1
|
Petitjean II, Tran QD, Goutou A, Kabir Z, Wiche G, Leduc C, Koenderink GH. Reconstitution of cytolinker-mediated crosstalk between actin and vimentin. Eur J Cell Biol 2024; 103:151403. [PMID: 38503131 DOI: 10.1016/j.ejcb.2024.151403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.
Collapse
Affiliation(s)
- Irene Istúriz Petitjean
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Quang D Tran
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France
| | - Angeliki Goutou
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Zima Kabir
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Cécile Leduc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France.
| | - Gijsje H Koenderink
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
2
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
4
|
Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells 2021; 10:cells10092353. [PMID: 34572001 PMCID: PMC8464768 DOI: 10.3390/cells10092353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.
Collapse
|
5
|
Potokar M, Morita M, Wiche G, Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells 2020; 9:E1604. [PMID: 32630739 PMCID: PMC7408014 DOI: 10.3390/cells9071604] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023] Open
Abstract
Despite the remarkable complexity of the individual neuron and of neuronal circuits, it has been clear for quite a while that, in order to understand the functioning of the brain, the contribution of other cell types in the brain have to be accounted for. Among glial cells, astrocytes have multiple roles in orchestrating neuronal functions. Their communication with neurons by exchanging signaling molecules and removing molecules from extracellular space takes place at several levels and is governed by different cellular processes, supported by multiple cellular structures, including the cytoskeleton. Intermediate filaments in astrocytes are emerging as important integrators of cellular processes. Astrocytes express five types of intermediate filaments: glial fibrillary acidic protein (GFAP); vimentin; nestin; synemin; lamins. Variability, interactions with different cellular structures and the particular roles of individual intermediate filaments in astrocytes have been studied extensively in the case of GFAP and vimentin, but far less attention has been given to nestin, synemin and lamins. Similarly, the interplay between different types of cytoskeleton and the interaction between the cytoskeleton and membranous structures, which is mediated by cytolinker proteins, are understudied in astrocytes. The present review summarizes the basic properties of astrocytic intermediate filaments and of other cytoskeletal macromolecules, such as cytolinker proteins, and describes the current knowledge of their roles in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe 657-8501, Japan;
| | - Gerhard Wiche
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Celica BIOMEDICAL, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Boraas LC, Ahsan T. Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 2016; 6:30814. [PMID: 27480130 PMCID: PMC4969593 DOI: 10.1038/srep30814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro.
Collapse
Affiliation(s)
- Liana C Boraas
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
7
|
Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol 2015; 569:117-37. [PMID: 26778556 DOI: 10.1016/bs.mie.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.
Collapse
|
8
|
|
9
|
Affiliation(s)
- Beat Ludin
- Friedrich Miescher Institute, Basel, Switzerland
| | - Andrew Matus
- Friedrich Miescher Institute, Basel, Switzerland
| |
Collapse
|
10
|
Bouameur JE, Schneider Y, Begré N, Hobbs RP, Lingasamy P, Fontao L, Green KJ, Favre B, Borradori L. Phosphorylation of serine 4,642 in the C-terminus of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. J Cell Sci 2013; 126:4195-207. [PMID: 23843618 DOI: 10.1242/jcs.127779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.
Collapse
Affiliation(s)
- Jamal-Eddine Bouameur
- Department of Clinical Research-Dermatology, Inselspital Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Castañón MJ, Walko G, Winter L, Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol 2013; 140:33-53. [PMID: 23748243 PMCID: PMC3695321 DOI: 10.1007/s00418-013-1102-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 01/13/2023]
Abstract
Plectin is a large, 500-kDa, intermediate filament (IF)-associated protein. It acts as a cytoskeletal crosslinker and signaling scaffold, affecting mechanical as well as dynamic properties of the cytoskeleton. As a member of the plakin family of cytolinker proteins, plectin has a multidomain structure that is responsible for its vast binding portfolio. It not only binds to all types of IFs, actin filaments and microtubules, but also to transmembrane receptors, proteins of the subplasma membrane protein skeleton, components of the nuclear envelope, and several kinases with known roles in migration, proliferation, and energy metabolism of cells. Due to alternative splicing, plectin is expressed as various isoforms with differing N-terminal heads that dictate their differential subcellular targeting. Through specific interactions with other proteins at their target sites and their ability to bind to all types of IFs, plectin molecules provide strategically located IF anchorage sites within the cytoplasm of cells. In this review, we will present an overview of the structural features and functional properties of plectin and discuss recent progress in defining the role of its isoforms in stress-prone tissues and the implicated diseases, with focus on skin, skeletal muscle, and Schwann cells of peripheral nerve.
Collapse
Affiliation(s)
- Maria J. Castañón
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Gernot Walko
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
- Present Address: Centre for Stem Cells and Regenerative Medicine, King’s College London School of Medicine, 28th Floor, Tower Wing, Guy’s Hospital, Great Maze Pond, London, SE1 9RT UK
| | - Lilli Winter
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
- Present Address: Institute of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Gerhard Wiche
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
12
|
Simon DN, Wilson KL. Partners and post-translational modifications of nuclear lamins. Chromosoma 2013; 122:13-31. [PMID: 23475188 DOI: 10.1007/s00412-013-0399-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
Abstract
Nuclear intermediate filament networks formed by A- and B-type lamins are major components of the nucleoskeleton that are required for nuclear structure and function, with many links to human physiology. Mutations in lamins cause diverse human diseases ('laminopathies'). At least 54 partners interact with human A-type lamins directly or indirectly. The less studied human lamins B1 and B2 have 23 and seven reported partners, respectively. These interactions are likely to be regulated at least in part by lamin post-translational modifications. This review summarizes the binding partners and post-translational modifications of human lamins and discusses their known or potential implications for lamin function.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
13
|
Karashima T, Tsuruta D, Hamada T, Ishii N, Ono F, Hashikawa K, Ohyama B, Natsuaki Y, Fukuda S, Koga H, Sogame R, Nakama T, Dainichi T, Hashimoto T. Interaction of plectin and intermediate filaments. J Dermatol Sci 2012; 66:44-50. [DOI: 10.1016/j.jdermsci.2012.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 01/06/2012] [Accepted: 01/16/2012] [Indexed: 12/21/2022]
|
14
|
Abstract
Farnesyltransferase inhibitors (FTIs) represent a new class of signal transduction inhibitors that block the processing of cellular polypeptides that have cysteine terminal residues and, by so doing, interdict multiple pathways involved in proliferation and survival of diverse malignant cell types. Tipifarnib is an orally bioavailable, nonpeptidomimetic methylquinolone FTI that has exhibited clinical activity in patients with myeloid malignancies including elderly adults with acute myelogenous leukemia (AML) who are not candidates for traditional cytotoxic chemotherapy, patients with high-risk myelodysplasia, myeloproliferative disorders, and imatinib-resistant chronic myelogenous leukemia. Because of its relatively low toxicity profile, tipifarnib provides an important alternative to traditional cytotoxic approaches for elderly patients who are not likely to tolerate or even benefit from aggressive chemotherapy. In this review, we will focus on the clinical development of tipifarnib for treatment of newly diagnosed AML, both as induction therapy for elderly adults with poor-risk AML and as maintenance therapy following achievement of first complete remission following induction and consolidation therapies for poor-risk AML. As with all other malignancies, the optimal approach is likely to lie in rational combinations of tipifarnib with cytotoxic, biologic and/or immunomodulatory agents with non-cross-resistant mechanisms of action. Gene expression profiling has identified networks of differentially expressed genes and gene combinations capable of predicting response to single agent tipifarnib. The clinical and correlative laboratory trials in progress and under development will provide the critical foundations for defining the optimal roles of tipifarnib and in patients with AMl and other hematologic malignancies.
Collapse
Affiliation(s)
- Judith E Karp
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. BIOARCHITECTURE 2011; 1:14-20. [PMID: 21866256 PMCID: PMC3158638 DOI: 10.4161/bioa.1.1.14630] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/29/2022]
Abstract
Intermediate filaments (IFs) form cytoplamic and nuclear networks that provide cells with mechanical strength. Perturbation of this structural support causes cell and tissue fragility and accounts for a number of human genetic diseases. In recent years, important additional roles, nonmechanical in nature, were ascribed to IFs, including regulation of signaling pathways that control survival and growth of the cells, and vectorial processes such as protein targeting in polarized cellular settings. The cytolinker protein plectin anchors IF networks to junctional complexes, the nuclear envelope and cytoplasmic organelles and it mediates their cross talk with the actin and tubulin cytoskeleton. These functions empower plectin to wield significant influence over IF network cytoarchitecture. Moreover, the unusual diversity of plectin isoforms with different N termini and a common IF-binding (C-terminal) domain enables these isoforms to specifically associate with and thereby bridge IF networks to distinct cellular structures. Here we review the evidence for IF cytoarchitecture being controlled by specific plectin isoforms in different cell systems, including fibroblasts, endothelial cells, lens fibers, lymphocytes, myocytes, keratinocytes, neurons and astrocytes, and discuss what impact the absence of these isoforms has on IF cytoarchitecture-dependent cellular functions.
Collapse
Affiliation(s)
- Gerhard Wiche
- Department of Biochemistry and Cell Biology; Max F. Perutz Laboratories; University of Vienna; Vienna, Austria
| | | |
Collapse
|
16
|
Marín-Vicente C, Guerrero-Valero M, Nielsen ML, Savitski MM, Gómez-Fernández JC, Zubarev RA, Corbalán-García S. ATP enhances neuronal differentiation of PC12 cells by activating PKCα interactions with cytoskeletal proteins. J Proteome Res 2010; 10:529-40. [PMID: 20973479 DOI: 10.1021/pr100742r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PKCα is a key mediator of the neuronal differentiation controlled by NGF and ATP. However, its downstream signaling pathways remain to be elucidated. To identify the signaling partners of PKCα, we analyzed proteins coimmunoprecipitated with this enzyme in PC12 cells differentiated with NGF and ATP and compared them with those obtained with NGF alone or growing media. Mass spectrometry analysis (LC-MS/MS) identified plectin, peripherin, filamin A, fascin, and β-actin as potential interacting proteins. The colocalization of PKCα and its interacting proteins increased when PC12 cells were differentiated with NGF and ATP. Peripherin and plectin organization and the cortical remodeling of β-actin were dramatically affected when PKCα was down-regulated, suggesting that all three proteins might be functional targets of ATP-dependent PKCα signaling. Taken together, these data demonstrate that PKCα is essential for controlling the neuronal development induced by NGF and ATP and interacts with the cytoskeletal components at two levels: assembly of the intermediate filament peripherin and organization of cortical actin.
Collapse
Affiliation(s)
- Consuelo Marín-Vicente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Rezniczek GA, Walko G, Wiche G. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol Clin 2010; 28:33-41. [PMID: 19945614 DOI: 10.1016/j.det.2009.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plectin is an important organizer of the keratin filament cytoskeleton in basal keratinocytes. It is essential for anchoring these filaments to the extracellular matrix via hemidesmosomal integrins. Loss of plectin or incorrect function of the protein due to mutations in its gene can lead to various forms of the skin blistering disease, epidermolysis bullosa simplex. Severity and subtype of the disease is dependent on the specific mutation and can be associated with (late-onset) muscular dystrophy or pyloric atresia. Mouse models mimicking the human phenotypes allow detailed study of plectin function.
Collapse
Affiliation(s)
- Günther A Rezniczek
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | | | | |
Collapse
|
18
|
Niwa T, Saito H, Imajoh-ohmi S, Kaminishi M, Seto Y, Miki Y, Nakanishi A. BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Sci 2009; 100:2115-25. [PMID: 19709076 PMCID: PMC11158164 DOI: 10.1111/j.1349-7006.2009.01282.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/22/2009] [Accepted: 07/01/2009] [Indexed: 01/13/2023] Open
Abstract
The breast cancer susceptibility gene (BRCA2) is localized mainly in the nucleus where it plays an important role in DNA damage repair. Some BRCA2 protein is also present in the centrosome. Here, we demonstrate that BRCA2 interacts with plectin, a cytoskeletal cross-linker protein, and that this interaction controls the position of the centrosome. Phosphorylation of plectin by cyclin-dependent kinase 1/cyclin B (CDK1/CycB) kinase has been reported to abolish its cross-linking function during mitosis. Here, we induced phosphorylation of plectin in prepared fractions of HeLa cells by adding activated CDK1/CycB kinase. Consequently, there was significant dissociation of the centrosome from the nuclear membrane. Plectin has six homologous ankyrin-like repeat domains (termed PLEC M1-M6). Using a pull-down assay, we found that GST-PLEC M1 and a GST-C-terminal region fusion protein (which comprised PLEC M6, along with an adjacent vimentin site) interacted with BRCA2. Since each PLEC module exhibits high homology to the others, the possibility of all six domains participating in this interaction was indicated. Moreover, when PLEC M1 was overexpressed in HeLa cells, it competed with endogenous plectin and inhibited the BRCA2-plectin interaction. This inhibitory effect resulted in dissociation of the centrosomes from the nucleus and increased the rate of micronuclei formation which may lead to carcinogenesis. In addition, when either BRCA2 or plectin was suppressed by the appropriate siRNA, a similar change in centrosomal positioning was observed. We suggest that the BRCA2-plectin interaction plays an important role in the regulation of centrosome localization and also that displacement of the centrosome may result in genomic instability and cancer development.
Collapse
Affiliation(s)
- Takayoshi Niwa
- Department of Endocrine Surgery and Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. BIOCHEMISTRY (MOSCOW) 2009; 73:1453-66. [PMID: 19216711 DOI: 10.1134/s0006297908130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central alpha-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.
Collapse
Affiliation(s)
- A A Minin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
20
|
Nery FC, Zeng J, Niland BP, Hewett J, Farley J, Irimia D, Li Y, Wiche G, Sonnenberg A, Breakefield XO. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci 2008; 121:3476-86. [PMID: 18827015 DOI: 10.1242/jcs.029454] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A specific mutation (DeltaE) in torsinA underlies most cases of the dominantly inherited movement disorder, early-onset torsion dystonia (DYT1). TorsinA, a member of the AAA+ ATPase superfamily, is located within the lumen of the nuclear envelope (NE) and endoplasmic reticulum (ER). We investigated an association between torsinA and nesprin-3, which spans the outer nuclear membrane (ONM) of the NE and links it to vimentin via plectin in fibroblasts. Mouse nesprin-3alpha co-immunoprecipitated with torsinA and this involved the C-terminal region of torsinA and the KASH domain of nesprin-3alpha. This association with human nesprin-3 appeared to be stronger for torsinADeltaE than for torsinA. TorsinA also associated with the KASH domains of nesprin-1 and -2 (SYNE1 and 2), which link to actin. In the absence of torsinA, in knockout mouse embryonic fibroblasts (MEFs), nesprin-3alpha was localized predominantly in the ER. Enrichment of yellow fluorescent protein (YFP)-nesprin-3 in the ER was also seen in the fibroblasts of DYT1 patients, with formation of YFP-positive globular structures enriched in torsinA, vimentin and actin. TorsinA-null MEFs had normal NE structure, but nuclear polarization and cell migration were delayed in a wound-healing assay, as compared with wild-type MEFs. These studies support a role for torsinA in dynamic interactions between the KASH domains of nesprins and their protein partners in the lumen of the NE, with torsinA influencing the localization of nesprins and associated cytoskeletal elements and affecting their role in nuclear and cell movement.
Collapse
Affiliation(s)
- Flávia C Nery
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ding SJ, Wang Y, Jacobs JM, Qian WJ, Yang F, Tolmachev AV, Du X, Wang W, Moore RJ, Monroe ME, Purvine SO, Waters K, Heibeck TH, Adkins JN, Camp DG, Klemke RL, Smith RD. Quantitative phosphoproteome analysis of lysophosphatidic acid induced chemotaxis applying dual-step (18)O labeling coupled with immobilized metal-ion affinity chromatography. J Proteome Res 2008; 7:4215-24. [PMID: 18785766 DOI: 10.1021/pr7007785] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.
Collapse
Affiliation(s)
- Shi-Jian Ding
- Department of Pathology/Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
23
|
Muscular Integrity—A Matter of Interlinking Distinct Structures via Plectin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 642:165-75. [DOI: 10.1007/978-0-387-84847-1_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Karp JE, Lancet JE. Development of farnesyltransferase inhibitors for clinical cancer therapy: focus on hematologic malignancies. Cancer Invest 2007; 25:484-94. [PMID: 17882662 DOI: 10.1080/07357900701359437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Farnesyltransferase inhibitors (FTIs) target and inhibit the peptide prenylating enzyme farnesyltransferase. This new class of signal transduction inhibitors is being tested clinically in diverse malignancies, with encouraging results in hematololgic malignancies and breast cancer in particuarl. Critical questions have yet to be answered, for example, optimal dose and schedule, disease subgroups most likely to respond, and appropriate combinations with standard cytotoxics and new biologics. Gene profiling studies of malignant target cells obtained during FTI clinical trials will help to identify patients who are likely to respond to FTIs and to develop mechanisms for overcoming FTI resistance. Clinical trials and correlative laboratory studies in progress and under development will define the optimal roles of FTIs in cancer patients.
Collapse
Affiliation(s)
- Judith E Karp
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
25
|
Raponi M, Harousseau JL, Lancet JE, Löwenberg B, Stone R, Zhang Y, Rackoff W, Wang Y, Atkins D. Identification of molecular predictors of response in a study of tipifarnib treatment in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2007; 13:2254-60. [PMID: 17404110 DOI: 10.1158/1078-0432.ccr-06-2609] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Microarray technology was used to identify gene expression markers that predict response to the orally available farnesyltransferase inhibitor tipifarnib (Zarnestra, R115777) in acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN Gene expression profiles from 58 bone marrow samples from a cohort of relapsed and refractory AML patients were analyzed on the Affymetrix U133A gene chip that contains approximately 22,000 genes. RESULTS Supervised statistical analysis identified eight gene expression markers that could predict patient response to tipifarnib. The most robust gene was the lymphoid blast crisis oncogene (AKAP13), which predicted response with an overall accuracy of 63%. This gene provided a negative predictive value of 93% and a positive predictive value of 31% (increased from 18%). AKAP13 was overexpressed in patients who were resistant to tipifarnib. When overexpressed in the HL60 and THP1 cell lines, AKAP13 increased the resistance to tipifarnib by approximately 5- to 7-fold. CONCLUSION Diagnostic gene expression signatures may be used to select a group of AML patients that might respond to tipifarnib.
Collapse
Affiliation(s)
- Mitch Raponi
- Veridex, L.L.C. a Johnson & Johnson Company, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Karp JE, Lancet JE. Development of the farnesyltransferase inhibitor tipifarnib for therapy of hematologic malignancies. Future Oncol 2005; 1:719-31. [PMID: 16556050 DOI: 10.2217/14796694.1.6.719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) represent a new class of signal transduction inhibitors that block the processing of cellular polypeptides that have cysteine terminal residues and, by doing so, interdict multiple pathways involved in proliferation and survival of diverse malignant cell types. Tipifarnib is an orally bioavailable, nonpeptidomimetic methylquinolone FTI that is being tested clinically in diverse hematologic malignancies, in particular myeloid malignancies and myeloma. FTI therapy is accompanied by a relatively low toxicity profile, thereby providing an important alternative to traditional cytotoxic approaches for elderly patients who are not likely to tolerate or even benefit from aggressive chemotherapy. Current laboratory and clinical studies continue to define the determinants of FTI antitumor activity and resistance. The full development of FTIs for the therapy of hematologic malignancies will require the design and testing of rational combinations of cytotoxic, biologic and immunomodulatory agents in the laboratory and the clinic.
Collapse
Affiliation(s)
- Judith E Karp
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Division of Hematologic Malignancies, The Bunting-Blaustein Cancer Research Building, Baltimore, MD 21231, USA.
| | | |
Collapse
|
28
|
Jang SI, Kalinin A, Takahashi K, Marekov LN, Steinert PM. Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. J Cell Sci 2005; 118:781-93. [PMID: 15671067 DOI: 10.1242/jcs.01647] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epiplakin is a member of the plakin family with multiple copies of the plakin repeat domain (PRD). We studied the subcellular distribution and interactions of human epiplakin by immunostaining, overlay assays and RNAi knockdown. Epiplakin decorated the keratin intermediate filaments (IF) network and partially that of vimentin. In the binding assays, the repeat unit (PRD plus linker) showed strong binding and preferentially associated with assembled IF over keratin monomers. Epiplakin knockdown revealed disruption of IF networks in simple epithelial but not in epidermal cells. In rescue experiments, the repeat unit was necessary to prevent the collapse of IF networks in transient knockdown; however, it could only partially restore the keratin but not the vimentin IF network in stably knocked down HeLa cells. We suggest that epiplakin is a cytolinker involved in maintaining the integrity of IF networks in simple epithelial cells. Furthermore, we observed an increase of epiplakin expression in keratinocytes after the calcium switch, suggesting the involvement of epiplakin in the process of keratinocyte differentiation.
Collapse
Affiliation(s)
- Shyh-Ing Jang
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892-8023, USA
| | | | | | | | | |
Collapse
|
29
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
30
|
Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73:749-89. [PMID: 15189158 DOI: 10.1146/annurev.biochem.73.011303.073823] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into approximately 10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
Collapse
Affiliation(s)
- Harald Herrmann
- Department of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
31
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén AS, Hellman J, Chou YH, Goldman RD. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 2004. [DOI: 10.1242/jcs.00906 jcs.00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filaments (IFs) continuously exchange between a small, depolymerized fraction of IF protein and fully polymerized IFs. To elucidate the possible role of phosphorylation in regulating this equilibrium, we disrupted the exchange of phosphate groups by specific inhibition of dephosphorylation and by specific phosphorylation and site-directed mutagenesis of two of the major in vivo phosphorylation sites determined in this study. Inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases in BHK-21 fibroblasts with calyculin-A, induced rapid vimentin phosphorylation in concert with disassembly of the IF polymers into soluble tetrameric vimentin oligomers. This oligomeric composition corresponded to the oligopeptides released by cAMP-dependent kinase (PKA) following in vitro phosphorylation. Characterization of the 32P-labeled vimentin phosphopeptides, demonstrated Ser-4, Ser-6, Ser-7, Ser-8, Ser-9, Ser-38, Ser-41, Ser-71, Ser-72, Ser-418, Ser-429, Thr-456, and Ser-457 as significant in vivo phosphorylation sites. A number of the interphase-specific high turnover sites were shown to be in vitro phosphorylation sites for PKA and protein kinase C (PKC). The effect of presence or absence of phosphate groups on individual subunits was followed in vivo by microinjecting PKA-phosphorylated (primarily S38 and S72) and mutant vimentin (S38:A, S72:A), respectively. The PKA-phosphorylated vimentin showed a clearly decelerated filament formation in vivo, whereas obstruction of phosphorylation at these sites by site-directed mutagenesis had no significant effect on the incorporation rates of subunits into assembled polymers. Taken together, our results suggest that elevated phosphorylation regulates IF assembly in vivo by changing the equilibrium constant of subunit exchange towards a higher off-rate.
Collapse
Affiliation(s)
- John E. Eriksson
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Science Building 1, FIN-20014 Turku, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
| | - Tao He
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
- Department of Biochemistry, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Graduate School of Biomedical Sciences, Kiinanmyllynkatu 13, FIN-20520, Turku, Finland
| | - Amy V. Trejo-Skalli
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| | - Ann-Sofi Härmälä-Braskén
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
- Department of Biochemistry, Åbo Akademi University, FIN-20521 Turku, Finland
| | - Jukka Hellman
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
| | - Ying-Hao Chou
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| | - Robert D. Goldman
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| |
Collapse
|
33
|
Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem 2004; 279:18701-10. [PMID: 14966116 DOI: 10.1074/jbc.m312382200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agonist-induced translocation of protein kinase C (PKC) isozymes is mediated by receptors for the activated form of the kinase, shuttling it from one intracellular site to another and enhancing its catalytic activity. It is however unknown whether the receptors themselves are anchored to certain intracellular structures prior to their engagement with PKC. We show here sequestering of receptor for activated C kinase 1 (RACK1) to the cytoskeleton through the cytoskeletal linker protein plectin during the initial stages of cell adhesion. We found that upon PKC activation, RACK1 was released from the cytoskeleton and transferred to the detergent-soluble cell compartment, where it formed an inducible triple complex with one of the PKC isozymes, PKCdelta, and with plectin. In plectin-deficient cells the cytoskeleton-associated RACK1 fraction was reduced, and the protein was found predominantly at sites to which it normally translocated upon PKC activation. Concomitantly, dislocation of PKCdelta and elevated enzymatic activity were observed in these cells. PKCdelta was also more rapidly degraded, likely due to its overactivation. We propose a previously unrecognized function of plectin as cytoskeletal regulator of PKC signaling, and possibly other signaling events, through sequestration of the scaffolding protein RACK1.
Collapse
Affiliation(s)
- Selma Osmanagic-Myers
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
34
|
Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén AS, Hellman J, Chou YH, Goldman RD. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 2004; 117:919-32. [PMID: 14762106 DOI: 10.1242/jcs.00906] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intermediate filaments (IFs) continuously exchange between a small, depolymerized fraction of IF protein and fully polymerized IFs. To elucidate the possible role of phosphorylation in regulating this equilibrium, we disrupted the exchange of phosphate groups by specific inhibition of dephosphorylation and by specific phosphorylation and site-directed mutagenesis of two of the major in vivo phosphorylation sites determined in this study. Inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases in BHK-21 fibroblasts with calyculin-A, induced rapid vimentin phosphorylation in concert with disassembly of the IF polymers into soluble tetrameric vimentin oligomers. This oligomeric composition corresponded to the oligopeptides released by cAMP-dependent kinase (PKA) following in vitro phosphorylation. Characterization of the (32)P-labeled vimentin phosphopeptides, demonstrated Ser-4, Ser-6, Ser-7, Ser-8, Ser-9, Ser-38, Ser-41, Ser-71, Ser-72, Ser-418, Ser-429, Thr-456, and Ser-457 as significant in vivo phosphorylation sites. A number of the interphase-specific high turnover sites were shown to be in vitro phosphorylation sites for PKA and protein kinase C (PKC). The effect of presence or absence of phosphate groups on individual subunits was followed in vivo by microinjecting PKA-phosphorylated (primarily S38 and S72) and mutant vimentin (S38:A, S72:A), respectively. The PKA-phosphorylated vimentin showed a clearly decelerated filament formation in vivo, whereas obstruction of phosphorylation at these sites by site-directed mutagenesis had no significant effect on the incorporation rates of subunits into assembled polymers. Taken together, our results suggest that elevated phosphorylation regulates IF assembly in vivo by changing the equilibrium constant of subunit exchange towards a higher off-rate.
Collapse
Affiliation(s)
- John E Eriksson
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Science Building 1, FIN-20014 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Charlesworth A, Gagnoux-Palacios L, Bonduelle M, Ortonne JP, De Raeve L, Meneguzzi G. Identification of a Lethal Form of Epidermolysis Bullosa Simplex Associated with a Homozygous Genetic Mutation in Plectin. J Invest Dermatol 2003; 121:1344-8. [PMID: 14675180 DOI: 10.1111/j.1523-1747.2003.12639.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic mutations in plectin, a cytoskeleton linker protein expressed in a large variety of tissues including skin, muscle, and nerves, cause epidermolysis bullosa simplex with muscular dystrophy, a recessive inherited disease characterized by blistering of the skin and late onset of muscular dystrophy, and Ogna epidermolysis bullosa simplex, a rare dominant inherited form of epidermolysis bullosa simplex with no muscular involvement. Here we report a novel homozygous genetic mutation (2727del14) in the plectin gene (PLEC1) associated with a lethal form of recessive inherited epidermolysis bullosa in a consanguineous family with three affected offspring. This new clinical variant of epidermolysis bullosa is characterized by general skin blistering, aplasia cutis of the limbs, developmental complications, and rapid demise after birth. Mutation 2727del14 is the first genetic defect described in PLEC1 that disrupts the plakin domain of plectin. The severe phenotype of the patients may be linked to the role of the N-terminal domain in the function of plectin and develops the understanding of the genotype-phenotype correlations in the genodermatoses affecting the dermal-epidermal junction.
Collapse
|
37
|
García-Alvarez B, Bobkov A, Sonnenberg A, de Pereda JM. Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin beta4. Structure 2003; 11:615-25. [PMID: 12791251 DOI: 10.1016/s0969-2126(03)00090-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plectin is a widely expressed cytoskeletal linker. Here we report the crystal structure of the actin binding domain of plectin and show that this region is sufficient for interaction with F-actin or the cytoplasmic region of integrin alpha6beta4. The structure is formed by two calponin homology domains arranged in a closed conformation. We show that binding to F-actin induces a conformational change in plectin that is inhibited by an engineered interdomain disulfide bridge. A two-step induced fit mechanism involving binding and subsequent domain rearrangement is proposed. In contrast, interaction with integrin alpha6beta4 occurs in a closed conformation. Competitive binding of plectin to F-actin and integrin alpha6beta4 may rely on the observed alternative binding mechanisms and involve both allosteric and steric factors.
Collapse
Affiliation(s)
- Begoña García-Alvarez
- Program on Cell Adhesion, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Karashima T, Watt FM. Interaction of periplakin and envoplakin with intermediate filaments. J Cell Sci 2002; 115:5027-37. [PMID: 12432088 DOI: 10.1242/jcs.00191] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periplakin is a component of desmosomes and the epidermal cornified envelope. Its N-terminal domain interacts with the plasma membrane; it heterodimerises with envoplakin via its rod domain; and its C-terminus interacts with intermediate filaments. Periplakin has the shortest C-terminus of the plakin family, comprising only the linker domain found in all conventional plakins. By transient transfection of COS7 cells and primary human epidermal keratinocytes with deletion mutants of the periplakin C-terminus we mapped sequences required for intermediate filament interaction to two regions of the linker motif that are most highly conserved amongst the plakins. The results were confirmed by overlay assays of the binding of in vitro translated periplakin constructs to keratins and vimentin. We found that envoplakin and periplakin could still associate with each other when parts of their rod domains were deleted and, surprisingly, that removal of the entire rod domain did not completely inhibit their interaction. Co-transfection of constructs containing the C-termini of envoplakin and periplakin suggested that the periplakin C-terminus may stabilise the interaction of the envoplakin C-terminus with intermediate filaments. We conclude that the periplakin C-terminus plays an important role in linking periplakin and envoplakin to intermediate filaments.
Collapse
Affiliation(s)
- Tadashi Karashima
- Keratinocyte Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | |
Collapse
|
39
|
Strnad P, Windoffer R, Leube RE. Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases. J Cell Sci 2002; 115:4133-48. [PMID: 12356917 DOI: 10.1242/jcs.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cytokeratin filament network is intrinsically dynamic, continuously exchanging subunits over its entire surface, while conferring structural stability on epithelial cells. However, it is not known how cytokeratin filaments are remodeled in situations where the network is temporarily and spatially restricted. Using the tyrosine phosphatase inhibitor orthovanadate we observed rapid and reversible restructuring in living cells, which may provide the basis for such dynamics. By examining cells stably expressing fluorescent cytokeratin chimeras, we found that cytokeratin filaments were broken down and then formed into granular aggregates within a few minutes of orthovanadate addition. After drug removal, gradual reincorporation of granules into the filament network was observed for aggregates that were either part of residual filaments or stayed in close apposition to remaining filaments. Even when cytokeratin filaments were no longer detectable, granules with low mobility were still able to reestablish a cytokeratin filament network. This process took less than 30 minutes and occurred at multiple foci throughout the cytoplasm without apparent correlation to alterations in the actin- and tubulin-based systems. Interestingly, the short-lived and rather small orthovanadate-induced cytokeratin granules contained the cytoskeletal crosslinker plectin but lacked the cytokeratin-solubilising 14-3-3 proteins. By contrast, the long-lived and larger cytokeratin aggregates generated after treatment with the serine/threonine phosphatase inhibitor okadaic acid were negative for plectin but positive for 14-3-3 proteins. Taken together, our observations in living orthovanadate-treated interphase cells revealed modes of cytokeratin remodeling that qualify as basic mechanisms capable of rapidly adapting the cytokeratin filament cytoskeleton to specific requirements.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Anatomy, Johannes Gutenberg-University, Becherweg 13, 55128 Mainz, Germany
| | | | | |
Collapse
|
40
|
Larsen AKR, Møller MTN, Blankson H, Samari HR, Holden L, Seglen PO. Naringin-sensitive phosphorylation of plectin, a cytoskeletal cross-linking protein, in isolated rat hepatocytes. J Biol Chem 2002; 277:34826-35. [PMID: 12095991 DOI: 10.1074/jbc.m205028200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify phosphoproteins that might play a role in naringin-sensitive hepatocellular cytoskeletal disruption and apoptosis induced by algal toxins, hepatocyte extracts were separated by gel electrophoresis and immunostained with a phosphothreonine-directed antibody. Use of dilute (5%) polyacrylamide gels containing 6 m urea allowed the resolution of one very large (approximately 500-kDa) okadaic acid- and naringin-sensitive phosphoprotein, identified by tryptic fingerprinting, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and immunostaining as the cytolinker protein, plectin. The naringin-sensitive phosphorylation induced by okadaic acid and microcystin-LR probably reflected inhibition of a type 2A protein phosphatase, whereas the naringin-resistant phosphorylation induced by calyculin A, tautomycin, and cantharidin probably involved a type 1 phosphatase. Okadaic acid caused a collapse of the plectin-immunostaining bile canalicular sheaths and the general cytoskeletal plectin network into numerous medium-sized plectin aggregates. Inhibitors of protein kinase C, cAMP-dependent protein kinase, or Ca(2+)/calmodulin-dependent kinase II had moderate or no protective effects on plectin network disruption, whereas naringin offered 86% protection. Okadaic acid induced a naringin-sensitive phosphorylation of AMP-activated protein kinase (AMPK), the stress-activated protein kinases SEK1 and JNK, and S6 kinase. The AMPK-activating kinase (AMPKK) is likely to be the target of inhibition by naringin, the other kinases serving as downstream components of an AMPKK-initiated signaling pathway.
Collapse
Affiliation(s)
- Ann-Kristin Ruud Larsen
- Proteomics and Mammalian Cell Biology Section, Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
41
|
Suzuki T, Nakamoto T, Ogawa S, Seo S, Matsumura T, Tachibana K, Morimoto C, Hirai H. MICAL, a novel CasL interacting molecule, associates with vimentin. J Biol Chem 2002; 277:14933-41. [PMID: 11827972 DOI: 10.1074/jbc.m111842200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CasL/HEF1 belongs to the p130(Cas) family. It is tyrosine-phosphorylated following beta(1) integrin and/or T cell receptor stimulation and is thus considered to be important for immunological reactions. CasL has several structural motifs such as an SH3 domain and a substrate domain and interacts with many molecules through these motifs. To obtain more insights on the CasL-mediated signal transduction, we sought proteins that interact with the CasL SH3 domain by far Western screening, and we identified a novel human molecule, MICAL (a Molecule Interacting with CasL). MICAL is a protein of 118 kDa and is expressed in the thymus, lung, spleen, kidney, testis, and hematopoietic cells. MICAL has a calponin homology domain, a LIM domain, a putative leucine zipper motif, and a proline-rich PPKPP sequence. MICAL associates with CasL through this PPKPP sequence. MICAL is a cytoplasmic protein and colocalizes with CasL at the perinuclear area. Through the COOH-terminal region, MICAL also associates with vimentin that is a major component of intermediate filaments. Immunostaining revealed that MICAL localizes along with vimentin intermediate filaments. These results suggest that MICAL may be a cytoskeletal regulator that connects CasL to intermediate filaments.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Beil M, Leser J, Lutz MP, Gukovskaya A, Seufferlein T, Lynch G, Pandol SJ, Adler G. Caspase 8-mediated cleavage of plectin precedes F-actin breakdown in acinar cells during pancreatitis. Am J Physiol Gastrointest Liver Physiol 2002; 282:G450-60. [PMID: 11841995 DOI: 10.1152/ajpgi.00042.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic acinar cells depend on the integrity of the cytoskeleton for regulated secretion. Stimulation of isolated rat pancreatic acini with the secretagogue CCK serves as a model for human acute edematous pancreatitis. It induces the breakdown of the actin filament system (F-actin) with the consecutive inhibition of secretion and premature activation of digestive enzymes. However, the mechanisms that regulate F-actin breakdown are largely unknown. Plectin is a versatile cytolinker protein regulating F-actin dynamics in fibroblasts. It was recently demonstrated that plectin is a substrate of caspase 8. In pancreatic acinar cells, plectin strongly colocalizes with apical and basolateral F-actin. Supramaximal secretory stimulation of acini with CCK leads to a rapid redistribution and activation of caspase 8, followed by degradation of plectin that in turn precedes the F-actin breakdown. Inhibition of caspase 8 before CCK hyperstimulation prevents plectin cleavage, stabilizes F-actin morphology, and reverses the inhibition of secretion. Thus we propose that the caspase 8-mediated degradation of plectin represents a critical biochemical event during CCK-induced secretory blockade and cell injury.
Collapse
Affiliation(s)
- Michael Beil
- Department of Internal Medicine I, University of Ulm, 89070 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hendrychová J, Vítová M, Bisová K, Wiche G, Zachleder V. Plectin-like proteins are present in cells of Chlamydomonas eugametos (Volvocales). Folia Microbiol (Praha) 2002; 47:535-9. [PMID: 12503400 DOI: 10.1007/bf02818794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Using both monoclonal and polyclonal antibodies against mammalian plectin (multifunctional protein cross-linking cytoskeletal structures, mainly intermediate filaments, in mammalian cells), several putative isoforms of plectin-like proteins were found in protein extracts from the green alga Chlamydomonas eugametos (Volvocales). Immunofluorescence and immunoblotting revealed that some of the plectin-like proteins were present in perinuclear region or localized near the cell wall, probably being attached to the cytoplasmic membrane.
Collapse
Affiliation(s)
- J Hendrychová
- Division of Autotrophic Microorganisms, Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81 Trebon
| | | | | | | | | |
Collapse
|
44
|
Lewis ML, Cubano LA, Zhao B, Dinh HK, Pabalan JG, Piepmeier EH, Bowman PD. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J 2001; 15:1783-5. [PMID: 11481229 DOI: 10.1096/fj.00-0820fje] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M L Lewis
- University of Alabama in Huntsville, Department of Biological Sciences, Huntsville, Alabama 35899, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Brown MJ, Hallam JA, Liu Y, Yamada KM, Shaw S. Cutting edge: integration of human T lymphocyte cytoskeleton by the cytolinker plectin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:641-5. [PMID: 11441066 DOI: 10.4049/jimmunol.167.2.641] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine-induced polarization of lymphocytes involves the rapid collapse of vimentin intermediate filaments (IFs) into an aggregate within the uropod. Little is known about the interactions of lymphocyte vimentin with other cytoskeletal elements. We demonstrate that human peripheral blood T lymphocytes express plectin, an IF-binding, cytoskeletal cross-linking protein. Plectin associates with a complex of structural proteins including vimentin, actin, fodrin, moesin, and lamin B in resting peripheral blood T lymphocytes. During chemokine-induced polarization, plectin redistributes to the uropod associated with vimentin and fodrin; their spatial distribution indicates that this vimentin-plectin-fodrin complex provides a continuous linkage from the nucleus (lamin B) to the cortical cytoskeleton. Overexpression of the plectin IF-binding domain in the T cell line Jurkat induces the perinuclear aggregation of vimentin IFs. Plectin is therefore likely to serve as an important organizer of the lymphocyte cytoskeleton and may regulate changes of lymphocyte cytoarchitecture during polarization and extravasation.
Collapse
Affiliation(s)
- M J Brown
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
46
|
Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD, Eriksson JE. Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem 2001; 276:16456-63. [PMID: 11278541 DOI: 10.1074/jbc.m009669200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The intermediate filament protein nestin is expressed during early stages of development in the central nervous system and in muscle tissues. Nestin expression is associated with morphologically dynamic cells, such as dividing and migrating cells. However, little is known about regulation of nestin during these cellular processes. We have characterized the phosphorylation-based regulation of nestin during different stages of the cell cycle in a neuronal progenitor cell line, ST15A. Confocal microscopy of nestin organization and (32)P in vivo labeling studies show that the mitotic reorganization of nestin is accompanied by elevated phosphorylation of nestin. The phosphorylation-induced alterations in nestin organization during mitosis in ST15A cells are associated with partial disassembly of nestin filaments. Comparative in vitro and in vivo phosphorylation studies identified cdc2 as the primary mitotic kinase and Thr(316) as a cdc2-specific phosphorylation site on nestin. We generated a phosphospecific nestin antibody recognizing the phosphorylated form of this site. By using this antibody we observed that nestin shows constitutive phosphorylation at Thr(316), which is increased during mitosis. This study shows that nestin is reorganized during mitosis and that cdc2-mediated phosphorylation is an important regulator of nestin organization and dynamics during mitosis.
Collapse
Affiliation(s)
- C M Sahlgren
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, FIN-20521 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
47
|
Tanaka H, Hijikata T, Murakami T, Fujimaki N, Ishikawa H. Localization of plectin and other related proteins along the sarcolemma in smooth muscle cells of rat colon. Cell Struct Funct 2001; 26:61-70. [PMID: 11482454 DOI: 10.1247/csf.26.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plectin is a versatile linker protein which is associated with various types of cytoskeletal components and/or filaments including intermediate filaments. To better understand the functional roles of plectin in smooth muscle cells, we examined the distribution of plectin and other related proteins in rat colon smooth muscles by confocal laser and electron microscopy. The sarcolemma of smooth muscle cells exhibits two ultrastructurally distinct domains, domains associated with dense plaques and caveola-rich domains. Staining with anti-plectin and anti-desmin antibodies showed that plectin was localized along the sarcolemma in an intermittent manner and desmin was distributed in the sarcoplasm and intermittently at the cell periphery where it was codistributed with desmin. Plectin exhibited complementary and non-overlapping distribution to caveolin-1 and dystrophin, components of caveola domains, whereas plectin was codistributed with vinculin, talin and integrin beta1, components of dense plaques. Plectin was also codistributed with beta2-chain laminin but not with beta1-chain laminin. Electron microscopic observations on the sarcolemma revealed close association of intermediate filaments with dense plaques. Correlated confocal and electron microscopy clearly demonstrated that anti-plectin fluorescence corresponded to dense plaques but not to caveola domains in electron microscopic images. These findings indicate that plectin is confined to dense plaques to which desmin intermediate filaments may be anchored in rat colon smooth muscle cells.
Collapse
Affiliation(s)
- H Tanaka
- Department of Anatomy, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The dynamic and critical role of intermediate filaments in muscle is highlighted by myopathies characterized by aberrant accumulation of intermediate filaments. In some affected patients, mutations in genes encoding intermediate filaments that are expressed in muscle have been confirmed. The importance of intermediate filaments in muscle is further strengthened by murine models in which genetically designed intermediate filament mutations are expressed, leading to progressive skeletal or cardioskeletal myopathy in affected mice. In this article the intermediate filaments expressed in muscle are reviewed, and the clinical and pathologic features of myopathies known to relate to intermediate filaments are described. With the increasing awareness of intermediate filaments in muscle and the rapid advances in genetic investigation, it is likely that the list of intermediate filament-related myopathies will expand.
Collapse
Affiliation(s)
- B L Banwell
- Department of Pediatrics (Neurology), The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
49
|
Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB, Flitney FW, Jones JC. Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 2001; 12:85-100. [PMID: 11160825 PMCID: PMC30570 DOI: 10.1091/mbc.12.1.85] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The alpha4 laminin subunit is a component of endothelial cell basement membranes. An antibody (2A3) against the alpha4 laminin G domain stains focal contact-like structures in transformed and primary microvascular endothelial cells (TrHBMECs and HMVECs, respectively), provided the latter cells are activated with growth factors. The 2A3 antibody staining colocalizes with that generated by alphav and beta3 integrin antibodies and, consistent with this localization, TrHBMECs and HMVECs adhere to the alpha4 laminin subunit G domain in an alphavbeta3-integrin-dependent manner. The alphavbeta3 integrin/2A3 antibody positively stained focal contacts are recognized by vinculin antibodies as well as by antibodies against plectin. Unusually, vimentin intermediate filaments, in addition to microfilament bundles, interact with many of the alphavbeta3 integrin-positive focal contacts. We have investigated the function of alpha4-laminin and alphavbeta3-integrin, which are at the core of these focal contacts, in cultured endothelial cells. Antibodies against these proteins inhibit branching morphogenesis of TrHBMECs and HMVECs in vitro, as well as their ability to repopulate in vitro wounds. Thus, we have characterized an endothelial cell matrix adhesion, which shows complex cytoskeletal interactions and whose assembly is regulated by growth factors. Our data indicate that this adhesion structure may play a role in angiogenesis.
Collapse
Affiliation(s)
- M Gonzales
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hashimoto R, Nakamura Y, Komai S, Kashiwagi Y, Tamura K, Goto T, Aimoto S, Kaibuchi K, Shiosaka S, Takeda M. Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiation. J Neurochem 2000; 75:373-82. [PMID: 10854283 DOI: 10.1046/j.1471-4159.2000.0750373.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurofilament-L (NF-L), one subunit of the neuronal intermediate filaments, is a major element of neuronal cytoskeletons. The dynamics of NF-L are regulated by phosphorylation of its head domain. The phosphorylation sites of the NF-L head domain by protein kinase A, protein kinase C, and Rho-associated kinase have been previously identified, and those by calcium/calmodulin-dependent protein kinase II (CaMKII) were identified in this study. A series of site- and phosphorylation state-specific antibodies against NF-L was prepared to investigate NF-L phosphorylation in neuronal systems. Long-term potentiation (LTP) is a cellular model of neuronal plasticity that is thought to involve the phosphorylation of various proteins. NF-L is considered a possible substrate for phosphorylation. During LTP stimulation of mouse hippocampal slices, the series of antibodies demonstrated the increase in the phosphorylation level of Ser(57) in NF-L and the visualization of the localized distribution of Ser(57) phosphorylation in a subpopulation of apical dendrites of the pyramidal neurons. Furthermore, Ser(57) phosphorylation during LTP is suggested to be mediated by CaMKII. Here we show that NF-L is phosphorylated by CaMKII in a subpopulation of apical dendrites during LTP, indicating that Ser(57) is a novel phosphorylation site of NF-L in vivo related to the neuronal signal transduction.
Collapse
Affiliation(s)
- R Hashimoto
- Department of Clinical Neuroscience, Graduate School of Medicine, Institute for Protein Research, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|