE, Dixon EK, Castaneda CA, Fushman D, Fenselau C. Unexpected trypsin cleavage at ubiquitinated lysines. Anal Chem 2015; 87:8144-8. [PMID: 26182167 PMCID: PMC4599693 DOI: 10.1021/acs.analchem.5b01960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Unexpected tryptic cleavage has been characterized at modified K48 residues in polyubiquitins. In particular, the tryptic products of all seven of the lysine-linked dimers of ubiquitin and of three trimers-linear Ub-(48)Ub-(48)Ub, linear Ub-(63)Ub-(63)Ub, and the branched trimer [Ub]2-(6,48)Ub-have been analyzed. In addition to the peptide products expected under commonly used tryptic conditions, we observe that peptides are formed with an unexpected ε-glycinylglycinyl-Lys carboxyl terminus when the site of linkage is Lys48. Trypsin from three different commercial sources exhibited this aberration. Initial cleavage at R74 is proposed in a distal ubiquitin to produce a glycinylglycinyl-lysine residue which is bound by trypsin.
Collapse
|
3
|
Molecular characterization, 3D model analysis, and expression pattern of the CmUBC gene encoding the melon ubiquitin-conjugating enzyme under drought and salt stress conditions. Biochem Genet 2013; 52:90-105. [PMID: 24213845 DOI: 10.1007/s10528-013-9630-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Ubiquitin-conjugating (UBC) enzyme is a key enzyme in ubiquitination. Here, we describe the cloning, characterization, and expression pattern of a novel gene, CmUBC, from a melon. Comparison of the deduced amino acid sequences allowed the identification of highly conserved motifs. Synteny analysis between Cucumis sativus L. and Arabidopsis demonstrated that homologs of several Cucumis UBC genes were found in corresponding syntenic blocks of Arabidopsis. The homology structure model of the CmUBC protein was constructed. UBCs from melon, yeast, and Arabidopsis were highly conserved in their three-dimensional folding. CmUBC was ubiquitously expressed in all melon tissues. Increased transcript levels of CmUBC were observed during drought and salinity stresses, which suggested that the expression of the CmUBC gene in melon plants is responsive to physiological water stress. These results suggested that the CmUBC gene might play an important role in the modulation of the ubiquitination pathway.
Collapse
|
4
|
Shin DY, Lee H, Park ES, Yoo YJ. Assembly of different length of polyubiquitins on the catalytic cysteine of E2 enzymes without E3 ligase; a novel application of non-reduced/reduced 2-dimensional electrophoresis. FEBS Lett 2011; 585:3959-63. [PMID: 22079664 DOI: 10.1016/j.febslet.2011.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 11/29/2022]
Abstract
In this study using non-reduced/reduced 2-dimensional electrophoresis (NR/R-2DE), we clearly demonstrated that E3-independent ubiquitination by Ube2K produced not only unanchored but also Ube2K-linked polyubiquitins through thioester and isopeptide bonds. E3-independent assembly of polyubiquitins on the catalytic cysteine of Ube2K strongly supports the possibility of 'en bloc transfer' for polyubiquitination. From the same analyses of E3-independent ubiquitination products by other E2s, we also found that different lengths of polyubiquitins were linked to different E2s through thioester bond; longer chains by Cdc34 like Ube2K, short chains by Ube2g2, and mono-ubiquitin by UbcH10. Our results suggest that E2s possess the different intrinsic catalytic activities for polyubiquitination.
Collapse
Affiliation(s)
- Dong Yeon Shin
- School of Life Sciences, Gwangju Institute of Science & Technology (GIST), Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
5
|
Parkin mediates apparent E2-independent monoubiquitination in vitro and contains an intrinsic activity that catalyzes polyubiquitination. PLoS One 2011; 6:e19720. [PMID: 21625422 PMCID: PMC3100294 DOI: 10.1371/journal.pone.0019720] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the parkin gene, which encodes a ubiquitin ligase (E3), are a major cause of autosomal recessive parkinsonism. Although parkin-mediated ubiquitination was initially linked to protein degradation, accumulating evidence suggests that the enzyme is capable of catalyzing multiple forms of ubiquitin modifications including monoubiquitination, K48- and K63-linked polyubiquitination. In this study, we sought to understand how a single enzyme could exhibit such multifunctional catalytic properties. Methods and Findings By means of in vitro ubiquitination assays coupled with mass spectrometry analysis, we were surprised to find that parkin is apparently capable of mediating E2-independent protein ubiquitination in vitro, an unprecedented activity exhibited by an E3 member. Interestingly, whereas full length parkin catalyzes solely monoubiquitination regardless of the presence or absence of E2, a truncated parkin mutant containing only the catalytic moiety supports both E2-independent and E2-dependent assembly of ubiquitin chains. Conclusions Our results here suggest a complex regulation of parkin's activity and may help to explain how a single enzyme like parkin could mediate diverse forms of ubiquitination.
Collapse
|
6
|
Day IN, Thompson RJ. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol 2010; 90:327-62. [DOI: 10.1016/j.pneurobio.2009.10.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 12/16/2022]
|
7
|
Abstract
The modification of proteins with ubiquitin chains can change their localization, activity and/or stability. Although ubiquitylation requires the concerted action of ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s), it is the E2s that have recently emerged as key mediators of chain assembly. These enzymes are able to govern the switch from ubiquitin chain initiation to elongation, regulate the processivity of chain formation and establish the topology of assembled chains, thereby determining the consequences of ubiquitylation for the modified proteins.
Collapse
Affiliation(s)
- Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Abstract
E3 ligases confer specificity to ubiquitination by recognizing target substrates and mediating transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to substrate. The activity of most E3s is specified by a RING domain, which binds to an E2 approximately ubiquitin thioester and activates discharge of its ubiquitin cargo. E2-E3 complexes can either monoubiquitinate a substrate lysine or synthesize polyubiquitin chains assembled via different lysine residues of ubiquitin. These modifications can have diverse effects on the substrate, ranging from proteasome-dependent proteolysis to modulation of protein function, structure, assembly, and/or localization. Not surprisingly, RING E3-mediated ubiquitination can be regulated in a number of ways. RING-based E3s are specified by over 600 human genes, surpassing the 518 protein kinase genes. Accordingly, RING E3s have been linked to the control of many cellular processes and to multiple human diseases. Despite their critical importance, our knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E3s remains at a rudimentary stage.
Collapse
Affiliation(s)
- Raymond J Deshaies
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
9
|
Huzil JT, Pannu R, Ptak C, Garen G, Ellison MJ. Direct Catalysis of Lysine 48-linked Polyubiquitin Chains by the Ubiquitin-activating Enzyme. J Biol Chem 2007; 282:37454-60. [DOI: 10.1074/jbc.m705242200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Boscariol-Camargo RL, Berger IJ, Souza AA, Amaral AMD, Carlos EF, Freitas-Astúa J, Takita MA, Targon MLP, Medina CL, Reis MS, Machado MA. In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Alexandre M. do Amaral
- Instituto Agronômico de Campinas, Brazil; EMBRAPA Recursos Genéticos e Biotecnologia, Brazil
| | | | - Juliana Freitas-Astúa
- Instituto Agronômico de Campinas, Brazil; EMBRAPA Mandioca e Fruticultura Tropical, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Cell cycle transitions are often accompanied by the degradation of regulatory molecules. Targeting proteins to the proteasome for degradation is accomplished by the covalent addition of ubiquitin chains. The specificity of this pathway is largely dictated by a set of enzymes called ubiquitin ligases (or E3s). The anaphase-promoting complex (or APC) is a ubiquitin ligase that has a particularly prominent role in regulating cell cycle progression. To date, the APC is the most complicated member of the RING/cullin family of multisubunit E3s. It includes at least 13 core subunits and three related adaptors. A combination of biochemical, genetic, and structural approaches are now shedding light on the enzymology of the APC. This review will focus on these data, drawing parallels with related ubiquitin ligases.
Collapse
Affiliation(s)
- Brian R Thornton
- Department of Biochemistry and Biophysics, Cancer Research Institute, University of California at San Francisco, San Francisco, California 94115, USA
| | | |
Collapse
|
12
|
Chen X, Chen YH, Anderson VE. Protein cross-links: universal isolation and characterization by isotopic derivatization and electrospray ionization mass spectrometry. Anal Biochem 1999; 273:192-203. [PMID: 10469490 DOI: 10.1006/abio.1999.4243] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A general method of unequivocally identifying and obtaining sequence information on cross-linked peptides derived by proteolytic digestion of cross-linked proteins has been developed. The method is based on isotopic labeling of alpha-amino groups with 2, 4-dinitrofluorobenzene (DNFB) coupled with electrospray ionization mass spectrometry. Proteins containing covalent cross-link(s) are reductively methylated to convert lysine residues to dimethyl lysine. The methylated protein is partially hydrolyzed and the liberated alpha-amino termini are derivatized with an equimolar mixture of DNFB and [(2)H(3)]DNFB. Dinitrophenyl (DNP)-labeled peptides may be fractionated into mono- and bis-DNP pools by chromatography on phenyl media. The bis-DNP peptides are further separated by reverse-phase HPLC and analyzed by electrospray ionization mass spectrometry. The molecular ions of cross-linked peptides are unambiguously identified as 1:2:1 triplets in the mass spectrum resulting from the binomial distribution of isotopic label in the bis-DNP derivative. Sequence information can be elucidated from the unique product ion patterns which are generated from in-source fragmentation at an elevated cone voltage. Analysis of the disulfide cross-linked peptide (VTCG)(2) was undertaken as a proof of concept and the generality of the method was demonstrated by isolating and sequencing the isopeptide bond of polyubiquitin.
Collapse
Affiliation(s)
- X Chen
- School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | |
Collapse
|
13
|
Saleh A, Collart M, Martens JA, Genereaux J, Allard S, Cote J, Brandl CJ. TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J Mol Biol 1998; 282:933-46. [PMID: 9753545 DOI: 10.1006/jmbi.1998.2036] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hect-domain has been characterized as a conserved feature of a group of E3 ubiquitin ligases. Here we show that the yeast hect-domain protein TOM1p regulates transcriptional activation through effects on the ADA transcriptional coactivator proteins. Null mutations of tom1 result in similar defects in transcription from ADH2 and HIS3 promoters, and enhanced transcription from the GAL10 promoter as do null mutations in ngg1/ada3. Strains with disruptions of both ngg1 and tom1 have the same phenotype as strains with a disruption of only ngg1 implying that these genes are acting through the same pathway. In the absence of TOM1p, the normal associations of the ADA proteins with SPT3p and the TATA-binding protein are reduced. The action of TOM1p is most likely mediated through ubiquitination since mutation of Cys3235 to Ala, corresponding residues of which are required for thioester bond formation with ubiquitin in other hect-domain proteins, results in similar changes in transcription as the null mutation. A direct role for TOM1p in regulation of ADA-associated proteins is further supported by the finding that SPT7p is ubiquitinated in a TOM1p-dependent fashion and that TOM1p coimmunoprecipitates with the ADA proteins.
Collapse
Affiliation(s)
- A Saleh
- Department of Biochemistry, University of Western Ontario, London, N6A 5C1, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Swaminathan S, Krantz BA, Wilkinson KD, Hochstrasser M. In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J 1997; 16:4826-38. [PMID: 9305625 PMCID: PMC1170118 DOI: 10.1093/emboj/16.16.4826] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Degradation of many eukaryotic proteins requires their prior ligation to polyubiquitin chains, which target substrates to the 26S proteasome, an abundant cellular protease. We describe a yeast deubiquitinating enzyme, Ubp14, that specifically disassembles unanchored ('free') ubiquitin chains in vitro, a specificity shared by mammalian isopeptidase T. Correspondingly, deletion of the UBP14 gene from yeast cells results in a striking accumulation of free ubiquitin chains, which correlates with defects in ubiquitin-dependent proteolysis. Increasing the steady-state levels of ubiquitin chains in wild-type cells (by expressing a derivative of ubiquitin with an altered C-terminus) inhibits protein degradation to a degree comparable with that observed in ubp14delta cells. Inhibition of degradation is also seen when an active site mutant of Ubp14 is overproduced in vivo. Surprisingly, overproduction of wild-type Ubp14 can inhibit degradation of some proteins as well. Finally, Ubp14 and human isopeptidase T are shown to be functional homologs by complementation analysis. We propose that Ubp14 and isopeptidase T facilitate proteolysis in vivo by preventing unanchored ubiquitin chains from competitively inhibiting polyubiquitin-substrate binding to the 26S proteasome.
Collapse
|
15
|
Sun B, Jeyaseelan K, Chung MC, Tan TW, Chock PB, Teo TS. Cloning, characterization and expression of a cDNA clone encoding rabbit ubiquitin-conjugating enzyme, E2(32k). BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:231-8. [PMID: 9116038 DOI: 10.1016/s0167-4781(96)00209-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A cDNA clone encoding rabbit E2(32k) was obtained by library screening and PCR. The cDNA contains an open reading frame coding for 238 amino acids which shows an overall identity of 81% to human CDC34, the cell cycle-related ubiquitin-conjugating enzyme. A 50% homology to yeast CDC34 within the conserved core domain was also observed. Northern blot analysis indicated that three transcripts existed in all six rabbit tissues examined but their expression levels varied over a wide range. The putative cDNA coding region was highly expressed in Escherichia coli as a his-tagged protein which was purified to homogeneity. The ability of this expressed protein to form a thiolester bond with ubiquitin showed that it was functionally active. The ability of this protein to catalyze the conjugation of ubiquitin to histone H2A and H2B was also examined.
Collapse
Affiliation(s)
- B Sun
- Department of Biochemistry, Faculty of Medicine, National University of Singapore
| | | | | | | | | | | |
Collapse
|
16
|
Hodgins R, Gwozd C, Arnason T, Cummings M, Ellison MJ. The tail of a ubiquitin-conjugating enzyme redirects multi-ubiquitin chain synthesis from the lysine 48-linked configuration to a novel nonlysine-linked form. J Biol Chem 1996; 271:28766-71. [PMID: 8910518 DOI: 10.1074/jbc.271.46.28766] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The UBC1 ubiquitin-conjugating enzyme from Saccharomyces cerevisiae has an overlapping function with the UBC4 and UBC5 enzymes in the yeast stress response and an important role in the G0 to G1 transition that accompanies spore germination (Seufert, W., McGrath, J. P., and Jentsch, S. (1990) EMBO J. 9, 4573-4541). In the present work we report that the UBC1 enzyme assembles onto itself a multi-ubiquitin chain in vitro whose linkage configuration is dependent on the unconserved carboxyl-terminal extension or tail that is appended to its catalytic domain. Using chemical cleavage and site-specific mutagenesis, we have mapped the location of the chain to lysine 93 which lies near the active site within the catalytic domain. The ubiquitin molecule that anchors the chain is transferred to this lysine from the active site of the same UBC1 molecule. When the tail of UBC1 is deleted, the catalytic domain synthesizes a chain that consists of ubiquitin molecules uniformly linked to one another via lysine 48. In the presence of the tail, however, a chain is assembled that is composed of linkages that are stable to alkali but which do not utilize lysines. Furthermore, when the amino terminus of ubiquitin is blocked by an appended peptide tag, chain assembly reverts from this alternative configuration to the canonical lysine 48 variety. Taken together, these results suggest that the alternative chain is composed of linkages in which one ubiquitin molecule forms a peptide bond with the alpha-amino terminus of another, thereby supporting the emerging view that Ub can be attached to itself or other proteins in a variety of ways.
Collapse
Affiliation(s)
- R Hodgins
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7 Canada.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Proteolysis is essential for many aspects of plant physiology and development. It is responsible for cellular housekeeping and the stress response by removing abnormal/misfolded proteins, for supplying amino acids needed to make new proteins, for assisting in the maturation of zymogens and peptide hormones by limited cleavages, for controlling metabolism, homeosis, and development by reducing the abundance of key enzymes and regulatory proteins, and for the programmed cell death of specific plant organs or cells. It also has potential biotechnological ramifications in attempts to improve crop plants by modifying protein levels. Accumulating evidence indicates that protein degradation in plants is a complex process involving a multitude of proteolytic pathways with each cellular compartment likely to have one or more. Many of these have homologous pathways in bacteria and animals. Examples include the chloroplast ClpAP protease, vacuolar cathepsins, the KEX2-like proteases of the secretory system, and the ubiquitin/26S proteasome system in the nucleus and cytoplasm. The ubiquitin-dependent pathway requires that proteins targeted for degradation become conjugated with chains of multiple ubiquitins; these chains then serve as recognition signals for selective degradation by the 26S proteasome, a 1.5 MDa multisubunit protease complex. The ubiquitin pathway is particularly important for developmental regulation by selectively removing various cell-cycle effectors, transcription factors, and cell receptors such as phytochrome A. From insights into this and other proteolytic pathways, the use of phosphorylation/dephosphorylation and/or the addition of amino acid tags to selectively mark proteins for degradation have become recurring themes.
Collapse
Affiliation(s)
- R D Vierstra
- Department of Horticulture, University of Wisconsin-Madison 53706, USA
| |
Collapse
|
18
|
van Nocker S, Walker JM, Vierstra RD. The Arabidopsis thaliana UBC7/13/14 genes encode a family of multiubiquitin chain-forming E2 enzymes. J Biol Chem 1996; 271:12150-8. [PMID: 8647807 DOI: 10.1074/jbc.271.21.12150] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Covalent modification of proteins by attachment of multiubiquitin chains serves as an essential signal for selective protein degradation in eukaryotes. The specificity of ubiquitin-protein conjugation is controlled in part by a diverse group of ubiquitin-conjugating enzymes (E2s or UBCs). We have previously reported that the product of the wheat TaUBC7 gene recognizes ubiquitin as a substrate for ubiquitination in vitro, catalyzing the condensation of free ubiquitin into multiubiquitin chains linked via lysine 48 (van Nocker, S., and vierstra, R. D. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10297-10301). Based on this activity, this E2 may play a central role in the ubiquitin proteolytic pathway by assembling chains in vivo. Here, we describe the cloning and characterization of a three-member gene family from Arabidopsis thaliana (designated AtUBC7/13/14) encoding structural homologs of TaUBC7. Like TaUBC7, recombinant AtUBC7/13/14 proteins formed multiubiquitin chains in vitro. AtUBC7/13/14 mRNAs were found in all tissues examined, and unlike related UBCs from yeast, the levels of mRNA were not elevated by heat stress or cadmium exposure. Transgenic Arabidopsis were engineered to express increased levels of active AtUBC7, for the first time altering the level of an E2 in a higher eukaryote. Plants expressing high levels of AtUBC7 exhibited no phenotypic abnormalities and were not noticeably enriched in multiubiquitinated conjugates. These findings indicate that the in vivo synthesis of multiubiquitin chains is not rate-limited by the abundance of AtUC7 and/or involves other, yet undefined components.
Collapse
Affiliation(s)
- S van Nocker
- Department of Horticulture, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
19
|
Adamska I, Lindahl M, Roobol-Bóza M, Andersson B. Degradation of the light-stress protein is mediated by an ATP-independent, serine-type protease under low-light conditions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:591-9. [PMID: 8612633 DOI: 10.1111/j.1432-1033.1996.00591.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Green plants respond to light stress by induction of the light-stress proteins (ELIPs). These proteins are stable as long as the light stress persists but are very rapidly degraded during subsequent low light conditions. Here we report that the degradation of ELIPs is mediated by an extrinsic, thylakoid-associated protease which is already present in the membranes during light stress conditions. Partial purification of the protease by perfusion chromatography indicates that this proteolytic activity may be represented by a protein with an apparent molecular mass of 65 kDa. The ELIP-directed protease is localized in the stroma lamellae of the thylakoid membranes and does not require ATP or additional stromal factors for proteolysis. The protease has an optimum activity at pH 7.5-9.5 and requires Mg2+ for its activity. The ELIP-degrading protease show an unusual temperature sensitivity and becomes reversibly inactivated at temperatures below 20 degree C and above 30 degree C. Studies with protease inhibitors indicate that this enzyme belongs to the serine class of proteases. The enhanced degradation of ELIP in isolated thylakoid membranes after addition of the ionophore nigericin suggests that a trans-thylakoid delta pH or changes in ionic strength may be involved in the mechanism of protease activation.
Collapse
Affiliation(s)
- I Adamska
- Institut für Botanik, Universität Hannover, Germany
| | | | | | | |
Collapse
|
20
|
Matuschewski K, Hauser HP, Treier M, Jentsch S. Identification of a novel family of ubiquitin-conjugating enzymes with distinct amino-terminal extensions. J Biol Chem 1996; 271:2789-94. [PMID: 8576256 DOI: 10.1074/jbc.271.5.2789] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The ubiquitin/proteasome system is the main eukaryotic nonlysosomal protein degradation system. Substrate selectivity of this pathway is thought to be mediated in part by members of a large family of ubiquitin-conjugating (E2) enzymes, which catalyze the covalent attachment of ubiquitin to proteolytic substrates. E2 enzymes have a conserved approximately 150-residue so-called UBC domain, which harbors the cysteine residue required for enzyme-ubiquitin thioester formation. Some E2 enzymes possess additional carboxyl-terminal extensions that are involved in substrate specificity and intracellular localization of the enzyme. Here we describe a novel family of E2 enzymes from higher eukaryotes (Drosophila, mouse, and man) that have amino-terminal extensions but lack carboxyl-terminal extensions. We have identified four different variants of these enzymes that have virtually identical UBC domains (94% identity) but differ in their amino-terminal extensions. In yeast, these enzymes can partially complement mutants deficient in the UBC4 E2 enzyme. This indicates that members of this novel E2 family may operate in UBC4-related proteolytic pathways.
Collapse
Affiliation(s)
- K Matuschewski
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
21
|
Liu Z, Haas AL, Diaz LA, Conrad CA, Gíudice GJ. Characterization of a novel keratinocyte ubiquitin carrier protein. J Biol Chem 1996; 271:2817-22. [PMID: 8576260 DOI: 10.1074/jbc.271.5.2817] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel member of the ubiquitin carrier protein family, designated E2EPF, has been cloned by our laboratory and expressed in a bacterial system in an active form. Ubiquitin carrier proteins, or E2s, catalyze one step in a multistep process that leads to the covalent conjugation of ubiquitin to substrate proteins. In this paper, we show that recombinant E2EPF catalyzes auto/multiubiquitination, the conjugation of multiple ubiquitin molecules to itself. Multiubiquitination has been shown previously to be required for targeting of a substrate protein for rapid degradation. Using a rabbit reticulocyte lysate system, E2EPF was shown to support the degradation of a model substrate in an ATP- and ubiquitin-dependent fashion. In contrast to a previous study which showed that selective protein degradation in one system is dependent upon multiubiquitination via the lysine 48 residue of ubiquitin, multiubiquitination, and proteolytic targeting by E2EPF was shown here to be independent of the lysine 48 multiubiquitin linkage. This functional characterization of E2EPF revealed a combination of features that distinguishes this enzyme from all previously characterized members of the ubiquitin carrier protein family. These results also suggest several possible autoregulatory models for E2EPF involving auto- and multiubiquitination.
Collapse
Affiliation(s)
- Z Liu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | |
Collapse
|
22
|
van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A 1996; 93:856-60. [PMID: 8570648 PMCID: PMC40147 DOI: 10.1073/pnas.93.2.856] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiubiquitin chain attachment is a key step leading to the selective degradation of abnormal polypeptides and many important regulatory proteins by the eukaryotic 26S proteasome. However, the mechanism by which the 26S complex recognizes this posttranslational modification is unknown. Using synthetic multiubiquitin chains to probe an expression library for interacting proteins, we have isolated an Arabidopsis cDNA, designated MBP1, that encodes a 41-kDa acidic protein exhibiting high affinity for chains, especially those containing four or more ubiquitins. Based on similar physical and immunological properties, multiubiquitin binding affinities, and peptide sequence, MBP1 is homologous to subunit 5a of the human 26S proteasome. Structurally related proteins also exist in yeast, Caenorhabditis, and other plant species. Given their binding properties, association with the 26S proteasome, and widespread distribution, MBP1, S5a, and related proteins likely function as essential ubiquitin recognition components of the 26S proteasome.
Collapse
Affiliation(s)
- S van Nocker
- Department of Horticulture, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
23
|
Liu Y, Mathias N, Steussy CN, Goebl MG. Intragenic suppression among CDC34 (UBC3) mutations defines a class of ubiquitin-conjugating catalytic domains. Mol Cell Biol 1995; 15:5635-44. [PMID: 7565715 PMCID: PMC230814 DOI: 10.1128/mcb.15.10.5635] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin-conjugating (E2) enzymes contain several regions within their catalytic domains that are highly conserved. However, within some of these conserved regions are several residues that may be used to define different classes of catalytic domains for the E2 enzymes. One class can be defined by the Ubc1 protein, which contains K-65, D-90, and D-120, while the corresponding positions within the Cdc34 (Ubc3) protein, which defines a second class of enzymes, contain S-73, S-97, and S-139, respectively. The presence of these differences within otherwise highly conserved regions of this family suggests that these residues may be critical for the specificity of Cdc34 function or regulation. Therefore, we have constructed a series of cdc34 alleles encoding mutant proteins in which these serine residues have been changed to other amino acid residues, including alanine and aspartic acid. In vivo complementation studies showed that S-97, which lies near the active site C-95, is essential for Cdc34 function. The addition of a second mutation in CDC34, which now encoded both the S97D and S73K changes, restored partial function to the Cdc34 enzyme. Moreover, the deletion of residues 103 to 114 within Cdc34, which are not present in the Ubc1-like E2s, allowed the S73K/S97D mutant to function as efficiently as wild-type Cdc34 protein. Finally, the cloning and sequencing of the temperature-sensitive alleles of CDC34 indicated that A-62 is also unique to the Cdc34 class of E2 enzymes and that mutations at this position can be detrimental to Cdc34 function. Our results suggest that several key residues within conserved regions of the E2 enzyme family genetically interact with each other and define a class of E2 catalytic domains.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
24
|
Wing SS, Jain P. Molecular cloning, expression and characterization of a ubiquitin conjugation enzyme (E2(17)kB) highly expressed in rat testis. Biochem J 1995; 305 ( Pt 1):125-32. [PMID: 7826319 PMCID: PMC1136439 DOI: 10.1042/bj3050125] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ubiquitin-conjugating enzymes (E2s) play a key role in ubiquitin-mediated proteolysis by catalysing the conjugation of ubiquitin to protein substrates. We have previously reported the cDNA cloning of a 14 kDa conjugating enzyme [E2(14)k; Wing, Dumas and Banville (1992) J. Biol. Chem. 267, 6495-6501] that efficiently supported ubiquitination and protein degradation in reticulocyte extracts. Surprisingly, the structure of this E2 was markedly more similar to the Saccharomyces cerevisiae DNA repair gene RAD6, than to the S. cerevisiae UBC4/UBC5 genes which are required for the degradation of short-lived proteins and support much of the ubiquitination of yeast proteins. This suggested that mammalian homologues of UBC4/UBC5 remained to be identified. Using oligonucleotides derived from the S. cerevisiae UBC4 sequence as primers in a PCR reaction with rat muscle cDNA as a template, a 390 bp DNA fragment was amplified which predicted an amino acid sequence that was 83% identical to yeast UBC4. Screening a rat testes cDNA library identified a family of cDNAs which predicted two very similar proteins with basic pIs and molecular masses of approx. 16,700 Da. Isoform 2E was expressed in Escherichia coli and purified to homogeneity. It supported ubiquitination to reticulocyte and testis proteins more rapidly in vitro and produced larger conjugates than E2(14)k. Examination of RNA from different tissues indicated that this type of E2 was expressed in a broad spectrum of tissues but at particularly high levels in the testis. Fractionation of a testis extract by anion-exchange chromatography identified several putative ubiquitin protein ligase activities with which this E2 could interact in promoting conjugation of ubiquitin to proteins. One of these activities supported conjugation of ubiquitin to histone H2A, a substrate degraded in the ubiquitin system by a non-N-end rule mechanism. This paper reports the first cloning of a apparent mammalian homologue of S. cerevisiae UBC4/UBC5. Its high expression in testis and ability to efficiently support conjugation to testis proteins suggest that this family of E2s may play a role in the proteolysis that occurs during spermatogenesis.
Collapse
Affiliation(s)
- S S Wing
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
25
|
Teutonico RA, Osborn TC. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 89:885-94. [PMID: 24178100 DOI: 10.1007/bf00224514] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/1994] [Accepted: 08/18/1994] [Indexed: 05/14/2023]
Abstract
A linkage map of restriction fragment length polymorphisms (RFLPs) was constructed for oilseed, Brassica rapa, using anonymous genomic DNA and cDNA clones from Brassica and cloned genes from the crucifer Arabidopsis thaliana. We also mapped genes controlling the simply inherited traits, yellow seeds, low seed erucic acid, and pubescence. The map included 139 RFLP loci organized into ten linkage groups (LGs) and one small group covering 1785 cM. Each of the three traits mapped to a single locus on three different LGs. Many of the RFLP loci were detected with the same set of probes used to construct maps in the diploid B. oleracea and the amphidiploid B. napus. Comparisons of the linkage arrangements between the diploid species B. rapa and B. oleracea revealed six LGs with at least two loci in common. Nine of the B. rapa LGs had conserved linkage arrangements with B. napus LGs. The majority of loci in common were in the same order among the three species, although the distances between loci were largest on the B. rapa map. We also compared the genome organization between B. rapa and A. thaliana using RFLP loci detected with 12 cloned genes in the two species and found some evidence for a conservation of the linkage arrangements. This B. rapa map will be used to test for associations between segregation of RFLPs, detected by cloned genes of known function, and traits of interest.
Collapse
Affiliation(s)
- R A Teutonico
- Department of Agronomy, University of Wisconsin, 53706, Madison, WI, USA
| | | |
Collapse
|
26
|
Watts FZ, Butt N, Layfield P, Machuka J, Burke JF, Moore AL. Floral expression of a gene encoding an E2-related ubiquitin-conjugating protein from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1994; 26:445-451. [PMID: 7948890 DOI: 10.1007/bf00039553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An Arabidopsis thaliana gene (UBC6) encoding a homologue to ubiquitin-conjugating enzymes has been isolated which is capable of encoding a protein of 183 amino acids of ca. 21 kDa. Northern analysis indicates that the gene is expressed in flowers, seeds and, to a somewhat lesser extent, in 10-day seedlings but not in mature leaves, callus and pre-flowering plants. This pattern of expression is confirmed using transgenic Arabidopsis plants containing a UBC6 promoter-GUS gene fusion construct. These plants display GUS activity in mature anthers prior to dehiscence, in developing embryos, sepals and the style after pollination.
Collapse
Affiliation(s)
- F Z Watts
- Biochemistry Department, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | | | | | | | |
Collapse
|
27
|
Genschik P, Durr A, Fleck J. Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages in Arabidopsis thaliana and Nicotiana sylvestris. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:548-56. [PMID: 8078482 DOI: 10.1007/bf00583906] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We characterized three genes encoding different E2-type ubiquitin carrier proteins involved in the ubiquitin-mediated proteolytic pathway: UbcAt3 shows homologies to the yeast CDC34 gene and Ub-cAt4a and UbcAt4b are two different genes homologous to the Ubc1/4/5 subfamily in yeast. Their accumulation was analysed and compared with that of the different families encoding polyubiquitins, as well as the monoubiquitin fusion protein, which is considered as a marker for cell division, during various developmental stages including G0/S transition and senescence of higher plant cells. Our results imply that these Ubc genes are under the control of complex mechanisms, and are differentially regulated, but not necessarily co-regulated with ubiquitin genes. Even the closely related UbcAt4a and UbcAt4b genes of the same multigene subfamily are controlled by distinct regulatory mechanisms.
Collapse
Affiliation(s)
- P Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
28
|
Callis J, Bedinger P. Developmentally regulated loss of ubiquitin and ubiquitinated proteins during pollen maturation in maize. Proc Natl Acad Sci U S A 1994; 91:6074-7. [PMID: 7517039 PMCID: PMC44140 DOI: 10.1073/pnas.91.13.6074] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic cells typically contain 0.2-1.0% of their total protein as the highly conserved protein ubiquitin, which exists both free and covalently attached to cellular proteins. The attachment of ubiquitin to cellular proteins occurs posttranslationally by a three-enzyme pathway and results in a peptide linkage of the C terminus of ubiquitin either to a lysyl epsilon-amino group of a substrate protein or to a lysyl epsilon-amino group of a previously linked ubiquitin molecule. The multiple conjugation of ubiquitin to substrate proteins via ubiquitin-ubiquitin linkages is thought to be necessary, but not sufficient, for recognition and degradation by a ubiquitin-dependent protease. In higher plant cells the steady-state level of ubiquitinated proteins is generally constant and can be readily detected in all somatic tissues. In contrast, we have found that a developmentally regulated loss of free ubiquitin and ubiquitinated proteins occurs during maize (Zea mays L.) pollen maturation. This dramatic loss of ubiquitin correlates temporally with commitment to the gametophytic developmental program. Northern blot analysis indicates that the loss of ubiquitin is not due to low levels of ubiquitin mRNA, suggesting that a posttranscriptional regulatory mechanism is responsible.
Collapse
Affiliation(s)
- J Callis
- Section of Molecular and Cellular Biology, University of California, Davis 95616
| | | |
Collapse
|
29
|
Picton S, Gray JE, Lowe A, Barton SL, Grierson D. Sequence of a cloned tomato ubiquitin conjugating enzyme. PLANT PHYSIOLOGY 1993; 103:1471-1472. [PMID: 8290646 PMCID: PMC159150 DOI: 10.1104/pp.103.4.1471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- S Picton
- University of Nottingham, Department of Physiology and Environmental Science, Loughborough, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Plon SE, Leppig KA, Do HN, Groudine M. Cloning of the human homolog of the CDC34 cell cycle gene by complementation in yeast. Proc Natl Acad Sci U S A 1993; 90:10484-8. [PMID: 8248134 PMCID: PMC47801 DOI: 10.1073/pnas.90.22.10484] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In a screen designed to isolate human cDNAs that complement a yeast G2 phase checkpoint mutation (mec1), we isolated a cDNA homologous to the Saccharomyces cerevisiae CDC34 gene. The human CDC34 cDNA can functionally substitute for the yeast CDC34 gene and represents a mammalian homolog of the group of yeast genes required for the late G1-->S phase transition. The human CDC34 gene is expressed in multiple cell lines as a unique species and Southern blot analysis reveals evidence for a single gene that is highly conserved in higher eukaryotes. The human gene is located on the far telomeric region of 19p13.3 in a location that defines a region of homology between human chromosome 19p and mouse chromosome 11.
Collapse
Affiliation(s)
- S E Plon
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | | | |
Collapse
|
31
|
van Nocker S, Vierstra RD. Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74530-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Bartling D, Rehling P, Weiler EW. Functional expression and molecular characterization of AtUBC2-1, a novel ubiquitin-conjugating enzyme (E2) from Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1993; 23:387-396. [PMID: 8219072 DOI: 10.1007/bf00029013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The first member of a novel subfamily of ubiquitin-conjugating E2-proteins was cloned from a cDNA library of Arabidopsis thaliana. Genomic blots indicate that this gene family (AtUBC2) consists of two members and is distinct from AtUBC1, the only other E2 enzyme known from this species to date (M.L. Sullivan and R.D. Vierstra, Proc. Natl. Acad. Sci. USA 86 (1989) 9861-9865). The cDNA sequence of AtUBC2-1 extends over 794 bp which would encode a protein of 161 amino acids and a calculated molecular mass of 18.25 kDa. The protein encoded by AtUBC2-1 is shown to accept 125I-ubiquitin from wheat E1 enzymes, when expressed from Escherichia coli hosts as fusion protein carrying N-terminal extensions. It is deubiquitinated in the presence of lysine and, by these criteria, is considered a functional E2 enzyme.
Collapse
Affiliation(s)
- D Bartling
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
33
|
van Nocker S, Vierstra RD. Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domains. PLANT MOLECULAR BIOLOGY 1993; 21:695-699. [PMID: 8448367 DOI: 10.1007/bf00014552] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two related DNA sequences encoding small (-17kDa) glycine-rich proteins (GRPs) have been isolated from an Arabidopsis thaliana cDNA library. AtGRP7 and AtGRP8 encode proteins with a bipartite structure consisting of an amino-terminal putative RNA-binding domain and a carboxyl-terminal domain composed of stretches of glycines and serines with interspersed hydrophilic residues. These cDNAs exhibit structural similarity to a class of stress-induced transcripts found in other plant species. The proteins encoded by AtGRP7 and AtGRP8 may be members of a family of proteins which serve a vital role in RNA transcription or processing during stress.
Collapse
Affiliation(s)
- S van Nocker
- Department of Horticulture, University of Wisconsin-Madison 53706
| | | |
Collapse
|
34
|
Jungmann J, Reins HA, Schobert C, Jentsch S. Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 1993; 361:369-71. [PMID: 8381213 DOI: 10.1038/361369a0] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cadmium is a potent poison for living cells. In man, chronic exposure to low levels of cadmium results in damage to kidneys and has been linked to neoplastic disease and ageing, and acute exposure can cause damage to a variety of organs and tissues. Cadmium reacts with thiol groups and can substitute for zinc in certain proteins, but the reason for its toxicity in vivo remains uncertain. In eukaryotes, an important selective proteolysis pathway for the elimination of abnormal proteins that are generated under normal or stress conditions is ATP-dependent and mediated by the ubiquitin system. Substrates of this pathway are first recognized by ubiquitin-conjugating enzymes (or auxiliary factors) which covalently attach ubiquitin, a small and highly conserved protein, to specific internal lysine residues of proteolytic substrates. Ubiquitinated substrates are then degraded by the proteasome, a multisubunit protease complex. Here we show that expression of this ubiquitin-dependent proteolysis pathway in yeast is activated in response to cadmium exposure and that mutants deficient in specific ubiquitin-conjugating enzymes are hypersensitive to cadmium. Moreover, mutants in the proteasome are hypersensitive to cadmium, suggesting that cadmium resistance is mediated in part by degradation of abnormal proteins. This indicates that a major reason for cadmium toxicity may be cadmium-induced formation of abnormal proteins.
Collapse
Affiliation(s)
- J Jungmann
- Friedrich-Miescher-Laboratorium, Max-Planck-Gesellschaft, Tübingen, Germany
| | | | | | | |
Collapse
|
35
|
A major ubiquitin conjugation system in wheat germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2) homologous to the yeast UBC4/UBC5 gene products. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54026-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42026-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
|
38
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:935-58. [PMID: 1542609 PMCID: PMC312073 DOI: 10.1093/nar/20.4.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|