1
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
2
|
Sun F, Zhao J, Zhang H, Shi Q, Liu Y, Robert A, Liu Q, Meunier B. Proteomics Evidence of the Role of TDMQ20 in the Cholinergic System and Synaptic Transmission in a Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3093-3107. [PMID: 36221993 DOI: 10.1021/acschemneuro.2c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The interaction between copper ions and amyloid peptide Aβ has been reported to be involved in Alzheimer's disease (AD) pathology. Based on copper coordination biochemistry, we designed specific copper chelators [tetradentate monoquinolines (TDMQs)] in order to regulate copper homeostasis in the AD brain and inhibit the deleterious oxidative stress catalyzed by copper-Aβ complexes. We previously reported that TDMQ20, a highly selective copper chelator selected as a drug candidate, was able to extract copper from the Cu-Aβ1-16 complex and restore cognitive and behavioral deficits in AD mouse models. For a better understanding of the mechanism of action of TDMQ20, we decided to investigate the change of profile of proteins expressed in 5xFAD mice after an oral treatment of TDMQ20 (dose = 10 mg/kg, once every two days for 3 months, in total 45 times). Clioquinol (CQ), a non-specific chelator, has been used as a comparator. Here, we report the proteomic alterations in the cortex of 5xFAD mice using iTRAQ (isobaric tags for relative and absolute quantification) proteomics technology. The results indicated that 178 differentially expressed proteins (DEPs) have been identified in the AD mouse group with respect to wild type (WT) animals (AD/WT). After treatment by TDMQ20, 35 DEPs were found common in AD/WT and TDMQ20/AD groups in an opposite change manner (up- or down-regulated, respectively). In addition, among the 35 DEPs mentioned above, 10 common target proteins have been identified in AD/WT, TDMQ20/AD, and CQ/AD groups, among which 3 target proteins were successfully validated by western blot analysis. In particular, the expression levels of ChAT and CHRM4 are significantly increased upon TDMQ20 treatment with respect to 5xFAD mice, while CQ did not significantly change the expression of these proteins. Our study suggests the involvement of the copper chelator TDMQ20 on the cholinergic system, a feature that may explain the improved cognitive and behavioral performance in AD mice upon oral treatment of TDMQ20.
Collapse
Affiliation(s)
- Fanfan Sun
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Qihui Shi
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China.,Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518033, China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS) and Inserm ERL 1289, 205 route de Narbonne, Toulouse 31077 cedex 4, France
| |
Collapse
|
3
|
α7nAChR activation protects against oxidative stress, neuroinflammation and central insulin resistance in ICV-STZ induced sporadic Alzheimer's disease. Pharmacol Biochem Behav 2022; 217:173402. [DOI: 10.1016/j.pbb.2022.173402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
|
4
|
Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology. Prog Neurobiol 2021; 206:102154. [PMID: 34453977 DOI: 10.1016/j.pneurobio.2021.102154] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse.
Collapse
|
5
|
Peng Y, Tao H, Wang S, Xiao J, Wang Y, Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer's disease: A compendium of time-tested strategy. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
6
|
Babić Leko M, Hof PR, Šimić G. Alterations and interactions of subcortical modulatory systems in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:379-421. [PMID: 33785136 DOI: 10.1016/bs.pbr.2020.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is not fully understood. Here we summarize current knowledge on the involvement of the serotonergic, noradrenergic, dopaminergic, cholinergic, and opioid systems in AD, emphasizing the importance of interactions between the serotonergic and the other subcortical modulatory systems during the progression of AD. In physiological conditions, all neurotransmitter systems function in concert and are interdependent at both the neuroanatomical and molecular levels. Through their early involvement in AD, cognitive and behavioral abilities that rely on their interactions also become disrupted. Considering that serotonin (5HT) regulates the release of noradrenaline (NA), dopamine (DA) and acetylcholine (ACh), any alteration in 5HT levels leads to disturbance of NA, DA, and ACh homeostasis in the brain. One of the earliest pathological changes during the prodromal phase of AD is a decrease of serotonergic transmission throughout the brain, with serotonergic receptors being also affected. Additionally, serotonergic and noradrenergic as well as serotonergic and dopaminergic nuclei are reciprocally interconnected. As the serotonergic dorsal raphe nucleus (DRN) is affected by pathological changes early in AD, and the noradrenergic locus coeruleus (LC) and dopaminergic ventral tegmental area (VTA) exhibit AD-related pathological changes, their connectivity also becomes altered in AD. Such disrupted interactions among neurotransmitter systems in AD can be used in the development of multi-target drugs. Some of the potential AD therapeutics (such as ASS234, RS67333, tropisetron) target multiple neurotransmitter systems to achieve the best possible improvement of cognitive and behavioral deficits observed in AD. Here, we review how serotonergic system interacts with other subcortical modulatory systems (noradrenergic, dopaminergic, cholinergic, and opioid systems) during AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia.
| |
Collapse
|
7
|
Shen H, Zheng Y, Chen R, Huang X, Shi G. Neuroprotective effects of quercetin 3-O-sophoroside from Hibiscus rosa-sinensis Linn. on scopolamine-induced amnesia in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Wang YX, Xia ZH, Jiang X, Li LX, Wang HG, An D, Liu YQ. Genistein inhibits amyloid peptide 25-35-induced neuronal death by modulating estrogen receptors, choline acetyltransferase and glutamate receptors. Arch Biochem Biophys 2020; 693:108561. [PMID: 32857999 DOI: 10.1016/j.abb.2020.108561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/31/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To explore genistein, the most active component of soy isoflavones, on viability, expression of estrogen receptor (ER) subtypes, choline acetyltransferase (ChAT), and glutamate receptor subunits in amyloid peptide 25-35-induced hippocampal neurons, providing valuable data and basic information for neuroprotective effect of genistein in Aβ25-35-induced neuronal injury. METHODS We established an in vitro model of Alzheimer's disease by exposing primary hippocampal neurons of newborn rats to amyloid peptide 25-35 (20 μM) for 24 h and observing the effects of genistein (10 μM, 3 h) on viability, expression of ER subtypes, ChAT, NMDA receptor subunit NR2B and AMPA receptor subunit GluR2 in Aβ25-35-induced hippocampal neurons. RESULTS We found that amyloid peptide 25-35 exposure reduced the viability of hippocampal neurons. Meanwhile, amyloid peptide 25-35 exposure decreased the expression of ER subtypes, ChAT and GluR2, and increased the expression of NR2B. Genistein at least partially reversed the effects of amyloid peptide 25-35 in hippocampal neurons. CONCLUSION Genistein could increase the expression of ChAT as a consequence of activating estrogen receptor subtypes, modulating the expression of NR2B and GluR2, and thereby ameliorating the status of hippocampal neurons and exerting neuroprotective effects against amyloid peptide 25-35. Our data suggest that genistein might represent a potential cell-targeted therapy which could be a promising approach to treating AD.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Zhen-Hong Xia
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue Jiang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di An
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Ferreira JPS, Cardoso SM, Almeida Paz FA, Silva AMS, Silva VLM. Synthesis of 2-aroylfuro[3,2- c]quinolines from quinolone-based chalcones and evaluation of their antioxidant and anticholinesterase activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj00409j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 2-aroylfuro[3,2-c]quinolines 2a–e was synthetized from quinolone-based chalcones 1a–e. When R = ortho-OH, an unexpected compound 3 was also obtained. Compounds, 2a and 2c, showed significant inhibition of acetylcholinesterase enzyme.
Collapse
Affiliation(s)
- João P. S. Ferreira
- LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Filipe A. Almeida Paz
- CICECO - Aveiro Institute of Materials
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Vera L. M. Silva
- LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
10
|
Wang YX, Zhu L, Li LX, Xu HN, Wang HG, An D, Heng B, Zhao Q, Liu YQ. Postnatal Expression Patterns of Estrogen Receptor Subtypes and Choline Acetyltransferase in Different Regions of the Papez Circuit. Dev Neurosci 2019; 41:203-211. [PMID: 31536986 DOI: 10.1159/000502686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, β, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERβ and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERβ and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Zhu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Nan Xu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China,
| |
Collapse
|
11
|
Ji XF, Chi TY, Liu P, Li LY, Xu JK, Xu Q, Zou LB, Meng DL. The total triterpenoid saponins of Xanthoceras sorbifolia improve learning and memory impairments through against oxidative stress and synaptic damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:15-24. [PMID: 28190466 DOI: 10.1016/j.phymed.2016.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND X. sorbifolia is a widely cultivated ecologicalcrop in the north of China which is used to produce biodiesel fuel. It also possesses special medicinal value and has attracted keen interests of researchers to explore its bioactivity. PURPOSE To extract the total triterpenoid saponins from the husk of X. sorbifolia (TSX) and investigate its effects on Alzheimer's disease (AD). STUDY DESIGN TSX was prepared via modern extraction techniques. Its effects on two AD animal models, as well as the preliminary mechanism were investigated comprehensively. METHODS The behavioral experiments including Y maze test, Morris water maze test and passive avoidance test were performed to observe the learning and memory abilities of the animals. ELISA assays, transmission electron microscope observation and Western blotting were employed in mechanism study. RESULTS TSX, the main composition of X. sorbifolia, accounted for 88.77% in the plant material. It could significantly increase the spontaneous alternation in Y maze test (F (6, 65)=3.209, P<0.01), prolong the swimming time in the fourth quadrant in probe test of Morris water maze test (F (6, 71)=4.019, P<0.01), and increase the escape latency in passive avoidance test (F (6, 65)=3.684, P<0.01) in AD model animals. The preliminary mechanism research revealed that TSX could significantly increase the contents of hippocampal Ach and ChAT, and enhance activity of ChAT in hippocampus of quinolinic acid injected rats (F (5, 61)=3.915, P 0.01; F (5, 61)=3.623, P<0.01, F (5, 61)=4.344, P<0.01, respectively). It could also increase the activities of T-AOC and T-SOD, and decrease the content of MDA in hippocampus of Aβ1-42 injected mice (F (5, 30)=5.193, P<0.01, F (5, 30)=2.865, P<0.05, F (5, 30)=4.735, P<0.01, respectively). Moreover, it significantly increased the expressions of SYP, PSD-95 and GAP-43 in hippocampus (F (4, 27)=3.495, P<0.05; F (4, 27)=2.965, P<0.05; F (4, 27)=4.365, P<0.01, respectively), and improved the synaptic ultra-structure damage in model rats. CONCLUSION TSX could significantly improve the impairments of learning and memory. The preliminary mechanism might associate with its protection effects against oxidative stress damage, cholinergic system deficiency and synaptic damage. TSX are perfectly suitable for AD patients as medicine or functional food, which would be a new candidate to treat AD.
Collapse
Affiliation(s)
- Xue-Fei Ji
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China.
| | - Tian-Yan Chi
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Peng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Lu-Yi Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Ji-Kai Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Qian Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China
| | - Li-Bo Zou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China.
| | - Da-Li Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua road, Shenyang 110016, China.
| |
Collapse
|
12
|
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol 2016; 14:101-15. [PMID: 26813123 PMCID: PMC4787279 DOI: 10.2174/1570159x13666150716165726] [Citation(s) in RCA: 895] [Impact Index Per Article: 111.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Acetylcholine (ACh) has a crucial role in the peripheral and central nervous
systems. The enzyme choline acetyltransferase (ChAT) is responsible for
synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular
acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic
vesicles. Following depolarization, ACh undergoes exocytosis reaching the
synaptic cleft, where it can bind its receptors, including muscarinic and
nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by
the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is
recycled into the presynaptic nerve terminal by the high-affinity choline
transporter (CHT1). Cholinergic neurons located in the basal forebrain,
including the neurons that form the nucleus basalis of Meynert, are severely
lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia
affecting 25 million people worldwide. The hallmarks of the disease are the
accumulation of neurofibrillary tangles and amyloid plaques. However, there is
no real correlation between levels of cortical plaques and AD-related cognitive
impairment. Nevertheless, synaptic loss is the principal correlate of disease
progression and loss of cholinergic neurons contributes to memory and attention
deficits. Thus, drugs that act on the cholinergic system represent a promising
option to treat AD patients.
Collapse
Affiliation(s)
| | | | | | - Fabiola M Ribeiro
- Departamento de Bioquimica e Imunologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
13
|
Maternal separation exacerbates Alzheimer's disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behav Brain Res 2016; 318:18-23. [PMID: 27771383 DOI: 10.1016/j.bbr.2016.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder that gradually destroys memory and cognitive abilities in the elderly, makes a huge emotional and economic burden on the patients and their families. The presence of senile plaques and the loss of cholinergic neurons in the brain are two neuropathological hallmarks of AD. Maternal separation (MS) is an animal paradigm designed to make early life stress. Studies on wild type rodents showed that MS could induce AD-like cognitive deficit and pathological changes. However, the effects of MS on AD susceptible population or AD animal models are still unclear. In the present study, male APPswe/PS1dE9 transgenic mice were separated from dam and pups 3h per day from postnatal day 2 to day 21. After weaning, all animals were housed under normal conditions (4 mice per cage). At 9-month age, MWM tests were performed to evaluate the learning and memory abilities. Then the pathological changes in the brain were measured by histology staining. The results showed MS mice had more severe deficit of learning and memory. Compared to the control, there were more senile plaques in cortex and hippocampus, fewer cholinergic neurons in nucleus basalis of Meynert in MS mice. These results indicate that MS exacerbates Alzheimer's disease-like behavioral and pathological changes in APPswe/PS1dE9 mice.
Collapse
|
14
|
Xenon-mediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discov 2016; 2:16018. [PMID: 27551511 PMCID: PMC4979450 DOI: 10.1038/cddiscovery.2016.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Noble gases such as xenon and argon have been reported to provide neuroprotection against acute brain ischemic/anoxic injuries. Herein, we wished to evaluate the protective potential of these two gases under conditions relevant to the pathogenesis of chronic neurodegenerative disorders. For that, we established cultures of neurons typically affected in Alzheimer's disease (AD) pathology, that is, cortical neurons and basal forebrain cholinergic neurons and exposed them to L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to generate sustained, low-level excitotoxic stress. Over a period of 4 days, PDC caused a progressive loss of cortical neurons which was prevented substantially when xenon replaced nitrogen in the cell culture atmosphere. Unlike xenon, argon remained inactive. Xenon acted downstream of the inhibitory and stimulatory effects elicited by PDC on glutamate uptake and efflux, respectively. Neuroprotection by xenon was mimicked by two noncompetitive antagonists of NMDA glutamate receptors, memantine and ketamine. Each of them potentiated xenon-mediated neuroprotection when used at concentrations providing suboptimal rescue to cortical neurons but most surprisingly, no rescue at all. The survival-promoting effects of xenon persisted when NMDA was used instead of PDC to trigger neuronal death, indicating that NMDA receptor antagonism was probably accountable for xenon’s effects. An excess of glycine failed to reverse xenon neuroprotection, thus excluding a competitive interaction of xenon with the glycine-binding site of NMDA receptors. Noticeably, antioxidants such as Trolox and N-acetylcysteine reduced PDC-induced neuronal death but xenon itself lacked free radical-scavenging activity. Cholinergic neurons were also rescued efficaciously by xenon in basal forebrain cultures. Unexpectedly, however, xenon stimulated cholinergic traits and promoted the morphological differentiation of cholinergic neurons in these cultures. Memantine reproduced some of these neurotrophic effects, albeit with less efficacy than xenon. In conclusion, we demonstrate for the first time that xenon may have a therapeutic potential in AD.
Collapse
|
15
|
Lavaur J, Lemaire M, Pype J, Le Nogue D, Hirsch EC, Michel PP. Neuroprotective and neurorestorative potential of xenon. Cell Death Dis 2016; 7:e2182. [PMID: 27054337 PMCID: PMC4855665 DOI: 10.1038/cddis.2016.86] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J Lavaur
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Lemaire
- Air Liquide Healthcare, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - J Pype
- Air Liquide Healthcare, Medical R&D Paris, Saclay Research Center, Jouy-en Josas, France
| | - D Le Nogue
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - E C Hirsch
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - P P Michel
- Institut National de la Santé et de la Recherche Médicale, U 1127, CNRS, Unité Mixte de Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
16
|
Li SJ, Meng HY, Deng XF, Fu X, Chen JW, Huang S, Huang YS, Luo HL, Ou SY, Jiang YM. Protective effects of sodium p-aminosalicylic acid on learning and memory via increasing the number of basal forebrain choline acetyltransferase neurons in manganese-exposed rats. Hum Exp Toxicol 2014; 34:240-8. [PMID: 24972623 DOI: 10.1177/0960327114529454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was conducted to investigate the protective effects of sodium p-aminosalicylic acid (PAS-Na) on learning and memory via increasing the number of basal forebrain choline acetyltransferase (ChAT) neurons in manganese (Mn)-exposed rats. Male Sprague Dawley rats were divided into following groups: the normal control I, II, and III groups, the model I, II, and III groups, low- and high-dose PAS-Na treatment (L- and H-PAS) group, PAS-Na prevention (PAS-P) group, and PAS-Na treatment (PAS-T) group. The model I, II, and III groups, L- and H-PAS, and PAS-T groups received intraperitoneal (i.p.) injection of 15 mg/kg manganese chloride tetrahydrate (MnCl2·4H2O) for 3 or 12 weeks, while the normal control I, II, and III groups received i.p. injection of an equal volume of saline; L- and H-PAS and PAS-T groups received back subcutaneous (s.c.) injection of PAS-Na (100 and 200 mg/kg) for the next 5 or 6 weeks, whereas model I and II group received back s.c. injection of an equal volume of saline. However, PAS-P group received back s.c. injection of 200 mg/kg PAS-Na + i.p. injection of 15 mg/kg MnCl2·4H2O for 12 weeks. Mn exposure significantly reduced the ability of spatial learning and memory capability, while PAS-Na prevention recovered it. Mn decreased the number of ChAT-positive neurons in vertical limb nucleus of the basal forebrain diagonal band/horizontal limb nucleus of the basal forebrain diagonal band and ChAT protein activity and treatment or prevention with PAS-Na restored those comparable with control. In brief, our results showed that PAS-Na may have protective effects on learning and memory against Mn via increasing the number of ChAT-positive neurons and activity of ChAT protein.
Collapse
Affiliation(s)
- S-J Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - H-Y Meng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - X-F Deng
- Department of Anatomy, Guangxi Medical University, Guangxi, China
| | - X Fu
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - J-W Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - S Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Y-S Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - H-L Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - S-Y Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| | - Y-M Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi, China
| |
Collapse
|
17
|
Anju T, Paulose C. Striatal cholinergic functional alterations in hypoxic neonatal rats: Role of glucose, oxygen, and epinephrine resuscitation. Biochem Cell Biol 2013; 91:350-6. [DOI: 10.1139/bcb-2012-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Molecular processes regulating cholinergic functions play an important role in the control of respiration under hypoxia. Cholinergic alterations and its further complications in respiration due to hypoxic insult in neonatal rats and the effect of glucose, oxygen, and epinephrine resuscitation was evaluated in the present study. Receptor binding and gene expression studies were done in the corpus striatum to analyse the changes in total muscarinic receptors, muscarinic M1, M2, M3 receptors, and the enzymes involved in acetylcholine metabolism, choline acetyltransferase and acetylcholinesterase. Neonatal hypoxia decreased total muscarinic receptors with reduced expression of muscarinic M1, M2, and M3 receptor genes. The reduction in acetylcholine metabolism is indicated by the downregulated choline acetyltransferase and upregulated acetyl cholinesterase expression. These cholinergic disturbances were reversed to near control in glucose-resuscitated hypoxic neonates. The adverse effects of immediate oxygenation and epinephrine administration are also reported. The present findings points to the cholinergic alterations due to neonatal hypoxic shock and suggests a proper resuscitation method to ameliorate these striatal changes.
Collapse
Affiliation(s)
- T.R. Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - C.S. Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| |
Collapse
|
18
|
Affonso AC, Machado DG, Malgarin F, Fraga DB, Ghedim F, Zugno A, Streck EL, Schuck PF, Ferreira GC. Increased susceptibility of brain acetylcholinesterase activity to methylmalonate in young rats with renal failure. Metab Brain Dis 2013; 28:493-500. [PMID: 23475280 DOI: 10.1007/s11011-013-9396-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/26/2013] [Indexed: 01/20/2023]
Abstract
Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. Clinically, the disease is characterized by progressive neurological deterioration and renal failure, whose pathophysiology is still undefined. In the present study we investigated the effect of acute MMA administration on some important parameters of brain neurotransmission in cerebral cortex of rats, namely Na(+), K(+)-ATPase, ouabain-insensitive ATPases and acetylcholinesterase activities, in the presence or absence of kidney injury induced by gentamicin administration. Initially, thirty-day old Wistar rats received one intraperitoneal injection of saline or gentamicin (70 mg/kg). One hour after, the animals received three consecutive subcutaneous injections of MMA (1.67 μmol/g) or saline, with an 11 h interval between each injection. One hour after the last injection the animals were killed and the cerebral cortex isolated. MMA administration by itself was not able to modify Na(+), K(+)-ATPase, ATPases ouabain-insensitive or acetylcholinesterase activities in cerebral cortex of young rats. In rats receiving gentamicin simultaneously with MMA, it was observed an increase in the activity of acetylcholinesterase activity in cerebral cortex, without any alteration in the activity of the other studied enzymes. Therefore, it may be speculated that cholinergic imbalance may play a role in the pathogenesis of the brain damage. Furthermore, the pathophysiology of tissue damage cannot be exclusively attributed to MMA toxicity, and control of kidney function should be considered as a priority in the management of these patients, specifically during episodes of metabolic decompensation when MMA levels are higher.
Collapse
Affiliation(s)
- André C Affonso
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Chen Y, Shan Y, Wang D, Zhu C, Xu Y. Effects of puerarin on cholinergic enzymes in the brain of ovariectomized guinea pigs. Int J Neurosci 2013; 123:783-91. [DOI: 10.3109/00207454.2013.803103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Grana TR, LaMarre J, Kalisch BE. Nerve growth factor-mediated regulation of low density lipoprotein receptor-related protein promoter activation. Cell Mol Neurobiol 2013; 33:269-82. [PMID: 23192564 DOI: 10.1007/s10571-012-9894-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
The mechanisms by which nerve growth factor (NGF) increases the level of low density lipoprotein receptor-related protein (LRP1) are not known. Administration of nitric oxide synthase (NOS) inhibitors modulates several of the neurotrophic actions of NGF, including TrkA signalling pathway activation, increases in gene expression and neurite outgrowth. The present study investigated whether NGF regulates the transcription of LRP1 as well as the role of NO and the individual TrkA signalling pathways in this action of NGF. PC12 cells were transfected with luciferase reporter constructs containing various sized fragments of the LRP1 promoter and treated with NGF (50 ng/mL) to establish whether NGF altered LRP transcription. NGF significantly increased luciferase activity in all LRP1 promoter construct-transfected cells with the NGF-responsive region of the promoter identified to be present in the first 1000 bp. The non-selective NOS inhibitor N(ω)-nitro-L-arginine methylester (L-NAME; 20 mM) had no effect on the NGF-mediated increase in luciferase activity, while the inducible NOS selective inhibitor s-methylisothiourea (S-MIU; 2 mM) attenuated the NGF-induced activation of the LRP1 promoter. Pretreatment of PC12 cells with 10 μM bisindolylmaleimide 1 (BIS-1) prevented the NGF-mediated increase in LRP1 promoter activation while 50 μM U0126 partially inhibited this response. In combination with S-MIU, all of the TrkA signalling pathway inhibitors blocked the ability of NGF to increase LRP1 transcription. These data suggest the NGF-mediated increase in LRP1 levels occurs, at least in part, at the level of transcription and that NO and the TrkA signalling pathways cooperate in the modulation of LRP1 transcription.
Collapse
Affiliation(s)
- Tomas R Grana
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
21
|
Romeo C, Raveendran AT, Sobha NM, Paulose CS. Cholinergic receptor alterations in the brain stem of spinal cord injured rats. Neurochem Res 2012. [PMID: 23184186 DOI: 10.1007/s11064-012-0931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cholinergic receptors in upper motor neurons of brain stem control locomotion and coordination. Present study unravels cholinergic alterations in brain stem during spinal cord injury to understand signalling pathway changes which may be associated with spinal cord injury mediated motor deficits. We evaluated cholinergic function in brain stem by studying the expression of choline acetyl transferase and acetylcholine esterase. We quantified metabotropic muscarinic cholinergic receptors by receptor assays for total muscarinic, muscarinic M1 and M3 receptor subunits, gene expression studies using Real Time PCR and confocal imaging using FITC tagged secondary antibodies. The gene expression of ionotropic nicotinic cholinergic receptors and confocal imaging were also studied. The results from our study showed metabolic disturbance in cholinergic pathway as choline acetyl transferase is down regulated and acetylcholine esterase is up regulated in spinal cord injury group. The significant decrease in muscarinic receptors showed by decreased receptor number along with down regulated gene expression and confocal imaging accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic acetylcholine receptors and confocal imaging. The motor coordination was analysed by Grid walk test which showed an increased foot slips in spinal cord injured rats. The significant reduction in brain stem cholinergic function might have intensified the motor dysfunction and locomotor disabilities.
Collapse
Affiliation(s)
- Chinthu Romeo
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, Kerala, India
| | | | | | | |
Collapse
|
22
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
23
|
Nunes-Tavares N, Santos LE, Stutz B, Brito-Moreira J, Klein WL, Ferreira ST, de Mello FG. Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β peptide oligomers. J Biol Chem 2012; 287:19377-85. [PMID: 22505713 DOI: 10.1074/jbc.m111.321448] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction. Here, we have investigated the possibility that AβOs could impact cholinergic signaling. The activity of choline acetyltransferase (ChAT, the enzyme that carries out ACh production) was inhibited by ~50% in cultured cholinergic neurons exposed to low nanomolar concentrations of AβOs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction, lactate dehydrogenase release, and [(3)H]choline uptake assays showed no evidence of neuronal damage or loss of viability that could account for reduced ChAT activity under these conditions. Glutamate receptor antagonists fully blocked ChAT inhibition and oxidative stress induced by AβOs. Antioxidant polyunsaturated fatty acids had similar effects, indicating that oxidative damage may be involved in ChAT inhibition. Treatment with insulin, previously shown to down-regulate neuronal AβO binding sites, fully prevented AβO-induced inhibition of ChAT. Interestingly, we found that AβOs selectively bind to ~50% of cultured cholinergic neurons, suggesting that ChAT is fully inhibited in AβO-targeted neurons. Reduction in ChAT activity instigated by AβOs may thus be a relevant event in early stage AD pathology, preceding the loss of cholinergic neurons commonly observed in AD brains.
Collapse
Affiliation(s)
- Nilson Nunes-Tavares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Lentiviral infection of rhesus macaques causes long-term injury to cortical and hippocampal projections of prostaglandin-expressing cholinergic basal forebrain neurons. J Neuropathol Exp Neurol 2012; 71:15-27. [PMID: 22157616 DOI: 10.1097/nen.0b013e31823cfac5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Collapse
|
25
|
Aizawa S, Yamamuro Y. Involvement of histone acetylation in the regulation of choline acetyltransferase gene in NG108-15 neuronal cells. Neurochem Int 2010; 56:627-33. [PMID: 20100532 DOI: 10.1016/j.neuint.2010.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/08/2010] [Accepted: 01/18/2010] [Indexed: 12/12/2022]
Abstract
Post-translational modification of histone such as acetylation of N-terminal of lysine residues influences gene expression by modulating the accessibility of specific transcription factors to the promoter region, and is essential for a wide variety of cellular processes in the development of individual tissues, including the brain. However, few details concerning the acquisition of specific neurotransmitter phenotype have been obtained. In the present study, we investigated the possible involvement of histone acetylation in the gene expression of choline acetyltransferase (ChAT), a specific marker for cholinergic neuron and its function, in NG108-15 neuronal cells as an in vitro model of cholinergic neuron. Treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA), which induces global histone hyper-acetylation of the cells, resulted in marked increase in the expression of ChAT gene in proliferating NG108-15 cells. Furthermore, RT-PCR analysis using primer pairs for individual variants of ChAT mRNA (R1-4, N1, and M type) revealed that M type, not R1-4 and N1 type, ChAT mRNA were mainly transcribed, and chromatin immunoprecipitation assay indicated that the promoter region of M type ChAT gene was highly acetylated, in the dibutyryl cyclic AMP-induced neuronal differentiation of NG108-15 cells. The present findings demonstrate that the acquisition of neurotransmitter phenotype is epigenetically, at least the hyper-acetylation on the core promoter region of ChAT gene, regulated in NG108-15 neuronal cells.
Collapse
Affiliation(s)
- Shu Aizawa
- Department of Animal Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | | |
Collapse
|
26
|
In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord. Neuroscience 2009; 159:344-57. [DOI: 10.1016/j.neuroscience.2008.12.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 02/05/2023]
|
27
|
The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice. Neuroscience 2008; 151:671-9. [DOI: 10.1016/j.neuroscience.2007.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/30/2007] [Accepted: 12/03/2007] [Indexed: 11/19/2022]
|
28
|
Yamamoto H, Kitawaki J, Kikuchi N, Okubo T, Iwasa K, Kawata M, Honjo H. Effects of estrogens on cholinergic neurons in the rat basal nucleus. J Steroid Biochem Mol Biol 2007; 107:70-9. [PMID: 17651965 DOI: 10.1016/j.jsbmb.2007.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Estrogen replacement in postmenopausal women may help prevent or delay development of Alzheimer's disease. Because loss of basal forebrain cholinergic neurons with reductions in choline acetyltransferase (ChAT) concentration are associated with Alzheimer's disease, we investigated the effect of estradiol (E(2)) and J 861, a non-feminizing estrogen, on cholinergic neurons in the basal forebrain. Ovariectomized rats received E(2), J 861 or vehicle, and basal forebrain sections through the substantia innominata, medial septum, and nucleus of the diagonal band were immunostained for ChAT. ChAT-immunoreactive cells in the basal forebrain were significantly reduced in the ovariectomized rats compared to intact rats, but those ovariectomized rats receiving estrogen replacement with E(2) and J 861 had near normal levels of ChAT-positive neurons. While retrograde tracing experiments with fluorogold injected into the prefrontal cortex showed no significant differences in the number of fluorogold-labeled cells among the groups, ChAT-immunoreactive cells and double-labeled cells were significantly lower in OVX rats than in intact and E(2) rats. Some substantia innominata cells in the J 861 rats were ChAT/estrogen receptor alpha-positive. These results suggest that E(2) and J 861 have positive effects on cholinergic neurons that project from the basal nucleus to the forebrain cortex.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Ginestet L, Ferrario JE, Raisman-Vozari R, Hirsch EC, Debeir T. Donepezil induces a cholinergic sprouting in basocortical degeneration. J Neurochem 2007; 102:434-40. [PMID: 17394553 DOI: 10.1111/j.1471-4159.2007.04497.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the few currently approved therapies for Alzheimer's disease (AD) consists in the administration of acetylcholinesterase inhibitors, which enhances the lifetime of the neurotransmitter acetylcholine. Despite numerous studies on the symptomatic effect of acetylcholinesterase inhibitors, there is as yet no direct morphological evidence to indicate that they have a neurorestorative action. We investigated the effect of the acetylcholinesterase inhibitor donepezil administered subcutaneously in a rat model of partial unilateral cortical devascularization that induces a loss of the cortical cholinergic terminal network and a retrograde degeneration of the cholinergic projections that originate in the nucleus basalis. For 6 weeks, lesioned and sham-operated rats received a subcutaneous infusion of donepezil (2 mg/kg/day) or vehicle, delivered by osmotic minipumps implanted 2 weeks before the cortical devascularization. In lesioned rats, donepezil treatment increased the number and the size of vesicular acetylcholine transporter immunoreactive boutons in comparison to vehicle treatment. Donepezil had no observable effect on any of these parameters in sham-operated animals. These results show that donepezil mitigates cholinergic neuronal degeneration in vivo. This suggests a neuroplastic activity of this drug and provides evidence for a potential use of donepezil as a disease modifier in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Laure Ginestet
- INSERM, UMR-679, Neurology and Experimental Therapeutics, Hôpital de la Salpêtrière, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Higashi S, Moore DJ, Colebrooke RE, Biskup S, Dawson VL, Arai H, Dawson TM, Emson PC. Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J Neurochem 2006; 100:368-81. [PMID: 17101029 DOI: 10.1111/j.1471-4159.2006.04246.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) have been identified as the cause of familial Parkinson's disease (PD) at the PARK8 locus. To begin to understand the physiological role of LRRK2 and its involvement in PD, we have investigated the distribution of LRRK2 mRNA and protein in the adult mouse brain. In situ hybridization studies indicate sites of mRNA expression throughout the mouse brain, with highest levels of expression detected in forebrain regions, including the cerebral cortex and striatum, intermediate levels observed in the hippocampus and cerebellum, and low levels in the thalamus, hypothalamus and substantia nigra. Immunohistochemical studies demonstrate localization of LRRK2 protein to neurones in the cerebral cortex and striatum, and to a variety of interneuronal subtypes in these regions. Furthermore, expression of LRRK2 mRNA in the striatum of VMAT2-deficient mice is unaltered relative to wild-type littermate controls despite extensive dopamine depletion in this mouse model of parkinsonism. Collectively, our results demonstrate that LRRK2 is present in anatomical brain regions of direct relevance to the pathogenesis of PD, including the nigrostriatal dopaminergic pathway, in addition to other regions unrelated to PD pathology, and is likely to play an important role in the normal function of telencephalic forebrain neurones and other neuronal populations.
Collapse
Affiliation(s)
- Shinji Higashi
- Laboratory of Molecular Neuroscience, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dubelaar EJG, Mufson EJ, ter Meulen WG, Van Heerikhuize JJ, Verwer RWH, Swaab DF. Increased Metabolic Activity in Nucleus Basalis of Meynert Neurons in Elderly Individuals With Mild Cognitive Impairment as Indicated by the Size of the Golgi Apparatus. J Neuropathol Exp Neurol 2006; 65:257-66. [PMID: 16651887 DOI: 10.1097/01.jnen.0000205143.16339.cd] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, we examined the metabolic activity of nucleus basalis of Meynert (NBM) neurons in individuals clinically diagnosed with no cognitive impairment (NCI, n = 8), mild cognitive impairment (MCI, n = 9), and subjects with moderate Alzheimer disease (AD, n = 7). We used Golgi apparatus (GA) size as a measure of neuronal metabolic activity. Subjects with MCI showed increased NBM metabolic activity; they had significantly more neurons with larger GA size as compared with NCI and AD subjects. In contrast, more NBM neurons with extremely small GA sizes, indicating reduced metabolic activity, were seen in AD. When these cases were classified according to their AD pathology (Braak I-II, III-IV, or V-VI), Braak III-IV subjects showed significantly increased GA sizes, comparable with the increase in clinically diagnosed MCI, whereas in Braak V-VI, GA sizes were dramatically reduced. Of all MCI and NCI subjects with similar Braak III-IV pathology, the MCI subjects again had significantly larger GA sizes. The larger NBM neuronal GA size seen in MCI suggests increased metabolic activity, associated with both the clinical progression from NCI to MCI, and with the early stages of AD pathology.
Collapse
|
32
|
Dubelaar EJG, Verwer RWH, Hofman MA, Van Heerikhuize JJ, Ravid R, Swaab DE. ApoE epsilon4 genotype is accompanied by lower metabolic activity in nucleus basalis of Meynert neurons in Alzheimer patients and controls as indicated by the size of the Golgi apparatus. J Neuropathol Exp Neurol 2004; 63:159-69. [PMID: 14989602 DOI: 10.1093/jnen/63.2.159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We previously found apolipoprotein (apoE) epsilon4-dependent lower metabolic activity in nucleus basalis of Meynert (NBM) neurons in Alzheimer disease (AD). In the present study we examined the metabolic activity in the NBM of 39 mentally intact control subjects with different APOE genotype. The control subjects had either no AD pathology (Braak stage 0) or the very beginning of AD pathology (Braak stage I-II). We used the Golgi apparatus (GA) size as a measure of neuronal metabolic activity. Control subjects carrying an apoE epsilon4 allele showed reduced neuronal metabolism; they had significantly more neurons with smaller GA sizes compared to control subjects not carrying an apoE epsilon4 allele. Only control subjects not carrying an apoE epsilon4 allele had increased neuronal metabolism in Braak I-II subjects. They had more neurons with larger GA sizes compared to Braak 0 subjects, which may reflect a compensatory mechanism. Our data indicate that APOE epsilon4 may act by a lower neuronal metabolism as a risk factor for cognitive impairment in normal aging and early prodromal AD. As the disease progresses into later stages of AD (Braak V-VI) neuronal metabolism strongly diminishes, resulting in neurons with extremely small GA sizes, irrespective of APOE genotype.
Collapse
Affiliation(s)
- E J G Dubelaar
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Helm KA, Han JS, Gallagher M. Effects of cholinergic lesions produced by infusions of 192 IgG-saporin on glucocorticoid receptor mRNA expression in hippocampus and medial prefrontal cortex of the rat. Neuroscience 2003; 115:765-74. [PMID: 12435415 DOI: 10.1016/s0306-4522(02)00487-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Principal neurons in the hippocampus and prefrontal cortex of the rat have been identified as targets for glucocorticoids involved in the hypothalamic-pituitary-adrenocortical stress response. Alterations in mRNA expression for glucocorticoid receptors in each of these regions have been shown to affect the negative feedback response to corticosterone following an acute stressor. Both decreases in forebrain glucocorticoid receptors and in the efficiency of adrenocortical feedback have been observed in normal aging, and have been selectively induced with experimental lesions or manipulations in neurotransmitter systems. The current study investigated the possibility that a loss of cholinergic support from cells in the basal forebrain, a hallmark of aging, contributes to the selective age-related loss of glucocorticoid receptor mRNA expression at cholinoceptive target sites that include the hippocampus and medial prefrontal cortex. Lesions of the basal forebrain cholinergic system in young adult rats were made by microinjections of the immunotoxin 192 IgG-saporin into the medial septum/vertical limb of the diagonal band and substantia innominata/nucleus basalis. Basal levels of circulating glucocorticoids were unaffected by the lesions. Analysis of both mineralocorticoid and glucocorticoid receptor mRNA expression revealed a significant decrease in glucocorticoid receptor mRNA in the hippocampus and medial prefrontal cortex, with spared expression at subcortical sites and no detectable change in mineralocorticoid receptor mRNA in any of the examined regions. Thus, rats with lesions of the basal forebrain cholinergic system recapitulate some of the detrimental effects of aging associated with glucocorticoid-mediated stress pathways in the brain.
Collapse
Affiliation(s)
- K A Helm
- Department of Psychological and Brain Sciences, The Johns Hopkins University, 3400 North Charles Street, Ames Hall, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
34
|
Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH. Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer's disease. J Comp Neurol 2001; 437:296-307. [PMID: 11494257 DOI: 10.1002/cne.1284] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies indicate that trkA expression is reduced in end-stage Alzheimer's disease (AD). However, understanding the neuropathologic correlates of early cognitive decline, as well as the changes that underlie the transition from nondemented mild cognitive impairment (MCI) to AD, are more critical neurobiological challenges. In these regards, the present study examined the expression of trkA mRNA in individuals diagnosed with MCI and AD from a cohort of people enrolled in a Religious Orders Study. Individuals with MCI and AD displayed significant reductions in trkA mRNA relative to aged-matched controls, indicating that alterations in trkA gene expression occur early in the disease process. The magnitude of change was similar in MCI and AD cases, suggesting that further loss of trkA mRNA is not necessarily associated with the transition of individuals from nondemented MCI to AD. The loss of trkA mRNA was not associated with education, apolipoprotein E allele status, gender, Braak score, global cognitive score or Mini-Mental Status Examination. In contrast, the loss of trkA mRNA in MCI and AD was significantly correlated with function on a variety of episodic memory tests.
Collapse
Affiliation(s)
- Y Chu
- Department of Neurological Sciences and Rush Alzheimer's Disease Center, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
A key component of the cognitive deficits associated with aging is the loss of function of cholinergic neurons in the basal forebrain due to neuronal losses and decreased cholinergic function of spared neurons. A model to mimic one aspect of this phenomenon is to kill cholinergic neurons selectively in the basal forebrain via administration of the immunotoxin IgG-192-saporin. Here we discuss apoptotic regulators, such as nerve growth factor, in age-associated changes present in the cholinergic system and the role of the NF-kappaB signaling system in cellular commitment to apoptosis. We also examine the age-associated decline in intrinsic response mechanisms, which may account for the age-associated reduction in recovery from both acute and chronic insults to the central nervous system.
Collapse
Affiliation(s)
- Z Gu
- Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch at Galveston 77555-0652, USA
| | | | | | | |
Collapse
|
36
|
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999; 49:921-37. [PMID: 10594838 DOI: 10.1046/j.1440-1827.1999.00977.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific indicator for monitoring the functional state of cholinergic neurones in the central and peripheral nervous systems. ChAT is a single-strand globular protein. The enzyme is synthesized in the perikaryon of cholinergic neurones and transported to the nerve terminals probably by both slow and rapid axoplasmic flows. ChAT exists in at least two forms in cholinergic nerve terminals: (i) soluble; and (ii) non-ionically membrane-bound forms. Multiple mRNA species of ChAT (R-, N-and M-types) are transcribed from different promoter regions and produced by different splicing in the mouse, rat, and human. All transcripts encode the same ChAT protein in rodents, while in human M-type mRNA has the capability to generate both large and small forms of ChAT proteins and R-and N-types ChAT mRNA generate a small form, which corresponds to the rodent ChAT. The genomic structure of ChAT is unique compared with other enzymes for neurotransmitters. The first intron of the ChAT gene encompasses the open reading frame encoding another protein, vesicular acetylcholine transporter (VAChT), which is responsible for the transportation of acetylcholine from the cytoplasm into the synaptic vesicles. The expressions of ChAT and VAChT appear to be coordinately regulated by multiple regulatory elements in cholinergic neurones. Immunohistochemical and in situ hybridization studies have revealed the localization of cholinergic neurones in the central nervous system: the medial septal nucleus, the nucleus of the diagonal band of Broca, the basal nucleus of Meynert, the caudate nucleus, the putamen, the nucleus accumbens, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the medial habenular nucleus, the parabigeminal nucleus, some cranial nerve nuclei, and the anterior horn of the spinal cord. Focally distributed cholinergic neurones project fibers to many areas in the central nervous system and construct a complicated cholinergic network, playing an important role in neuropsychic activities, such as learning, memory, arousal, sleep and movement. Central cholinergic neurones are involved in several neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, in which disturbance of the central cholinergic system does not appear to be closely related to the etiology, but rather to the development of clinical symptoms. In addition, abnormalities of ChAT in the brain have been recently demonstrated in schizophrenia and sudden infant death syndrome.
Collapse
Affiliation(s)
- Y Oda
- First Department of Pathology, Faculty of Medicine, Kanazawa Univesity, Japan.
| |
Collapse
|
37
|
Kasashima S, Muroishi Y, Futakuchi H, Nakanishi I, Oda Y. In situ mRNA hybridization study of the distribution of choline acetyltransferase in the human brain. Brain Res 1998; 806:8-15. [PMID: 9739100 DOI: 10.1016/s0006-8993(98)00677-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We examined the distribution of choline acetyltransferase (ChAT) mRNA in the brain of six autopsied individuals by in situ hybridization with 35S-labeled human ChAT riboprobes. Neurons containing hybridization signal for ChAT mRNA were observed in the nucleus of the diagonal band of Broca, the basal nucleus of Meynert, the caudate nucleus, the putamen, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the parabigeminal nucleus, the oculomotor nucleus and the trochlear nucleus. These findings were in good agreement with previous ChAT-immunohistochemical data. In contrast, labeled neurons were not observed in the medial septal and medial habenular nuclei, in which previously ChAT-immunoreactive neurons have been identified in many mammalian species, including the human. An unexpected result of the present study was the demonstration of neurons with ChAT mRNA signal in restricted areas of the human cerebral cortex.
Collapse
Affiliation(s)
- S Kasashima
- First Department of Pathology, Faculty of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | | | |
Collapse
|
38
|
Mufson E, Jaffar S, Levey A. m2 muscarinic acetylcholine receptor-immunoreactive neurons are not reduced within the nucleus basalis in Alzheimer's disease: Relationship with cholinergic and galaninergic perikarya. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980316)392:3<313::aid-cne3>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Varoqui H, Erickson JD. Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol Neurobiol 1997; 15:165-91. [PMID: 9396009 DOI: 10.1007/bf02740633] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.
Collapse
Affiliation(s)
- H Varoqui
- Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
40
|
Poethke R, Härtig W, Brückner G, Felgenhauer K, Mäder M. Characterization of monoclonal and polyclonal antibodies to human choline acetyltransferase and epitope analysis. Biol Chem 1997; 378:997-1004. [PMID: 9348109 DOI: 10.1515/bchm.1997.378.9.997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Choline acetyltransferase (ChAT) was partially purified from human placenta and brain. In order to raise monoclonal antibodies, Balb/c mice were immunized with a preparation from placenta or with a mixture of eight synthetic peptides that were deduced from the primary structures of porcine and human ChAT. Polyclonal antibodies were raised in rabbits against five synthetic peptides deduced from the amino acid sequence of human ChAT. The monoclonal and polyclonal antibodies were characterized by their ability to recognize ChAT in various immunoassays: immunoblot, enzyme-linked immunosorbent assay (ELISA), two-side ELISA and immunohistochemistry. With one exception all monoclonal antibodies recognized ChAT on immunoblots, some were particularly sensitive; one bound active ChAT in ELISA when used as capture reagent; most antibodies recognized immobilized ChAT in ELISA. Two monoclonal antibodies out of nine gave particularly excellent results in staining cholinergic neurons and fibers on sections from rat and primate brain. With the help of nine synthetic peptides it was possible to evaluate two major binding sites for the monoclonal antibodies on the ChAT molecule, comprising amino acids 167-189 and 57-76, respectively.
Collapse
Affiliation(s)
- R Poethke
- Department of Neurology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
41
|
Sakuragawa N, Misawa H, Ohsugi K, Kakishita K, Ishii T, Thangavel R, Tohyama J, Elwan M, Yokoyama Y, Okuda O, Arai H, Ogino I, Sato K. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett 1997; 232:53-6. [PMID: 9292890 DOI: 10.1016/s0304-3940(97)00570-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human amniotic epithelial (HAE) cells have been used for allotransplantation in patients with lysosomal storage disease due to lack of expression of HLA antigens. Previously, we have reported the expression of differentiation markers for both neural stem cells, and neuron and glial cells. In the present study, we investigated the presence of choline acetyltransferase (ChAT) and acetylcholine (ACh) in HAE cells using different experimental approaches. Cultured HAE cells showed strong immunoreactivity against ChAT antibody. ChAT activity in primary cells was 24.9 +/- 8.5 pmol/mg protein/h. Using HPLC with electrochemical detection, ACh was detected in both cell incubation media and cell pellets indicating that these cells synthesize and release ACh in a time-dependent manner. Additional confirmation of this hypothesis was gained from the data obtained from RT-PCR and Western blot analyses which revealed the expression of ChAT mRNA and ChAT protein, respectively, in HAE cells. Results of the present study suggest that HAE cells can possibly be applied for intracerebral allografting to treat neurologic diseases in which cholinergic neurons are damaged.
Collapse
Affiliation(s)
- N Sakuragawa
- Department of Inherited Metabolic Disease, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Poethke R, Tumani H, Felgenhauer K, Mäder M. Establishment of an efficient enzyme-linked immunosorbent assay for the determination of human choline acetyltransferase. J Neuroimmunol 1997; 76:206-12. [PMID: 9184652 DOI: 10.1016/s0165-5728(97)00064-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A specific and sensitive two-side enzyme-linked immunosorbent assay (sandwich-ELISA) was established for the reliable quantification of human brain and placental choline acetyltransferase (ChAT). In contrast to the radiometric assay developed by Fonnum, which is widely used for the measurement of enzyme activity, the sandwich-ELISA particularly recognized inactivated forms of the antigen. In the assay, affinity-purified polyclonal synthetic peptide antibodies adsorbed to the polystyrene surface of the microtiter plate were employed as capture reagent. Based on standard peroxidase protocols, immobilized ChAT was detected using monoclonal antibodies raised against human placental ChAT. By use of this ELISA, ChAT was determined at various purification stages of the enzyme, in body fluids, during recovery experiments and in sera of patients with severe brain damage.
Collapse
Affiliation(s)
- R Poethke
- Department of Neurology of the University, Göttingen, Germany
| | | | | | | |
Collapse
|
43
|
Boissiere F, Faucheux B, Ruberg M, Agid Y, Hirsch EC. Decreased TrkA gene expression in cholinergic neurons of the striatum and basal forebrain of patients with Alzheimer's disease. Exp Neurol 1997; 145:245-52. [PMID: 9184126 DOI: 10.1006/exnr.1997.6443] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In addition to cortical pathology, Alzheimer's disease is characterized by a loss of cholinergic neurons in the basal forebrain and the ventral striatum. Since cholinergic neurons which degenerate in Alzheimer's disease are sensitive to nerve growth factor, a link between nerve growth factor sensitivity and the vulnerability of cholinergic neurons has been suspected. The purpose of this study was to determine, in cholinergic neurons, the level of expression of TrkA, the high affinity receptor for nerve growth factor, in control subjects and Alzheimer patients. The study was performed by in situ hybridization using a 35S-labeled RNA probe complementary to human TrkA mRNA on immunohistochemically identified cholinergic neurons of the nucleus basalis of Meynert, the ventral striatum, and the putamen in postmortem brains of patients with clinically and neuropathologically confirmed Alzheimer's disease and control subjects. In patients with Alzheimer's disease, a decrease in TrkA mRNA expression was observed in the nucleus basalis of Meynert (-75%, P < 0.001) and the ventral striatum (-41%, P < 0.01), where the cholinergic neurons degenerate, and also in the anterior (-43%, P < 0.01) and posterior (-51%, P < 0.01) parts of the putamen, where they are spared but display precocious signs of cell alterations. These results, taken in conjunction with the reduced choline acetyltransferase activity and our previously published data showing a loss of high affinity nerve growth factor binding in both the dorsal and the ventral striatum of patients with Alzheimer's disease, indicate that receptor loss and the consequent decrease in trophic support may be associated with the degeneration of cholinergic neurons during Alzheimer's disease.
Collapse
Affiliation(s)
- F Boissiere
- Laboratoire de Médecine Experimentale, Physiopathologie et Pathogenèse des Maladies Dégénératives du Système Nerveux, INSERM U.289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Boissière F, Faucheux B, Agid Y, Hirsch EC. Choline acetyltransferase mRNA expression in the striatal neurons of patients with Alzheimer's disease. Neurosci Lett 1997; 225:169-72. [PMID: 9147397 DOI: 10.1016/s0304-3940(97)00210-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Besides cortical pathology, Alzheimer's disease (AD) is associated with a massive loss of cholinergic neurons in the basal forebrain. The resulting cortical cholinergic depletion is thought to contribute to the major cognitive impairment described in Ad. A selective loss of cholinergic neurons has also been observed in the ventral striatum, despite the lack of any major neurochemical dysfunction in the striatum of patients with AD. To examined possible changes in the functional activity of the neurons that remain in the striatum of AD patients, the expression level of the gene coding for choline acetyltransferase (ChAT) was evaluated using in situ hybridization in the caudate nucleus, putamen and ventral striatum. Quantitative analysis showed (i) a marked decrease in the number of ChAT mRNA-positive neurons in the ventral striatum, and (ii) significantly reduced ChAT mRNA expression in the surviving cholinergic neurons of the ventral striatum, whereas it was only slightly decreased in those of the dorsal striatum. Our data support the hypothesis of a down-regulated expression of ChAT in striatal cholinergic neurons, especially in those most vulnerable to the neurodegenerative process. The subnormal ChAT mRNA content may be the consequence of changes in the level of transcription of the ChAT gene, possibly in relation to sustained suffering still present at the late stages of this disease. Furthermore, the involvement of the ventral striatum in Alzheimer's disease may account for some of the behavioral and motor dysfunctions often observed in patients with AD.
Collapse
Affiliation(s)
- F Boissière
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
45
|
Itoh A, Nitta A, Katono Y, Usui M, Naruhashi K, Iida R, Hasegawa T, Nabeshima T. Effects of metrifonate on memory impairment and cholinergic dysfunction in rats. Eur J Pharmacol 1997; 322:11-9. [PMID: 9088864 DOI: 10.1016/s0014-2999(96)00977-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metrifonate is an organophosphorous compound that has been used in the treatment of schistosomiasis. In this study, we investigated the effects of metrifonate on the impairment of learning and on central cholinergic dysfunction in scopolamine-treated and basal forebrain-lesioned rats. Oral administration of metrifonate (5.0-15.0 mg/kg) ameliorated the scopolamine- and basal forebrain. lesion-induced learning impairment in the water maze and passive avoidance tasks. Metrifonate (50 and 100 mg/kg) also significantly increased extracellular acetylcholine levels but decreased choline levels in the cerebral cortex of the basal forebrain-lesioned rats. The basal forebrain lesion decreased the cholinesterase activity in the cerebral cortex, and metrifonate (100 mg/kg) further reduced the cholinesterase activity. However, cholinesterase inhibition was not observed at the dose that ameliorated learning impairments. These results indicated that metrifonate ameliorated the impairment of learning in both scopolamine-treated and basal forebrain-lesioned rats by not only increasing extracellular acetylcholine levels by inhibiting cholinesterase, but also by undefined other mechanism(s). This finding suggests the usefulness of metrifonate for the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- A Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
O'Connell AW, Strada O, Earley B, Leonard BE. Altered expression of amyloid protein precursor mRNA in the rat hippocampus following trimethyltin intoxication: an in situ hybridization study. Neurochem Int 1997; 30:313-20. [PMID: 9041563 DOI: 10.1016/s0197-0186(96)00052-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies have reported increased levels of amyloid protein precursor (APP) and APP mRNA in the hippocampus and basal forebrain of patients with Alzheimer's disease. Similar changes have been found in the brains of aged rodents and transgenic mice. It now appears that alterations in the expression of individual isoforms of APP mRNA may have a role to play in amyloid-pathogenesis. Here we examined the effect of acute administration of the limbic system neurotoxin trimethyltin (TMT) (8 mg/kg i.p.) on APP-751 and APP-695 mRNA expression in the rat hippocampus (CA1, CA2, CA3 and CA4) using in situ hybridization techniques. We found that following TMT treatment the expression of APP-751 mRNA was increased in CA1 pyramidal cells while that of APP-695 mRNA remained unchanged. TMT also increased the numbers of APP-751 and APP-695 mRNA positively hybridized cells in the CA1 pyramidal layer. These findings suggest that an alteration in APP mRNA expression is involved in the response of the rodent brain to TMT intoxication.
Collapse
Affiliation(s)
- A W O'Connell
- Pharmacology Department, University College, Galway, Ireland.
| | | | | | | |
Collapse
|
47
|
Boissière F, Faucheux B, Agid Y, Hirsch EC. Expression of catalytic trkB gene in the striatum and the basal forebrain of patients with Alzheimer's disease: an in situ hybridization study. Neurosci Lett 1997; 221:141-4. [PMID: 9121684 DOI: 10.1016/s0304-3940(96)13306-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of catalytic trkB gene, encoding for the high affinity brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) receptor, was studied post mortem in the striatum and the nucleus basalis of Meynert of patients with Alzheimer's disease (AD) and control subjects, using in situ hybridization coupled with choline acetyltransferase immunohistochemistry. Microscopic examination of tissue sections showed labelling on perikarya of neurons but no labelling on glial cells. In the striatum, cholinergic as well as non-cholinergic and, presumably GABAergic, neurons expressed detectable levels of TrkB mRNA, while in the nucleus basalis of Meynert, only cholinergic neurons were labelled. Quantitative analysis of the in situ hybridization signal in cells of these two regions failed to demonstrate any significant difference between AD patients and control subjects. Normal levels of TrkB mRNA in the surviving cholinergic neurons of the nucleus basalis of Meynert suggest that these neurons could respond to an exogenous supply of BDNF and/or NT-4/5.
Collapse
Affiliation(s)
- F Boissière
- INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
48
|
Varoqui H, Erickson JD. Active transport of acetylcholine by the human vesicular acetylcholine transporter. J Biol Chem 1996; 271:27229-32. [PMID: 8910293 DOI: 10.1074/jbc.271.44.27229] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The characteristics of ATP-dependent transport of acetylcholine (ACh) in homogenates of pheochromocytoma (PC-12) cells stably transfected with the human vesicular acetylcholine transporter (VAChT) cDNA are described. The human VAChT protein was abundantly expressed in this line and appeared as a diffuse band with a molecular mass of approximately 75 kDa on Western blots. Vesicular [3H]ACh accumulation increased approximately 20 times over levels attained by the endogenous rat VAChT, expressed at low levels in control PC-12 cells. The transport of [3H]ACh by human VAChT was dependent upon the addition of exogenous ATP at 37 degrees C. Uptake was abolished by low temperature (4 degrees C), the proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (2.5 microM) and bafilomycin A1 (1 microM), a specific inhibitor of the vesicular H+-ATPase. The kinetics of [3H]ACh uptake by human VAChT were saturable, exhibiting an apparent Km of 0.97 +/- 0.1 mM and Vmax of 0.58 +/- 0.04 nmol/min/mg. Maximal steady-state levels of vesicular [3H]ACh accumulation were directly proportional to the concentration of substrate present in the medium with saturation occurring at approximately 4 mM. Uptake was stereospecifically inhibited by L-vesamicol with an IC50 of 14.7 +/- 1.5 nM. The apparent affinity (Kd) of [3H]vesamicol for human VAChT was 4.1 +/- 0.5 nM, and the Bmax was 8.9 +/- 0.6 pmol/mg. The turnover (Vmax/Bmax) of the human VAChT was approximately 65/min. This expression system should prove useful for the structure/function analysis of VAChT.
Collapse
Affiliation(s)
- H Varoqui
- Section on Molecular Neuroscience, Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
49
|
Martínez-Serrano A, Fischer W, Söderström S, Ebendal T, Björklund A. Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc Natl Acad Sci U S A 1996; 93:6355-60. [PMID: 8692819 PMCID: PMC39026 DOI: 10.1073/pnas.93.13.6355] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.
Collapse
|
50
|
Boissière F, Lehéricy S, Strada O, Agid Y, Hirsch EC. Neurotrophin receptors and selective loss of cholinergic neurons in Alzheimer disease. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 28:219-23. [PMID: 8871962 DOI: 10.1007/bf02815225] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The most consistent neuropathological finding in Alzheimer disease (AD) is the loss of cholinergic neurons of the nucleus basalis of Meynert (NbM). Using immunohistochemistry, we have previously shown that cholinergic neurons located in the ventral striatum were affected, whereas those of the caudate nucleus, putamen, and mesencephalon were spared. Since cholinergic neurons that degenerate in AD are sensitive to NGF and those that are spared are not, it has been hypothesized that the loss of neurotrophins receptors may play a role in the death of cholinergic neurons in AD. Using immunohistochemistry, we have detected the presence of TrkA on most cholinergic neurons from the NbM, on some from those of the striatum, but not on those of the mesencephalon in the human brain. In AD patients, the number of neurons that expressed TrkA was markedly decreased in the NbM very likely as a consequence of cholinergic neuronal loss. In the striatum, despite the loss of high-affinity NGF binding previously reported, no loss of TrkA was observed. Taken together, these results suggest a decreased expression of NGF receptors on the striatal cholinergic neurons in AD. This loss may contribute, when it reaches a crucial threshold, to the death of cholinergic neurons occurring in AD.
Collapse
Affiliation(s)
- F Boissière
- Laboratoire de Médecine Expérimentale, Physiologie et Pathogénèse, Maladies Dégénératives du Système Nerveux, INSERM U289, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|