1
|
Li Y, Dunphy JM, Pedraza CE, Lynch CR, Cardona SM, Macklin WB, Lynch WP. Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence. J Virol 2016; 90:3385-99. [PMID: 26764005 PMCID: PMC4794655 DOI: 10.1128/jvi.03156-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor and cognitive deficits. These retroviruses infect a variety of CNS cell types; however, the specific role each cell type plays in neuropathogenesis remains to be established. The NG2 glia, whose CNS functions are only now emerging, are a newly appreciated viral target in murine leukemia virus (MLV)-induced neurodegeneration. Since one role of NG2 glia is that of oligodendrocyte progenitor cells (OPCs), we investigated here whether their infection by the neurovirulent MLV FrCasE contributed to neurodegeneration by affecting OPC viability and/or development. Our results show that both neurovirulent and nonneurovirulent MLVs interfere with oligodendrocyte differentiation. Thus, NG2 glial infection could contribute to neurodegeneration by preventing myelin formation and/or repair and by suspending OPCs in a state of persistent susceptibility to excitotoxic insult mediated by neurovirulent virus effects on other glial subtypes.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Jaclyn M Dunphy
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Carlos E Pedraza
- EMD Serono Research and Development Institute, Inc., Billerica, Massachusetts, USA
| | - Connor R Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sandra M Cardona
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - William P Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA Programs in Neurosciences, and Cell and Molecular Biology, School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
2
|
Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp Med 2011; 61:404-411. [PMID: 22330347 PMCID: PMC3193062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/03/2011] [Accepted: 05/09/2011] [Indexed: 05/31/2023]
Abstract
The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.
Collapse
Affiliation(s)
- Jodi A Carlson Scholz
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Retrovirus-induced spongiform neurodegeneration is mediated by unique central nervous system viral targeting and expression of env alone. J Virol 2010; 85:2060-78. [PMID: 21191010 DOI: 10.1128/jvi.02210-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain murine leukemia viruses (MLVs) can induce progressive noninflammatory spongiform neurodegeneration similar to that caused by prions. The primary MLV determinants responsible have been mapped to within the env gene; however, it has remained unclear how env mediates disease, whether non-Env viral components are required, and what central nervous system (CNS) cells constitute the critical CNS targets. To address these questions, we examined the effect of transplanting engraftable C17.2 neural stem cells engineered to pseudotype, disseminate, and trans-complement neurovirulent (CasBrE, CasE, and CasES) or non-neurovirulent (Friend and SFF-FE) env sequences (SU or SU/TM) within the CNS using either the "non-neurovirulent" amphotropic helper virus, 4070A, or pgag-polgpt (a nonpackaged vector encoding Gag-Pol). These studies revealed that acute MLV-induced spongiosis results from two separable activities of Env. First, Env causes neuropathology through unique viral targeting within the CNS, which was efficiently mediated by ecotropic Envs (CasBrE and Friend), but not 4070A amphotropic Env. Second, Env induces spongiosis through a toxin activity that is MLV-receptor independent and does not require the coexpression of other viral structural proteins. CasBrE and 4070A Envs possess the toxin activity, whereas Friend Env does not. Although the identity of the critical viral target cell(s) remains unresolved, our results appear to exclude microglia and oligodendrocyte lineage cells, while implicating viral entry into susceptible neurons. Thus, MLV-induced disease parallels prionopathies in that a single protein, Env, mediates both the CNS targeting and the toxicity of the infectious agent that manifests itself as progressive vacuolar neurodegeneration.
Collapse
|
4
|
Li Y, Lynch WP. Misfolding of CasBrE SU is reversed by interactions with 4070A Env: implications for gammaretroviral neuropathogenesis. Retrovirology 2010; 7:93. [PMID: 21054857 PMCID: PMC2998453 DOI: 10.1186/1742-4690-7-93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background CasBrE is a neurovirulent murine leukemia virus (MLV) capable of inducing paralytic disease with associated spongiform neurodegeneration. The neurovirulence of this virus has been genetically mapped to the surface expressed subunit (SU) of the env gene. However, CasBrE SU synthesized in the absence of the transmembrane subunit (TM) does not retain ecotropic receptor binding activity, indicating that folding of the receptor binding domain (RBD) requires this domain. Using a neural stem cell (NSC) based viral trans complementation approach to examine whether misfolded CasBrE SU retained neurovirulence, we observed CasBrE SU interaction with the "non-neurovirulent" amphotropic helper virus, 4070A which restored functional activity of CasBrE SU. Results Herein, we show that infection of NSCs expressing CasBrE SU with 4070A (CasES+4070A-NSCs) resulted in the redistribution of CasBrE SU from a strictly secreted product to include retention on the plasma membrane. Cell surface cross-linking analysis suggested that CasBrE SU membrane localization was due to interactions with 4070A Env. Viral particles produced from CasES+4070A-NSCS contained both CasBrE and 4070A gp70 Env proteins. These particles displayed ecotropic receptor-mediated infection, but were still 100-fold less efficient than CasE+4070A-NSC virus. Infectious center analysis showed CasBrE SU ecotropic transduction efficiencies approaching those of NSCs expressing full length CasBrE Env (CasE; SU+TM). In addition, CasBrE SU-4070A Env interactions resulted in robust ecotropic superinfection interference indicating near native intracellular SU interaction with its receptor, mCAT-1. Conclusions In this report we provided evidence that 4070A Env and CasBrE SU physically interact within NSCs leading to CasBrE SU retention on the plasma membrane, incorporation into viral particles, restoration of mCAT-1 binding, and capacity for initiation of TM-mediated fusion events. Thus, heterotropic Env-SU interactions facilitates CasBrE SU folding events that restore Env activity. These findings are consistent with the idea that one protein conformation acts as a folding scaffold or nucleus for a second protein of similar primary structure, a process reminiscent of prion formation. The implication is that template-based protein folding may represent an inherent feature of neuropathogenic proteins that extends to retroviral Envs.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrative Medical Sciences, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, Rootstown, Ohio 44272, USA
| | | |
Collapse
|
5
|
Nobile-Orazio E, Carpo M, Meucci N. Are there immunologically treatable motor neuron diseases? ACTA ACUST UNITED AC 2009. [DOI: 10.1080/167-146608201300079382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
The ubiquitin-proteasome system in spongiform degenerative disorders. Biochim Biophys Acta Mol Basis Dis 2008; 1782:700-12. [PMID: 18790052 PMCID: PMC2612938 DOI: 10.1016/j.bbadis.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/20/2022]
Abstract
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer’s disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan’s spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin–proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin–protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.
Collapse
|
7
|
Dimcheff DE, Volkert LG, Li Y, DeLucia AL, Lynch WP. Gene expression profiling of microglia infected by a highly neurovirulent murine leukemia virus: implications for neuropathogenesis. Retrovirology 2006; 3:26. [PMID: 16696860 PMCID: PMC1475625 DOI: 10.1186/1742-4690-3-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 05/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Certain murine leukemia viruses (MLVs) are capable of inducing progressive spongiform motor neuron disease in susceptible mice upon infection of the central nervous system (CNS). The major CNS parenchymal target of these neurovirulent retroviruses (NVs) are the microglia, whose infection is largely coincident with neuropathological changes. Despite this close association, the role of microglial infection in disease induction is still unknown. In this paper, we investigate the interaction of the highly virulent MLV, FrCasE, with microglia ex vivo to evaluate whether infection induces specific changes that could account for neurodegeneration. Specifically, we compared microglia infected with FrCasE, a related non-neurovirulent virus (NN) F43/Fr57E, or mock-infected, both at a basic virological level, and at the level of cellular gene expression using quantitative real time RT-PCR (qRT-PCR) and Afffymetrix 430A mouse gene chips. RESULTS Basic virological comparison of NN, NV, and mock-infected microglia in culture did not reveal differences in virus expression that provided insight into neuropathogenesis. Therefore, microglial analysis was extended to ER stress gene induction based on previous experiments demonstrating ER stress induction in NV-infected mouse brains and cultured fibroblasts. Analysis of message levels for the ER stress genes BiP (grp78), CHOP (Gadd153), calreticulin, and grp58 in cultured microglia, and BiP and CHOP in microglia enriched fractions from infected mouse brains, indicated that FrCasE infection did not induce these ER stress genes either in vitro or in vivo. To broadly identify physiological changes resulting from NV infection of microglia in vitro, we undertook a gene array screen of more than 14,000 well-characterized murine genes and expressed sequence tags (ESTs). This analysis revealed only a small set of gene expression changes between infected and uninfected cells (<18). Remarkably, gene array comparison of NN- and NV-infected microglia revealed only 3 apparent gene expression differences. Validation experiments for these genes by Taqman real-time RT-PCR indicated that only single Ig IL-1 receptor related protein (SIGIRR) transcript was consistently altered in culture; however, SIGIRR changes were not observed in enriched microglial fractions from infected brains. CONCLUSION The results from this study indicate that infection of microglia by the highly neurovirulent virus, FrCasE, does not induce overt physiological changes in this cell type when assessed ex vivo. In particular, NV does not induce microglial ER stress and thus, FrCasE-associated CNS ER stress likely results from NV interactions with another cell type or from neurodegeneration directly. The lack of NV-induced microglial gene expression changes suggests that FrCasE either affects properties unique to microglia in situ, alters the expression of microglial genes not represented in this survey, or affects microglial cellular processes at a post-transcriptional level. Alternatively, NV-infected microglia may simply serve as an unaffected conduit for persistent dissemination of virus to other neural cells where they produce acute neuropathogenic effects.
Collapse
Affiliation(s)
- Derek E Dimcheff
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - L Gwenn Volkert
- Department of Computer Science, Kent State University, Kent, Ohio, USA
| | - Ying Li
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| | - Angelo L DeLucia
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| | - William P Lynch
- Department of Microbiology, Immunology, and Biochemistry, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio, USA
| |
Collapse
|
8
|
Abstract
Murine leukemia viruses may produce encephalopathies that have the same characteristics as those induced by infectious proteins or prions: neuronal loss, astrocytosis, and absence of inflammatory response. The pathogenic mechanism is still poorly understood but it seems that it involves the envelope proteins (Env), which may be misprocessed in the cell, giving rise to pathogenic isoforms that trigger oxidative damage. Env may also affect the cytokine pattern in the central nervous system and thus, induce encephalopathy.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
9
|
Jolicoeur P, Hu C, Mak TW, Martinou JC, Kay DG. Protection against murine leukemia virus-induced spongiform myeloencephalopathy in mice overexpressing Bcl-2 but not in mice deficient for interleukin-6, inducible nitric oxide synthetase, ICE, Fas, Fas ligand, or TNF-R1 genes. J Virol 2003; 77:13161-70. [PMID: 14645573 PMCID: PMC296073 DOI: 10.1128/jvi.77.24.13161-13170.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 08/18/2003] [Indexed: 01/20/2023] Open
Abstract
Some murine leukemia viruses (MuLVs), among them Cas-Br-E and ts-1 MuLVs, are neurovirulent, inducing spongiform myeloencephalopathy and hind limb paralysis in susceptible mice. It has been shown that the env gene of these viruses harbors the determinant of neurovirulence. It appears that neuronal loss occurs by an indirect mechanism, since the target motor neurons have not been found to be infected. However, the pathogenesis of the disease remains unclear. Several lymphokines, cytokines, and other cellular effectors have been found to be aberrantly expressed in the brains of infected mice, but whether these are required for the development of the neurodegenerative lesions is not known. In an effort to identify the specific effectors which are indeed required for the initiation and/or development of spongiform myeloencephalopathy, we inoculated gene-deficient (knockout [KO]) mice with ts-1 MuLV. We show here that interleukin-6 (IL-6), inducible nitric oxide synthetase (iNOS), ICE, Fas, Fas ligand (FasL), and TNF-R1 KO mice still develop signs of disease. However, transgenic mice overexpressing Bcl-2 in neurons (NSE/Bcl-2) were largely protected from hind limb paralysis and had less-severe spongiform lesions. These results indicate that motor neuron death occurs in this disease at least in part by a Bcl-2-inhibitable pathway not requiring the ICE, iNOS, Fas/FasL, TNF-R1, and IL-6 gene products.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Caspase 1/genetics
- Caspase 1/metabolism
- Central Nervous System Viral Diseases/metabolism
- Central Nervous System Viral Diseases/prevention & control
- Central Nervous System Viral Diseases/virology
- Fas Ligand Protein
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukemia Virus, Murine/pathogenicity
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H/metabolism
- Mice, Knockout
- Mice, Transgenic
- Nerve Degeneration/prevention & control
- Nerve Degeneration/virology
- Neurons/metabolism
- Neurons/pathology
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Retroviridae Infections/metabolism
- Retroviridae Infections/prevention & control
- Retroviridae Infections/virology
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.
| | | | | | | | | |
Collapse
|
10
|
Prassolov V, Ivanov D, Hein S, Rutter G, Münk C, Löhler J, Stocking C. The Mus cervicolor MuLV isolate M813 is highly fusogenic and induces a T-cell lymphoma associated with large multinucleated cells. Virology 2001; 290:39-49. [PMID: 11883004 DOI: 10.1006/viro.2001.1145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
M813 is a type-C murine leukemia virus (MuLV) isolated from the Asian rodent Mus cervicolor. We have recently demonstrated that M813 defines a distinct MuLV receptor interference group. Here we show that M813 rapidly induces fusion of MuLV-expressing fibroblasts from "without," with syncytia being observed within 1 h after exposure to virus. Infection of fibroblasts with MuLV from all tested receptor-interference groups imparts susceptibility to M813-induced fusion, provided the cells also express the M813 receptor. Syncytium induction is also observed in vivo; mice infected with M813 develop a peripheral T-cell lymphoma, which is associated with large multinucleated cells of macrophage origin. A recombinant Moloney MuLV/M813 chimeric virus demonstrated that syncytium induction is a function of the Env SU protein. We postulate that the highly fusogenic property of M813 is attributable to either its unique receptor usage or sequences in the proline-rich domain of the Env protein.
Collapse
Affiliation(s)
- V Prassolov
- Heinrich-Pette-Institut für Experimentelle Immunologie und Virologie an der Universität Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The discovery within the past decade that neural stem cells (NSCs) from the developing and adult mammalian brain can be propagated, cloned, and genetically manipulated ex vivo for ultimate transfer back into the CNS has opened the door to a novel means for modifying the CNS environment for experimental and therapeutic purposes. While a great deal of interest has been focused on the properties and promise of this new technology, especially in regard to cellular replacement and gene therapy, this minireview will focus on the recent use of NSCs to study the neuropathogenesis of the murine oncornaviruses. In brief, the use of this NSC-based approach has provided a means for selective reconstitution within the brain, of specific retroviral life cycle events, in order to consider their contribution to the induction of neurodegeneration. Furthermore, by virtue of their ability to disseminate virus within the brain, NSCs have provided a reliable means for assessing the true neurovirulence potential of murine oncornaviruses by directly circumventing a restriction to virus entry into the CNS. Importantly, these experiments have demonstrated that the neurovirulence of oncornaviruses requires late virus life cycle events occurring specifically within microglia, the resident macrophages of the brain. This initial application of NSC biology to the analysis of oncornavirus-CNS interactions may serve as an example for how other questions in viral neuropathogenesis might be addressed in the future.
Collapse
Affiliation(s)
- W P Lynch
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, Rootstown 44272-0095, USA.
| | | |
Collapse
|
12
|
Hansen R, Czub S, Werder E, Herold J, Gosztonyi G, Gelderblom H, Schimmer S, Mazgareanu S, ter Meulen V, Czub M. Abundant defective viral particles budding from microglia in the course of retroviral spongiform encephalopathy. J Virol 2000; 74:1775-80. [PMID: 10644349 PMCID: PMC111654 DOI: 10.1128/jvi.74.4.1775-1780.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pathogenetic hallmark of retroviral neurodegeneration is the affinity of neurovirulent retroviruses for microglia cells, while degenerating neurons are excluded from retroviral infections. Microglia isolated ex vivo from rats peripherally infected with a neurovirulent retrovirus released abundant mature type C virions; however, infectivity associated with microglia was very low. In microglia, viral transcription was unaffected but envelope proteins were insufficiently cleaved into mature viral proteins and were not detected on the microglia cell surface. These microglia-specific defects in envelope protein translocation and processing not only may have prevented formation of infectious virus particles but also may have caused further cellular defects in microglia with the consequence of indirect neuronal damage. It is conceivable that similar events play a role in neuro-AIDS.
Collapse
Affiliation(s)
- R Hansen
- Institut f]ur Virologie und Immunbiologie, Universit]at W]urzburg, D-97078 W]urzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lynch WP, Sharpe AH, Snyder EY. Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration. J Virol 1999; 73:6841-51. [PMID: 10400782 PMCID: PMC112769 DOI: 10.1128/jvi.73.8.6841-6851.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of spongiform myeloencephalopathy by murine leukemia viruses is mediated primarily by infection of central nervous system (CNS) microglia. In this regard, we have previously shown that CasBrE-induced disease requires late, rather than early, virus replication events in microglial cells (W. P. Lynch et al., J. Virol. 70:8896-8907, 1996). Furthermore, neurodegeneration requires the presence of unique sequences within the viral env gene. Thus, the neurodegeneration-inducing events could result from microglial expression of retroviral envelope protein alone or from the interaction of envelope protein with other viral structural proteins in the virus assembly and maturation process. To distinguish between these possible mechanisms of disease induction, we engineered the engraftable neural stem cell line C17-2 into packaging/producer cells in order to deliver the neurovirulent CasBrE env gene to endogenous CNS cells. This strategy resulted in significant CasBrE env expression within CNS microglia without the appearance of replication competent virus. CasBrE envelope expression within microglia was accompanied by increased expression of activation markers F4/80 and Mac-1 (CD11b) but failed to induce spongiform neurodegenerative changes. These results suggest that envelope expression alone within microglia is not sufficient to induce neurodegeneration. Rather, microglia-mediated disease appears to require neurovirulent Env protein interaction with other viral proteins during assembly or maturation. More broadly, the results presented here prove the efficacy of a novel method by which neural stem cell biology may be harnessed for genetically manipulating the CNS, not only for studying neurodegeneration but also as a paradigm for the disseminated distribution of retroviral vector-transduced genes.
Collapse
Affiliation(s)
- W P Lynch
- Department of Microbiology/Immunology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | | | |
Collapse
|
14
|
Portis JL, Lynch WP. Dissecting the determinants of neuropathogenesis of the murine oncornaviruses. Virology 1998; 247:127-36. [PMID: 9705905 DOI: 10.1006/viro.1998.9240] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | |
Collapse
|
15
|
Abstract
Heme oxygenase-1 (HO-1) is a stress protein inducible in some cells by oxidative stress. The status of heme oxygenase was investigated in a transgenic mouse model of amyotrophic lateral sclerosis (ALS) since oxidative mechanisms are postulated in neuronal injury. Three ALS mice [(SOD1-G93A)1Gur] and three controls [(SOD-1)2Gur] were obtained from The Jackson Laboratory. Behavioral differences suggestive of neurodegeneration in ALS mice developed at 4-5 months of age. All mice were killed at 7-8 months of age. Tissue vacuolation, cell loss, and the presence of GFAP+ cells were noted in the spinal cords of ALS mice. Spinal cord motor neurons in both control and ALS mice stained positive for heme oxygenase-2 (HO-2). While not precluding the presence of low levels of HO-1 neither immunohistochemical staining nor Western blot analysis provided evidence for significant HO-1 induction in degenerating spinal cord.
Collapse
Affiliation(s)
- B E Dwyer
- Molecular Neurobiology Laboratory (151), The Department of Veterans Affairs Medical Center, White River Junction, Vermont 05009-0001, USA
| | | | | |
Collapse
|
16
|
Choe W, Stoica G, Lynn W, Wong PK. Neurodegeneration induced by MoMuLV-ts1 and increased expression of Fas and TNF-alpha in the central nervous system. Brain Res 1998; 779:1-8. [PMID: 9473560 DOI: 10.1016/s0006-8993(97)00929-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection of neonatal mice with ts1, the neuropathogenic mutant of the Moloney murine leukemia virus, results in motor neuronal death in the brainstem and the spinal cord, with gliosis and demyelination, but no inflammatory cell infiltration into the CNS. To evaluate the possible mechanism(s) of ts1-induced neuropathogenesis, we measured CNS expression of cytokines and cell death-related genes in ts1-infected mice with neurological signs and compared with control uninfected mice. In the brainstem, the expression of Fas and tumor necrosis factor alpha (TNF-alpha) was increased in the ts1-infected mice. Both TNF-alpha and Fas were detected in astrocytes, and Fas was also detected in neurons in the brainstem. Some TNF-alpha-immunolabeled cells also appeared to be microglial cells. Most Fas-positive cells, including astrocytes and neurons, showed cytoplasmic vacuolization and other degenerative changes. In addition, Fas ligand-immunolabeled cells were also detected in sites where spongiform degeneration occurred. This study suggests that neural cell death in ts1-induced neurodegeneration is likely due to Fas- and TNF-alpha-mediated cell death mechanisms.
Collapse
Affiliation(s)
- W Choe
- Department of Carcinogenesis, The University of Texas, M.D. Anderson Cancer Center, Smithville 78957, USA
| | | | | | | |
Collapse
|
17
|
Ostergaard M, Pedersen L, Schmidt J, Luz A, Lovmand J, Erfle V, Pedersen FS, Strauss PG. Mapping of a major osteomagenic determinant of murine leukemia virus RFB-14 to non-long terminal repeat sequences. J Virol 1997; 71:645-9. [PMID: 8985395 PMCID: PMC191096 DOI: 10.1128/jvi.71.1.645-649.1997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Certain isolates of murine leukemia viruses (MuLVs) have, apart from a leukemogenic potential, the capability of inducing diseases of nonhematopoietic tissues in susceptible strains of mice. We have reported on the molecular cloning of a bone-tumorigenic virus, RFB-14 MuLV, which was found to induce benign bone tumors, osteomas, with 100% incidence in mice of the CBA/Ca strain (L. Pedersen, W. Behnisch, J. Schmidt, A. Luz, F. S. Pedersen, V. Erfle, and P. G. Strauss, J. Virol. 66:6186-6190, 1992). In order to analyze the bone tumor-inducing phenotype of RFB-14 MuLV, we have studied the pathogenic potential of recombinant viruses between RFB-14 and the nonosteomagenic, highly leukemogenic SL3-3 MuLV. The recombinants were constructed so as to reveal whether a major determinant of osteomagenicity maps to sequences within or outside the long terminal repeats (LTR). Our data show that a major determinant of the osteoma-inducing potential of RFB-14 MuLV maps to the non-LTR region of the genome. Furthermore, we demonstrate that a strong determinant of leukemogenicity is harbored by the non-LTR region of SL3-3 MuLV.
Collapse
Affiliation(s)
- M Ostergaard
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lynch WP, Snyder EY, Qualtiere L, Portis JL, Sharpe AH. Late virus replication events in microglia are required for neurovirulent retrovirus-induced spongiform neurodegeneration: evidence from neural progenitor-derived chimeric mouse brains. J Virol 1996; 70:8896-907. [PMID: 8971019 PMCID: PMC190987 DOI: 10.1128/jvi.70.12.8896-8907.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
CasBrE is a neurovirulent murine retrovirus which induces a spongiform myeloencephalopathy in susceptible mice. Genetic mapping studies have indicated that sequences responsible for neurovirulence reside within the env gene. To address the question of direct envelope protein neuroxicity in the central nervous system (CNS), we have generated chimeric mice expressing the CasBrE envelope protein in cells of neuroectodermal origin. Specifically, the multipotent neural progenitor cell line C17.2 was engineered to express the CasBrE env gene as either gp70/p15E (CasE) or gp70 alone (CasES). CasE expression in these cells resulted in complete (>10(5)) interference of superinfection with Friend murine leukemia virus clone FB29, whereas CasES expression resulted in a 1.8-log-unit decrease in FB29 titer. Introduction of these envelope-expressing C17.2 cells into the brains of highly susceptible IRW mice resulted in significant engraftment as integral cytoarchitecturally correct components of the CNS. Despite high-level envelope protein expression from the engrafted cells, no evidence of spongiform neurodegeneration was observed. To examine whether early virus replication events were necessary for pathogenesis, C17.2 cells expressing whole virus were transplanted into mice in which virus replication in the host was specifically restricted by Fv-1 to preintegration events. Again, significant C17.2 cell engraftment and infectious virus expression failed to precipitate spongiform lesions. In contrast, transplantation of virus-expressing C17.2 progenitor cells in the absence of the Fv-1 restriction resulted in extensive spongiform neurodegeneration by 2 weeks postengraftment. Cytological examination indicated that infection had spread beyond the engrafted cells, and in particular to host microglia. Spongiform neuropathology in these animals was directly correlated with CasBrE env expression in microglia rather than expression from neural progenitor cells. These results suggest that the envelope protein of CasBrE is not itself neurotoxic but that virus infectious events beyond binding and fusion in microglia are necessary for the induction of CNS disease.
Collapse
Affiliation(s)
- W P Lynch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
19
|
Rösener M, Hahn H, Kranz M, Heeney J, Rethwilm A. Absence of serological evidence for foamy virus infection in patients with amyotrophic lateral sclerosis. J Med Virol 1996; 48:222-6. [PMID: 8801281 DOI: 10.1002/(sici)1096-9071(199603)48:3<222::aid-jmv2>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Foamy virus (FV) infection has been implicated in the pathogenesis of sporadic motor neuron disease (MND) by means of serological assays. To confirm these results we tested serum and cerebrospinal fluid (CSF) samples from 23 cases of clinically verified non-familial MND and 11 cases of suspected non-familial MND for the presence of FV infection as determined by Western blot (WB) and indirect immunofluorescence assay (IFA). Using the same tests we also screened sera from 87 healthy chimpanzees for the presence of FV antibodies. None of the human samples in question tested positive. However, the testing revealed that 84 of 87 chimpanzees (96.6%) were seropositive for FV, indicating that combined WB and IFA are suitable methods for the serodiagnosis of FV infection. Given these results an association of FV infection and sporadic MND is highly improbable. Furthermore a suggested therapeutic trial with anti-retroviral drugs appears unjustified.
Collapse
Affiliation(s)
- M Rösener
- Neurologische Klinik, Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- S M Toggas
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
21
|
Szurek PF, Brooks BR. Development of physical forms of unintegrated retroviral DNA in mouse spinal cord tissue during ts1-induced spongiform encephalomyelopathy: elevated levels of a novel single-stranded form in paralyzed mice. J Virol 1995; 69:348-56. [PMID: 7983729 PMCID: PMC188582 DOI: 10.1128/jvi.69.1.348-356.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ts1 is a murine leukemia virus that causes rapidly evolving hindlimb paralysis in susceptible strains of mice. Following perinatal infection, three physical forms of unintegrated viral DNA were detected in the spinal cord by Southern blot hybridization. Linear and supercoiled closed-circle viral double-stranded DNAs were detected in both the central nervous system and non-central nervous system tissues. An elevated level of a novel minus-sense single-stranded form of viral DNA, which had a very high mobility in agarose gels, was correlated with the onset of symptoms of paralysis. As the severity of paralysis progressed, the level of this single-stranded form increased rapidly, with the highest level in the spinal cords of moribund mice. Since the virulence of a number of cytopathic retroviruses has been associated with the presence of increased amounts of unintegrated viral DNA in the tissues of the infected hosts, this novel form of highly mobile unintegrated single-stranded DNA may have a role in the neuropathogenesis of ts1.
Collapse
Affiliation(s)
- P F Szurek
- Neurology Service, William S. Middleton Memorial Veterans Affairs Hospital
| | | |
Collapse
|
22
|
Thomas FP, Chalk C, Lalonde R, Robitaille Y, Jolicoeur P. Expression of human immunodeficiency virus type 1 in the nervous system of transgenic mice leads to neurological disease. J Virol 1994; 68:7099-107. [PMID: 7933091 PMCID: PMC237148 DOI: 10.1128/jvi.68.11.7099-7107.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Patients infected with the human immunodeficiency virus type 1 (HIV-1) frequently develop central and peripheral nervous system complications, some of which may reflect the effect of the virus itself. In order to elucidate the pathogenic mechanisms of HIV in neurological disease in a small animal model, we generated transgenic mice expressing the entire HIV genome under control of the promoter for the human neurofilament NF-L gene. The transgene was predominantly expressed in anterior thalamic and spinal motor neurons. Animals developed a neurological syndrome characterized by hypoactivity and weakness and by axonal degeneration in peripheral nerves. These results provide evidence for a role of HIV in affecting both the central and peripheral nervous systems. This animal model may also facilitate the development of therapeutic agents against the human disease.
Collapse
Affiliation(s)
- F P Thomas
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
23
|
Kushida S, Mizusawa H, Matsumura M, Tanaka H, Ami Y, Hori M, Yagami K, Kameyama T, Tanaka Y, Yoshida A. High incidence of HAM/TSP-like symptoms in WKA rats after administration of human T-cell leukemia virus type 1-producing cells. J Virol 1994; 68:7221-6. [PMID: 7933104 PMCID: PMC237161 DOI: 10.1128/jvi.68.11.7221-7226.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrate a significantly high incidence of human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy (HAM)-or tropical spastic paraparesis (TSP)-like symptoms in WKA rats after injection with HTLV-1-producing MT-2 cells, while no symptoms were observed in F344 rats injected with MT-2 cells or in control WKA rats. Five of the eight (63%) WKA rats injected with MT-2 cells showed HAM/TSP-like paraparesis at 105 weeks of age, but none of seven MT-2-injected F344 rats or eight control WKA rats showed symptoms. This high incidence of HAM/TSP-like symptoms in WKA rats was statistically significant (P < 0.05). Six of the eight (75%) WKA rats injected with MT-2 cells showed HAM/TSP-like paraparesis at 108 weeks of age. HAM/TSP-like symptoms were also observed in one of the two WKA rats injected with HTLV-1-producing Ra-1 cells at 128 weeks of age. HTLV-1 provirus was detected in peripheral blood mononuclear cells in both WKA and F344 rats. The provirus was detected in the spinal cords of the HAM/TSP-like WKA rats that had severe neuropathological changes. WKA and F344 rats showed no significant difference in antibody response against HTLV-1 Gag antigen. However, the antibody response against the C-terminal half of gp46 HTLV-1 envelope protein was lower in WKA rats than in F344 rats. Pathological analysis of the HAM/TSP-like rats showed degeneration of the white matter of the spinal cord and peripheral nerves. These findings suggest that both the genetic background of the host and HTLV-1 infection are important in neuropathogenesis of HAM/TSP-like paraparesis in rats.
Collapse
Affiliation(s)
- S Kushida
- Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nagra RM, Heyes MP, Wiley CA. Viral load and its relationship to quinolinic acid, TNF alpha, and IL-6 levels in the CNS of retroviral infected mice. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 22:143-60. [PMID: 7993524 DOI: 10.1007/bf03160102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mouse models of infection of the central nervous system (CNS) have been used to study retroviral-induced neurologic disease. Ecotropic-neurotropic murine leukemia virus (MuLV) infection of susceptible neonatal mice causes a neurologic disease characterized by progressive hindlimb paralysis. The lesions consist of chronic noninflammatory spongiform change predominantly involving brainstem and spinal cord. Two molecularly cloned strains of MuLV, ts-1, a temperature-sensitive mutant of Moloney MuLV, and pNE-8, derived from a feral mouse isolate Cas-Br-E, were used in this study. Infected mice were sacrificed at regular intervals postinoculation throughout the time-course of disease. The neuropathology was evaluated using standard histological and immunohistopathological techniques. Tissue concentrations of viral proteins and potentially cytotoxic factors were compared with the histopathology in select regions of the CNS. Areas of extensive vacuolation with neuronal and oligodendroglial infection were observed in spinal cord, brainstem, and cerebellum. High titers of infectious virus were observed within CNS lesions, whereas low titers were observed in morphologically uninvolved areas. Western blot analysis revealed abundant production of viral envelope proteins, which correlated well with infectious virus titers. Serum quinolinic acid (QUIN) concentrations in both groups of noninfected and infected mice were similar. However, CNS tissue concentrations of QUIN, TNF alpha, and IL-6 in ts-1 infected mice were significantly higher than in pNE-8 infected or noninfected mice. The difference in concentration of these factors may be the result of greater activation of macrophages/microglia in ts-1 infected mice. During murine retroviral encephalitis, CNS damage may be mediated by direct infection of CNS cells and may be enhanced by indirect effects of neurotoxic factors possibly secreted by infected/activated macrophages.
Collapse
Affiliation(s)
- R M Nagra
- Brain Research Institute, University of California Los Angeles
| | | | | |
Collapse
|
25
|
Affiliation(s)
- M B Gardner
- Department of Pathology, School of Medicine, University of California, Davis 95616
| | | |
Collapse
|
26
|
Manuelidis L. Dementias, neurodegeneration, and viral mechanisms of disease from the perspective of human transmissible encephalopathies. Ann N Y Acad Sci 1994; 724:259-81. [PMID: 8030947 DOI: 10.1111/j.1749-6632.1994.tb38916.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our transmission experiments with human CJD emphasize the centrality of an exogenous infectious pathogen that can exist in symbiosis with its host for extended periods. Many latent or persistent viruses can cause neurodegenerative disease and may have a role in late onset dementias. There are reasons to believe that CJD infections may share properties with some of these latent viruses in causing dementia, and several retroviral mechanisms may be operative in CJD. In order to clarify viral-like attributes of the CJD agent we have closely followed infectivity and find the following: 1) the CJD agent has a virus-like size and density, and is biochemically separable from most host-encoded prion protein (PrP); 2) Endogenous retroviral IAP RNA sequences of 5,000 bases, as well as several gag-like nucleic acid binding proteins, co-purify with infectivity in preparations treated with high concentrations of anionic detergents and exhaustive nuclease digestion. They signify the purification of true viral cores rather than aggregation artifacts, and diminish claims that there are no protected nucleic acids of > 50 bases in highly purified infectious preparations; 3) In established hamster CJD, temporal studies show the agent has an effective doubling time of approximately 7.5 days in brain, consistent with complex host-viral interactions common to slow viral infections; 4) PrP-res does not correspond to titered levels of infectivity either in a biochemical or an in vivo setting but may function as a viral receptor that can modulate disease expression. Interestingly, functional changes in glial cells occur earlier than PrP-res changes, and indicate an important role for glial cells in evolving infections; 5) Human-rodent transmission studies suggest that CJD, or a CJD-like variant can be a common but latent infection of humans, with relatively infrequent expression of neurological disease. Susceptibility to disease can rest on host attributes and possibly age-related co-factors. Nonetheless, fundamental viral principles are also operative. Agent strain variants, viral burden, and the routes of infection are critical parameters for latency and disease expression. The properties described above have led me to return to the inclusion of CJD (and scrapie) in the panorama of conventional slow viral infections of the brain, as originally proposed by Sigurdsson. Identification of virus-specific molecules are essential for elucidating the role of these agents in the spectrum of human dementias.
Collapse
Affiliation(s)
- L Manuelidis
- Section of Neuropathology, Yale University Medical School, New Haven, Connecticut 06510
| |
Collapse
|
27
|
Lynch WP, Brown WJ, Spangrude GJ, Portis JL. Microglial infection by a neurovirulent murine retrovirus results in defective processing of envelope protein and intracellular budding of virus particles. J Virol 1994; 68:3401-9. [PMID: 8151801 PMCID: PMC236834 DOI: 10.1128/jvi.68.5.3401-3409.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The observation of murine retrovirus infection of microglial cells in brain regions expressing spongiform neurodegenerative changes suggests that these cells may play an important role in pathogenesis. To evaluate this potential in vitro, murine microglial cells were infected in mixed glial cultures with the highly neurovirulent murine retrovirus, FrCasE. The microglia were then isolated from the mixed cultures on the basis of their differential adherence and shown to be approximately 98% pure. The infected microglia expressed viral envelope protein at the plasma membrane, while viral budding was primarily intracellular. Evaluation of the viral envelope protein by immunoblotting indicated that the immunoreactive species produced was exclusively a 90-kDa precursor protein. Very little of the envelope protein was associated with particles released from these cells, and viral titers in the culture supernatant were low. Interestingly, these cells were still capable of infecting permissive target cells when seeded as infectious centers. This partially defective infection of microglial cells suggests a potential cellular means by which a neurovirulent retrovirus could disrupt normal microglia and in turn central nervous system motor system functioning.
Collapse
Affiliation(s)
- W P Lynch
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- M B Gardner
- Department of Pathology, School of Medicine, University of California, Davis 95616
| |
Collapse
|
29
|
Gravel C, Kay DG, Jolicoeur P. Identification of the infected target cell type in spongiform myeloencephalopathy induced by the neurotropic Cas-Br-E murine leukemia virus. J Virol 1993; 67:6648-58. [PMID: 8411367 PMCID: PMC238103 DOI: 10.1128/jvi.67.11.6648-6658.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Cas-Br-E murine leukemia virus (MuLV) induces a progressive hindlimb paralysis accompanied by a spongiform myeloencephalopathy in susceptible mice. In order to better understand the pathological process leading to these neurodegenerative lesions, we have investigated the nature of the cell type(s) infected by the virus during the course of the disease in CFW/D and SWR/J mice. For this purpose, we used in situ hybridization with virus-specific probes in combination with cell-type-specific histochemical (lectin) and immunological markers as well as morphological assessment. In the early stage of infection, endothelial cells represented the main cell type expressing viral RNA in the central nervous system (CNS). With disease progression and the appearance of lesions, microglial cells became the major cell type infected, accounting for up to 65% of the total infected cell population in diseased areas. Morphologically, these cells appeared activated and were frequently found in clusters. Infection and activation of microglial cells were almost exclusively restricted to diseased regions of the CNS. Neurons in diseased regions were not discernibly infected with virus at either early or late times of disease progression. Similarly, the proportion of infected astrocytes was typically < 1%. Although some endothelial cells and oligodendrocytes were infected by the virus, their infection was not limited to diseased CNS regions. These results are consistent with a model of indirect motor neuron degeneration, subsequent to the infection of nonneuronal CNS cells and especially of microglial cells. Infected microglial cells may play a role in the disease process by releasing not only virions or viral env-gene-encoded gp70 proteins but also other factors which may be directly or indirectly toxic to neurons. Parallels between microglial cell infection by MuLV and by lentiviruses, and specifically by human immunodeficiency virus, are discussed.
Collapse
Affiliation(s)
- C Gravel
- Laboratory of Molecular Biology, Institut de Recherches Cliniques de Montréal, Quebec, Canada
| | | | | |
Collapse
|