1
|
Arakawa T, Niikura T, Kita Y, Akuta T. Sodium Dodecyl Sulfate Analogs as a Potential Molecular Biology Reagent. Curr Issues Mol Biol 2024; 46:621-633. [PMID: 38248342 PMCID: PMC10814491 DOI: 10.3390/cimb46010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
In this study, we review the properties of three anionic detergents, sodium dodecyl sulfate (SDS), Sarkosyl, and sodium lauroylglutamate (SLG), as they play a critical role in molecular biology research. SDS is widely used in electrophoresis and cell lysis for proteomics. Sarkosyl and, more frequently, SDS are used for the characterization of neuropathological protein fibrils and the solubilization of proteins. Many amyloid fibrils are resistant to SDS or Sarkosyl to different degrees and, thus, can be readily isolated from detergent-sensitive proteins. SLG is milder than the above two detergents and has been used in the solubilization and refolding of proteins isolated from inclusion bodies. Here, we show that both Sarkosyl and SLG have been used for protein refolding, that the effects of SLG on the native protein structure are weaker for SLG, and that SLG readily dissociates from the native proteins. We propose that SLG may be effective in cell lysis for functional proteomics due to no or weaker binding of SLG to the native proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan;
| | - Yoshiko Kita
- Alliance Protein Labs, 13380 Pantera Rd., San Diego, CA 92130, USA;
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Japan;
| |
Collapse
|
2
|
Carratalá JV, Atienza-Garriga J, López-Laguna H, Vázquez E, Villaverde A, Sánchez JM, Ferrer-Miralles N. Enhanced recombinant protein capture, purity and yield from crude bacterial cell extracts by N-Lauroylsarcosine-assisted affinity chromatography. Microb Cell Fact 2023; 22:81. [PMID: 37098491 PMCID: PMC10131332 DOI: 10.1186/s12934-023-02081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Recombinant proteins cover a wide range of biomedical, biotechnological, and industrial needs. Although there are diverse available protocols for their purification from cell extracts or from culture media, many proteins of interest such as those containing cationic domains are difficult to purify, a fact that results in low yields of the final functional product. Unfortunately, this issue prevents the further development and industrial or clinical application of these otherwise interesting products. RESULTS Aiming at improving the purification of such difficult proteins, a novel procedure has been developed based on supplementing crude cell extracts with non-denaturing concentrations of the anionic detergent N-Lauroylsarcosine. The incorporation of this simple step in the downstream pipeline results in a substantial improvement of the protein capture by affinity chromatography, an increase of protein purity and an enhancement of the overall process yield, being the detergent not detectable in the final product. CONCLUSION By taking this approach, which represents a smart repurposing of N-Lauroylsarcosine applied to protein downstream, the biological activity of the protein is not affected. Being technologically simple, the N-Lauroylsarcosine-assisted protein purification might represent a critical improvement in recombinant protein production with wide applicability, thus smothering the incorporation of promising proteins into the protein market.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | - Julieta M Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA, FCEFyN, UNC., Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
3
|
AbuObead DA, Alhomsi TK, Zhra M, Alosaimi B, Hamza M, Awadalla M, Abdelhadi OE, Alsharif JA, Okdah L, AlKattan K, Turki SA, Fakhoury HMA, Aljada A. Development and Validation of ScriptTaq COVID PCR: An In-House Multiplex rRT-PCR for Low-Cost Detection. Curr Issues Mol Biol 2022; 44:6117-6131. [PMID: 36547078 PMCID: PMC9777119 DOI: 10.3390/cimb44120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings.
Collapse
Affiliation(s)
| | | | - Mahmoud Zhra
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | - Muaawia Hamza
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
- Faculty of Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | | | - Liliane Okdah
- Infectious Disease Research Department, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Saeed Al Turki
- Anwa Medical Labs, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hana M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (H.M.A.F.); (A.A.)
| |
Collapse
|
4
|
A solution to the long-standing problem of actin expression and purification. Proc Natl Acad Sci U S A 2022; 119:e2209150119. [PMID: 36197995 PMCID: PMC9565351 DOI: 10.1073/pnas.2209150119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin is the most abundant protein in the cytoplasm of eukaryotic cells and interacts with hundreds of proteins to perform essential functions, including cell motility and cytokinesis. Numerous diseases are caused by mutations in actin, but studying the biochemistry of actin mutants is difficult without a reliable method to obtain recombinant actin. Moreover, biochemical studies have typically used tissue-purified α-actin, whereas humans express six isoforms that are nearly identical but perform specialized functions and are difficult to obtain in isolation from natural sources. Here, we describe a solution to the problem of actin expression and purification. We obtain high yields of actin isoforms in human Expi293F cells. Experiments along the multistep purification protocol demonstrate the removal of endogenous actin and the functional integrity of recombinant actin isoforms. Proteomics analysis of endogenous vs. recombinant actin isoforms confirms the presence of native posttranslational modifications, including N-terminal acetylation achieved after affinity-tag removal using the actin-specific enzyme Naa80. The method described facilitates studies of actin under fully native conditions to determine differences among isoforms and the effects of disease-causing mutations that occur in all six isoforms.
Collapse
|
5
|
Balaban CL, Suárez CA, Boncompain CA, Peressutti-Bacci N, Ceccarelli EA, Morbidoni HR. Evaluation of factors influencing expression and extraction of recombinant bacteriophage endolysins in Escherichia coli. Microb Cell Fact 2022; 21:40. [PMID: 35292023 PMCID: PMC8922839 DOI: 10.1186/s12934-022-01766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endolysins are peptidoglycan hydrolases with promising use as environment-friendly antibacterials mainly when used topically. However, in general, endolysin expression is hampered by its low solubility. Thus, a critical point in endolysin industrial production is optimizing their expression, including improvement of solubility and recovery from cell extracts. RESULTS We report the expression of two endolysins encoded in the genome of phages infecting Staphylococcus aureus. Expression was optimized through changes in the concentration of the inducer and growth temperature during the expression. Usually, only 30-40% of the total endolysin was recovered in the soluble fraction. Co-expression of molecular chaperones (DnaK, GroEL) or N-term fusion tags endowed with increased solubility (DsbC, Trx, Sumo) failed to improve that yield substantially. Inclusion of osmolytes (NaCl, CaCl2, mannitol, glycine betaine, glycerol and trehalose) or tensioactives (Triton X-100, Tween 20, Nonidet P-40, CHAPS, N-lauroylsarcosine) in the cell disruption system (in the absence of any molecular chaperone) gave meager improvements excepted by N-lauroylsarcosine which increased recovery to 54% of the total endolysin content. CONCLUSION This is the first attempt to systematically analyze methods for increasing yields of recombinant endolysins. We herein show that neither solubility tags nor molecular chaperones co-expression are effective to that end, while induction temperature, (His)6-tag location and lysis buffer additives (e.g. N-lauroylsarcosine), are sensible strategies to obtain higher levels of soluble S. aureus endolysins.
Collapse
Affiliation(s)
- Cecilia Lucía Balaban
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristian Alejandro Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina Andrea Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peressutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Eduardo Augusto Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Héctor Ricardo Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Cloning, expression, solubilization, and purification of a functionally active recombinant cAMP-dependent protein kinase catalytic subunit-like protein PKAC1 from Trypanosoma equiperdum. Protein Expr Purif 2021; 192:106041. [PMID: 34953978 DOI: 10.1016/j.pep.2021.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
The gene encoding the cAMP-dependent protein kinase (PKA) catalytic subunit-like protein PKAC1 from the Venezuelan TeAp-N/D1 strain of Trypanosoma equiperdum was cloned, and the recombinant TeqPKAC1 protein was overexpressed in bacteria. A major polypeptide with an apparent molecular mass of ∼38 kDa was detected by SDS-polyacrylamide gel electrophoresis, and immunoblotting using antibodies against the human PKA catalytic subunit α. Unfortunately, most of the expressed TeqPKAC1 was highly insoluble. Polypeptides of 36-38 kDa and 45-50 kDa were predominantly seen by immunoblotting in the bacterial particulate and cytosolic fractions, respectively. Since the incorporation of either 4% Triton X-100 or 3% sarkosyl or a mixture of 10 mM MgCl2 and 1 mM ATP (MgATP) improved the solubilization of TeqPKAC1, we used a combination of Triton X-100, sarkosyl and MgATP to solubilize the recombinant protein. TeqPKAC1 was purified by first reconstituting a hybrid holoenzyme between the recombinant protein and a mammalian poly-His-tagged PKA regulatory subunit that was immobilized on a Ni2+-chelating affinity resin, and then by eluting TeqPKAC1 using cAMP. TeqPKAC1 was functional given that it was capable of phosphorylating PKA catalytic subunit substrates, such as kemptide (LRRASLG), histone type II-AS, and the peptide SP20 (TTYADFIASGRTGRRNSIHD), and was inhibited by the peptide IP20 (TTYADFIASGRTGRRNAIHD), which contains the inhibitory motif of the PKA-specific heat-stable inhibitor PKI-α. Optimal enzymatic activity was obtained at 37 °C and pH 8.0-9.0; and the order of effectiveness of nucleotide triphosphates and divalent cations was ATP » GTP ≅ ITP and Mg2+ ≅ Mn2+ ≅ Fe2+ » Ca2+ ≅ Zn2, respectively.
Collapse
|
7
|
Wang C, Liu H, Feng X. The Impact of Sodium Dodecyl Sulfate and 2-Mercaptoethanol on Antibody and Antigen Binding. Lab Med 2021; 53:307-313. [PMID: 34878509 DOI: 10.1093/labmed/lmab081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To evaluate the effect of sodium dodecyl sulfate (SDS) and 2-mercaptoethanol (2-ME) on antigen-antibody binding when incubated at 100°C, which is the pretreatment temperature required for western blots. METHODS Serum that tested positive for hepatitis B surface antigen (HBsAg) plus loading buffer were mixed at a ratio of 4:1 and incubated in a water bath. We then detected HBsAg using double immunodiffusion and ELISA. RESULTS The HBsAg titer was 1:512 in the control group when incubated at 37°C. Incubation with SDS at 100°C reduced the antigen titer to 1:32. The inhibitory effect on HBsAg titer reached 96.9% after incubation at 100°C with SDS and 2-ME. CONCLUSION We detected strong inhibition of antigens in western blots via SDS and 2-ME. It is likely that false-negative results will be obtained from western blots of antigens with weak resistance to these reagents.
Collapse
Affiliation(s)
- Chong Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | | | - Xinyan Feng
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Abstract
Bacterial communities in water, soil, and humans play an essential role in environmental ecology and human health. PCR-based amplicon analysis, such as 16S rRNA sequencing, is a fundamental tool for quantifying and studying microbial composition, dynamics, and interactions. However, given the complexity of microbial communities, a substantial number of samples becomes necessary for analyses that parse the factors that determine microbial composition. A common bottleneck in performing these kinds of experiments is genomic DNA (gDNA) extraction, which is time-consuming, expensive, and often biased based on the types of species present. Direct PCR method is a potentially simpler and more accurate alternative to gDNA extraction methods that do not require the intervening purification step. In this study, we evaluated three variations of direct PCR methods using diverse heterogeneous bacterial cultures, including both Gram-positive and Gram-negative species, ZymoBIOMICS microbial community standards, and groundwater. By comparing direct PCR methods with DNeasy Blood and Tissue Kits for microbial isolates and DNeasy PowerSoil Kits for microbial communities, we found that a specific variant of the direct PCR method exhibits an overall efficiency comparable to that of the conventional DNeasy PowerSoil protocol in the circumstances we tested. We also found that the method showed higher efficiency for extracting gDNA from the Gram-negative strains compared to DNeasy Blood and Tissue protocol. This direct PCR method is 1,600 times less expensive ($0.34 for 96 samples) and 10 times simpler (15 min hands-on time for 96 samples) than the DNeasy PowerSoil protocol. The direct PCR method can also be fully automated and is compatible with small-volume samples, thereby permitting scaling of samples and replicates needed to support high-throughput large-scale bacterial community analysis. IMPORTANCE Understanding bacterial interactions and assembly in complex microbial communities using 16S rRNA sequencing normally requires a large experimental load. However, the current DNA extraction methods, including cell disruption and genomic DNA purification, are normally biased, costly, time-consuming, labor-intensive, and not amenable to miniaturization by droplets or 1,536-well plates due to the significant DNA loss during the purification step for tiny-volume and low-cell-density samples. A direct PCR method could potentially solve these problems. In this study, we developed a direct PCR method which exhibits similar efficiency as the widely used method, the DNeasy PowerSoil protocol, while being 1,600 times less expensive and 10 times faster to execute. This simple, cost-effective, and automation-friendly direct-PCR-based 16S rRNA sequencing method allows us to study the dynamics, microbial interaction, and assembly of various microbial communities in a high-throughput fashion.
Collapse
|
9
|
Bakholdina SI, Stenkova AM, Bystritskaya EP, Sidorin EV, Kim NY, Menchinskaya ES, Gorpenchenko TY, Aminin DL, Shved NA, Solov’eva TF. Studies on the Structure and Properties of Membrane Phospholipase A 1 Inclusion Bodies Formed at Low Growth Temperatures Using GFP Fusion Strategy. Molecules 2021; 26:molecules26133936. [PMID: 34203222 PMCID: PMC8271855 DOI: 10.3390/molecules26133936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of cultivation temperatures (37, 26, and 18 °C) on the conformational quality of Yersinia pseudotuberculosis phospholipase A1 (PldA) in inclusion bodies (IBs) was studied using green fluorescent protein (GFP) as a folding reporter. GFP was fused to the C-terminus of PldA to form the PldA-GFP chimeric protein. It was found that the maximum level of fluorescence and expression of the chimeric protein is observed in cells grown at 18 °C, while at 37 °C no formation of fluorescently active forms of PldA-GFP occurs. The size, stability in denaturant solutions, and enzymatic and biological activity of PldA-GFP IBs expressed at 18 °C, as well as the secondary structure and arrangement of protein molecules inside the IBs, were studied. Solubilization of the chimeric protein from IBs in urea and SDS is accompanied by its denaturation. The obtained data show the structural heterogeneity of PldA-GFP IBs. It can be assumed that compactly packed, properly folded, proteolytic resistant, and structurally less organized, susceptible to proteolysis polypeptides can coexist in PldA-GFP IBs. The use of GFP as a fusion partner improves the conformational quality of PldA, but negatively affects its enzymatic activity. The PldA-GFP IBs are not toxic to eukaryotic cells and have the property to penetrate neuroblastoma cells. Data presented in the work show that the GFP-marker can be useful not only as target protein folding indicator, but also as a tool for studying the molecular organization of IBs, their morphology, and localization in E. coli, as well as for visualization of IBs interactions with eukaryotic cells.
Collapse
Affiliation(s)
- Svetlana I. Bakholdina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| | - Anna M. Stenkova
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Evgenia P. Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Evgeniy V. Sidorin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
| | - Tatiana Yu. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-let Vladivostoku, 159, 690022 Vladivostok, Russia;
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Nikita A. Shved
- Department of Medical Biology and Biotechnology, FEFU Campus, School of Biomedicine, Far Eastern Federal University, Russky Island Ajax Bay 10, 690922 Vladivostok, Russia; (A.M.S.); (N.A.S.)
| | - Tamara F. Solov’eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (E.P.B.); (E.V.S.); (N.Y.K.); (E.S.M.); (D.L.A.)
- Correspondence: (S.I.B.); (T.F.S.); Tel.: +7-423-231-11-58 (S.I.B. & T.F.S.); Fax: +7-423-231-40-50 (S.I.B. & T.F.S.)
| |
Collapse
|
10
|
Expression and purification of soluble recombinant SapM from Mycobacterium tuberculosis. Protein Expr Purif 2020; 174:105663. [PMID: 32387341 DOI: 10.1016/j.pep.2020.105663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 01/31/2023]
Abstract
SapM from Mycobacterium tuberculosis is a secreted phosphatase critical for pathogen survival inside the host, representing an attractive target for the development of anti-tuberculosis drugs. The main limitation to biochemical and structural studies of SapM has been the lack of a suitable protocol to produce soluble recombinant protein. The aim of the present work was to produce SapM in Escherichia coli in a soluble and catalytically active form. We describe here the construct design, expression and purification of soluble SapM using Sarkosyl as a solubility-enhancing agent and auto-induction media. We demonstrate that solubilisation of the recombinant protein with Sarkosyl, and further purification, yields a catalytically active enzyme with high purity and monodisperse. The identity and molecular weight of the recombinant SapM was confirmed by mass spectrometry analyses, and we provide evidence that SapM behaves as a monomer in solution. Overall, this work lays the foundation for further studies to exploit SapM as a drug target, and provides a protocol for producing active and soluble recombinant enzymes that are hard to solubilise in E. coli.
Collapse
|
11
|
Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol 2020; 38:474-486. [DOI: 10.1016/j.tibtech.2019.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
|
12
|
05SAR-PAGE: Separation of protein dimerization and modification using a gel with 0.05% sarkosyl. Anal Chim Acta 2020; 1101:193-198. [DOI: 10.1016/j.aca.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
|
13
|
Alternative methods to reduce the animal use in quality controls of inactivated BTV8 Bluetongue vaccines. Prev Vet Med 2020; 176:104923. [PMID: 32066029 DOI: 10.1016/j.prevetmed.2020.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
The acceptance of serology data instead of challenge for market release of new batches of commercial vaccine is under evaluation by regulatory agencies in order to reduce the use of animals and costs for manufacturers. In this study two vaccines for Bluetongue virus serotype 8 were submitted to quality controls required by the European Pharmacopoeia and tested on sheep in comparison with a commercial inactivated vaccine. Body temperature, antibody titres and viraemia of vaccinated and controls sheep were recorded. In addition IL4 and IFNγ in sera and supernatant derived from in vitro stimulation of blood cells were also quantified using two commercial ELISA kit. The outer-capsid protein VP2 contained in vaccine formulations was quantified using a home-made capture-ELISA. Results obtained indicates that in-lab evaluation of cell-mediated and humoral immune response are useful parameters to predict the efficacy of BTV inactivated vaccines avoiding the challenge phase required to release new batches of vaccines with proven clinical efficacy and safety. The correlation observed between serology data and VP2 protein concentration of final product could be useful in-process control to predict if a new vaccine batch of BTV must be discarded or released to the market.
Collapse
|
14
|
Ukwaththage TO, Goodwin OY, Songok AC, Tafaro AM, Shen L, Macnaughtan MA. Purification of Tag-Free Chlamydia trachomatis Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochemistry 2019; 58:4284-4292. [PMID: 31545893 DOI: 10.1021/acs.biochem.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes the most common sexually transmitted bacterial disease in the world. The bacterium has a unique biphasic developmental cycle with a type III secretion system (T3SS) to invade host cells. Scc4 is a class I T3SS chaperone forming a heterodimer complex with Scc1 to chaperone the essential virulence effector, CopN. Scc4 also functions as an RNA polymerase binding protein to regulate σ66-dependent transcription. Aggregation and low solubility of 6X-histidine-tagged Scc4 and the insolubility of 6X-histidine and FLAG-tagged Scc1 expressed in Escherichia coli have hindered the high-resolution nuclear magnetic resonance (NMR) structure determination of these proteins and motivated the development of an on-column complex dissociation method to produce tag-free Scc4 and soluble FLAG-tagged Scc1. By utilizing a 6X-histidine-tag on one protein, the coexpressed Scc4-Scc1 complex was captured on nickel-charged immobilized metal affinity chromatography resin, and the nondenaturing detergent, sodium N-lauroylsarcosine (sarkosyl), was used to dissociate and elute the non-6X-histidine-tagged protein. Tag-free Scc4 was produced in a higher yield and had better NMR spectral characteristics compared to 6X-histidine-tagged Scc4, and soluble FLAG-tagged Scc1 was purified for the first time in a high yield. The backbone structure of Scc4 after exposure to sarkosyl was validated using NMR spectroscopy, demonstrating the usefulness of the method to produce proteins for structural and functional studies. The sarkosyl-assisted on-column complex dissociation method is generally applicable to protein complexes with high affinity and is particularly useful when affinity tags alter the protein's biophysical properties or when coexpression is necessary for solubility.
Collapse
Affiliation(s)
- Thilini O Ukwaththage
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Octavia Y Goodwin
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Abigael C Songok
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Alexa M Tafaro
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , Louisiana 70112 , United States
| | - Megan A Macnaughtan
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
15
|
Tsai SL, Chang YC, Sarvagalla S, Wang S, Coumar MS, Cheung CHA. Cloning, expression, and purification of the recombinant pro-apoptotic dominant-negative survivin T34A-C84A protein in Escherichia coli. Protein Expr Purif 2019; 160:73-83. [DOI: 10.1016/j.pep.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
|
16
|
Thibeault J, Patrick J, Martin A, Ortiz-Perez B, Hill S, Zhang S, Xia K, Colón W. Sarkosyl: A milder detergent than SDS for identifying proteins with moderately high hyperstability using gel electrophoresis. Anal Biochem 2019; 571:21-24. [PMID: 30779907 DOI: 10.1016/j.ab.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Sodium dodecyl sulfate (SDS) is a detergent used as a strong denaturant of proteins in gel electrophoresis. It has previously been shown that certain hyperstable, also known as kinetically stable, proteins are resistant to SDS and thus require heating for their denaturation in the presence of SDS. Because of its high denaturing strength, relatively few proteins are resistant to SDS thereby limiting the current use of SDS-PAGE for identifying hyperstable degradation-resistant proteins. In this study, we show that sarkosyl, a milder detergent than SDS, is able to identify proteins with moderately high kinetic stability that lack SDS-resistance. Our assay involves running and subsequently comparing boiled and unheated protein samples containing sarkosyl, instead of SDS, on PAGE gels and identifying subsequent differences in protein migration. Our results also show that sarkosyl and SDS may be combined in PAGE experiments at varying relative percentages to obtain semi-quantitative information about a protein's kinetic stability in a range inaccessible by probing through native- or SDS-PAGE. Using protein extracts from various legumes as model systems, we detected proteins with a range of protein stability from nearly SDS-resistant to barely sarkosyl resistant.
Collapse
Affiliation(s)
- Jane Thibeault
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Patrick
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alexi Martin
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brian Ortiz-Perez
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shakeema Hill
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Songjie Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
17
|
Bakholdina SI, Sidorin EV, Khomenko VA, Isaeva MP, Kim NY, Bystritskaya EP, Pimenova EA, Solov’eva TF. The Effect of Conditions of the Expression of the Recombinant Outer Membrane Phospholipase А1 from Yersinia pseudotuberculosis on the Structure and Properties of Inclusion Bodies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Padhiar AA, Chanda W, Joseph TP, Guo X, Liu M, Sha L, Batool S, Gao Y, Zhang W, Huang M, Zhong M. Comparative study to develop a single method for retrieving wide class of recombinant proteins from classical inclusion bodies. Appl Microbiol Biotechnol 2018; 102:2363-2377. [PMID: 29387954 DOI: 10.1007/s00253-018-8754-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 11/30/2022]
Abstract
The formation of inclusion bodies (IBs) is considered as an Achilles heel of heterologous protein expression in bacterial hosts. Wide array of techniques has been developed to recover biochemically challenging proteins from IBs. However, acquiring the active state even from the same protein family was found to be an independent of single established method. Here, we present a new strategy for the recovery of wide sub-classes of recombinant protein from harsh IBs. We found that numerous methods and their combinations for reducing IB formation and producing soluble proteins were not effective, if the inclusion bodies were harsh in nature. On the other hand, different practices with mild solubilization buffers were able to solubilize IBs completely, yet the recovery of active protein requires large screening of refolding buffers. With the integration of previously reported mild solubilization techniques, we proposed an improved method, which comprised low sarkosyl concentration, ranging from 0.05 to 0.1% coupled with slow freezing (- 1 °C/min) and fast thaw (room temperature), resulting in greater solubility and the integrity of solubilized protein. Dilution method was employed with single buffer to restore activity for every sub-class of recombinant protein. Results showed that the recovered protein's activity was significantly higher compared with traditional solubilization/refolding approach. Solubilization of IBs by the described method was proved milder in nature, which restored native-like conformation of proteins within IBs.
Collapse
Affiliation(s)
- Arshad Ahmed Padhiar
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.,Department of Biosciences, Faculty of Science, Barrett Hodgson University, Karachi, Pakistan
| | - Warren Chanda
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Thomson Patrick Joseph
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Xuefang Guo
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Min Liu
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Li Sha
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Samana Batool
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yifan Gao
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Wei Zhang
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Min Huang
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| | - Mintao Zhong
- Department of Microbiology, Basic Medical Sciences, Dalian Medical University, 9 Western Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| |
Collapse
|
19
|
Biophysical evaluation of amyloid fibril formation in bovine cytochrome c by sodium lauroyl sarcosinate (sarkosyl) in acidic conditions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Abstract
C2 domains (C2s) are regulatory protein modules identified in eukaryotic proteins targeted to cell membranes. C2s were initially characterized as independently folded Ca(2+)-dependent phospholipids binding domains; however, later studies have shown that C2s have evolutionarily diverged into Ca(2+)-dependent and Ca(2+)-independent forms. These forms interact and regulate their affinity to diverse lipid species using different binding mechanisms. In this protocol we describe a biochemical approach to produce, purify, and solubilize functional C2 domains bound to GST for the identification of their putative Ca(2+)-dependent and Ca(2+)-independent lipid-binding partners.
Collapse
|
21
|
Ottman N, Huuskonen L, Reunanen J, Boeren S, Klievink J, Smidt H, Belzer C, de Vos WM. Characterization of Outer Membrane Proteome of Akkermansia muciniphila Reveals Sets of Novel Proteins Exposed to the Human Intestine. Front Microbiol 2016; 7:1157. [PMID: 27507967 PMCID: PMC4960237 DOI: 10.3389/fmicb.2016.01157] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022] Open
Abstract
Akkermansia muciniphila is a common member of the human gut microbiota and belongs to the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. Decreased levels of A. muciniphila have been associated with many diseases, and thus it is considered to be a beneficial resident of the intestinal mucus layer. Surface-exposed molecules produced by this organism likely play important roles in colonization and communication with other microbes and the host, but the protein composition of the outer membrane (OM) has not been characterized thus far. Herein we set out to identify and characterize A. muciniphila proteins using an integrated approach of proteomics and computational analysis. Sarkosyl extraction and sucrose density-gradient centrifugation methods were used to enrich and fractionate the OM proteome of A. muciniphila. Proteins from these fractions were identified by LC-MS/MS and candidates for OM proteins derived from the experimental approach were subjected to computational screening to verify their location in the cell. In total we identified 79 putative OM and membrane-associated extracellular proteins, and 23 of those were found to differ in abundance between cells of A. muciniphila grown on the natural substrate, mucin, and those grown on the non-mucus sugar, glucose. The identified OM proteins included highly abundant proteins involved in secretion and transport, as well as proteins predicted to take part in formation of the pili-like structures observed in A. muciniphila. The most abundant OM protein was a 95-kD protein, termed PilQ, annotated as a type IV pili secretin and predicted to be involved in the production of pili in A. muciniphila. To verify its location we purified the His-Tag labeled N-terminal domain of PilQ and generated rabbit polyclonal antibodies. Immunoelectron microscopy of thin sections immunolabeled with these antibodies demonstrated the OM localization of PilQ, testifying for its predicted function as a type IV pili secretin in A. muciniphila. As pili structures are known to be involved in the modulation of host immune responses, this provides support for the involvement of OM proteins in the host interaction of A. muciniphila. In conclusion, the characterization of A. muciniphila OM proteome provides valuable information that can be used for further functional and immunological studies.
Collapse
Affiliation(s)
- Noora Ottman
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Metapopulation Research Centre, University of HelsinkiHelsinki, Finland
| | - Laura Huuskonen
- Department of Veterinary Biosciences, University of Helsinki Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland; Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Judith Klievink
- Immunobiology, Department of Bacteriology and Immunology, and Research Programs Unit, University of Helsinki Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; Department of Veterinary Biosciences, University of HelsinkiHelsinki, Finland; Immunobiology, Department of Bacteriology and Immunology, and Research Programs Unit, University of HelsinkiHelsinki, Finland
| |
Collapse
|
22
|
Chung JM, Lee S, Jung HS. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression. Protein Expr Purif 2016; 133:193-198. [PMID: 27353495 DOI: 10.1016/j.pep.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression.
Collapse
Affiliation(s)
- Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
23
|
Massiah MA, Wright KM, Du H. Obtaining Soluble Folded Proteins from Inclusion Bodies Using Sarkosyl, Triton X‐100, and CHAPS: Application to LB and M9 Minimal Media. ACTA ACUST UNITED AC 2016; 84:6.13.1-6.13.24. [DOI: 10.1002/0471140864.ps0613s84] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Haijuan Du
- Department of Chemistry, George Washington University Washington D.C
| |
Collapse
|
24
|
Na H, Laver JD, Jeon J, Singh F, Ancevicius K, Fan Y, Cao WX, Nie K, Yang Z, Luo H, Wang M, Rissland O, Westwood JT, Kim PM, Smibert CA, Lipshitz HD, Sidhu SS. A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2016; 22:636-655. [PMID: 26847261 PMCID: PMC4793217 DOI: 10.1261/rna.055186.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins.
Collapse
Affiliation(s)
- Hong Na
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Jouhyun Jeon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Fateh Singh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Kristin Ancevicius
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6 Department of Cell and Systems Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Yujie Fan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Kun Nie
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Zhenglin Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Miranda Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Olivia Rissland
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - J Timothy Westwood
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6 Department of Cell and Systems Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
25
|
Andersen KK, Otzen DE. Denaturation of α-lactalbumin and myoglobin by the anionic biosurfactant rhamnolipid. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2338-45. [DOI: 10.1016/j.bbapap.2014.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
26
|
Chhetri G, Pandey T, Kumar B, Akhtar MS, Tripathi T. Recombinant expression, purification and preliminary characterization of the mRNA export factor MEX67 of Saccharomyces cerevisiae. Protein Expr Purif 2014; 107:56-61. [PMID: 25462802 DOI: 10.1016/j.pep.2014.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
The nuclear export of macromolecules is facilitated by the nuclear pore complexes (NPCs), embedded in the nuclear envelope and consists of multi-protein complexes. MEX67 is one of the nuclear export factor responsible for the transport of the majority of cellular mRNAs from the nucleus to the cytoplasm. The mechanism of mRNA transport through NPCs is unclear due to the unavailability of structures and the known interacting partners of MEX67. The mex67 gene was cloned in pQE30A and was expressed in Escherichia coli. A strategy has been developed to purify the insoluble MEX67 using a nickel affinity column with chelating Sepharose fast flow media, after solubilizing with sodium lauroyl sarcosinate (Sarkosyl). The IMAC purified recombinant MEX67 was further purified using SEC to apparent homogeneity (∼8 mg/L). Following SEC, MEX67 was stable and observed to be a 67 kDa monomeric protein as determined by PAGE and the size exclusion chromatography. The availability of large quantities of the protein will help in its biochemical and biophysical characterization, which may lead to the identification of new interaction partners of MEX67 or MEX67 complex.
Collapse
Affiliation(s)
- Gaurav Chhetri
- Molecular Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Tripti Pandey
- Molecular Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Bijay Kumar
- Molecular Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Md Sohail Akhtar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India.
| | - Timir Tripathi
- Molecular Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
27
|
Chisnall B, Johnson C, Kulaberoglu Y, Chen YW. Insoluble protein purification with sarkosyl: facts and precautions. Methods Mol Biol 2014; 1091:179-86. [PMID: 24203332 DOI: 10.1007/978-1-62703-691-7_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
When eukaryotic proteins are overexpressed in Escherichia coli hosts, they often form inclusion bodies. Natively folded proteins can be extracted from inclusion bodies using mild detergents such as sarkosyl. One common problem is the sequestration of nucleic acid contaminants with the protein of interest. Here we describe methods for monitoring the presence of co-precipitated nucleic acids, and their removal. These procedures are simple to implement and can be easily adapted to a high-throughput format. While sarkosyl is a common chemical, some information such as its UV absorption spectrum and micellar size are absent in the literature or poorly referenced. We review and summarize the properties that are the most relevant to structural biology.
Collapse
|
28
|
Yun HY, Huh SH. Fluorescence Study Gives a Hint to Understand How the p53 DNA Binding Domain Recognizes Its Specific Binding Site on DNA Fragments. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Schlager B, Straessle A, Hafen E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC Biotechnol 2012; 12:95. [PMID: 23231964 PMCID: PMC3536628 DOI: 10.1186/1472-6750-12-95] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many proteins form insoluble protein aggregates, called "inclusion bodies", when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. RESULTS Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. CONCLUSION Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology.
Collapse
Affiliation(s)
- Benjamin Schlager
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| | - Anna Straessle
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| | - Ernst Hafen
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| |
Collapse
|
30
|
Gao P, Kolenovsky A, Cui Y, Cutler AJ, Tsang EWT. Expression, purification and analysis of an Arabidopsis recombinant CBL-interacting protein kinase3 (CIPK3) and its constitutively active form. Protein Expr Purif 2012; 86:45-52. [PMID: 22985939 DOI: 10.1016/j.pep.2012.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
CIPK3 is a member of CBL (calcineurin B-like)-interacting serine-threonine protein kinases which play an important role in many developmental and adaptation processes in Arabidopsis. Studies conducted on members of this family such as SOS2, PKS8 and PKS11 have provided insight into how these kinases interact with their target substrates in the signal-response process. Since SOS2, PKS8 and PKS11 have low enzymatic activities in vitro and their amino acid sequences are homologous to that of CIPK3, it was assumed that CIPK3 would have a low enzymatic activity. To enhance CIPK3 enzyme activity, a constitutively active form, CIPK3T183D, was generated by a Thr(183) to Asp(183) substitution in the activation loop. To obtain proteins for analysis, glutathione S-transferase (GST) fusion protein system was used. Although both CIPK3 and CIPK3T183D were successfully expressed, they were found in inclusion bodies with three truncated proteins. Since the truncated proteins had a similar affinity to the GST-Bind Resin as the target protein, the one-step affinity purification could no longer be used. As an alternative, His fusion protein expression system was employed for protein production. Although both His-CIPK3 and His-CIPK3T183D also accumulated in inclusion bodies, they were expressed as a single protein species. A method involving Sarkosyl was developed for isolating and purifying the His fusion proteins. His-CIPK3 and His-CIPK3T183D produced were highly purified and enzymatically active. In addition, a 9-fold increase in kinase activity in His-CIPK3T183D was observed, indicating that Thr(183) to Asp(183) substitution in the activation loop of CIPK3 had succeeded in enhancing the kinase activity.
Collapse
Affiliation(s)
- Peng Gao
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| | | | | | | | | |
Collapse
|
31
|
Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:450-60. [DOI: 10.1016/j.bbapap.2011.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/10/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
|
32
|
Mühle M, Löchelt M, Denner J. Optimisation of expression and purification of the feline and primate foamy virus transmembrane envelope proteins using a 96 deep well screen. Protein Expr Purif 2011; 81:96-105. [PMID: 21964437 DOI: 10.1016/j.pep.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/04/2011] [Accepted: 09/13/2011] [Indexed: 12/21/2022]
Abstract
The production of recombinant transmembrane proteins is due to their biochemical properties often troublesome and time consuming. Here the prokaryotic expression and purification of the transmembrane envelope proteins of the feline and primate foamy viruses using a screening assay for optimisation of expression in 96 deep well plates is described. Testing simultaneously various bacterial strains, media, temperatures, inducer concentrations and different transformants, conditions for an about twentyfold increased production were quickly determined. These small scale test conditions could be easily scaled up, allowing purification of milligram amounts of recombinant protein. Proteins with a purity of about 95% were produced using a new purification protocol, they were characterised by gel filtration and circular dichroism and successfully applied in immunological assays screening for foamy virus infection and in immunisation studies. Compared to the previously described protocol (M. Mühle, A. Bleiholder, S. Kolb, J. Hübner, M. Löchelt, J. Denner, Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening, Virology 412 (2011) 333-340), proteins with similar characteristics but about thirtyfold increased yields were obtained. The screening and production method presented here can also be applied for the production of transmembrane envelope proteins of other retroviruses, including HIV-1.
Collapse
Affiliation(s)
- Michael Mühle
- Robert Koch Institute, Nordufer 20, Berlin 13353, Germany
| | - Martin Löchelt
- German Institute for Cancer Research, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, Berlin 13353, Germany.
| |
Collapse
|
33
|
Park DW, Kim SS, Nam MK, Kim GY, Kim J, Rhim H. Improved recovery of active GST-fusion proteins from insoluble aggregates: solubilization and purification conditions using PKM2 and HtrA2 as model proteins. BMB Rep 2011; 44:279-84. [PMID: 21524355 DOI: 10.5483/bmbrep.2011.44.4.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glutathione S-transferase (GST) system is useful for increasing protein solubility and purifying soluble GST fusion proteins. However, purifying half of the GST fusion proteins is still difficult, because they are virtually insoluble under non-denaturing conditions. To optimize a simple and rapid purification condition for GST-pyruvate kinase muscle 2 (GST-PKM2) protein, we used 1% sarkosyl for lysis and a 1:200 ratio of sarkosyl to Triton X-100 (S-T) for purification. We purified the GST-PKM2 protein with a high yield, approximately 5 mg/L culture, which was 33 times higher than that prepared using a conventional method. Notably, the GST-high-temperature requirement A2 (GST-HtrA2) protein, used as a model protein for functional activity, fully maintained its proteolytic activity, even when purified under our S-T condition. This method may be useful to apply to other biologically important proteins that become highly insoluble in the prokaryotic expression system.
Collapse
Affiliation(s)
- Dae-Wook Park
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Mosulén S, Ortí L, Bas E, Carbajo RJ, Pineda-Lucena A. Production of heparanase constructs suitable for nuclear magnetic resonance and drug discovery studies. Biopolymers 2010; 95:151-60. [PMID: 20882536 DOI: 10.1002/bip.21549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 11/09/2022]
Abstract
Heparanase is an endo-β-D-glucosidase capable of specifically degrading heparan sulphate, one of the main components of the extracellular matrix. This 65 kDa polypeptide is implicated in cancer processes such as tumour formation, angiogenesis and metastasis, making it a very attractive target in antitumour treatments. Structure-based approaches to find inhibitors of heparanase have been historically hampered by the lack of success in crystallizing the protein. With the aim to undertake the NMR structural characterisation of heparanase, we have designed and produced, using recombinant methods, smaller constructs of heparanase containing the catalytically active glutamic acids and the two binding sites for heparan sulphate. An extensive range of expression and purification conditions were evaluated to alleviate the intrinsic low solubility and aggregation propensity of heparanase, allowing the obtention of the enzyme in milligram quantities, both unlabelled and ¹⁵N-labelled for NMR studies. Using the smallest of the designed constructs and applying NMR and SPR methodologies, we have demonstrated that known inhibitors of heparanase bind to this construct specifically and selectively with K(D) values in the range of those reported for human heparanase, validating it for future drug discovery projects focused on the identification of novel inhibitors of this enzyme.
Collapse
Affiliation(s)
- Silvia Mosulén
- Medicinal Chemistry Department, Structural Biology Laboratory, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler 16, E-46012 Valencia, Spain
| | | | | | | | | |
Collapse
|
35
|
Reichel C, Abzieher F, Geisendorfer T. SARCOSYL-PAGE: a new method for the detection of MIRCERA- and EPO-doping in blood. Drug Test Anal 2010; 1:494-504. [PMID: 20355164 DOI: 10.1002/dta.97] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The detection of doping with MIRCERA (the brand name for Continuous Erythropoietin Receptor Activator, or CERA) is hampered by the limited excretion of the rather large molecule (approximately 60 kDa) in urine. Blood (serum, plasma) in combination with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) appears to be the ideal matrix for detecting all forms of doping with erythropoiesis-stimulating agents (ESAs) because the apparent molecular masses of ESAs are different from the mass of human serum erythropoietin (shEPO). While SDS-PAGE has proven the most sensitive method for the detection of doping with Dynepo, the sensitivity of SDS-PAGE for MIRCERA is drastically decreased. By exchanging the SDS for SARCOSYL (SAR) in the sample and running buffers the sensitivity problem was solved. SARCOSYL, a methyl glycine-based anionic surfactant, is only binding to the protein-part of MIRCERA but not to its polyethylene glycol (PEG)-chain, while SDS binds to both parts. In consequence, the monoclonal anti-EPO antibody (clone AE7A5) no longer interacts with the fully SDS-solubilized MIRCERA molecules. Only those molecules that contain SDS bound to the protein-chain are detected. Due to the inability of SARCOSYL to solubilize PEG-molecules, MIRCERA can be detected on SARCOSYL-PAGE with the same sensitivity as non-PEGylated epoetins. In a typical SAR-PAGE experiment, 200 microL of serum are used, which allows the direct detection of MIRCERA, recombinant epoetins (such as NeoRecormon, Dynepo, NESP), and shEPO in a single experiment and with high (i.e. femtogram) sensitivity.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, Seibersdorf, Austria.
| | | | | |
Collapse
|
36
|
Expression and purification of ataxin-1 protein. J Neurosci Methods 2010; 189:30-5. [PMID: 20304006 DOI: 10.1016/j.jneumeth.2010.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 03/06/2010] [Accepted: 03/11/2010] [Indexed: 11/22/2022]
Abstract
Ataxin-1 is part of a larger family of polyglutamine-containing proteins that is linked to nine distinct neurodegenerative disorders. There are no known effective therapies for any of these expanded polyglutamine tract disorders. One possible reason for this is the lack of sufficient amounts of pure polyglutamine-containing proteins suitable for biochemical and conformational studies. Here, we show that we were able to successfully purify a non-pathological, wild-type human ataxin-1 protein containing a 30-glutamine repeat sequence. This ataxin-1 protein was expressed in Escherichia coli as a fusion protein with a GST tag at the N-terminus and a double (His)(6) tag at the C-terminus. The devised dual affinity tag strategy allowed successful purification of the full-length ataxin-1 fusion protein to 90% homogeneity as confirmed by Western blot analysis using the two monoclonal ataxin-1 antibodies developed in our laboratory. In addition, the GST tag was successfully removed from the purified ataxin-1 fusion protein by treatment with Tobacco etch virus (TEV) protease. Since polyglutamine-containing proteins tend to aggregate, solvents/buffers that minimize aggregation have been used in the purification process. This dual affinity purification protocol could serve as a useful basis for purifying aggregation-prone proteins that are involved in other neurodegenerative diseases.
Collapse
|
37
|
Tao H, Liu W, Simmons BN, Harris HK, Cox TC, Massiah MA. Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques 2010; 48:61-4. [PMID: 20078429 DOI: 10.2144/000113304] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe a rapid, simple, and efficient method for recovering glutathione S-transferase (GST)- and His6-tagged maltose binding protein (MBP) fusion proteins from inclusion bodies. Incubation of inclusion bodies with 10% sarkosyl effectively solubilized >95% of proteins, while high-yield recovery of sarkosyl-solubilized fusion proteins was obtained with a specific ratio of Triton X-100 and CHAPS. We demonstrate for the first time that this combination of three detergents significantly improves binding efficiency of GST and GST fusion proteins to gluthathione (GSH) Sepharose.
Collapse
Affiliation(s)
- Hu Tao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
38
|
Park S, Terzic A. Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. J Struct Biol 2010; 169:243-51. [PMID: 19919849 PMCID: PMC2818519 DOI: 10.1016/j.jsb.2009.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/11/2009] [Accepted: 11/10/2009] [Indexed: 01/03/2023]
Abstract
Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K(+) (K(ATP)) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168x80x37A(3) and 175x81x37A(3) based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein-protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of K(ATP) channel SUR2A regulatory domains.
Collapse
Affiliation(s)
- Sungjo Park
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
39
|
Amiry N, Kong X, Muniraj N, Kannan N, Grandison PM, Lin J, Yang Y, Vouyovitch CM, Borges S, Perry JK, Mertani HC, Zhu T, Liu D, Lobie PE. Trefoil factor-1 (TFF1) enhances oncogenicity of mammary carcinoma cells. Endocrinology 2009; 150:4473-83. [PMID: 19589871 DOI: 10.1210/en.2009-0066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The functional role of autocrine trefoil factor-1 (TFF1) in mammary carcinoma has not been previously elucidated. Herein, we demonstrate that forced expression of TFF1 in mammary carcinoma cells resulted in increased total cell number as a consequence of increased cell proliferation and survival. Forced expression of TFF1 enhanced anchorage-independent growth and promoted scattered cell morphology with increased cell migration and invasion. Moreover, forced expression of TFF1 increased tumor size in xenograft models. Conversely, RNA interference-mediated depletion of TFF1 in mammary carcinoma cells significantly reduced anchorage-independent growth and migration. Furthermore, neutralization of secreted TFF1 protein by polyclonal antibody decreased mammary carcinoma cell viability in vitro and resulted in regression of mammary carcinoma xenografts. We have therefore demonstrated that TFF1 possesses oncogenic functions in mammary carcinoma cells. Functional antagonism of TFF1 can therefore be considered as a novel therapeutic strategy for mammary carcinoma.
Collapse
Affiliation(s)
- Naeem Amiry
- The Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Antifungal activity of a recombinant defensin CADEF1 produced by Escherichia coli. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0089-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Huber WJ, Backes WL. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase. Biochemistry 2007; 46:12212-9. [PMID: 17915953 DOI: 10.1021/bi701496z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.
Collapse
Affiliation(s)
- Warren J Huber
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
42
|
Lange C, Müller SD, Walther TH, Bürck J, Ulrich AS. Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2627-34. [PMID: 17669355 DOI: 10.1016/j.bbamem.2007.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/17/2007] [Accepted: 06/18/2007] [Indexed: 11/19/2022]
Abstract
The twin-arginine-translocase (Tat) can transport proteins in their folded state across bacterial or thylakoid membranes. In Bacillus subtilis the Tat-machinery consists of only two integral (inner) membrane proteins, TatA and TatC. Multiple copies of TatA are supposed to form the transmembrane channel, but little structural data is available on this 70-residue component. We used a multi-construct approach for expressing several characteristic fragments of TatA(d), to determine their individual structures and to cross-validate them comprehensively within the architecture of the full-length protein. Here, we report the design, high-yield expression, detergent-aided purification and lipid-reconstitution of five constructs of TatA(d), overcoming difficulties associated with the very different hydrophobicities and sizes of these membrane protein fragments. Circular dichroism (CD) and oriented CD (OCD) were used to determine their respective conformations and alignments in suitable, negatively charged phospholipid bilayers. CD spectroscopy showed an N-terminal alpha-helix, a central helical stretch, and an unstructured C-terminus, thus proving the existence of these secondary structures in TatA(d) for the first time. The OCD spectra demonstrated a transmembrane orientation of the N-terminal alpha-helix and a surface alignment of the central amphiphilic helix in lipid bilayers, thus supporting the postulated topology model and function of TatA as a transmembrane channel.
Collapse
Affiliation(s)
- Christian Lange
- Forschungszentrum Karlsruhe, POB 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
43
|
Couturier MR, Tasca E, Montecucco C, Stein M. Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 2006; 74:273-81. [PMID: 16368981 PMCID: PMC1346642 DOI: 10.1128/iai.74.1.273-281.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Development of severe gastric diseases is strongly associated with those strains of Helicobacter pylori that contain the cag pathogenicity island (PAI) inserted into the chromosome. The cag PAI encodes a type IV secretion system that translocates the major disease-associated virulence protein, CagA, into the host epithelial cell. CagA then affects host signaling pathways, leading to cell elongations and inflammation. Since the precise mechanism by which the CagA toxin is translocated by the type IV secretion system remained elusive, we used fusion proteins and immunoprecipitation studies to identify CagA-interacting secretion components. Here we demonstrate that CagA, in addition to other yet-unidentified proteins, interacts with CagF, presumably at the inner bacterial membrane. This interaction is required for CagA translocation, since an isogenic nonpolar cagF mutant was translocation deficient. Our results suggest that CagF may be a protein with unique chaperone-like function that is involved in the early steps of CagA recognition and delivery into the type IV secretion channel.
Collapse
Affiliation(s)
- Marc Roger Couturier
- Department of Medical Microbiology and Immunology, University of Alberta, 1-17 Medical Sciences Building, Edmonton, Alberta T6G 2R3, Canada
| | | | | | | |
Collapse
|
44
|
Jevsevar S, Gaberc-Porekar V, Fonda I, Podobnik B, Grdadolnik J, Menart V. Production of nonclassical inclusion bodies from which correctly folded protein can be extracted. Biotechnol Prog 2005; 21:632-9. [PMID: 15801811 DOI: 10.1021/bp0497839] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human granulocyte-colony stimulating factor (hG-CSF), an important biopharmaceutical drug used in oncology, is currently produced mainly in Escherichia coli. Expression of human hG-CSF gene in E. coli is very low, and therefore a semisynthetic, codon-optimized hG-CSF gene was designed and subcloned into pET expression plasmids. This led to a yield of over 50% of the total cellular proteins. We designed a new approach to biosynthesis at low temperature, enabling the formation of "nonclassical" inclusion bodies from which correctly folded protein can be readily extracted by nondenaturing solvents, such as mild detergents or low concentrations of polar solvents such as DMSO and nondetergent sulfobetaines. FT-IR analysis confirmed different nature of inclusion bodies with respect to the growth temperature and indicated presence of high amounts of very likely correctly folded reduced hG-CSF in nonclassical inclusion bodies. The yield of correctly folded, functional hG-CSF obtained in this way exceeded 40% of the total hG-CSF produced in the cells and is almost completely extractable under nondenaturing conditions. The absence of the need to include a denaturation/renaturation step in the purification process allows the development of more efficient processes characterized by higher yields and lower costs and involving environment-friendly technologies. The technology presented works successfully at the 50-L scale, producing nonclassical inclusion bodies of the same quality. The approach developed for the production of hG-CSF could be extended to other proteins; thus, a broader potential for industrial exploitation is envisaged.
Collapse
Affiliation(s)
- Simona Jevsevar
- Lek Pharmaceuticals d.d., Verovskova 57, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
45
|
Covalt JC, Cao TB, Magdaroag JRC, Gross LA, Jennings PA. Temperature, media, and point of induction affect the N-terminal processing of interleukin-1β. Protein Expr Purif 2005; 41:45-52. [PMID: 15802220 DOI: 10.1016/j.pep.2005.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The expression of recombinant proteins in bacterial hosts may alter the biophysical properties of the protein of interest as a result of differences in post-translational processing from that observed when produced in the native cell. For example, recombinant human interleukin-1beta (IL-1beta) is produced as three isoforms when expressed in the Escherichia coli strain BL-21(DE3). These isoforms are produced by the non-homogeneous processing of the N-terminal methionine residue by the endogenous bacterial aminopeptidase and differ in the first residue (1-met, 1-ala, and 1-pro). Importantly, these isoforms have significantly different binding affinities for the IL receptor protein. Varying the temperature, media composition, and point of induction affects this N-terminal processing to favor one of the three isoforms of IL-1beta. We found changes in media composition and/or point of induction affected the abundance of the isoforms by as much as 15-fold. The 1-pro isoform decreased from 60.9 to 4.7% in Luria broth (LB) and minimal media (MM), respectively, when protein expression was induced at an OD600 of 0.9. Conversely, the abundance of the 1-met isoform is much higher in MM than in LB showing the reverse effect (2.6 and 50.7% in LB and MM, respectively, at an OD600 of 0.9), and the degree to which they are favored depends significantly upon the induction point. Our results show that it is possible to favor the expression of various N-terminal isoforms of IL-1beta by adjusting the environmental growth conditions. Given that the initiator methionine residue is necessary for expression in bacterial hosts and is known to affect the stability of other recombinant proteins our approach may be a useful general method for determining the optimal conditions for expressing and purifying pure, homogenous samples of recombinant proteins for structural and biological studies.
Collapse
Affiliation(s)
- James C Covalt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0375, USA
| | | | | | | | | |
Collapse
|
46
|
Lännenpää M, Jänönen I, Hölttä-Vuori M, Gardemeister M, Porali I, Sopanen T. A new SBP-box gene BpSPL1 in silver birch (Betula pendula). PHYSIOLOGIA PLANTARUM 2004; 120:491-500. [PMID: 15032847 DOI: 10.1111/j.0031-9317.2004.00254.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The SBP-box gene family represents a group of plant-specific genes encoding putative transcription factors. Thus far, SBP-domain protein binding sites have been found in the promoters of Arabidopsis APETALA1 and Antirrhinum SQUAMOSA. A putative SBP-domain binding element has been observed in the promoter of BpMADS5, a close homologue of Arabidopsis FRUITFULL in silver birch (Betula pendula). A novel SBP-box gene from birch named BpSPL1 has been cloned and characterized. The nucleotide sequence of BpSPL1 is similar to Antirrhinum SBP2 and Arabidopsis SPL3, apart from the unique finding that BpSPL1 does not contain an intron typical to all other known SBP-box genes studied thus far. According to Northern blot analysis, BpSPL1 is expressed in birch inflorescences as well as in shoots and leaves. Studies using electrophoretic mobility shift assay demonstrate that there are nuclear proteins in birch inflorescences which specifically bind to the SBP binding element of the promoter of BpMADS5. BpSPL1 expressed in Escherichia coli also specifically binds to this element. According to Southern blot analysis, there are at least two SBP-box genes in birch. The results suggest that SBP-box genes are involved in the regulation of flower development in birch.
Collapse
Affiliation(s)
- Mika Lännenpää
- Department of Biology, University of Joensuu. P.O.Box 111, FIN-80101 Joensuu, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Magalhães MLB, Pereira CP, Basso LA, Santos DS. Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 2002; 26:59-64. [PMID: 12356471 DOI: 10.1016/s1046-5928(02)00509-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to be one of the deadliest diseases in the world. TB resurged in the late 1980s and now kills more than 2 million people a year. Possible factors underlying the reemergence of TB are the high susceptibility of human immunodeficiency virus-infected persons to the disease, the proliferation of multi-drug-resistant (MDR) strains, patient noncompliance in completing the standard "short-course" therapy, and decline of health care systems. Thus, there is a need for the development of new antimycobacterial agents to treat MDR strains of M. tuberculosis, to provide for more effective treatment of latent tuberculosis infection, and to shorten the treatment course to improve patient compliance. The shikimate pathway is an attractive target for antimicrobial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent in mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of M. tuberculosis. The M. tuberculosis aroE-encoded shikimate dehydrogenase was PCR amplified, cloned, sequenced, and expressed in Escherichia coli BL21(DE3). Recombinant protein expression was achieved by a low-cost and simple protocol. Although cell lysis resulted in the formation of insoluble aggregates of the recombinant protein, soluble and functional M. tuberculosis shikimate dehydrogenase could be obtained by repeated cycles of freezing and thawing. Enzyme activity measurements demonstrated that there was approximately a 5-fold increase in specific activity for M. tuberculosis shikimate dehydrogenase. Moreover, the enzyme activity was linearly dependent upon the amount of recombinant protein added to the assay mixture, thus, confirming cloning and expression of functional mycobacterial shikimate.
Collapse
Affiliation(s)
- Maria L B Magalhães
- Rede Brasileira de Pesquisa em Tuberculose, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, RS 91501-970, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
48
|
Heimpel S, Basset G, Odoy S, Klingenberg M. Expression of the mitochondrial ADP/ATP carrier in Escherichia coli. Renaturation, reconstitution, and the effect of mutations on 10 positive residues. J Biol Chem 2001; 276:11499-506. [PMID: 11136735 DOI: 10.1074/jbc.m010586200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, the role of residues in the ADP/ATP carrier (AAC) from Saccharomyces cerevisiae has been studied by mutagenesis, but the dependence of mitochondrial biogenesis on functional AAC impedes segregation of the mutational effects on transport and biogenesis. Unlike other mitochondrial carriers, expression of the AAC from yeast or mammalians in Escherichia coli encountered difficulties because of disparate codon usage. Here we introduce the AAC from Neurospora crassa in E. coli, where it is accumulated in inclusion bodies and establish the reconstitution conditions. AAC expressed with heat shock vector gave higher activity than with pET-3a. Transport activity was absolutely dependent on cardiolipin. The 10 single mutations of intrahelical positive residues and of the matrix repeat (+X+) motif resulted in lower activity, except of R245A. R143A had decreased sensitivity toward carboxyatractylate. The ATP-linked exchange is generally more affected than ADP exchange. This reflects a charge network that propagates positive charge defects to ATP(4-) more strongly than to ADP(3-) transport. Comparison to the homologous mutants of yeast AAC2 permits attribution of the roles of these residues more to ADP/ATP transport or to AAC import into mitochondria.
Collapse
Affiliation(s)
- S Heimpel
- Institute of Physical Biochemistry, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | | | | | | |
Collapse
|
49
|
Winkler E, Heidkaemper D, Klingenberg M, Liu Q, Caskey T. UCP3 expressed in yeast is primarily localized in extramitochondrial particles. Biochem Biophys Res Commun 2001; 282:334-40. [PMID: 11264012 DOI: 10.1006/bbrc.2001.4563] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously it was concluded (1) that, differently from UCP1, on expression in Saccharomyces cerevisiae, UCP3, and UCP3 short (UCP3s) are in a deranged state, allowing for unregulated uncoupling. Here we show that the bulk of UCP3 and UCP3s is in extramitochondrial aggregates whether expressed with high or medium expression vectors. The evidence is based on the insolubility of most UCP3 and UCP3s in nonionic detergents such as Triton X100, in contrast to UCP1. Using very high expression vector, macroscopic evidence for extramitochondrial UCP3 containing particles is a viscous white sediment surrounding the mitochondrial fraction which contains UCP3 as inclusion body type aggregate. Together with the previous data it is concluded that uncoupling due to small amounts of incorporated, deranged, and nucleotide insensitive UCP3 prevents incorporation of the bulk of UCP3 into mitochondria. This finding also provides a simple and stringent assay for the state of heterologously expressed in mitochondrial membrane proteins.
Collapse
Affiliation(s)
- E Winkler
- Institute for Physical Biochemistry, University of Munich, Schillerstrasse 44, Munich, 80336, Germany
| | | | | | | | | |
Collapse
|
50
|
Begum RR, Newbold RJ, Whitford D. Purification of the membrane binding domain of cytochrome b5 by immobilised nickel chelate chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 737:119-30. [PMID: 10681048 DOI: 10.1016/s0378-4347(99)00480-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purification of a eukaryotic membrane protein has been achieved using a prokaryotic expression system. Bovine cytochrome b5 is an integral membrane protein (Mr approximately 16500). It comprises of a globular haem containing catalytic domain positioned at the N-terminus of the protein and a hydrophobic membrane binding segment at the C-terminus. The membrane binding domain (MBD) is resistant to purification using conventional strategies that have proved successful in isolating the soluble haem containing fragment. We report here a versatile purification method for the isolation of the MBD involving a gene fusion system. The fusion protein incorporates thioredoxin at the amino terminus and six histidines as the metal affinity binding site followed by cytochrome b5 in a pET expression system. This supports high level expression of cytochrome b5 in E. coli C43(DE3) cells. The fusion protein is effectively solubilised from lysed cells with Triton X-100. A step gradient elution with imidazole under non-denaturing conditions on a His-Bind nickel chelate affinity column, saturated with proteins as a crude cell extract, purified the protein in a single step. Proteolytic digestion of pure fusion protein, with trypsin, yielded the MBD. This fragment was further purified by RP-HPLC to a final yield of approximately 10 mg/l.
Collapse
Affiliation(s)
- R R Begum
- Laboratory of Structural Biochemistry, Molecular and Cellular Biology, Queen Mary and Westfield College, University of London, UK
| | | | | |
Collapse
|