1
|
Cheon H, Hur JK, Hwang W, Yang HJ, Son JH. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci Rep 2023; 13:4930. [PMID: 36967404 PMCID: PMC10040409 DOI: 10.1038/s41598-023-31828-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Terahertz (THz) radiation can affect the degree of DNA methylation, the spectral characteristics of which exist in the terahertz region. DNA methylation is an epigenetic modification in which a methyl (CH3) group is attached to cytosine, a nucleobase in human DNA. Appropriately controlled DNA methylation leads to proper regulation of gene expression. However, abnormal gene expression that departs from controlled genetic transcription through aberrant DNA methylation may occur in cancer or other diseases. In this study, we demonstrate the modification of gene expression in cells by THz demethylation using resonant THz radiation. Using an enzyme-linked immunosorbent assay, we observed changes in the degree of global DNA methylation in the SK-MEL-3 melanoma cell line under irradiation with 1.6-THz radiation with limited spectral bandwidth. Resonant THz radiation demethylated living melanoma cells by 19%, with no significant occurrence of apurinic/apyrimidinic sites, and the demethylation ratio was linearly proportional to the power of THz radiation. THz demethylation downregulates FOS, JUN, and CXCL8 genes, which are involved in cancer and apoptosis pathways. Our results show that THz demethylation has the potential to be a gene expression modifier with promising applications in cancer treatment.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Biomedical Engineering Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Woochang Hwang
- Department of Pre-Medicine, College of Medicine, Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dognjak-gu, Seoul, 07061, Republic of Korea.
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, 163, Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Kraboth Z, Galik B, Tompa M, Kajtar B, Urban P, Gyenesei A, Miseta A, Kalman B. DNA CpG methylation in sequential glioblastoma specimens. J Cancer Res Clin Oncol 2020; 146:2885-2896. [PMID: 32779022 PMCID: PMC7519911 DOI: 10.1007/s00432-020-03349-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Glioblastoma is the most aggressive form of brain tumors. A better understanding of the molecular mechanisms leading to its evolution is essential for the development of treatments more effective than the available modalities. Here, we aim to identify molecular drivers of glioblastoma development and recurrence by analyzing DNA CpG methylation patterns in sequential samples. METHODS DNA was isolated from 22 pairs of primary and recurrent formalin-fixed, paraffin-embedded glioblastoma specimens, and subjected to reduced representation bisulfite sequencing. Bioinformatic analyses were conducted to identify differentially methylated sites and pathways, and biostatistics was used to test correlations among clinical and pathological parameters. RESULTS Differentially methylated pathways likely involved in primary tumor development included those of neuronal differentiation, myelination, metabolic processes, synapse organization and endothelial cell proliferation, while pathways differentially active during glioblastoma recurrence involved those associated with cell processes and differentiation, immune response, Wnt regulation and catecholamine secretion and transport. CONCLUSION DNA CpG methylation analyses in sequential clinical specimens revealed hypomethylation in certain pathways such as neuronal tissue development and angiogenesis likely involved in early tumor development and growth, while suggested altered regulation in catecholamine secretion and transport, Wnt expression and immune response contributing to glioblastoma recurrence. These pathways merit further investigations and may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Zoltan Kraboth
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
- Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland
| | - Marton Tompa
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Bela Kajtar
- Institute of Pathology, School of Medicine, University of Pecs, Pecs, Hungary
| | - Peter Urban
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
- Department of Clinical Molecular Biology, Medical University of Bialystok, Białystok, Poland
| | - Attila Miseta
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary
| | - Bernadette Kalman
- Institute of Laboratory Medicine, School of Medicine, University of Pecs, Pecs, Hungary.
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary.
| |
Collapse
|
3
|
Sarne V, Huter S, Braunmueller S, Rakob L, Jacobi N, Kitzwögerer M, Wiesner C, Obrist P, Seeboeck R. Promoter Methylation of Selected Genes in Non-Small-Cell Lung Cancer Patients and Cell Lines. Int J Mol Sci 2020; 21:E4595. [PMID: 32605217 PMCID: PMC7369760 DOI: 10.3390/ijms21134595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
Specific gene promoter DNA methylation is becoming a powerful epigenetic biomarker in cancer diagnostics. Five genes (CDH1, CDKN2Ap16, RASSF1A, TERT, and WT1) were selected based on their frequently published potential as epigenetic markers. Diagnostic promoter methylation assays were generated based on bisulfite-converted DNA pyrosequencing. The methylation patterns of 144 non-small-cell lung cancer (NSCLC) and 7 healthy control formalin-fixed paraffin-embedded (FFPE) samples were analyzed to evaluate the applicability of the putative diagnostic markers. Statistically significant changes in methylation levels are shown for TERT and WT1. Furthermore, 12 NSCLC and two benign lung cell lines were characterized for promoter methylation. The in vitro tests involved a comparison of promoter methylation in 2D and 3D cultures, as well as therapeutic tests investigating the impact of CDH1/CDKN2Ap16/RASSF1A/TERT/WT1 promoter methylation on sensitivity to tyrosine kinase inhibitor (TKI) and DNA methyl-transferase inhibitor (DNMTI) treatments. We conclude that the selected markers have potential and putative impacts as diagnostic or even predictive marker genes, although a closer examination of the resulting protein expression and pathway regulation is needed.
Collapse
MESH Headings
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- Promoter Regions, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Victoria Sarne
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Samuel Huter
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Sandrina Braunmueller
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Lisa Rakob
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Nico Jacobi
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Melitta Kitzwögerer
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| | - Christoph Wiesner
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
| | - Peter Obrist
- Pathologylab Dr. Obrist & Dr. Brunhuber OG, 6511 Zams, Austria; (S.H.); (P.O.)
| | - Rita Seeboeck
- Department Life Sciences, IMC University of Applied Sciences Krems, 3500 Krems, Austria; (V.S.); (S.B.); (L.R.); (N.J.); (C.W.)
- Clinical Institute of Pathology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria;
| |
Collapse
|
4
|
Quantitative assessment of the association between MS gene polymorphism and colorectal cancer risk. Cell Biochem Biophys 2015; 70:1943-9. [PMID: 25077679 DOI: 10.1007/s12013-014-0154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Accumulating genetic association studies have investigated the risk of colorectal cancer (CRC) in relation to MS gene polymorphism with uncertain conclusions. In the current study, we sought to assess the association between MS gene and CRC. We performed an updated meta-analysis including 18 case-control studies with a total of 10, 303 CRC patients and 15, 389 CRC-free controls to estimate the strength of the association using odds ratios with the corresponding 95 % confidence intervals. Overall, no CRC risk associated with the genotypes of MS gene polymorphism was indicated in our meta-analysis. Similarly, the stratified analysis according to ethnicity and control source did not show any evident association either. The results of our updated meta-analysis suggest that MS gene polymorphism may not serve as a biomarker for the CRC risk. Future large-scale and well-designed studies are required to clarify the association identified in the present meta-analysis.
Collapse
|
5
|
Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci 2014; 4:45. [PMID: 25949794 PMCID: PMC4422217 DOI: 10.1186/2045-3701-4-45] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/26/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH) as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis. Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can modulate protein expression and activity, as well as the role of hypoxia in epigenetic regulation.
Collapse
Affiliation(s)
- Eva Baxter
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Karolina Windloch
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| |
Collapse
|
6
|
Kumar S. P53 induction accompanying G2/M arrest upon knockdown of tumor suppressor HIC1 in U87MG glioma cells. Mol Cell Biochem 2014; 395:281-90. [PMID: 24992983 DOI: 10.1007/s11010-014-2137-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Hypermethylated in cancer 1 (HIC1) is a novel tumor suppressor gene (tsg) frequently silenced by epigenetic modification, predominantly by methylation in different tumors. HIC1 functionally co-operates with p53 in cultured cells as well as in transgenic animals to suppress tumors and has binding site on its promoter. Its over expression often leads to cell cycle arrests. Although HIC1 proven to have role as tsg, its regulation to cell cycle and dependency upon p53 is grossly unknown. In this study, we investigated the role of HIC1 in cell cycle and proliferation of glioma cell line U87MG which has wild type p53, in both serum-containing and serum-deprived medium. Microscopic analysis and MTT assay showed reduced cell number and rate of proliferation upon HIC1 knock down compared to control siRNA (p = 0.025) and untreated cells (p = 0.03) in serum-containing medium and serum-free medium (p = 0.014 vs control siRNA; p = 0.018 vs untreated cells). Cell cycle analysis revealed an arrest at G2/M phase of cell cycle with no demonstrable increase in apoptosis with both medium. An increased expression of p53 concomitant with HIC1 knockdown was observed. Furthermore P21, a p53 responsive gene, along with p27 was significantly increased in comparison with controls. Our results demonstrated an important role of HIC1 for the normal progression of cell cycle, and at molecular level, it could affect the homeostasis of p53 as well as number of cell cycle-related genes, which may or may not be directly linked to p53.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biomolecular Science Centre, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Bld 20, 4110 Libra Drive, Orlando, FL, 32816, USA,
| |
Collapse
|
7
|
Nan H, Lee JE, Rimm EB, Fuchs CS, Giovannucci EL, Cho E. Prospective study of alcohol consumption and the risk of colorectal cancer before and after folic acid fortification in the United States. Ann Epidemiol 2013; 23:558-63. [PMID: 23726821 DOI: 10.1016/j.annepidem.2013.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/26/2013] [Accepted: 04/20/2013] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate the influence of alcohol consumption on the risk of colorectal cancer according to folic acid fortification period in the United States. METHODS We evaluated the association between alcohol consumption and colorectal cancer by fortification period (before 1998 vs. after 1998) in 2 prospective cohort studies, the Nurses' Health Study (NHS) of women and the Health Professionals Follow-up Study (HPFS) of men, in which 2793 cases of invasive colorectal cancer were documented. RESULTS Alcohol consumption was associated with an increased risk of colorectal cancer. Among nonusers of multivitamins and/or folic acid supplements, the pooled multivariate relative risk for ≥30 g/d drinkers versus nondrinkers was 1.36 (95% confidence interval [95% CI], 1.09-1.70; P for trend, 0.02). The effect of alcohol consumption was slightly stronger in the prefolic acid fortification period (1980 NHS/1986 HPFS-1998) than in the postfortification period (1998-2008); the pooled multivariate relative risks for ≥30 g/d drinkers versus nondrinkers were 1.31 (95% CI, 1.00-1.71; P for trend, 0.10) in the prefortification period and 1.07 (95% CI, 0.69-1.65; P for trend, 0.67) in the postfortification period. CONCLUSIONS Folic acid fortification may attenuate the adverse effect of high alcohol consumption on the risk of colorectal cancer.
Collapse
Affiliation(s)
- Hongmei Nan
- Division of Cancer Epidemiology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ding W, Zhou DL, Jiang X, Lu LS. Methionine synthase A2756G polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS One 2013; 8:e60508. [PMID: 23593229 PMCID: PMC3621882 DOI: 10.1371/journal.pone.0060508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 12/31/2022] Open
Abstract
Methionine synthase (MTR), which plays a central role in maintaining adequate intracellular folate, methionine and normal homocysteine concentrations, was thought to be involved in the development of colorectal cancer (CRC) and colorectal adenoma (CRA) by affecting DNA methylation. However, studies on the association between MTR A2756G polymorphism and CRC/CRA remain conflicting. We conducted a meta-analysis of 27 studies, including 13465 cases and 20430 controls for CRC, and 4844 cases and 11743 controls for CRA. Potential sources of heterogeneity and publication bias were also systematically explored. Overall, the summary odds ratio of G variant for CRC was 1.03 (95% CI: 0.96-1.09) and 1.05 (95% CI: 0.99-1.12) for CRA. No significant results were observed in heterozygous and homozygous when compared with wild genotype for these polymorphisms. In the stratified analyses according to ethnicity, source of controls, sample size, sex, and tumor site, no evidence of any gene-disease association was obtained. Results from the meta-analysis of four studies on MTR stratified according to smoking and alcohol drinking status showed an increased CRC risk in heavy smokers (OR = 2.06, 95% CI: 1.32-3.20) and heavy drinkers (OR = 2.00, 95% CI: 1.28-3.09) for G allele carriers. This meta-analysis suggests that the MTR A2756G polymorphism is not associated with CRC/CRA susceptibility and that gene-environment interaction may exist.
Collapse
Affiliation(s)
- Weixing Ding
- Department of Gastroenterology, The Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
- * E-mail: (WXD); (LSL)
| | - Dong-lei Zhou
- Department of Gastroenterology, The Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Xun Jiang
- Department of Gastroenterology, The Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
| | - Lie-sheng Lu
- Department of Gastroenterology, The Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China
- * E-mail: (WXD); (LSL)
| |
Collapse
|
9
|
Rood BR, Leprince D. Deciphering HIC1 control pathways to reveal new avenues in cancer therapeutics. Expert Opin Ther Targets 2013; 17:811-27. [PMID: 23566242 DOI: 10.1517/14728222.2013.788152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1), which encodes a transcriptional repressor with multiple partners and multiple targets, is epigenetically silenced but not mutated in tumors. HIC1 has broad biological roles during normal development and is implicated in many canonical processes of cancer such as control of cell growth, cell survival upon genotoxic stress, cell migration, and motility. AREAS COVERED The HIC1 literature herein discussed includes its discovery as a candidate tumor suppressor gene hypermethylated or deleted in many human tumors, animal models establishing it as tumor suppressor gene, its role as a sequence-specific transcriptional repressor recruiting several chromatin regulatory complexes, its cognate target genes, and its functional roles in normal tissues. Finally, this review discusses how its loss of function contributes to the early steps in tumorigenesis. EXPERT OPINION Given HIC1's ability to direct repressive complexes to sequence-specific binding sites associated with its target genes, its loss results in specific changes in the transcriptional program of the cell. An understanding of this program through identification of HIC1's target genes and their involvement in feedback loops and cell process regulation will yield the ability to leverage this knowledge for therapeutic translation.
Collapse
Affiliation(s)
- Brian R Rood
- Center for Cancer and Blood Disorders, Children's National Medical Center, Division of Oncology, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | | |
Collapse
|
10
|
Novak P, Stampfer MR, Munoz-Rodriguez JL, Garbe JC, Ehrich M, Futscher BW, Jensen TJ. Cell-type specific DNA methylation patterns define human breast cellular identity. PLoS One 2012; 7:e52299. [PMID: 23284978 PMCID: PMC3527522 DOI: 10.1371/journal.pone.0052299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs). MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.
Collapse
Affiliation(s)
- Petr Novak
- Arizona Cancer Center, The University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ross JP, Shaw JM, Molloy PL. Identification of differentially methylated regions using streptavidin bisulfite ligand methylation enrichment (SuBLiME), a new method to enrich for methylated DNA prior to deep bisulfite genomic sequencing. Epigenetics 2012; 8:113-27. [PMID: 23257838 PMCID: PMC3549874 DOI: 10.4161/epi.23330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have developed a method that enriches for methylated cytosines by capturing the fraction of bisulfite-treated DNA with unconverted cytosines. The method, called streptavidin bisulfite ligand methylation enrichment (SuBLiME), involves the specific labeling (using a biotin-labeled nucleotide ligand) of methylated cytosines in bisulfite-converted DNA. This step is then followed by affinity capture, using streptavidin-coupled magnetic beads. SuBLiME is highly adaptable and can be combined with deep sequencing library generation and/or genomic complexity-reduction. In this pilot study, we enriched methylated DNA from Csp6I-cut complexity-reduced genomes of colorectal cancer cell lines (HCT-116, HT-29 and SW-480) and normal blood leukocytes with the aim of discovering colorectal cancer biomarkers. Enriched libraries were sequenced with SOLiD-3 technology. In pairwise comparisons, we scored a total of 1,769 gene loci and 33 miRNA loci as differentially methylated between the cell lines and leukocytes. Of these, 516 loci were differently methylated in at least two promoter-proximal CpG sites over two discrete Csp6I fragments. Identified methylated gene loci were associated with anatomical development, differentiation and cell signaling. The data correlated with good agreement to a number of published colorectal cancer DNA methylation biomarkers and genomic data sets. SuBLiME is effective in the enrichment of methylated nucleic acid and in the detection of known and novel biomarkers.
Collapse
Affiliation(s)
- Jason P Ross
- Preventative Health National Research Flagship, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, NSW, Australia.
| | | | | |
Collapse
|
12
|
Teh AH, Symonds E, Bull C, Clifton P, Fenech M. The influence of folate and methionine on intestinal tumour development in the Apc(Min/+) mouse model. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:64-75. [PMID: 22627043 DOI: 10.1016/j.mrrev.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 12/31/2022]
Abstract
Folate and methionine are critical for one-carbon metabolism impacting DNA synthesis, repair, and methylation processes, as well as polyamine synthesis. These micronutrients have been implicated in colorectal cancer risk. There are, however, inconsistencies within the literature, with some studies showing restriction to have tumour-inhibitory effects, whereas others suggest excess to have adverse outcomes. We conducted a review of the published data to examine the accumulated evidence for involvement of dietary folate and/or methionine restriction or excess in intestinal tumour development in the Apc(Min/+) mouse model, which is genetically prone to develop such cancers. Thirteen publications were selected for evaluation based on the following inclusion criteria: (i) use of Apc(Min/+) mouse model; (ii) interventions using dietary folate and/or methionine; and (iii) primary outcome measures focused on intestinal tumour development. We found that nutritional modulation of folate and methionine was shown to have different effects on intestinal cancer in the Apc(Min/+) mouse, depending on the dosage, duration and timing of intervention, and interaction of the Apc(Min/+) genotype with other genetic factors affecting folate and DNA methylation metabolism. Although some studies showed that folate deficiency before tumorigenesis tended to increase risk of tumour formation, there are inconsistencies regarding whether excess folate post-weaning or after tumour initiation increases intestinal tumour burden. Altogether, the pooled data do not appear to indicate a difference in effect on intestinal tumour incidence between post-weaning diets that are folate deficient or folate adequate. The Apc(Min/+) mouse is a useful model for assessment of the impact of dietary folate on intestinal tumour development, but further research is required to understand the reasons for these inconsistencies amongst studies based on likely mechanisms, including modulation of nucleotide synthesis, DNA methylation, and chromosomal instability, which may affect the rate of cellular division and its control.
Collapse
Affiliation(s)
- Arnida Hani Teh
- CSIRO Food & Nutritional Sciences, Adelaide, South Australia, Australia; School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; School of Chemical Sciences & Food Technology, Faculty of Science & Technology, National University of Malaysia, Bangi, Malaysia
| | | | | | | | | |
Collapse
|
13
|
Bartley AN, Yao H, Barkoh BA, Ivan C, Mishra BM, Rashid A, Calin GA, Luthra R, Hamilton SR. Complex patterns of altered MicroRNA expression during the adenoma-adenocarcinoma sequence for microsatellite-stable colorectal cancer. Clin Cancer Res 2011; 17:7283-93. [PMID: 21948089 PMCID: PMC3544185 DOI: 10.1158/1078-0432.ccr-11-1452] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE MicroRNAs are short noncoding RNAs that regulate gene expression and are over- or underexpressed in most tumors, including colorectal adenocarcinoma. MicroRNAs are potential biomarkers and therapeutic targets and agents, but limited information on microRNAome alterations during progression in the well-known adenoma-adenocarcinoma sequence is available to guide their usage. EXPERIMENTAL DESIGN We profiled 866 human microRNAs by microarray analysis in 69 matched specimens of microsatellite-stable adenocarcinomas, adjoining precursor adenomas including areas of high- and low-grade dysplasia, and nonneoplastic mucosa. RESULTS We found 230 microRNAs that were significantly differentially expressed during progression, including 19 not reported previously. Altered microRNAs clustered into two major patterns of early (type I) and late (type II) differential expression. The largest number (n = 108) was altered at the earliest step from mucosa to low-grade dysplasia (subtype IA) prior to major nuclear localization of β-catenin, including 36 microRNAs that had persistent differential expression throughout the entire sequence to adenocarcinoma. Twenty microRNAs were intermittently altered (subtype IB), and six were transiently altered (subtype IC). In contrast, 33 microRNAs were altered late in high-grade dysplasia and adenocarcinoma (subtype IIA), and 63 in adenocarcinoma only (subtype IIB). Predicted targets in 12 molecular pathways were identified for highly altered microRNAs, including the Wnt signaling pathway leading to low-grade dysplasia. β-catenin expression correlated with downregulated microRNAs. CONCLUSIONS Our findings suggest that numerous microRNAs play roles in the sequence of molecular events, especially early events, resulting in colorectal adenocarcinoma. The temporal patterns and complexity of microRNAome alterations during progression will influence the efficacy of microRNAs for clinical purposes.
Collapse
Affiliation(s)
- Angela N. Bartley
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Yao
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bedia A. Barkoh
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bal M. Mishra
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Asif Rashid
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A. Calin
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajyalakshmi Luthra
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stanley R. Hamilton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 2011; 30:2644-58. [PMID: 21358675 DOI: 10.1038/onc.2010.642] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) are important gene regulators, which can have critical roles in diverse biological processes including tumorigenesis. In this study, we analyzed the miRNA expression profiles in non-small cell lung carcinoma (NSCLC) by use of a miRNA microarray platform and identified 40 differentially expressed miRNAs. We showed that miRNA (miR)-451 was the most downregulated in NSCLC tissues. The expression level of miR-451 was found to be significantly correlated with tumor differentiation, pathological stage and lymph-node metastasis. Moreover, low miR-451 expression level was also correlated with shorter overall survival of NSCLC patients (P<0.001). Ectopic miR-451 expression significantly suppressed the in vitro proliferation and colony formation of NSCLC cells and the development of tumors in nude mice by enhancing apoptosis, which might be associated with inactivation of Akt signaling pathway. Interestingly, ectopic miR-451 expression could significantly inhibit RAB14 protein expression and decrease a luciferase-reporter activity containing the RAB14 3'-untranslated region (UTR). In addition,, RNA interference silencing of RAB14 gene could recapitulate the tumor suppressor function of miR-451, whereas restoration of RAB14 expression could partially attenuate the tumor suppressor function of miR-451 in NSCLC cells. Furthermore, we also showed that strong positive immunoreactivity of RAB14 protein was significantly associated with downregulation of miR-451 (P=0.01). These findings suggest that miR-451 regulates survival of NSCLC cells partially through the downregulation of RAB14. Therefore, targeting with the miR-451/RAB14 interaction might serve as a novel therapeutic application to treat NSCLC patients.
Collapse
Affiliation(s)
- R Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | |
Collapse
|
15
|
van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 2011; 29:1382-91. [PMID: 21220596 DOI: 10.1200/jco.2010.28.2319] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) has predominantly been considered a genetic disease, characterized by sequential accumulation of genetic alterations. Growing evidence indicates that epigenetic alterations add an additional layer of complexity to the pathogenesis of CRC, and characterize a subgroup of colorectal cancers with a distinct etiology and prognosis. Epigenetic dysregulation in colorectal cancer is organized at multiple levels, involving DNA methylation, histone modifications, nucleosomal occupancy and remodeling, chromatin looping, and noncoding RNAs. Interactions between these processes and complex associations with genetic alterations have recently been unraveled. It appears that CRC epigenetics will be the paradigm for multistep carcinogenesis, as CRC genetics has been for the past three decades. This review integrates recent data on epigenetic regulation of gene expression in CRC and describes how the understanding of these processes will alter the management of CRC.
Collapse
Affiliation(s)
- Manon van Engeland
- GROW-School for Oncology and Developmental Biology, PO Box 616, 6200 Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Yu J, Bulk E, Ji P, Hascher A, Tang M, Metzger R, Marra A, Serve H, Berdel WE, Wiewroth R, Koschmieder S, Müller-Tidow C. The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin Cancer Res 2010; 16:2275-83. [PMID: 20371680 DOI: 10.1158/1078-0432.ccr-09-2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of EPHB6 receptor tyrosine kinase expression in early-stage non-small cell lung carcinoma (NSCLC) is associated with the subsequent development of distant metastasis. Here, we analyzed the regulation and function of EPHB6 in lung cancer metastasis. EXPERIMENTAL DESIGN The expression levels of EPHB6 were compared among normal lung tissue (n = 9), NSCLC without metastasis (n = 39), and NSCLC with metastasis (n = 39) according to the history of the patients. In addition, EPHB6 expression levels of matched tumor-normal pairs from 24 NSCLC patients were analyzed. The promoter DNA methylation status and its association with the expression levels of EPHB6 were determined among 14 pairs of tumor-normal samples. Metastatic potential of EPHB6 was assessed in vitro and in vivo in a metastasis mouse model. Overexpression and RNA interference (RNAi) approaches were used for analysis of the biological functions of EPHB6. RESULTS EPHB6 mRNA and protein levels were significantly reduced in NSCLC tumors compared with matched normal lung tissue. Decreased EPHB6 expression levels were associated with an increased risk for metastasis development in NSCLC patients. Loss of expression correlated with EPHB6 hypermethylation. EPHB6 expression was induced by 5-aza-2'-deoxycytidine treatment in an NSCLC cell line. Restoration of EPHB6 expression in lung adenocarcinoma cells increased adhesion and decreased migration. Reexpression of EPHB6 in lung cancer cells almost entirely abolished metastasis formation in non obese diabetic (NOD)/severe combined immunodeficient mice. CONCLUSIONS Taken together, these analyses show that EPHB6 is a metastasis inhibitory gene that is frequently silenced by hypermethylation of its promoter in NSCLC.
Collapse
Affiliation(s)
- Jun Yu
- Department of Medicine A--Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Van Rechem C, Rood BR, Touka M, Pinte S, Jenal M, Guérardel C, Ramsey K, Monté D, Bégue A, Tschan MP, Stephan DA, Leprince D. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem 2009; 284:20927-35. [PMID: 19525223 DOI: 10.1074/jbc.m109.022350] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) that is epigenetically silenced in many human tumors and is essential for mammalian development encodes a sequence-specific transcriptional repressor. The few genes that have been reported to be directly regulated by HIC1 include ATOH1, FGFBP1, SIRT1, and E2F1. HIC1 is thus involved in the complex regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. We performed genome-wide expression profiling analyses to identify new HIC1 target genes, using HIC1-deficient U2OS human osteosarcoma cells infected with adenoviruses expressing either HIC1 or GFP as a negative control. These studies identified several putative direct target genes, including CXCR7, a G-protein-coupled receptor recently identified as a scavenger receptor for the chemokine SDF-1/CXCL12. CXCR7 is highly expressed in human breast, lung, and prostate cancers. Using quantitative reverse transcription-PCR analyses, we demonstrated that CXCR7 was repressed in U2OS cells overexpressing HIC1. Inversely, inactivation of endogenous HIC1 by RNA interference in normal human WI38 fibroblasts results in up-regulation of CXCR7 and SIRT1. In silico analyses followed by deletion studies and luciferase reporter assays identified a functional and phylogenetically conserved HIC1-responsive element in the human CXCR7 promoter. Moreover, chromatin immunoprecipitation (ChIP) and ChIP upon ChIP experiments demonstrated that endogenous HIC1 proteins are bound together with the C-terminal binding protein corepressor to the CXCR7 and SIRT1 promoters in WI38 cells. Taken together, our results implicate the tumor suppressor HIC1 in the transcriptional regulation of the chemokine receptor CXCR7, a key player in the promotion of tumorigenesis in a wide variety of cell types.
Collapse
Affiliation(s)
- Capucine Van Rechem
- CNRS UMR 8161 Institut de Biologie de Lille, Université de Lille NORD de France, Institut Pasteur de Lille, 59017 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ohta M, Sugimoto T, Seto M, Mohri D, Asaoka Y, Tada M, Tanaka Y, Yamaji Y, Kanai F, Kawabe T, Omata M. Genetic alterations in colorectal cancers with demethylation of insulin-like growth factor II. Hum Pathol 2008; 39:1301-8. [DOI: 10.1016/j.humpath.2008.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/05/2008] [Accepted: 02/19/2008] [Indexed: 10/21/2022]
|
19
|
Fleuriel C, Touka M, Boulay G, Guérardel C, Rood BR, Leprince D. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol 2008; 41:26-33. [PMID: 18723112 DOI: 10.1016/j.biocel.2008.05.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 12/27/2022]
Abstract
HIC1 (Hypermethylated in Cancer 1), as it name implied, was originally isolated as a new candidate tumor suppressor gene located at 17p13.3 because it resides in a CpG island that is hypermethylated in many types of human cancers. HIC1 encodes a transcription factor associating an N-terminal BTB/POZ domain to five C-terminal Krüppel-like C(2)H(2) zinc finger motifs. In this review, we will begin by providing an overview of the current knowledge on HIC1 function, mainly gained from in vitro studies, as a sequence-specific transcriptional repressor interacting with a still growing range of HDAC-dependent and HDAC-independent corepressor complexes. We will then summarize the studies that have demonstrated frequent hypermethylation changes or losses of heterozygosity of the HIC1 locus in human cancers. Next, we will review animal models which have firmly established HIC1 as a bona fide tumor suppressor gene epigenetically silenced and functionally cooperating notably with p53 within a complex HIC1-p53-SIRT1 regulatory loop. Finally, we will discuss how this epigenetic inactivation of HIC1 might "addict" cancer cells to altered survival and signaling pathways or to lineage-specific transcription factors during the early stages of tumorigenesis.
Collapse
Affiliation(s)
- Capucine Fleuriel
- Université de Lille 1 et de Lille 2, Institut PASTEUR de LILLE, 59017 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Schipper RG, van den Heuvel LP, Verhofstad AAJ, De Abreu RA. Polyamines and DNA methylation in childhood leukaemia. Biochem Soc Trans 2007; 35:331-5. [PMID: 17371272 DOI: 10.1042/bst0350331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both polyamine metabolism and DNA methylation play an important role in normal and malignant growth. Specific enzyme inhibitors or drugs that interfere with these metabolic pathways have proven to be potential anticancer agents. Since DNA methylation and polyamine metabolism depend on a common substrate, i.e. S-adenosylmethionine, interaction between both pathways can be expected. Little is known about the relationship between these pathways but studies are available indicating that polyamines and DNA methylation are directly or indirectly interconnected, metabolically as well as physiologically with respect to the regulation of cell growth, differentiation and cancer development. These considerations give rise to the possibility that, by targeting both pathways, a more profound and effective inhibitory effect on the growth of malignant cells can be achieved. In previous studies we showed that 6-MP (6-mercaptopurine) as well as MTX (methotrexate), well-known drugs in the treatment of acute lymphoblastic leukaemia, inhibit DNA methylation and induce apoptosis in malignant blood cells. Our recent results show that combined treatment with 6-MP, MTX and drugs interfering with polyamine metabolism has additive/synergistic effects on the growth, cell viability and/or apoptotic death of leukaemic cells. Such a combination therapy could have great clinical value for patients in which therapy using inhibitors of thiopurines/purine metabolism has failed.
Collapse
Affiliation(s)
- R G Schipper
- Department of Pathology, University Medical Centre Nijmegen, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Heinzerling JH, Anthony T, Livingston EH, Huerta S. Predictors of Distant Metastasis and Mortality in Patients with Stage II Colorectal Cancer. Am Surg 2007. [DOI: 10.1177/000313480707300307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of our study was to determine clinical factors that predicted distant metastasis and mortality in patients with stage II colorectal cancer (CRC). A retrospective review of all patients admitted to the Dallas Veteran's Affairs Medical Center from 1998 to 2002 with stage II CRC was performed. Factors associated with distant metastasis and mortality were assessed by univariate analysis. Independent predictors of mortality and distant metastasis were assessed by multivariate analysis. Fifty-five patients with stage II CRC were identified (96% men, age 65 ± 1.2 years old). Univariate analysis demonstrated that patients with distant metastasis (n = 13) had a history of alcohol intake (54% vs 20%; P = 0.029), less history of angiotensin-converting enzyme inhibitor use for the management of hypertension (31% vs 67%; P = 0.029), greater incidence of a rectal location for cancer (54% vs 12%; P = 0.004), an abdominoperineal resection (APR) for surgical management of their cancers (23% vs 0%; P = 0.011), and less negative lymph nodes examined during surgical resection (9 ± 2.2 vs 15 ± 1.2, P = 0.022). Follow-up of at least 3 years revealed 14 mortalities. Survivors had a less preoperative serum carcinoembryonic antigen level (5.9 ± 0.9 vs 19.1 ± 8.6; P = 0.031), an average less tumor depth involvement (T stage: 3.0 ± 0.03 vs 3.2 ± 0.11; P = 0.065), more negative lymph nodes examined at the time of surgical resection (14.0 ± 1.3 vs 10.0 ± 1.7; P = 0.058), less incidence of rectal cancer (21% vs 43%; P = 0.060), and none had undergone an APR (0% vs. 21%; P = 0.010). Multivariate analysis revealed that alcohol intake ( P = 0.014; odds ration [OR] = 5.3), patients undergoing an APR ( P = 0.011; OR = 25), and less frequency of angiotensin-converting enzyme inhibitor use ( P = 0.007; OR = 4.5) independently predicted distant metastasis, whereas preoperative carcinoembryonic antigen ( P = 0.038; OR = 2.8) and patients undergoing an APR ( P = 0.019; OR = 25) independently predicted mortality.
Collapse
Affiliation(s)
- John H. Heinzerling
- University of Texas Southwestern Medical Center/Veteran's Affairs North Texas Health Care System, Dallas, Texas
| | - Thomas Anthony
- University of Texas Southwestern Medical Center/Veteran's Affairs North Texas Health Care System, Dallas, Texas
| | - Edward H. Livingston
- University of Texas Southwestern Medical Center/Veteran's Affairs North Texas Health Care System, Dallas, Texas
| | - Sergio Huerta
- University of Texas Southwestern Medical Center/Veteran's Affairs North Texas Health Care System, Dallas, Texas
| |
Collapse
|
22
|
Abstract
There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.
Collapse
|
23
|
Heavey PM, McKenna D, Rowland IR. Colorectal cancer and the relationship between genes and the environment. Nutr Cancer 2005; 48:124-41. [PMID: 15231447 DOI: 10.1207/s15327914nc4802_2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality in developed countries, with both genetic and environmental factors contributing to the etiology and progression of the disease. Several risk factors have been identified, including positive family history, red meat intake, smoking, and alcohol intake. Protective factors include vegetables, calcium, hormone replacement therapy, folate, nonsteroidal anti-inflammatory drugs, and physical activity. The interaction between these environmental factors, in particular diet and genes, is an area of growing interest. Currently, oncogenes, tumor suppressor genes, and mismatch repair genes are believed to play an essential role in colorectal carcinogenesis. When considering the genetics of CRC, only 10% of cases are inherited and only 2-6% can be ascribed to the highly penetrant genes, such as APC, hMLH and hMSH2. Lower penetrance genes combined with a Western-style diet contribute to the majority of sporadic CRCs. The purpose of this article is to give a brief overview of the epidemiologic studies that have been conducted and present the major findings. Here, we examine the molecular events in CRC, with particular focus on the interaction between genes and environment, and review the most current research in this area.
Collapse
Affiliation(s)
- Patricia M Heavey
- Northern Ireland Center for Diet and Health, Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA.
| | | | | |
Collapse
|
24
|
Martínez ME. Primary prevention of colorectal cancer: lifestyle, nutrition, exercise. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2005; 166:177-211. [PMID: 15648191 DOI: 10.1007/3-540-26980-0_13] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past two decades have provided a vast amount of literature related to the primary prevention of colorectal cancer. Large international variation in colorectal cancer incidence and mortality rates and the prominent increases in the incidence of colorectal cancer in groups that migrated from low- to high-incidence areas provided important evidence that lifestyle factors influence the development of this malignancy. Moreover, there is convincing evidence from epidemiological and experimental studies that dietary intake is an important etiological factor in colorectal neoplasia. Although the precise mechanisms have not been clarified, several lifestyle factors are likely to have a major impact on colorectal cancer development. Physical inactivity and to a lesser extent, excess body weight, are consistent risk factors for colon cancer. Exposure to tobacco products early in life is associated with a higher risk of developing colorectal neoplasia. Diet and nutritional factors are also clearly important. Diets high in red and processed meat increase risk. Excess alcohol consumption, probably in combination with a diet low in some micronutrients such as folate and methionine, appear to increase risk. There is also recent evidence supporting a protective effect of calcium and vitamin D in the etiology of colorectal neoplasia. The relationship between intake of dietary fiber and risk of colon cancer has been studied for three decades but the results are still inconclusive. However, some micronutrients or phytochemicals in fiber-rich foods may be important; folic acid is one such micronutrient that has been shown to protect against the development of colorectal neoplasia and is currently being studied in intervention trials of adenoma recurrence. The overwhelming evidence indicates that primary prevention of colon cancer is feasible. Continued focus on primary prevention of colorectal cancer, in combination with efforts aimed at screening and surveillance, will be vital in attaining the greatest possible progress against this complex, yet highly preventable disease.
Collapse
Affiliation(s)
- María Elena Martínez
- Arizona Cancer Center, Arizona College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Ghabreau L, Roux JP, Niveleau A, Fontanière B, Mahe C, Mokni M, Frappart L. Correlation between the DNA global methylation status and progesterone receptor expression in normal endometrium, endometrioid adenocarcinoma and precursors. Virchows Arch 2004; 445:129-34. [PMID: 15221375 DOI: 10.1007/s00428-004-1059-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/18/2004] [Indexed: 11/29/2022]
Abstract
Endometrial carcinomas are the most common malignancy of the female genital tract and the third most common cancer in women. Progesterone and oestrogen receptors (PRs, ERs) are the most widely documented prognostic and predictive factors in endometrioid adenocarcinoma. Besides the hormonal pathway involved in the progression of preneoplastic and neoplastic lesions, alterations of the DNA methylation status have been shown to be an early signal of tumorigenesis. In this study, we show that in normal endometrium, during the proliferative phase, DNA methylation and PR expression are high, with a significant decline towards the end of the secretory phase and a gradual increase in non-atypical and atypical endometrial hyperplasia; they reach their highest level in grade I, then decrease significantly in grade-II and grade-III endometrioid adenocarcinomas. During each stage, a significant positive correlation is observed between DNA methylation and PR (P<0.0001). The strong parallelism between DNA methylation and PR expression precludes establishing a precise determination regarding the timing of these events, clearly involved in the genesis of endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Lina Ghabreau
- Anatomie Pathologique, Bat 10, Hôpital Edouard Herriot, 69003 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax 2003; 58:892-900. [PMID: 14514947 PMCID: PMC1746489 DOI: 10.1136/thorax.58.10.892] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been hypothesised that clinically evident lung cancers have accumulated many different genetic or epigenetic abnormalities in oncogenes and/or tumour suppressor genes. This notion has important clinical ramifications. Recent developments in our knowledge of the molecular biology of lung cancer are reviewed, with particular reference to genetic abnormalities in tumour suppressor gene inactivation and overactivity of growth promoting oncogenes. These changes lead to the "hallmarks of lung cancer". These hallmarks are the new rational targets for early detection, prevention, and treatment of lung cancer.
Collapse
Affiliation(s)
- K M Fong
- The Prince Charles Hospital, Rode Road, Chermside, Brisbane 4032, Australia
| | | | | | | |
Collapse
|
27
|
Giatromanolaki A, Koukourakis MI, Sivridis E, Turley H, Wykoff CC, Gatter KC, Harris AL. DEC1 (STRA13) protein expression relates to hypoxia- inducible factor 1-alpha and carbonic anhydrase-9 overexpression in non-small cell lung cancer. J Pathol 2003; 200:222-8. [PMID: 12754744 DOI: 10.1002/path.1330] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Differentiated embryo-chondrocyte expressed gene 1 (DEC1) is involved in cell differentiation, proliferation, and apoptosis, and was recently shown to be regulated by hypoxia. The present immunohistochemical study demonstrates extensive nuclear expression of the protein in 38% of a series of 115 non-small cell lung carcinomas using a polyclonal antibody (Ab) recognizing DEC1 protein. Such expression was directly related to the expression of two hypoxia-regulated proteins, namely the hypoxia-inducible factor (HIF) 1alpha and carbonic anhydrase-9. Although DEC1 was not related to angiogenesis or to the expression of VEGF and thymidine phosphorylase, a direct association with up-regulated bFGF receptors was noted. DEC1 was persistently expressed in the nuclei of normal bronchial and alveolar tissue. It is suggested that loss of DEC1 expression is an early event in the development of lung cancer, while DEC1 gene expression occurs in a subset of tumours and parallels the overexpression of other hypoxia-regulated proteins.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Departments of Pathology and Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nasr AF, Nutini M, Palombo B, Guerra E, Alberti S. Mutations of TP53 induce loss of DNA methylation and amplification of the TROP1 gene. Oncogene 2003; 22:1668-77. [PMID: 12642870 DOI: 10.1038/sj.onc.1206248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 and DNA methylation play key roles in the maintenance of genome stability. In this work, we demonstrate that the two mechanisms are linked and that p53 plays a role in the maintenance of the DNA methylation levels. The loss of p53 was shown to induce loss of DNA methylation in the TROP1 gene, a human cancer-expressed locus that undergoes amplification when hypomethylated. This demethylation was reverted by the reintroduction of a wild-type TP53 (wtTP53) in the TP53-null cells. Using a gene-amplification assay in vivo, we demonstrate that the loss of p53 leads to a demethylation-dependent TROP1 gene amplification. The induction of gene amplification was reverted by the expression of a wtTP53 gene or by in vitro methylation of the transfected DNA with the Sss I DNA methylase. Taken together, these findings demonstrate that the inactivation of TP53 induces loss of DNA methylation and DNA methylation-dependent gene amplification.
Collapse
Affiliation(s)
- Ashraf F Nasr
- Department of Cell Biology and Oncology, Instituto di Ricerche Farmacologiche' Mario Negri, Chieti, Italy
| | | | | | | | | |
Collapse
|
29
|
Abstract
Although many mechanisms remain unclear, a large body of evidence indicates that several dietary and lifestyle factors are likely to have a major influence on the risk of colon cancer. Physical inactivity, excess body weight, and a central deposition of adiposity are consistent risk factors. Overconsumption of energy is likely to be one of the major contributors to the high rates of colon cancer in Western countries. Beyond their influence on energy balance, the independent role of specific macronutrients remain controversial. Red meat, processed meats, and perhaps refined carbohydrates contribute to risk. Recent evidence indicate that chronic hyperinsulinemia may increase risk of colon cancer. As insulin resistance and subsequent hyperinsulinemia is induced by excess energy intake and some aspects of the Western diet (e.g., saturated fats and refined carbohydrates), insulin may be a focus of factors influencing colon cancer risk. Recent evidence also points to a role of IGF-1, but our understanding of modifiable factors that influence levels of these is poor at present. Of note is that hyperinsulinemia increases free IGF-1 exposure [25]. High alcohol consumption, probably in combination with a diet low in some micronutrients such as folate and methionine, and smoking early in life are likely to increase risk of colon cancer. Recent epidemiologic studies have tended not to support a strong influence of fiber; instead, some micronutrients or phytochemicals in fiber-rich foods may be important. Folate is one such nutrient that has received attention lately and is being studied in randomized intervention trials. Agents with chemopreventive properties, such as aspirin and postmenopausal estrogens, have potential adverse effects so a careful consideration of the risk-benefit ratio is required before general recommendations can be made. Other NSAIDs with a potential for reduced toxicity, such as celecoxib, are currently being evaluated for efficacy and toxicity. The overwhelming evidence indicates that primary prevention of colon cancer is feasible. At least 70% of colon cancers may be preventable by moderate changes in diet and lifestyle [197]. Secondary prevention, through screening by sigmoidoscopy and colonoscopy, is also critically important to prevent mortality from colon cancer; however, many of the diet and lifestyle risk factors for colon cancers are the same for cardiovascular disease and for some other cancers, so focusing on the modifiable risk factors for colon cancer is likely to have many additional benefits beyond this cancer.
Collapse
Affiliation(s)
- Edward Giovannucci
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Department of Nutrition, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002; 32:453-8. [PMID: 12355068 DOI: 10.1038/ng1007] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Accepted: 08/20/2002] [Indexed: 11/09/2022]
Abstract
Aberrant methylation of CpG islands and genomic deletion are two predominant mechanisms of gene inactivation in tumorigenesis, but the extent to which they interact is largely unknown. The lack of an integrated approach to study these mechanisms has limited the understanding of tumor genomes and cancer genes. Restriction landmark genomic scanning (RLGS; ref. 1) is useful for global analysis of aberrant methylation of CpG islands, but has not been amenable to alignment with deletion maps because the identity of most RLGS fragments is unknown. Here, we determined the nucleotide sequence and exact chromosomal position of RLGS fragments throughout the genome using the whole chromosome of origin of the fragments and in silico restriction digestion of the human genome sequence. To study the interaction of these gene-inactivation mechanisms in primary brain tumors, we integrated RLGS-based methylation analysis with high-resolution deletion maps from microarray-based comparative genomic hybridization (array CGH; ref. 3). Certain subsets of gene-associated CpG islands were preferentially affected by convergent methylation and deletion, including genes that exhibit tumor-suppressor activity, such as CISH1 (encoding SOCS1; ref. 4), as well as genes such as COE3 that have been missed by traditional non-integrated approaches. Our results show that most aberrant methylation events are focal and independent of deletions, and the rare convergence of these mechanisms can pinpoint biallelic gene inactivation without the use of positional cloning.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bernués M, Casadevall C, Caballín MR, Egozcue J, Miró R. DNA hypermethylation at the D17S5 locus is not a frequent event in human urothelial cancer. BJU Int 2002; 90:332-5. [PMID: 12133074 DOI: 10.1046/j.1464-410x.2002.02892.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyse the DNA methylation status and the loss of heterozygosity (LOH) at the D17S5 locus (17p13.3) in urothelial cancer. MATERIALS AND METHODS DNA methylation was assayed and LOH analysed by Southern blotting in a series of 33 transitional cell carcinomas of the bladder and renal pelvis. RESULTS DNA hypermethylation and LOH at the D17S5 locus were detected in six (18%) and 17 (52%) of the tumours, respectively. The six cases with DNA hypermethylation were of the papillary type, and four also had LOH at this locus. CONCLUSION In contrast to other epithelial tumours, DNA hypermethylation at the D17S5 locus is not a frequent event in human urothelial cancer.
Collapse
Affiliation(s)
- M Bernués
- Institut de Biologia Fonamental, Universitat Autonoma de Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
32
|
Lau CL, Moore MBH, Brooks KR, D'Amico TA, Harpole DH. Molecular staging of lung and esophageal cancer. Surg Clin North Am 2002; 82:497-523. [PMID: 12371582 DOI: 10.1016/s0039-6109(02)00024-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In both esophageal and NSCLC, the TNM stage at diagnosis remains the most important determinant of survival. Significant research to investigate the biology of NSCLC and esophageal carcinoma is ongoing, and the roles of proto-oncogenes, tumor suppressor genes, angiogenic factors, extracellular matrix proteases, and adhesion molecules are being elucidated. While evidence is accumulating that various markers are involved in NSCLC and esophageal tumor virulence, the current studies are compromised by small sample sizes, heterogeneous populations, and variations in techniques. Large prospective studies with homogenous groups designed to evaluate the role of these various markers should clarify their potential involvement in NSCLC and esophageal cancer. Identification of occult micrometastases in lymph nodes and bone marrow using immunohistochemical techniques and rt-PCR is intriguing. These techniques are promising as a method to more accurately stage patients, and therefore to predict outcomes and to determine therapies. Perhaps the most promising area of research is the development of novel drugs whose mechanism of action targets the pathways of various molecular markers. Molecular biologic substaging offers an opportunity to individualize a chemotherapeutic regimen based on the molecular profile of the tumor, thus providing the potential for improved outcomes with less morbidity in patients with both NSCLC and esophageal cancer.
Collapse
Affiliation(s)
- Christine L Lau
- General and Thoracic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
33
|
Chu DC, Chuang CK, Fu JB, Huang HS, Tseng CP, Sun CF. The Use Of Real-Time Quantitative Polymerase Chain Reaction To Detect Hypermethylation Of The Cpg Islands In The Promoter Region Flanking The Gstp1 Gene To Diagnose Prostate Carcinoma. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65248-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Da-Chang Chu
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Cheng-Keng Chuang
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Jin-Bao Fu
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Hsien-Siang Huang
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Ching-Ping Tseng
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| | - Chien-Feng Sun
- From the Departments of Clinical Pathology and Division of Urology, Department of Surgery, Chang Gung Memorial Hospital and School of Medical Technology, Chang Gung University, Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
34
|
The Use Of Real-Time Quantitative Polymerase Chain Reaction To Detect Hypermethylation Of The Cpg Islands In The Promoter Region Flanking The Gstp1 Gene To Diagnose Prostate Carcinoma. J Urol 2002. [DOI: 10.1097/00005392-200204000-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Fuchs CS. Dietary and Lifestyle Influences on Colorectal Carcinogenesis. COLORECTAL CANCER 2002. [DOI: 10.1007/978-1-59259-160-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 2001; 82:299-304. [PMID: 11531283 DOI: 10.1006/gyno.2001.6284] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether expression of the enzymes that catalyze cytosine CpG island methylation, DNA methyltransferases, DNMT1, DNMT3a, and DNMT3b is altered in human ovarian cancer. Aberrations in DNA methylation are common in cancer and have important roles in tumor initiation and progression. Tumors that display frequent and concurrent inactivation of multiple genes by methylation are designated as having a CpG Island methylator phenotype, or CIMP. To date, colon, gastric, and most recently ovarian cancers meet the CIMP criteria for cancer. We hypothesized that altered expression of DNA methyltransferases can result in hypermethylation events seen in CIMP cancers. METHODS DNMT1, DNMT3a, and DNMT3b mRNA levels in eight ovarian cancer cells lines (Hey, HeyA8, HeyC2, OVCAR-3, SK-OV-3, PA-1, A2780, and A2780-P5) were compared to DNMT expression in normal ovarian surface epithelial cells using semi-quantitative reverse transcription-polymerase chain reaction. RESULTS In HeyA8 and HeyC2 ovarian cancer cells, DNMT1 expression levels were up to threefold higher (P < 0.05) than in normal ovarian surface epithelial cells. SK-OV-3 and PA-1 displayed increased DNMT3b expression (P < 0.05) compared to normal ovarian surface epithelial cells. Transcript levels for DNMT3a, however, were similar in cancer and normal ovarian cells. CONCLUSIONS We observed differential expression of the DNMT genes in some ovarian cancer cell lines and conclude that alterations in DNMT expression might contribute to the CIMP phenotype in ovarian cancer. However, based on the lack of aberrant DNMT expression in some of the cancer cell lines examined, we further suggest that another mechanism(s), in addition to DNMT overexpression, accounts for methylation anomalies commonly observed in ovarian cancer.
Collapse
Affiliation(s)
- A Ahluwalia
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
37
|
Yamamoto F, Yamamoto M, Soto JL, Kojima E, Wang EN, Perucho M, Sekiya T, Yamanaka H. Notl-Msell methylation-sensitive amplied fragment length polymorhism for DNA methylation analysis of human cancers. Electrophoresis 2001; 22:1946-56. [PMID: 11465493 DOI: 10.1002/1522-2683(200106)22:10<1946::aid-elps1946>3.0.co;2-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have applied a methylation-sensitive restriction endonuclease, NotI, to the existing amplified fragment length polymorphism (AFLP) method and developed NotI-MseI methylation-sensitive-AFLP (MS-AFLP). NotI-MseI MS-AFLP allows the analysis of DNA methylation alterations at the NotI sites scattered over the genome. Hypermethylation and hypomethylation are visualized by the decrease and increase in the band intensity of DNA fingerprints. Identification of consistent changes can be facilitated through parallel electrophoresis of multiple samples. DNA fragments exhibiting alterations can be cloned from fingerprint bands by amplification of gel-eluted DNA with the same pair of primers used for radioactive fingerprint presentation. Fluorescent NotI-MseI MS-AFLP offers a safer method of studying the alterations in DNA methylation, and may be applied to the hybridization of DNA microarrays in the future. Using NotI-MseI MS-AFLP, we observed frequent hypomethylation of a satellite DNA repeat sequence in a majority of breast tumors.
Collapse
Affiliation(s)
- F Yamamoto
- The Burnham Institute, La Jolla Cancer Research Center, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Dietary patterns, nutrients, and other constituents of food are major components of the environmental influences that contribute to risk for cancer, and the study of interactions between nutritional and genetic factors is a new and important area or research. This review describes the concepts and principles underlying this area of study and types of relationships between nutritional and genetic factors, and it provides examples of specific diet-gene interactions that are of current interest, with an emphasis on implications for cancer prevention and public health. Polymorphisms exist in the genes for the activating and conjugating metabolizing enzymes, and the induction of metabolizing enzyme activity by nutritional factors may result in either the activation of a carcinogen or the detoxification of a reactive intermediate metabolite. The relationship between the methylenetetrahydrofolate reductase gene and dietary folate is an example of a diet-gene interaction that involves a polymorphism in a vitamin metabolism gene, and the presence of the variant appears to influence both risk for cancer and folate requirements. Diet-gene interactions likely contribute considerably to the observed inter-individual variations in cancer risk in response to exposures to the nutritional factors that have the potential to promote or protect against cancer. Insights into mechanisms by which nutritional factors affect the process of carcinogenesis are provided by knowledge of the targeted gene function and enzyme activity. Increased knowledge in this area will allow a more refined approach to reducing risk for cancer, with diet interventions targeted toward individuals and subgroups that are genetically susceptible and responsive to the effects of nutritional factors.
Collapse
Affiliation(s)
- C L Rock
- Department of Family and Preventive Medicine, Cancer Prevention and Control Program, University of California, San Diego, La Jolla 92093-0901, USA.
| | | | | |
Collapse
|
39
|
Guerardel C, Deltour S, Pinte S, Monte D, Begue A, Godwin AK, Leprince D. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem 2001; 276:3078-89. [PMID: 11073960 DOI: 10.1074/jbc.m008690200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIC-1 (hypermethylated in cancer 1), a BTB/POZ transcriptional repressor, was isolated as a candidate tumor suppressor gene located at 17p13.3, a region hypermethylated or subject to allelic loss in many human cancers and in the Miller-Dieker syndrome. The human HIC-1 gene is composed of two exons, a short 5'-untranslated exon and a large second coding exon. Recently, two murine HIC-1 isoforms generated by alternative splicing have been described. To determine whether such isoforms also exist in human, we have further analyzed the human HIC-1 locus. Here, we describe and extensively characterize a novel alternative noncoding upstream exon, exon 1b, associated with a major GC-rich promoter. We demonstrate using functional assays that the murine exon 1b previously described as coding from computer analyses of genomic sequences is in fact a noncoding exon highly homologous to its human counterpart. In addition, we report that the human untranslated exon is presumably a coding exon, renamed exon 1a, both in mice and humans. Both types of transcripts are detected in various normal human tissues with a predominance for exon 1b containing transcripts and are up-regulated by TP53, confirming that HIC-1 is a TP53 target gene. Thus, HIC-1 function in the cell is controlled by a complex interplay of transcriptional and translational regulation, which could be differently affected in many human cancers.
Collapse
Affiliation(s)
- C Guerardel
- CNRS UMR 8526, Institut de Biologie de Lille, Institut Pasteur de Lille, 1 Rue Calmette, 59017 Lille, Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Tsuji T, Usui S, Aida T, Tachikawa T, Hu GF, Sasaki A, Matsumura T, Todd R, Wong DT. Induction of epithelial differentiation and DNA demethylation in hamster malignant oral keratinocyte by ornithine decarboxylase antizyme. Oncogene 2001; 20:24-33. [PMID: 11244502 DOI: 10.1038/sj.onc.1204051] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Revised: 10/19/2000] [Accepted: 10/23/2000] [Indexed: 11/09/2022]
Abstract
The hamster ornithine decarboxylase antizyme (ODC-Az) cDNA was transfected into the hamster malignant oral keratinocyte cell line, HCPC-1. Ectopic expression of ODC-Az resulted in the reversion of malignant phenotypes and alteration of DNA methylation status of CCGG sites. The phenotypes examined include ODC enzymatic activity, doubling time, morphological change, anchorage dependent growth, tumorigenicity in nude mice, induction of epithelial differentiation marker protein (involucrin), and change of cell cycle position. Comparison of CCGG DNA methylation status of the ODC-Az and control vector transfectants revealed a significant increase in demethylation of 5-methyl cytosines (m5C) of CCGG sites in the ODC-Az transfectants. Ectopic expression of ODC-Az gene in hamster malignant oral keratinocytes led to reduce ODC activity and the subsequent demethylation of 5-methyl cytosines, presumably via the ODC/ polyamines/ decarboxylated S-adenosylmethionine (dc-AdoMet) pathways. Our data suggest that ODC-Az shared the same pathway of polyamines/ dc-AdoMet/DNA methyltransferase (DNA MTase). We propose that ODC-Az mediates a novel mechanism in tumor suppression by DNA demethylation and presumably re-activation of key cellular genes silenced by DNA hypermethylation during cancer development. Oncogene (2001) 20, 24 - 33.
Collapse
Affiliation(s)
- T Tsuji
- Department of Oral Medicine and Diagnostic Sciences, Division of Oral Pathology, Harvard School of Dental Medicine, Boston, Massachusetts, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Su LJ, Arab L. Nutritional status of folate and colon cancer risk: evidence from NHANES I epidemiologic follow-up study. Ann Epidemiol 2001; 11:65-72. [PMID: 11164122 DOI: 10.1016/s1047-2797(00)00188-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This manuscript utilized the NHANES I Epidemiologic Follow-up Study (NHEFS), a national probability sample of the U.S. non-institutionalized population, to examine whether the intake of folate at baseline is associated with colon cancer risk. METHODS The NHEFS consists of 14,407 subjects with 20 years of follow-up. Sociodemographic status, dietary information, family history of colon cancer, alcohol and aspirin use, smoking status, and body mass index (BMI) are included in the Cox proportional hazard model to examine confounding effects. RESULTS After adjusting for confounders, a marginally significant association was observed between folate intake and reduced colon cancer risk. Gender and alcohol consumption appears to have an interactive effect with this association. The stratified results suggest that dietary folate is significantly inversely associated with colon cancer in men (relative risk (RR) = 0.40, 95% confidence interval (CI) = 0.18, 0.88) who consumed more than 249 microg/day of folate and that there is a significant dose-response relationship (p = 0.03). The association did not reach statistical significance in women. Using a composite dietary profile, we found that there is a significantly increased risk for men who consumed low-folate, low-methionine, and high alcohol diets when compared to male non-drinkers who consumed high-folate and high methionine diets (RR = 2.67, 95% CI = 1.16, 6.16). CONCLUSIONS This study found significant association between folate intake and reduced colon cancer risk among men and non-drinkers, but not women or drinkers. The study supports a synergistic interaction between intakes of folate, methionine and alcohol and colon cancer risk.
Collapse
Affiliation(s)
- L J Su
- Department of Public Health and Preventive Medicine and Stanley S. Scott Cancer Center, Louisiana State University Medical Center, New Orleans, USA
| | | |
Collapse
|
42
|
Hoff C, Seranski P, Mollenhauer J, Korn B, Detzel T, Reinhardt R, Ramser J, Poustka A. Physical and transcriptional mapping of the 17p13.3 region that is frequently deleted in human cancer. Genomics 2000; 70:26-33. [PMID: 11087658 DOI: 10.1006/geno.2000.6353] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies of chromosomal losses at 17p13 have suggested the presence of at least two distinct regions for tumor suppressor genes, the TP53 region at 17p13.1 and a more distal region at 17p13.3. Within the latter region, Hypermethylated in Cancer 1 (HIC1) is located, a likely candidate for a tumor suppressor gene that has also been suggested to play a role in the pathogenesis of Miller-Diecker syndrome (MDS). However, single-gene isolation efforts have retrieved additional genes from 17p13.3 that could play a role in tumorigenesis. This indicates that the full potential of this chromosomal region with respect to disease-related genes has not yet been exhausted and that there may exist still unknown genes that contribute to tumorigenesis or to the complex MDS phenotype. To provide a basis for the systematic isolation and evaluation of such genes, we established a physical map over 1.5 Mb of 17p13.3 and assigned 29 transcriptional units within this region.
Collapse
Affiliation(s)
- C Hoff
- Abteilung Molekulare Genomanalyse, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Okada Y, Okada T, Numata M, Hayashi Y, Yamashima T, Yamashita J. Increased expression of deoxyribonucleic acid methyltransferase gene in human astrocytic tumors. Neurol Med Chir (Tokyo) 2000; 40:564-70; discussion 570-1. [PMID: 11109793 DOI: 10.2176/nmc.40.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between the grade of astrocytic tumor and the expression of deoxyribonucleic acid methyltransferase (DNA-MTase) gene was examined. The levels of DNA-MTase messenger ribonucleic acid (mRNA) were measured by semiquantitative reverse transcriptase-polymerase chain reaction in surgical specimens from 12 astrocytic tumors (4 astrocytomas, 6 anaplastic astrocytomas, and 2 glioblastomas) and two normal brain tissues, and in four glioma cell lines. Compared to normal brain tissues, the levels of DNA-MTase mRNA were increased by 16- to 55-fold in low grade astrocytomas, and significantly increased by 200- to 4500-fold in high grade astrocytomas (anaplastic astrocytomas and glioblastomas) and more than 4500-fold in glioma cell lines. In situ hybridization with paraffin-embedded surgical specimens of human astrocytic tumors showed DNA-MTase mRNA was abundantly expressed in high grade astrocytomas. The detection of increased DNA-MTase expression in astrocytic tumor indicates involvement in the tumorigenesis and suggests that blocking of this change with specific inhibitors may offer new therapeutic strategies for malignant astrocytic tumors.
Collapse
Affiliation(s)
- Y Okada
- Department of neurosurgery, Kanazawa University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Pituitary tumors are the result of a monoclonal outgrowth where the intrinsic genetic defects involve oncogenes, tumor suppressor genes (TSG), and most likely genes responsible for differentiation. In addition, hypothalamic and intrapituitary derived growth factors are imposed upon these aberrant cells, contributing to their growth characteristics. While histological examination will not identify those tumors likely to progress toward an invasive phenotype or those destined toward recurrence recent advances in the molecular pathology of these tumors holds significant promise for prediction of recurrence and the design of novel treatment strategies. Moreover, emerging data clearly indicate that different molecular mechanisms are involved in the pathogenesis of the various pituitary tumor subtypes. Until recently the gsp oncogene was the only oncogene significantly associated with pituitary tumors; however, emerging data have describe a role for PTTG and cyclin D1 in pituitary tumorigenesis. For known and putative TSG loci, allelic losses on the long arms of chromosomes 10, 11, and 13 are significantly associated with the transition from the noninvasive to the invasive and metastatic phenotype, while losses on chromosome 9p occur early in pituitary tumorigenesis. Studies of known TSG at these loci, including the menin gene and RB1, would suggest a limited role, if any, in pituitary tumors. However, loss of pRB is evident in a proportion of somatotropinomas but is not associated with allelic loss of an RB1 intragenic marker. The gene encoding p16/CDKN2A is neither deleted nor mutated in pituitary tumors; however, its associated CpG island is frequently methylated and is associated with a loss of p16 protein expression. Allelic losses on chromosome 9p, frequent methylation, and loss of p16 protein appear as early changes in nonfunctional tumors, whereas they are infrequent events in somatotropinomas. The functional consequence of enforced expression of p16/CDKN2A in the mouse corticotroph cell line AtT20 has shown that it is responsible for a profound reduction in cell proliferation and the mechanism is a G(1) arrest, mimicking the in vivo role of this cell cycle regulator in most tissues. The combined data from several groups show that the allelic losses reported at known TSG loci are not accompanied by mutation in the retained allele. However, since abnormal methylation patterns may precede and predispose toward genetic instability this could account for the allelic losses on these chromosomes. Equally, since DNA methylation may lead to reduced expression of a gene it might also account for the reduced expression of as yet unidentified TSGs implicated in pituitary tumorigenesis. Collectively these studies hold significant promise as markers predictive of tumor behavior and point to novel treatment strategies, which may include the reactivation of TSGs that are intact but silenced through epigenetic mechanisms.
Collapse
Affiliation(s)
- W E Farrell
- Centre for Cell and Molecular Medicine, University of Keele, North Staffordshire Hospital Thornburrow Drive, Stoke on Trent, ST4 7QB, United Kingdom.
| | | |
Collapse
|
45
|
Giovannucci E. Nutritional factors in human cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 472:29-42. [PMID: 10736613 DOI: 10.1007/978-1-4757-3230-6_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A variety of external factors interacting with genetic susceptibility influence the carcinogenesis process. External factors including oxidative compounds, electrophilic agents, and chronic infections may enhance genetic damage. In addition, various hormonal factors which influence growth and differentiation are critically important in the carcinogenic process. Diet and nutrition can influence these processes directly in the gastrointestinal tract by providing bioactive compounds to specific tissues via the circulatory system, or by modulating hormone levels. Differences in certain dietary patterns among populations explain a substantial proportion of cancers of the colon, prostate and breast. These malignancies are largely influenced by a combination of factors related to diet and nutrition. Their causes are multifactorial and complex, but a major influence is the widespread availability of energy-dense, highly processed and refined foods that are also deplete in fiber. These dietary patterns in combination with physical inactivity contribute to obesity and metabolic consequences such as increased levels of IGF-1, insulin, estrogen, and possibly testosterone. These hormones tend to promote cellular growth. For prostate cancer, epidemiologic studies consistently show a positive association with high consumption of milk, dairy products, and meats. These dietary factors tend to decrease 1.25(OH)2 vitamin D, a cell differentiator, and low levels of this hormone may enhance prostate carcinogenesis. While the nutritional modulation of growth-enhancing and differentiating hormones is likely to contribute to the high prevalence of breast, colorectal, prostate, and several other cancers in the Western world, these cancers are relatively rare in less economically developed countries, where malignancies of the upper gastrointestinal tract are quite common. The major causes of upper gastrointestinal tract cancers are likely related to various food practices or preservation methods other than refrigeration, which increase mucosal exposure to irritants or carcinogens.
Collapse
Affiliation(s)
- E Giovannucci
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
46
|
Abstract
Lung cancer is the largest cancer killer of men and women in the united states. In addition to the progress made from antismoking primary prevention measures, new tools to help treat patients with lung cancer are emerging from the rapid advances in knowledge of the molecular pathogenesis of lung cancer. These tools include molecular and cellular biology and are starting to provide an insight into how the tumor cell, by altering oncogenes and tumor suppressor genes, achieves growth advantage, uncontrolled proliferation and metastatic behavior via disruption of key cell-cycle regulators and signal transduction cascades. Moreover, new knowledge is being developed in terms of the molecular definition of individual susceptibility to tobacco smoke carcinogens. These tools are being translated into clinical strategies to complement surgery, radiotherapy, and chemotherapy and also to assist in primary and secondary prevention efforts. This review summarizes current knowledge of the molecular pathogenesis of lung cancer. From this we know that respiratory epithelial cells require many genetic alterations to become invasive and metastatic cancer. We can detect cells with a few such changes in current and former smokers, offering the opportunity to intercede with a biomarker-monitored prevention and early detection effort. This will be coupled with new advances in computed tomography-based screening. Finally, because the molecular alterations are known, new mechanism-based therapies are being developed and brought to the clinic, including new drugs, vaccines, and gene therapy, which also must be integrated with standard therapies.
Collapse
Affiliation(s)
- K M Fong
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75235-8593, USA
| | | | | |
Collapse
|
47
|
Kanai Y, Ushijima S, Nakanishi Y, Hirohashi S. Reduced mRNA expression of the DNA demethylase, MBD2, in human colorectal and stomach cancers. Biochem Biophys Res Commun 1999; 264:962-6. [PMID: 10544038 DOI: 10.1006/bbrc.1999.1613] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A study was performed to evaluate the significance of aberrations of the newly identified DNA demethylase, MBD2, in human carcinogenesis. Levels of expression of DNA demethylase mRNA were examined by reverse transcription followed by real-time quantitative detection of the PCR products in 32 samples of colorectal cancer tissue, 24 stomach cancers, and the corresponding noncancerous mucosae. DNA demethylase mRNA levels normalized with glyceraldehydephosphate dehydrogenase (GAPDH) mRNA were reduced in 31 (97%) of the 32 colorectal cancers and in 22 (92%) of the 24 stomach cancers when compared with the levels in the corresponding noncancerous mucosae. The average levels of DNA demethylase mRNA expression normalized with GAPDH mRNA in each of the colorectal (0.81 +/- 0.55) and stomach (2.88 +/- 0.23) cancers were significantly lower than in the noncancerous mucosae (1.90 +/- 0.16 and 5.11 +/- 0.34, respectively, p < 0.0001). There was no significant association between the DNA demethylase mRNA level and malignant potential in both colorectal and stomach cancers. These data suggest that reduced expression of DNA demethylase may play a role at a certain step of multistage carcinogenesis. Reduction of DNA demethylase mRNA expression may be, if anything, one of the early events of carcinogenesis, but may not participate in the malignant progression of tumors.
Collapse
Affiliation(s)
- Y Kanai
- Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | |
Collapse
|
48
|
Choi SW, Stickel F, Baik HW, Kim YI, Seitz HK, Mason JB. Chronic alcohol consumption induces genomic but not p53-specific DNA hypomethylation in rat colon. J Nutr 1999; 129:1945-50. [PMID: 10539767 DOI: 10.1093/jn/129.11.1945] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alcohol consumption has been implicated as an etiologic agent in colorectal carcinogenesis, but the mechanism by which alcohol enhances the development of colorectal cancer is not yet known. Recent reports indicate that alcohol consumption can diminish cellular S-adenosylmethionine levels, thus possibly altering normal patterns of DNA methylation, a phenomenon that is mediated by S-adenosylmethionine and whose abnormalities are observed in colonic neoplasia. This study investigated the effect of chronic alcohol consumption on genomic DNA methylation of rat colonic epithelium and methylation of the p53 tumor suppressor gene, abnormalities of which have been implicated in colonic carcinogenesis. Two groups of rats (n = 10/group) were pair-fed either an alcohol-containing or an isocaloric control Lieber-DeCarli diet for 4 wk. The extent of genomic DNA methylation was assessed by incubating the extracted DNA with [(3)H]S-adenosylmethionine and Sss1 methyltransferase. Gene-specific methylation was assessed by using semiquantitative polymerase chain reaction (PCR). Tritiated methyl uptake by colonic DNA (which is inversely correlated with genomic methylation) from alcohol-fed rats was 57% less than that in control DNA (P < 0.05). However, gene-specific DNA methylation, both in the p53 gene (exons 5-8) and in the beta-actin gene, a control gene, did not differ between the two groups. In conclusion, this study indicates that chronic alcohol consumption produces genomic DNA hypomethylation in the colonic mucosa. This may constitute a means by which carcinogenesis is enhanced, although further studies are required to establish causality.
Collapse
Affiliation(s)
- S W Choi
- Vitamin Bioavailability Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA
| | | | | | | | | | | |
Collapse
|
49
|
Farrell WE, Clayton RN. Tumour suppressor genes in pituitary tumour formation. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL ENDOCRINOLOGY & METABOLISM 1999; 13:381-93. [PMID: 10909430 DOI: 10.1053/beem.1999.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies of the molecular changes that characterize pituitary tumours have gone some way towards increasing our understanding of the events responsible for their initiation and progression. Allelic deletions on chromosomes 10, 11 and 13 are significantly associated with invasive and metastatic tumours, while losses on 9p occur early in pituitary tumorigenesis. Studies of known tumour suppressor genes within these regions of loss suggest a limited role, if any, in pituitary tumours. However, a loss of pRB is evident in a proportion of somatotrophinomas. Loss of p16 protein expression is associated with methylation of this gene's CpG island and is an early change in non-functional tumours. The enforced expression of p16/CDKN2A in the AtT20 cell line has shown that it is responsible for G1 arrest, mimicking its in vivo role. Methylation may provide a unifying mechanism preceding and predisposing towards allelic loss, and in other cases leading to reduced tumour suppressor gene expression. Pharmacological interventions designed to induce the re-expression of genes silenced through this mechanism offer considerable therapeutic potential.
Collapse
MESH Headings
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 9
- DNA Methylation
- Gene Deletion
- Genes, Retinoblastoma
- Genes, Tumor Suppressor
- Humans
- Pituitary Neoplasms/genetics
Collapse
Affiliation(s)
- W E Farrell
- Centre for Cell and Molecular Medicine, University of Keele, North Staffordshire Hospital, Stoke-on-Trent, UK
| | | |
Collapse
|
50
|
Affiliation(s)
- J P Issa
- Johns Hopkins Oncology Center, Baltimore, MD 21231, USA.
| |
Collapse
|