1
|
Boukraa N, Ladjel S, Benlamoudi W, Goudjil MB, Berrekbia M, Eddoud A. Insecticidal and repellent activities of Artemisia herba alba Asso, Juniperus phoenicea L and Rosmarinus officinalis L essential oils in synergized combinations against adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
2
|
Gui W, Kodadek T. Applications and Limitations of Oxime-Linked "Split PROTACs". Chembiochem 2022; 23:e202200275. [PMID: 35802347 PMCID: PMC9594079 DOI: 10.1002/cbic.202200275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Indexed: 11/10/2022]
Abstract
Proteolysis targeting chimeras are of keen interest as probe molecules and drug leads. Their activity is highly sensitive to the length and nature of the linker connecting the E3 Ubiquitin Ligase (E3 Ubl) and target protein (TP) ligands, which therefore requires tedious optimization. The creation of "split PROTACs" from E3 Ubl and TP ligands modified with residues suitable for them to couple when simply mixed together would allow various combinations to be assessed in a combinatorial fashion, thus greatly easing the workload relative to a one-by-one synthesis of many different PROTACs (proteolysis targeting chimeras). We explore oxime chemistry here for this purpose. We show that PROTAC assembly occurs efficiently when the components are mixed at a high concentration, then added to cells. However, in situ coupling of the TP and E3 Ubl ligands is inefficient when these units are added to cells at lower concentrations.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry. Cell Metab 2016; 23:379-85. [PMID: 26712463 PMCID: PMC4752821 DOI: 10.1016/j.cmet.2015.11.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/02/2015] [Accepted: 11/15/2015] [Indexed: 01/27/2023]
Abstract
The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by "click" chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.
Collapse
|
4
|
Naklua W, Mahesh K, Aundorn P, Tanmanee N, Aenukulpong K, Sutto S, Chen YZ, Chen S, Suedee R. An imprinted dopamine receptor for discovery of highly potent and selective D 3 analogues with neuroprotective effects. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
6
|
Sachdeva A, Wang K, Elliott T, Chin JW. Concerted, rapid, quantitative, and site-specific dual labeling of proteins. J Am Chem Soc 2014; 136:7785-8. [PMID: 24857040 PMCID: PMC4333588 DOI: 10.1021/ja4129789] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 01/18/2023]
Abstract
Rapid, one-pot, concerted, site-specific labeling of proteins at genetically encoded unnatural amino acids with distinct small molecules at physiological pH, temperature, and pressure is an important challenge. Current approaches require sequential labeling, low pH, and typically days to reach completion, limiting their utility. We report the efficient, genetically encoded incorporation of alkyne- and cyclopropene-containing amino acids at distinct sites in a protein using an optimized orthogonal translation system in E. coli. and quantitative, site-specific, one-pot, concerted protein labeling with fluorophores bearing azide and tetrazine groups, respectively. Protein double labeling in aqueous buffer at physiological pH, temperature, and pressure is quantitative in 30 min.
Collapse
Affiliation(s)
| | | | - Thomas Elliott
- Medical Research Council
Laboratory of
Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jason W. Chin
- Medical Research Council
Laboratory of
Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
7
|
Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 2014; 114:4764-806. [PMID: 24655057 DOI: 10.1021/cr400355w] [Citation(s) in RCA: 801] [Impact Index Per Article: 80.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathrin Lang
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
8
|
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014; 92:133-47. [DOI: 10.1016/j.fitote.2013.10.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 02/07/2023]
|
9
|
Smith RAJ, Hartley RC, Cochemé HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci 2012; 33:341-52. [PMID: 22521106 DOI: 10.1016/j.tips.2012.03.010] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 12/13/2022]
Abstract
Mitochondria are being recognized as key factors in many unexpected areas of biomedical science. In addition to their well-known roles in oxidative phosphorylation and metabolism, it is now clear that mitochondria are also central to cell death, neoplasia, cell differentiation, the innate immune system, oxygen and hypoxia sensing, and calcium metabolism. Disruption to these processes contributes to a range of human pathologies, making mitochondria a potentially important, but currently seemingly neglected, therapeutic target. Mitochondrial dysfunction is often associated with oxidative damage, calcium dyshomeostasis, defective ATP synthesis, or induction of the permeability transition pore. Consequently, therapies designed to prevent these types of damage are beneficial and can be used to treat many diverse and apparently unrelated indications. Here we outline the biological properties that make mitochondria important determinants of health and disease, and describe the pharmacological strategies being developed to address mitochondrial dysfunction.
Collapse
Affiliation(s)
- Robin A J Smith
- Department of Chemistry, University of Otago, Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
10
|
Zhang Y, Angelin M, Larsson R, Albers A, Simons A, Ramström O. Tandem driven dynamic self-inhibition of acetylcholinesterase. Chem Commun (Camb) 2010; 46:8457-9. [DOI: 10.1039/c0cc02479a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Mugherli L, Burchak O, Balakireva L, Thomas A, Chatelain F, Balakirev M. In Situ Assembly and Screening of Enzyme Inhibitors with Surface-Tension Microarrays. Angew Chem Int Ed Engl 2009; 48:7639-44. [DOI: 10.1002/anie.200901139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Mugherli L, Burchak O, Balakireva L, Thomas A, Chatelain F, Balakirev M. In Situ Assembly and Screening of Enzyme Inhibitors with Surface-Tension Microarrays. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Herrmann A. Dynamic mixtures and combinatorial libraries: imines as probes for molecular evolution at the interface between chemistry and biology. Org Biomol Chem 2009; 7:3195-204. [DOI: 10.1039/b908098h] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Abeywickrama C, Rotenberg SA, Baker AD. Inhibition of protein kinase C by dequalinium analogues: Structure–activity studies on head group variations. Bioorg Med Chem 2006; 14:7796-803. [PMID: 16962331 DOI: 10.1016/j.bmc.2006.07.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/30/2006] [Accepted: 07/31/2006] [Indexed: 11/24/2022]
Abstract
New dequalinium analogues and related heteroaromatic systems were synthesized and evaluated for inhibition of protein kinase Calpha. In vitro assays with recombinant human PKCalpha showed that the number of the aromatic ring head groups as well as their electron-richness, are critical factors that determine potency. The inhibitory strengths of the synthesized compounds are shown to correlate well with Mulliken charges on the head group ring nitrogen atoms making it possible to design likely candidate molecules having improved protein kinase Calpha inhibitory activity.
Collapse
Affiliation(s)
- Chandima Abeywickrama
- Department of Chemistry, The Graduate Center, The City University of New York, New York, NY 10016-4309, USA
| | | | | |
Collapse
|
15
|
Abstract
Dissecting complex cellular processes requires the ability to track biomolecules as they function within their native habitat. Although genetically encoded tags such as GFP are widely used to monitor discrete proteins, they can cause significant perturbations to a protein's structure and have no direct extension to other classes of biomolecules such as glycans, lipids, nucleic acids and secondary metabolites. In recent years, an alternative tool for tagging biomolecules has emerged from the chemical biology community--the bioorthogonal chemical reporter. In a prototypical experiment, a unique chemical motif, often as small as a single functional group, is incorporated into the target biomolecule using the cell's own biosynthetic machinery. The chemical reporter is then covalently modified in a highly selective fashion with an exogenously delivered probe. This review highlights the development of bioorthogonal chemical reporters and reactions and their application in living systems.
Collapse
Affiliation(s)
- Jennifer A Prescher
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
16
|
Di Paolo ML, Lunelli M, Scarpa M, Rigo A. Phosphonium compounds as new and specific inhibitors of bovine serum amine oxidase. Biochem J 2005; 384:551-8. [PMID: 15320876 PMCID: PMC1134140 DOI: 10.1042/bj20031883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TPP+ (tetraphenylphosphonium ion) and its analogues were found to act as powerful competitive inhibitors of BSAO (bovine serum amine oxidase). The binding of this new class of inhibitors to BSAO was characterized by kinetic measurements. TPP+ can bind to the BSAO active site by hydrophobic and by coulombian interactions. The binding probably occurs in the region of the 'cation-binding site'[Di Paolo, Scarpa, Corazza, Stevanato and Rigo (2002) Biophys. J. 83, 2231-2239]. Under physiological conditions, the association constant of TPP+ for this site is higher than 10(6) M(-1), the change of enthalpy being the main free-energy term controlling binding. Analysis of the relationships between substrate structure and extent of inhibition by TPP+ reveals some new molecular features of the BSAO active site.
Collapse
Affiliation(s)
- Maria Luisa Di Paolo
- Dipartimento di Chimica Biologica, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
17
|
Song G, He Y, Cai Z, Lou Z. The Fluorescence Studies of Interaction between 4‐(n‐2′‐Glucosyl) Acetamidyl Triphenyl Phosphonium Chloride and DNA. ANAL LETT 2005. [DOI: 10.1081/al-200047785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Hochgürtel M, Kroth H, Piecha D, Hofmann MW, Nicolau C, Krause S, Schaaf O, Sonnenmoser G, Eliseev AV. Target-induced formation of neuraminidase inhibitors from in vitro virtual combinatorial libraries. Proc Natl Acad Sci U S A 2002; 99:3382-7. [PMID: 11891312 PMCID: PMC122532 DOI: 10.1073/pnas.052703799] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuraminidase, a key enzyme responsible for influenza virus propagation, has been used as a template for selective synthesis of small subsets of its own inhibitors from theoretically highly diverse dynamic combinatorial libraries. We show that the library building blocks, aldehydes and amines, form significant amounts of the library components resulting from their coupling by reductive amination only in the presence of the enzyme. The target amplifies the best hits at least 120-fold. The dynamic libraries synthesized and screened in such an in vitro virtual mode form the components that possess high inhibitory activity, as confirmed by enzyme assays with independently synthesized individual compounds.
Collapse
|
19
|
|
20
|
|
21
|
Abstract
Dynamic covalent chemistry relates to chemical reactions carried out reversibly under conditions of equilibrium control. The reversible nature of the reactions introduces the prospects of "error checking" and "proof-reading" into synthetic processes where dynamic covalent chemistry operates. Since the formation of products occurs under thermodynamic control, product distributions depend only on the relative stabilities of the final products. In kinetically controlled reactions, however, it is the free energy differences between the transition states leading to the products that determines their relative proportions. Supramolecular chemistry has had a huge impact on synthesis at two levels: one is noncovalent synthesis, or strict self-assembly, and the other is supramolecular assistance to molecular synthesis, also referred to as self-assembly followed by covalent modification. Noncovalent synthesis has given us access to finite supermolecules and infinite supramolecular arrays. Supramolecular assistance to covalent synthesis has been exploited in the construction of more-complex systems, such as interlocked molecular compounds (for example, catenanes and rotaxanes) as well as container molecules (molecular capsules). The appealing prospect of also synthesizing these types of compounds with complex molecular architectures using reversible covalent bond forming chemistry has led to the development of dynamic covalent chemistry. Historically, dynamic covalent chemistry has played a central role in the development of conformational analysis by opening up the possibility to be able to equilibrate configurational isomers, sometimes with base (for example, esters) and sometimes with acid (for example, acetals). These stereochemical "balancing acts" revealed another major advantage that dynamic covalent chemistry offers the chemist, which is not so easily accessible in the kinetically controlled regime: the ability to re-adjust the product distribution of a reaction, even once the initial products have been formed, by changing the reaction's environment (for example, concentration, temperature, presence or absence of a template). This highly transparent, yet tremendously subtle, characteristic of dynamic covalent chemistry has led to key discoveries in polymer chemistry. In this review, some recent examples where dynamic covalent chemistry has been demonstrated are shown to emphasise the basic concepts of this area of science.
Collapse
Affiliation(s)
- Stuart J Rowan
- Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | |
Collapse
|
22
|
Yarema KJ, Mahal LK, Bruehl RE, Rodriguez EC, Bertozzi CR. Metabolic delivery of ketone groups to sialic acid residues. Application To cell surface glycoform engineering. J Biol Chem 1998; 273:31168-79. [PMID: 9813021 DOI: 10.1074/jbc.273.47.31168] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of chemical strategies for decorating cells with defined carbohydrate epitopes would greatly facilitate studies of carbohydrate-mediated cell surface interactions. This report describes a general strategy for engineering the display of chemically defined oligosaccharides on cell surfaces that combines the concepts of metabolic engineering and selective chemical reactivity. Using a recently described method (Mahal, L. K., Yarema, K. J., and Bertozzi, C. R. (1997) Science 276, 1125-1128), we delivered a uniquely reactive ketone group to endogenous cell surface sialic acid residues by treating cells with the ketone-bearing metabolic precursor N-levulinoylmannosamine (ManLev). The ketone undergoes highly selective condensation reactions with complementary nucleophiles such as aminooxy and hydrazide groups. The detailed quantitative parameters of ManLev metabolism in human and nonhuman-derived cell lines were determined to establish a foundation for the modification of cell surfaces with novel epitopes at defined cell-surface densities. Ketones within the glycoconjugates on ManLev-treated cells were then reacted with synthetic aminooxy and hydrazide-functionalized carbohydrates. The remodeled cells were endowed with novel lectin binding profiles as determined by flow cytometry analysis. The simplicity and generality of this method make it well suited for use in the study of carbohydrate-mediated cell surface interactions.
Collapse
Affiliation(s)
- K J Yarema
- Department of Chemistry, University of California, Berkeley, California 94720 and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
23
|
Bernacki RJ. Editorial review of Dr. Darryl Rideout's article entitled "Self-assembling drugs: A new approach to biochemical modulation in cancer chemotherapy. Cancer Invest 1994; 12:268-9. [PMID: 8131105 DOI: 10.3109/07357909409024886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Rideout D. Self-assembling drugs: a new approach to biochemical modulation in cancer chemotherapy. Cancer Invest 1994; 12:189-202; discussion 268-9. [PMID: 8131094 DOI: 10.3109/07357909409024874] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D Rideout
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
Rideout D, Bustamante A, Siuzdak G. Cationic drug analysis using matrix-assisted laser desorption/ionization mass spectrometry: application to influx kinetics, multidrug resistance, and intracellular chemical change. Proc Natl Acad Sci U S A 1993; 90:10226-9. [PMID: 8234281 PMCID: PMC47747 DOI: 10.1073/pnas.90.21.10226] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Highly sensitive and convenient analysis of intracellular cationic drugs has been achieved by applying matrix-assisted laser desorption/ionization mass spectrometry (MALD-MS). Tetraphenylphosphonium cation was readily identified and quantified (using methyltriphenylphosphonium cation as an internal standard) at subpicomole levels in crude lysate from < 4 x 10(3) FaDu human hypopharyngeal carcinoma cells. A quantitative MALD-MS time course for tetraphenylphosphonium cation accumulation into FaDu cells was comparable to a time course using scintillation counting with tritiated tetraphenylphosphonium. MALD-MS was also capable of demonstrating the reduced accumulation of the cationic drug rhodamine-123 by DoxR MCF7, a multiply drug-resistant human breast adenocarcinoma cell line, relative to the nonresistant parent line MCF7. In addition, MALD-MS was used to follow a chemical reaction inside intact FaDu cells: the formation of a hydrazone (II-51) from benzaldehyde and an acylhydrazide, 5-[tris(4-dimethylaminophenyl)phosphonio]pentanoyl hydrazide (II-25). These results suggest that MALD-MS may provide a rapid and practical alternative to existing methods for the analysis of cationic drugs, toxins, and their metabolites in cells and tissues.
Collapse
Affiliation(s)
- D Rideout
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037
| | | | | |
Collapse
|