1
|
Berwanger LC, Thumm N, Stirba FP, Gholamipoorfard R, Pawlowski A, Kolkhof P, Volke J, Kollmann M, Wiegard A, Axmann IM. Self-sustained rhythmic behavior of Synechocystis sp. PCC 6803 under continuous light conditions in the absence of light-dark entrainment. PNAS NEXUS 2025; 4:pgaf120. [PMID: 40330109 PMCID: PMC12053491 DOI: 10.1093/pnasnexus/pgaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Circadian clocks regulate biological activities, providing organisms with a fitness advantage under diurnal conditions by enabling anticipation and adaptation to recurring external changes. Three proteins, KaiA, KaiB, and KaiC, constitute the circadian clock in the cyanobacterial model Synechococcus elongatus PCC 7942. Several techniques established to measure circadian output in Synechococcus yielded comparably weak signals in Synechocystis sp. PCC 6803, a strain important for biotechnological applications. We applied an approach that does not require genetic modifications to monitor the circadian rhythms in Synechococcus and Synechocystis. We placed batch cultures in shake flasks on a sensor detecting backscattered light via noninvasive online measurements. Backscattering oscillated with a period of ∼24 h around the average growth. Wavelet and Fourier transformations are applied to determine the period's significance and length. In Synechocystis, oscillations fulfilled the circadian criteria of temperature compensation and entrainment by external stimuli. Remarkably, dilution alone synchronized oscillations. Western blotting revealed that the backscatter was ∼6.5 h phase-delayed in comparison to KaiC3 phosphorylation.
Collapse
Affiliation(s)
- Lutz Claus Berwanger
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Nikolaus Thumm
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Florian Pascal Stirba
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | | | - Alice Pawlowski
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Petra Kolkhof
- Mathematical Modelling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jeannine Volke
- Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Markus Kollmann
- Mathematical Modelling of Biological Systems, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Wiegard
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Ilka Maria Axmann
- Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Li Y, Xu Y. Effects of CikA and SasA co-regulation on cyanobacterial circadian clock. Biosystems 2025; 252:105468. [PMID: 40316194 DOI: 10.1016/j.biosystems.2025.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/04/2025]
Abstract
Cyanobacterial circadian clock is made up of three proteins, KaiA, KaiB and KaiC. KaiA binds to the A-loop to actives the autophosphorylation of KaiC, while KaiB sequesters KaiA from the A-loop to weaken the activity of KaiA. Thus a circadian oscillator of KaiC phosphorylation generates. Recent experiments have found that CikA and SasA both play crucial roles in cyanobacterial circadian clock. They participate in the output pathway and regulate the activity of transcription factors of the core oscillator. However, the specific impact of the regulation of CikA and SasA on the system is still far from clear. To address these questions, we develop an extended mathematical model for cyanobacterial circadian clock including CikA and SasA regulation. The numerical simulation results indicate that CikA and SasA have opposite effects on the system, and the two complement each other to maintain the balance of the system. Specifically, as the concentration of SasA increases, the period and amplitude increase, and the period sensitivity to parameters, phase shift caused by dark pulses and entrainment ability are all decrease. The regulation of CikA has the opposite impact on the above aspects. Based on these results, we can adjust certain indicators of the system by adjusting the concentration of CikA or SasA. The research method in this article can provide ideas for studying the effects of other proteins on the circadian clock. The findings supplement biological studies and provide a theoretical reference for biological research. It helps us gain a deeper understanding of the dynamic mechanism of cyanobacteria circadian clock.
Collapse
Affiliation(s)
- Ying Li
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yao Xu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Eremina A, Schwall C, Saez T, Witting L, Kohlheyer D, Martins BMC, Thomas P, Locke JCW. Environmental and molecular noise buffering by the cyanobacterial clock in individual cells. Nat Commun 2025; 16:3566. [PMID: 40234415 PMCID: PMC12000584 DOI: 10.1038/s41467-025-58169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Circadian clocks enable organisms to anticipate daily cycles, while being robust to molecular and environmental noise. Here, we show how the clock of the cyanobacterium Synechococcus elongatus PCC 7942 buffers genetic and environmental perturbations through its core KaiABC phosphorylation loop. We first characterise single-cell clock dynamics in clock mutants using a microfluidics device that allows precise control of the microenvironment. We find that known clock regulators are dispensable for clock robustness, whilst perturbations of the core clock reveal that the wild type operates at a noise optimum that we can reproduce in a stochastic model of just the core phosphorylation loop. We then examine how the clock responds to noisy environments, including natural light conditions. The model accurately predicts how the clock filters out environmental noise, including fast light fluctuations, to keep time while remaining responsive to environmental shifts. Our findings illustrate how a simple clock network can exhibit complex noise filtering properties, advancing our understanding of how biological circuits can perform accurately in natural environments.
Collapse
Affiliation(s)
| | | | - Teresa Saez
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Lennart Witting
- IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
5
|
Battistolli M, Varponi I, Romoli O, Sandrelli F. The circadian clock gene period regulates the composition and daily bacterial load of the gut microbiome in Drosophila melanogaster. Sci Rep 2025; 15:1016. [PMID: 39762344 PMCID: PMC11704212 DOI: 10.1038/s41598-024-84455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per01 flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions. The gut microbiota of wild-type and per01 flies showed differences in composition, suggesting that the D. melanogaster circadian gene per has a role in shaping the gut microbiome. In 12:12 LD and DD conditions, per01 mutants showed significant daily variations in gut bacterial quantity, unlike wild-type flies. This suggests that per is involved in maintaining the daily stability of gut microbiome load in D. melanogaster. Expanding these analyses to other fly strains with disrupted circadian clocks will clarify whether these effects originate from a circadian function of per or from its possible pleiotropic effects. Finally, some gut bacteria exhibited significant 24 h fluctuations in their relative abundance, which appeared independent from the fly circadian clock, suggesting that certain gut commensal bacteria in Drosophila may possess a host-independent circadian clock.
Collapse
Affiliation(s)
| | - Irene Varponi
- Department of Biology, University of Padova, Padova, Italy
| | - Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi, F-75015, Paris, France.
| | | |
Collapse
|
6
|
Jabbur ML, Bratton BP, Johnson CH. Bacteria can anticipate the seasons: Photoperiodism in cyanobacteria. Science 2024; 385:1105-1111. [PMID: 39236161 PMCID: PMC11473183 DOI: 10.1126/science.ado8588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Photoperiodic time measurement is the ability of plants and animals to measure differences in day versus night length (photoperiod) and use that information to anticipate critical seasonal transformations, such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms, such as gonadal stimulation, flowering, and hibernation. Unexpectedly, we observed this capability in cyanobacteria-unicellular prokaryotes with generation times as short as 5 to 6 hours. Cyanobacteria exposed to short, winter-like days developed enhanced resistance to cold mediated by desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping required an intact circadian clockwork and developed over multiple cycles of photoperiod. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated and enabled genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, TN, USA
| | - Benjamin P. Bratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
7
|
Jabbur ML, Johnson CH. Bacteria can anticipate the seasons: photoperiodism in cyanobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593996. [PMID: 38798677 PMCID: PMC11118479 DOI: 10.1101/2024.05.13.593996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photoperiodic Time Measurement is the ability of plants and animals to measure differences in day/night-length (photoperiod) and use that information to anticipate critical seasonal transformations such as annual temperature cycles. This timekeeping phenomenon triggers adaptive responses in higher organisms such as gonadal growth/regression, flowering, and hibernation. Unexpectedly, we discovered this capability in cyanobacteria, unicellular prokaryotes with generation times of only 5-6 h. Cyanobacteria in short winter-like days develop enhanced resistance to cold that involves desaturation of membrane lipids and differential programs of gene transcription, including stress response pathways. As in eukaryotes, this photoperiodic timekeeping requires an intact circadian clockwork and develops over multiple cycles. Therefore, photoperiodic timekeeping evolved in much simpler organisms than previously appreciated, and involved genetic responses to stresses that recur seasonally.
Collapse
Affiliation(s)
- Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University; Nashville, 37221, USA
| | | |
Collapse
|
8
|
Géron A, Werner J, Wattiez R, Matallana-Surget S. Towards the discovery of novel molecular clocks in Prokaryotes. Crit Rev Microbiol 2024; 50:491-503. [PMID: 37330701 DOI: 10.1080/1040841x.2023.2220789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Diel cycle is of enormous biological importance as it imposes daily oscillation in environmental conditions, which temporally structures most ecosystems. Organisms developed biological time-keeping mechanisms - circadian clocks - that provide a significant fitness advantage over competitors by optimising the synchronisation of their biological activities. While circadian clocks are ubiquitous in Eukaryotes, they are so far only characterised in Cyanobacteria within Prokaryotes. However, growing evidence suggests that circadian clocks are widespread in the bacterial and archaeal domains. As Prokaryotes are at the heart of crucial environmental processes and are essential to human health, unravelling their time-keeping systems provides numerous applications in medical research, environmental sciences, and biotechnology. In this review, we elaborate on how novel circadian clocks in Prokaryotes offer research and development perspectives. We compare and contrast the different circadian systems in Cyanobacteria and discuss about their evolution and taxonomic distribution. We necessarily provide an updated phylogenetic analysis of bacterial and archaeal species that harbour homologs of the main cyanobacterial clock components. Finally, we elaborate on new potential clock-controlled microorganisms that represent opportunities of ecological and industrial relevance in prokaryotic groups such as anoxygenic photosynthetic bacteria, methanogenic archaea, methanotrophs or sulphate-reducing bacteria.
Collapse
Affiliation(s)
- Augustin Géron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Johannes Werner
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), University of Tübingen, Tübingen, Germany
| | - Ruddy Wattiez
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
9
|
Panda P, Giri SJ, Sherman LA, Kihara D, Aryal UK. Proteomic changes orchestrate metabolic acclimation of a unicellular diazotrophic cyanobacterium during light-dark cycle and nitrogen fixation states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605809. [PMID: 39131303 PMCID: PMC11312527 DOI: 10.1101/2024.07.30.605809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cyanobacteria have developed an impressive array of proteins and pathways, each tailored for specific metabolic attributes, to execute photosynthesis and biological nitrogen (N2)-fixation. An understanding of these biologically incompatible processes provides important insights into how they can be optimized for renewable energy. To expand upon our current knowledge, we performed label-free quantitative proteomic analysis of the unicellular diazotrophic cyanobacterium Crocosphaera subtropica ATCC 51142 grown with and without nitrate under 12-hour light-dark cycles. Results showed significant shift in metabolic activities including photosynthesis, respiration, biological nitrogen fixation (BNF), and proteostasis to different growth conditions. We identified 14 nitrogenase enzymes which were among the most highly expressed proteins in the dark under nitrogen-fixing conditions, emphasizing their importance in BNF. Nitrogenase enzymes were not expressed under non nitrogen fixing conditions, suggesting a regulatory mechanism based on nitrogen availability. The synthesis of key respiratory enzymes and uptake hydrogenase (HupSL) synchronized with the synthesis of nitrogenase indicating a coordinated regulation of processes involved in energy production and BNF. Data suggests alternative pathways that cells utilize, such as oxidative pentose phosphate (OPP) and 2-oxoglutarate (2-OG) pathways, to produce ATP and support bioenergetic BNF. Data also indicates the important role of uptake hydrogenase for the removal of O2 to support BNF. Overall, this study expands upon our knowledge regarding molecular responses of Crocosphaera 51142 to nitrogen and light-dark phases, shedding light on potential applications and optimization for renewable energy.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
| | - Swagarika J. Giri
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
| | - Louis A. Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
10
|
Fu H, Fei C, Ouyang Q, Tu Y. Temperature compensation through kinetic regulation in biochemical oscillators. Proc Natl Acad Sci U S A 2024; 121:e2401567121. [PMID: 38748573 PMCID: PMC11127053 DOI: 10.1073/pnas.2401567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on the existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counterintuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating in parameter regimes far from the onset where period-lengthening reactions exist.
Collapse
Affiliation(s)
- Haochen Fu
- Department of Physics, University of California, San Diego, La Jolla, CA92093
| | - Chenyi Fei
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing100871, People’s Republic of China
| | - Yuhai Tu
- IBM T. J. Watson Research Center, Yorktown Heights, NY10598
| |
Collapse
|
11
|
Xu Y, Jabbur ML, Mori T, Young JD, Johnson CH. Clocking out and letting go to unleash green biotech applications in a photosynthetic host. Proc Natl Acad Sci U S A 2024; 121:e2318690121. [PMID: 38739791 PMCID: PMC11127020 DOI: 10.1073/pnas.2318690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.
Collapse
Affiliation(s)
- Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | - Maria Luísa Jabbur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN37235
| | | |
Collapse
|
12
|
Yokomizo T, Takahashi Y. Plasticity of circadian and circatidal rhythms in activity and transcriptomic dynamics in a freshwater snail. Heredity (Edinb) 2024; 132:267-274. [PMID: 38538720 PMCID: PMC11074255 DOI: 10.1038/s41437-024-00680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Organisms have diverse biological clocks synchronised with environmental cycles depending on their habitats. Anticipation of tidal changes has driven the evolution of circatidal rhythms in some marine species. In the freshwater snail, Semisulcospira reiniana, individuals in nontidal areas exhibit circadian rhythms, whereas those in tidal areas exhibit both circadian and circatidal rhythms. We investigated whether the circatidal rhythms are genetically determined or induced by environmental cycles. The exposure to a simulated tidal cycle did not change the intensity of circatidal rhythm in individuals in the nontidal population. However, snails in the tidal population showed different activity rhythms depending on the presence or absence of the exposure. Transcriptome analysis revealed that genes with circatidal oscillation increased due to entrainment to the tidal cycle in both populations and dominant rhythmicity was consistent with the environmental cycle. These results suggest plasticity in the endogenous rhythm in the gene expression in both populations. Note that circatidal oscillating genes were more abundant in the tidal population than in the nontidal population, suggesting that a greater number of genes are associated with circatidal clocks in the tidal population compared to the nontidal population. This increase of circatidal clock-controlled genes in the tidal population could be caused by genetic changes in the biological clock or the experience of tidal cycle in the early life stage. Our findings suggest that the plasticity of biological rhythms may have contributed to the adaptation to the tidal environment in S. reiniana.
Collapse
Affiliation(s)
- Takumi Yokomizo
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
13
|
Chawla S, Oster H, Duffield GE, Maronde E, Guido ME, Chabot C, Dkhissi-Benyahya O, Provencio I, Goel N, Youngstedt SD, Zi-Ching Mak N, Caba M, Nikhat A, Chakrabarti S, Wang L, Davis SJ. Reflections on Several Landmark Advances in Circadian Biology. J Circadian Rhythms 2024; 22:1. [PMID: 38617711 PMCID: PMC11011952 DOI: 10.5334/jcr.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 04/16/2024] Open
Abstract
Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.
Collapse
Affiliation(s)
| | - Henrik Oster
- Institute of Neurobiology, Center for Brain, Behavior & Metabolism (CBBM), University of Luebeck, 23562 Luebeck, DE
| | - Giles E. Duffield
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, US
| | - Erik Maronde
- Institut für Anatomie II, Dr. Senckenbergische Anatomie, Goethe-Universität Frankfurt, Theodor-Stern-Kai-7, 60590 Frankfurt, DE
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, AR
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, AR
| | - Christopher Chabot
- Department of Biological Sciences, Plymouth State University, Plymouth, NH 03264, US
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, UniversitéClaude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, FR
| | - Ignacio Provencio
- Department of Biology and Department of Ophthalmology, University of Virginia, Charlottesville, VA, US
| | - Namni Goel
- Biological Rhythms Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, US
| | - Shawn D. Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, US
- Department of Medicine, University of Arizona, Tucson, AZ, US
| | | | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Ver., MX
| | - Anjoom Nikhat
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Shaon Chakrabarti
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, Karnataka 560065, IN
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, China National Botanical Garden, Beijing 100093, CN
| | - Seth J. Davis
- Department of Biology, University of York, York YO105DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, CN
| |
Collapse
|
14
|
Matallana-Surget S, Geron A, Decroo C, Wattiez R. Diel Cycle Proteomics: Illuminating Molecular Dynamics in Purple Bacteria for Optimized Biotechnological Applications. Int J Mol Sci 2024; 25:2934. [PMID: 38474181 DOI: 10.3390/ijms25052934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Circadian rhythms, characterized by approximately 24 h cycles, play a pivotal role in enabling various organisms to synchronize their biological activities with daily variations. While ubiquitous in Eukaryotes, circadian clocks remain exclusively characterized in Cyanobacteria among Prokaryotes. These rhythms are regulated by a core oscillator, which is controlled by a cluster of three genes: kaiA, kaiB, and kaiC. Interestingly, recent studies revealed rhythmic activities, potentially tied to a circadian clock, in other Prokaryotes, including purple bacteria such as Rhodospirillum rubrum, known for its applications in fuel and plastic bioproduction. However, the pivotal question of how light and dark cycles influence protein dynamics and the expression of putative circadian clock genes remains unexplored in purple non-sulfur bacteria. Unraveling the regulation of these molecular clocks holds the key to unlocking optimal conditions for harnessing the biotechnological potential of R. rubrum. Understanding how its proteome responds to different light regimes-whether under continuous light or alternating light and dark cycles-could pave the way for precisely fine-tuning bioproduction processes. Here, we report for the first time the expressed proteome of R. rubrum grown under continuous light versus light and dark cycle conditions using a shotgun proteomic analysis. In addition, we measured the impact of light regimes on the expression of four putative circadian clock genes (kaiB1, kaiB2, kaiC1, kaiC2) at the transcriptional and translational levels using RT-qPCR and targeted proteomic (MRM-MS), respectively. The data revealed significant effects of light conditions on the overall differential regulation of the proteome, particularly during the early growth stages. Notably, several proteins were found to be differentially regulated during the light or dark period, thus impacting crucial biological processes such as energy conversion pathways and the general stress response. Furthermore, our study unveiled distinct regulation of the four kai genes at both the mRNA and protein levels in response to varying light conditions. Deciphering the impact of the diel cycle on purple bacteria not only enhances our understanding of their ecology but also holds promise for optimizing their applications in biotechnology, providing valuable insights into the origin and evolution of prokaryotic clock mechanisms.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Augustin Geron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| | - Corentin Decroo
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomic and Microbiology Department, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
15
|
Fang M, LiWang A, Golden SS, Partch CL. The inner workings of an ancient biological clock. Trends Biochem Sci 2024; 49:236-246. [PMID: 38185606 PMCID: PMC10939747 DOI: 10.1016/j.tibs.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.
Collapse
Affiliation(s)
- Mingxu Fang
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California - Merced, Merced, CA 95343, USA; Center for Cellular and Biomolecular Machines, University of California - Merced, Merced, CA 95343, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Carrie L Partch
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry & Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
16
|
Chavan A, Heisler J, Chang YG, Golden SS, Partch CL, LiWang A. Protocols for in vitro reconstitution of the cyanobacterial circadian clock. Biopolymers 2024; 115:e23559. [PMID: 37421636 PMCID: PMC10772220 DOI: 10.1002/bip.23559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.
Collapse
Affiliation(s)
- Archana Chavan
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Joel Heisler
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Yong-Gang Chang
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
| | - Susan S. Golden
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- Department of Molecular Biology, University of California – San Diego, La Jolla, CA 92093
| | - Carrie L. Partch
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- Department of Chemistry & Biochemistry, University of California – Santa Cruz, Santa Cruz, CA 95064
| | - Andy LiWang
- Center for Circadian Biology, University of California – San Diego, La Jolla, CA 92093
- School of Natural Sciences, University of California – Merced, Merced, CA 95343
- Department of Chemistry & Biochemistry, University of California – Merced, Merced, CA 95343
- Center for Cellular and Biomolecular Machines, University of California – Merced, Merced, CA 95343
| |
Collapse
|
17
|
Fickling NW, Abbott CA, Brame JE, Cando‐Dumancela C, Liddicoat C, Robinson JM, Breed MF. Light-dark cycles may influence in situ soil bacterial networks and diurnally-sensitive taxa. Ecol Evol 2024; 14:e11018. [PMID: 38357595 PMCID: PMC10864733 DOI: 10.1002/ece3.11018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Soil bacterial taxa have important functional roles in ecosystems (e.g. nutrient cycling, soil formation, plant health). Many factors influence their assembly and regulation, with land cover types (e.g. open woodlands, grasslands), land use types (e.g. nature reserves, urban green space) and plant-soil feedbacks being well-studied factors. However, changes in soil bacterial communities in situ over light-dark cycles have received little attention, despite many plants and some bacteria having endogenous circadian rhythms that could influence soil bacterial communities. We sampled surface soils in situ across 24-h light-dark cycles (at 00:00, 06:00, 12:00, 18:00) at two land cover types (remnant vegetation vs. cleared, grassy areas) and applied 16S rRNA amplicon sequencing to investigate changes in bacterial communities. We show that land cover type strongly affected soil bacterial diversity, with soils under native vegetation expressing 15.4%-16.4% lower alpha diversity but 4.9%-10.6% greater heterogeneity than soils under cleared vegetation. In addition, we report time-dependent and site-specific changes in bacterial network complexity and between 598-922 ASVs showing significant changes in relative abundance across times. Native site node degree (bacterial interactions) at the phylum level was 16.0% higher in the early morning than in the afternoon/evening. Our results demonstrate for the first time that light-dark cycles have subtle yet important effects on soil bacterial communities in situ and that land cover influences these dynamics. We provide a new view of soil microbial ecology and suggest that future studies should consider the time of day when sampling soil bacteria.
Collapse
Affiliation(s)
- Nicole W. Fickling
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Catherine A. Abbott
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Joel E. Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | | | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
18
|
Furuike Y, Yamashita E, Akiyama S. Structure-function relationship of KaiC around dawn. Biophys Physicobiol 2023; 21:e210001. [PMID: 38803331 PMCID: PMC11128299 DOI: 10.2142/biophysico.bppb-v21.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 05/29/2024] Open
Abstract
KaiC is a multifunctional enzyme functioning as the core of the circadian clock system in cyanobacteria: its N-terminal domain has adenosine triphosphatase (ATPase) activity, and its C-terminal domain has autokinase and autophosphatase activities targeting own S431 and T432. The coordination of these multiple biochemical activities is the molecular basis for robust circadian rhythmicity. Therefore, much effort has been devoted to elucidating the cooperative relationship between the two domains. However, structural and functional relationships between the two domains remain unclear especially with respect to the dawn phase, at which KaiC relieves its nocturnal history through autodephosphorylation. In this study, we attempted to design a double mutation of S431 and T432 that can capture KaiC as a fully dephosphorylated form with minimal impacts on its structure and function, and investigated the cooperative relationship between the two domains in the night to morning phases from many perspectives. The results revealed that both domains cooperate at the dawn phase through salt bridges formed between the domains, thereby non-locally co-activating two events, ATPase de-inhibition and S431 dephosphorylation. Our further analysis using existing crystal structures of KaiC suggests that the states of both domains are not always in one-to-one correspondence at every phase of the circadian cycle, and their coupling is affected by the interactions with KaiA or adjacent subunits within a KaiC hexamer.
Collapse
Affiliation(s)
- Yoshihiko Furuike
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
19
|
McKnight BM, Kang S, Le TH, Fang M, Carbonel G, Rodriguez E, Govindarajan S, Albocher-Kedem N, Tran AL, Duncan NR, Amster-Choder O, Golden SS, Cohen SE. Roles for the Synechococcus elongatus RNA-Binding Protein Rbp2 in Regulating the Circadian Clock. J Biol Rhythms 2023; 38:447-460. [PMID: 37515350 PMCID: PMC10528358 DOI: 10.1177/07487304231188761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night. Here, we report that the CI domain of KaiC, when in a hexameric state, is sufficient to target KaiC to the pole. Moreover, increased ATPase activity of KaiC correlates with enhanced polar localization. We identified proteins associated with KaiC in either a localized or diffuse state. We found that loss of Rbp2, found to be associated with localized KaiC, results in decreased incidence of KaiC localization and long-period circadian phenotypes. Rbp2 is an RNA-binding protein, and it appears that RNA-binding activity of Rbp2 is required to execute clock functions. These findings uncover previously unrecognized roles for Rbp2 in regulating the circadian clock and suggest that the proper localization of KaiC is required for a fully functional clock in vivo.
Collapse
Affiliation(s)
- Briana M. McKnight
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Shannon Kang
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Tam H. Le
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Genelyn Carbonel
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Esbeydi Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Sutharsan Govindarajan
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
- Department of Biological Sciences, SRM University AP, Amaravati, India
| | - Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Amanda L. Tran
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Nicholas R. Duncan
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Susan S. Golden
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
| | - Susan E. Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032
| |
Collapse
|
20
|
Graniczkowska KB, Paulose JK, Cassone VM. Circadian regulation of metabolic, cell division, and cation transport promoters in the gastrointestinal bacterium Klebsiella aerogenes. Front Microbiol 2023; 14:1181756. [PMID: 37485537 PMCID: PMC10356819 DOI: 10.3389/fmicb.2023.1181756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction All eukaryotes and at least some prokaryotes express the capacity to anticipate and adapt to daily changes of light and temperature in their environments. These circadian programs are fundamental features of many forms of life. Cyanobacteria were the first prokaryotes to have demonstrated circadian gene expression. Recently, a circadian rhythm was also discovered in an unrelated bacterium, Klebsiella aerogenes, a human gut commensal and nosocomial pathogen. Methods Here we characterize new clock-controlled genes with spatial differences in expression using a bacterial luciferase reporter. These include dephospho-coenzyme A kinase (coaE), manganese transporter, H-dependent (mntH) and a gene identified as filamenting temperature-sensitive mutant Z (ftsZ). Results and Discussion The data show that all three reporter constructs exhibited circadian variation, although only PmntH::luxCDABE reporter strains were synchronized by melatonin. Additionally, we show that K. aerogenes divides rhythmically in vitro and that these bacteria may alternate between exponential and stationary cells. Together, these findings provide a deeper understanding of K. aerogenes.
Collapse
Affiliation(s)
| | - Jiffin K. Paulose
- Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Vincent M. Cassone
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Tamaru Y, Nakanishi S, Tanaka K, Umetsu M, Nakazawa H, Sugiyama A, Ito T, Shimokawa N, Takagi M. Recent research advances on non-linear phenomena in various biosystems. J Biosci Bioeng 2023:S1389-1723(23)00107-X. [PMID: 37246137 DOI: 10.1016/j.jbiosc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 05/30/2023]
Abstract
All biological phenomena can be classified as open, dissipative and non-linear. Moreover, the most typical phenomena are associated with non-linearity, dissipation and openness in biological systems. In this review article, four research topics on non-linear biosystems are described to show the examples from various biological systems. First, membrane dynamics of a lipid bilayer for the cell membrane is described. Since the cell membrane separates the inside of the cell from the outside, self-organizing systems that form spatial patterns on membranes often depend on non-linear dynamics. Second, various data banks based on recent genomics analysis supply the data including vast functional proteins from many organisms and their variable species. Since the proteins existing in nature are only a very small part of the space represented by amino acid sequence, success of mutagenesis-based molecular evolution approach crucially depends on preparing a library with high enrichment of functional proteins. Third, photosynthetic organisms depend on ambient light, the regular and irregular changes of which have a significant impact on photosynthetic processes. The light-driven process proceeds through many redox couples in the cyanobacteria constituting chain of redox reactions. Forth topics focuses on a vertebrate model, the zebrafish, which can help to understand, predict and control the chaos of complex biological systems. In particular, during early developmental stages, developmental differentiation occurs dynamically from a fertilized egg to divided and mature cells. These exciting fields of complexity, chaos, and non-linear science have experienced impressive growth in recent decades. Finally, future directions for non-liner biosystems are presented.
Collapse
Affiliation(s)
- Yutaka Tamaru
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan.
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
22
|
Fang M, Chavan AG, LiWang A, Golden SS. Synchronization of the circadian clock to the environment tracked in real time. Proc Natl Acad Sci U S A 2023; 120:e2221453120. [PMID: 36940340 PMCID: PMC10068778 DOI: 10.1073/pnas.2221453120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 03/22/2023] Open
Abstract
The circadian system of the cyanobacterium Synechococcus elongatus PCC 7942 relies on a three-protein nanomachine (KaiA, KaiB, and KaiC) that undergoes an oscillatory phosphorylation cycle with a period of ~24 h. This core oscillator can be reconstituted in vitro and is used to study the molecular mechanisms of circadian timekeeping and entrainment. Previous studies showed that two key metabolic changes that occur in cells during the transition into darkness, changes in the ATP/ADP ratio and redox status of the quinone pool, are cues that entrain the circadian clock. By changing the ATP/ADP ratio or adding oxidized quinone, one can shift the phase of the phosphorylation cycle of the core oscillator in vitro. However, the in vitro oscillator cannot explain gene expression patterns because the simple mixture lacks the output components that connect the clock to genes. Recently, a high-throughput in vitro system termed the in vitro clock (IVC) that contains both the core oscillator and the output components was developed. Here, we used IVC reactions and performed massively parallel experiments to study entrainment, the synchronization of the clock with the environment, in the presence of output components. Our results indicate that the IVC better explains the in vivo clock-resetting phenotypes of wild-type and mutant strains and that the output components are deeply engaged with the core oscillator, affecting the way input signals entrain the core pacemaker. These findings blur the line between input and output pathways and support our previous demonstration that key output components are fundamental parts of the clock.
Collapse
Affiliation(s)
- Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
| | - Archana G. Chavan
- School of Natural Sciences, University of California, Merced, CA95343
| | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- School of Natural Sciences, University of California, Merced, CA95343
- Department of Chemistry & Biochemistry, University of California, Merced, CA95343
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA92093
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
23
|
Zhao C, Xu Y, Wang B, Johnson CH. Synechocystis: A model system for expanding the study of cyanobacterial circadian rhythms. Front Physiol 2023; 13:1085959. [PMID: 36685199 PMCID: PMC9846126 DOI: 10.3389/fphys.2022.1085959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
The study of circadian rhythms in bacteria was transformed by studies of the cyanobacterium Synechococcus elongatus. However, in a number of respects S. elongatus is atypical, and while those unusual characteristics were helpful for rapid progress in the past, another commonly used cyanobacterial species, Synechocystis sp. PCC 6803, may be more representative and therefore more productive for future insights into bacterial clock mechanisms. In the past, circadian studies of Synechocystis have suffered from not having an excellent reporter of circadian gene expression, but we introduce here a new luminescence reporter that rivals the reporters that have been used so successfully in S. elongatus. Using this new system, we generate for the first time in Synechocystis circadian period mutants resulting from point mutations. The temperature compensation and dark-pulse resetting that mediates entrainment to the environment is characterized. Moreover, we analyse the complex organization of clock genes in Synechocystis and identify which genes are essential for circadian rhythmicity and adaptive fitness for entrainment and optimal phase alignment to environmental cycles (and which genes are not). These developments will provide impetus for new approaches towards understanding daily timekeeping mechanisms in bacteria.
Collapse
Affiliation(s)
- Chi Zhao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Yao Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Bo Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States,*Correspondence: Carl Hirschie Johnson,
| |
Collapse
|
24
|
Masuda K, Yamada T, Kagawa Y, Fukuda H. Application of time lags between light and temperature cycles for growth control based on the circadian clock of Lactuca sativa L. seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:994555. [PMID: 36589103 PMCID: PMC9802636 DOI: 10.3389/fpls.2022.994555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
The circadian clock plays an important role in agriculture, especially in highly controlled environments, such as plant factories. However, multiple environmental factors have an extremely high degree of freedom, and it is difficult to experimentally search for the optimal design conditions. A recent study demonstrated that the effect of time lags between light and temperature cycles on plant growth could be predicted by the entrainment properties of the circadian clock in Arabidopsis thaliana. Based on this prediction, it was possible to control plant growth by adjusting the time lag. However, for application in plant factories, it is necessary to verify the effectiveness of this method using commercial vegetables, such as leaf lettuce. In this study, we investigated the entrainment properties of the circadian clock and the effect of the time lag between light and temperature cycles on circadian rhythms and plant growth in Lactuca sativa L. seedlings. For evaluation of circadian rhythms, we used transgenic L. sativa L. with a luciferase reporter in the experiment and a phase oscillator model in the simulation. We found that the entrainment properties for the light and temperature stimuli and the effects of time lags on circadian rhythm and growth were similar to those of A. thaliana. Moreover, we demonstrated that changes in growth under different time lags could be predicted by simulation based on the entrainment properties of the circadian clock. These results showed the importance of designing a cultivation environment that considers the circadian clock and demonstrated a series of methods to achieve this.
Collapse
Affiliation(s)
- Kosaku Masuda
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Tatsuya Yamada
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Yuya Kagawa
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Hirokazu Fukuda
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
25
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
26
|
Taleb Z, Karpowicz P. Circadian regulation of digestive and metabolic tissues. Am J Physiol Cell Physiol 2022; 323:C306-C321. [PMID: 35675638 DOI: 10.1152/ajpcell.00166.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian clock is a self-sustained molecular timekeeper that drives 24-h (circadian) rhythms in animals. The clock governs important aspects of behavior and physiology including wake/sleep activity cycles that regulate the activity of metabolic and digestive systems. Light/dark cycles (photoperiod) and cycles in the time of feeding synchronize the circadian clock to the surrounding environment, providing an anticipatory benefit that promotes digestive health. The availability of animal models targeting the genetic components of the circadian clock has made it possible to investigate the circadian clock's role in cellular functions. Circadian clock genes have been shown to regulate the physiological function of hepatocytes, gastrointestinal cells, and adipocytes; disruption of the circadian clock leads to the exacerbation of liver diseases and liver cancer, inflammatory bowel disease and colorectal cancer, and obesity. Previous findings provide strong evidence that the circadian clock plays an integral role in digestive/metabolic disease pathogenesis, hence, the circadian clock is a necessary component in metabolic and digestive health and homeostasis. Circadian rhythms and circadian clock function provide an opportunity to improve the prevention and treatment of digestive and metabolic diseases by aligning digestive system tissue with the 24-h day.
Collapse
Affiliation(s)
- Zainab Taleb
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
27
|
Buel SM, Debopadhaya S, De los Santos H, Edwards KM, David AM, Dao UH, Bennett KP, Hurley JM. The PAICE suite reveals circadian posttranscriptional timing of noncoding RNAs and spliceosome components in Mus musculus macrophages. G3 (BETHESDA, MD.) 2022; 12:6649694. [PMID: 35876788 PMCID: PMC9434326 DOI: 10.1093/g3journal/jkac176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Circadian rhythms broadly regulate physiological functions by tuning oscillations in the levels of mRNAs and proteins to the 24-h day/night cycle. Globally assessing which mRNAs and proteins are timed by the clock necessitates accurate recognition of oscillations in RNA and protein data, particularly in large omics data sets. Tools that employ fixed-amplitude models have previously been used to positive effect. However, the recognition of amplitude change in circadian oscillations required a new generation of analytical software to enhance the identification of these oscillations. To address this gap, we created the Pipeline for Amplitude Integration of Circadian Exploration suite. Here, we demonstrate the Pipeline for Amplitude Integration of Circadian Exploration suite's increased utility to detect circadian trends through the joint modeling of the Mus musculus macrophage transcriptome and proteome. Our enhanced detection confirmed extensive circadian posttranscriptional regulation in macrophages but highlighted that some of the reported discrepancy between mRNA and protein oscillations was due to noise in data. We further applied the Pipeline for Amplitude Integration of Circadian Exploration suite to investigate the circadian timing of noncoding RNAs, documenting extensive circadian timing of long noncoding RNAs and small nuclear RNAs, which control the recognition of mRNA in the spliceosome complex. By tracking oscillating spliceosome complex proteins using the PAICE suite, we noted that the clock broadly regulates the spliceosome, particularly the major spliceosome complex. As most of the above-noted rhythms had damped amplitude changes in their oscillations, this work highlights the importance of the PAICE suite in the thorough enumeration of oscillations in omics-scale datasets.
Collapse
Affiliation(s)
| | | | | | - Kaelyn M Edwards
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexandra M David
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Uyen H Dao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kristin P Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jennifer M Hurley
- Corresponding author: Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
28
|
Nelson RJ, Bumgarner JR, Liu JA, Love JA, Meléndez-Fernández OH, Becker-Krail DD, Walker WH, Walton JC, DeVries AC, Prendergast BJ. Time of day as a critical variable in biology. BMC Biol 2022; 20:142. [PMID: 35705939 PMCID: PMC9202143 DOI: 10.1186/s12915-022-01333-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Circadian rhythms are important for all aspects of biology; virtually every aspect of biological function varies according to time of day. Although this is well known, variation across the day is also often ignored in the design and reporting of research. For this review, we analyzed the top 50 cited papers across 10 major domains of the biological sciences in the calendar year 2015. We repeated this analysis for the year 2019, hypothesizing that the awarding of a Nobel Prize in 2017 for achievements in the field of circadian biology would highlight the importance of circadian rhythms for scientists across many disciplines, and improve time-of-day reporting. RESULTS Our analyses of these 1000 empirical papers, however, revealed that most failed to include sufficient temporal details when describing experimental methods and that few systematic differences in time-of-day reporting existed between 2015 and 2019. Overall, only 6.1% of reports included time-of-day information about experimental measures and manipulations sufficient to permit replication. CONCLUSIONS Circadian rhythms are a defining feature of biological systems, and knowing when in the circadian day these systems are evaluated is fundamentally important information. Failing to account for time of day hampers reproducibility across laboratories, complicates interpretation of results, and reduces the value of data based predominantly on nocturnal animals when extrapolating to diurnal humans.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA.
| | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jharnae A Love
- Department of Psychology, University of Chicago and Institute for Mind and Biology, IL, 60637, Chicago, USA
| | - O Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
- Department of Medicine, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Brian J Prendergast
- Department of Psychology, University of Chicago and Institute for Mind and Biology, IL, 60637, Chicago, USA
| |
Collapse
|
29
|
Abstract
Strains of the freshwater cyanobacterium Synechococcus elongatus were first isolated approximately 60 years ago, and PCC 7942 is well established as a model for photosynthesis, circadian biology, and biotechnology research. The recent isolation of UTEX 3055 and subsequent discoveries in biofilm and phototaxis phenotypes suggest that lab strains of S. elongatus are highly domesticated. We performed a comprehensive genome comparison among the available genomes of S. elongatus and sequenced two additional laboratory strains to trace the loss of native phenotypes from the standard lab strains and determine the genetic basis of useful phenotypes. The genome comparison analysis provides a pangenome description of S. elongatus, as well as correction of extensive errors in the published sequence for the type strain PCC 6301. The comparison of gene sets and single nucleotide polymorphisms (SNPs) among strains clarifies strain isolation histories and, together with large-scale genome differences, supports a hypothesis of laboratory domestication. Prophage genes in laboratory strains, but not UTEX 3055, affect pigmentation, while unique genes in UTEX 3055 are necessary for phototaxis. The genomic differences identified in this study include previously reported SNPs that are, in reality, sequencing errors, as well as SNPs and genome differences that have phenotypic consequences. One SNP in the circadian response regulator rpaA that has caused confusion is clarified here as belonging to an aberrant clone of PCC 7942, used for the published genome sequence, that has confounded the interpretation of circadian fitness research.
Collapse
|
30
|
Smith CB, van der Vinne V, McCartney E, Stowie AC, Leise TL, Martin-Burgos B, Molyneux PC, Garbutt LA, Brodsky MH, Davidson AJ, Harrington ME, Dallmann R, Weaver DR. Cell-Type-Specific Circadian Bioluminescence Rhythms in Dbp Reporter Mice. J Biol Rhythms 2022; 37:53-77. [PMID: 35023384 DOI: 10.1177/07487304211069452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.
Collapse
Affiliation(s)
- Ciearra B Smith
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Vincent van der Vinne
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Department of Biology, Williams College, Williamstown, Massachusetts
| | | | - Adam C Stowie
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Tanya L Leise
- Department of Mathematics & Statistics, Amherst College, Amherst, Massachusetts
| | | | | | - Lauren A Garbutt
- Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Michael H Brodsky
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alec J Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | | | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,Graduate Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, Massachusetts.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Chavan AG, Swan JA, Heisler J, Sancar C, Ernst DC, Fang M, Palacios JG, Spangler RK, Bagshaw CR, Tripathi S, Crosby P, Golden SS, Partch CL, LiWang A. Reconstitution of an intact clock reveals mechanisms of circadian timekeeping. Science 2021; 374:eabd4453. [PMID: 34618577 DOI: 10.1126/science.abd4453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Archana G Chavan
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Jeffrey A Swan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Joel Heisler
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA
| | - Cigdem Sancar
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dustin C Ernst
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph G Palacios
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Clive R Bagshaw
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, CA 95343, USA.,Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
32
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
33
|
Rosbash M. Circadian Rhythms and the Transcriptional Feedback Loop (Nobel Lecture)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Rosbash
- Department of Biology Howard Hughes Medical Institute Brandeis University Waltham MA USA
| |
Collapse
|
34
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
35
|
Real-Time In Vitro Fluorescence Anisotropy of the Cyanobacterial Circadian Clock. Methods Mol Biol 2021. [PMID: 33284432 DOI: 10.1007/978-1-0716-0381-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stochastic diffusion of a solution of fluorophores after photoselection reduces the polarization of emission, or fluorescence anisotropy. Because this randomization process is slower for larger molecules, fluorescence anisotropy is effective for measuring the kinetics of protein-binding events. Here, we describe how to use the technique to carry out real-time observations in vitro of the cyanobacterial circadian clock.
Collapse
|
36
|
Rosbash M. Circadian Rhythms and the Transcriptional Feedback Loop (Nobel Lecture)**. Angew Chem Int Ed Engl 2021; 60:8650-8666. [DOI: 10.1002/anie.202015199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Rosbash
- Department of Biology Howard Hughes Medical Institute Brandeis University Waltham MA USA
| |
Collapse
|
37
|
Masuda K, Yamada T, Kagawa Y, Fukuda H. Time Lag Between Light and Heat Diurnal Cycles Modulates CIRCADIAN CLOCK ASSOCIATION 1 Rhythm and Growth in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 11:614360. [PMID: 33643331 PMCID: PMC7905214 DOI: 10.3389/fpls.2020.614360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Plant growth responses to cues such as light, temperature, and humidity enable the entrainment of the circadian rhythms with diurnal cycles. For example, the temperature variations between day and night affect plant growth and accompany the time lag to light cycle. Despite its importance, there has been no systematic investigation into time lags, and the mechanisms behind the entrainment of the circadian rhythms with multiple cycles remain unknown. Here, we investigated systemically the effects of the time lag on the circadian rhythm and growth in Arabidopsis thaliana. To investigate the entrainment status of the circadian clock, the rhythm of the clock gene CIRCADIAN CLOCK ASSOCIATION 1 (CCA1) was measured with a luciferase reporter assay. As a result, the rhythm was significantly modulated by the time lag with +10°C heating for 4 h every day but not -10°C cooling. A model based on coupled cellular oscillators successfully described these rhythm modulations. In addition, seedling growth depended on the time lag of the heating cycle but not that of the cooling cycle. Based on the relationship between the CCA1 rhythms and growth, we established an estimation method for the effects of the time lag. Our results found that plant growth relates to the CCA1 rhythm and provides a method by which to estimate the appropriate combination of light-dark and temperature cycles.
Collapse
Affiliation(s)
- Kosaku Masuda
- Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsuya Yamada
- Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Yuya Kagawa
- Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Hirokazu Fukuda
- Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
38
|
The singularity response reveals entrainment properties of the plant circadian clock. Nat Commun 2021; 12:864. [PMID: 33558539 PMCID: PMC7870946 DOI: 10.1038/s41467-021-21167-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/10/2021] [Indexed: 11/09/2022] Open
Abstract
Circadian clocks allow organisms to synchronize their physiological processes to diurnal variations. A phase response curve allows researchers to understand clock entrainment by revealing how signals adjust clock genes differently according to the phase in which they are applied. Comprehensively investigating these curves is difficult, however, because of the cost of measuring them experimentally. Here we demonstrate that fundamental properties of the curve are recoverable from the singularity response, which is easily measured by applying a single stimulus to a cellular network in a desynchronized state (i.e. singularity). We show that the singularity response of Arabidopsis to light/dark and temperature stimuli depends on the properties of the phase response curve for these stimuli. The measured singularity responses not only allow the curves to be precisely reconstructed but also reveal organ-specific properties of the plant circadian clock. The method is not only simple and accurate, but also general and applicable to other coupled oscillator systems as long as the oscillators can be desynchronized. This simplified method may allow the entrainment properties of the circadian clock of both plants and other species in nature. Phase response curves reveal how biological clocks respond to stimuli applied during different circadian phases but can be costly to produce. Here Masuda et al. show that phase response curves for plants can be reconstructed by monitoring how a desynchronized population responds to a single stimulus.
Collapse
|
39
|
Mutoh R, Iwata K, Iida T, Ishiura M, Onai K. Rhythmic adenosine triphosphate release from the cyanobacterial circadian clock protein KaiC revealed by real-time monitoring of bioluminescence using firefly luciferase. Genes Cells 2021; 26:83-93. [PMID: 33341998 DOI: 10.1111/gtc.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
The cyanobacterial circadian clock is composed of three clock proteins, KaiA, KaiB and KaiC. This KaiABC clock system can be reconstituted in vitro in the presence of adenosine triphosphate (ATP) and Mg2+ , and shows circadian rhythms in the phosphorylation level and ATPase activity of KaiC. Previously, we found that ATP regulates a complex formation between KaiB and KaiC, and KaiC releases ATP from KaiC itself (PLoS One, 8, 2013, e80200). In this study, we examined whether the ATP release from KaiC shows any rhythms in vitro. We monitored the release of ATP from wild-type and ATPase motif mutants of KaiC as a bioluminescence in real time using a firefly luciferase assay in vitro and obtained the following results: (a) ATP release from KaiC oscillated even without KaiA and KaiB although period of the oscillation was not 24 hr; (b) ATP was mainly released from the N-terminal domain of KaiC; and (c) the ATP release was enhanced and suppressed by KaiB and KaiA, respectively. These results suggest that KaiC can generate basal oscillation as a core clock without KaiA and KaiB, whereas these two proteins contribute to adjusting and stabilizing the oscillation.
Collapse
Affiliation(s)
- Risa Mutoh
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Keita Iwata
- Center for Gene Research, Nagoya University, Nagoya, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takahiro Iida
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Nagoya, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kiyoshi Onai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Muranaka T, Oyama T. Application of Single-Cell Bioluminescent Imaging to Monitor Circadian Rhythms of Individual Plant Cells. Methods Mol Biol 2020; 2081:231-242. [PMID: 31721130 DOI: 10.1007/978-1-4939-9940-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The bioluminescent reporter system is a powerful tool for the long-term monitoring of gene expression because of its noninvasive nature. Furthermore, in combination with high-sensitive imaging technology, spatiotemporal analysis on regulation and heterogeneity in gene expression is possible. We developed a single-cell bioluminescent imaging system for plants through a transient gene transfection by particle bombardment. By applying this system to a duckweed species, we succeeded in monitoring circadian rhythms of individual cells in an intact plant for over a week. Here we describe methods for gene transfection by particle bombardment and single-cell bioluminescence monitoring by a high-sensitive camera. This technique provides a platform for characterizing gene expression patterns of individual cells in the same tissue.
Collapse
Affiliation(s)
- Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Kyoto, Japan.
| |
Collapse
|
41
|
Kim P, Kaur M, Jang HI, Kim YI. The Circadian Clock-A Molecular Tool for Survival in Cyanobacteria. Life (Basel) 2020; 10:life10120365. [PMID: 33419320 PMCID: PMC7766417 DOI: 10.3390/life10120365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the “ticking” of the oscillator can be reconstituted inside a test tube just by mixing the three recombinant proteins with ATP and Mg2+. Along with its biochemical resilience, the post-translational rhythm of the oscillation can be reset through sensing oxidized quinone, a metabolite that becomes abundant at the onset of darkness. In addition, the output components pick up the information from the central oscillator, tuning the physiological and behavioral patterns and enabling the organism to better cope with the cyclic environmental conditions. In this review, we highlight our understanding of the cyanobacterial circadian clock and discuss how it functions as a molecular chronometer that readies the host for predictable changes in its surroundings.
Collapse
Affiliation(s)
- Pyonghwa Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Manpreet Kaur
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
| | - Hye-In Jang
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea
- Correspondence: (H.-I.J.); (Y.-I.K.)
| | - Yong-Ick Kim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (P.K.); (M.K.)
- Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: (H.-I.J.); (Y.-I.K.)
| |
Collapse
|
42
|
Circadian clock-controlled gene expression in co-cultured, mat-forming cyanobacteria. Sci Rep 2020; 10:14095. [PMID: 32839512 PMCID: PMC7445270 DOI: 10.1038/s41598-020-69294-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
Natural coastal microbial mat communities are multi-species assemblages that experience fluctuating environmental conditions and are shaped by resource competition as well as by cooperation. Laboratory studies rarely address the natural complexity of microbial communities but are usually limited to homogeneous mono-cultures of key species grown in liquid media. The mat-forming filamentous cyanobacteria Lyngbya aestuarii and Coleofasciculus chthonoplastes were cultured under different conditions to investigate the expression of circadian clock genes and genes that are under their control. The cyanobacteria were grown in liquid medium or on a solid substrate (glass beads) as mono- or as co-cultures under a light-dark regime and subsequently transferred to continuous light. TaqMan-probe based qPCR assays were used to quantify the expression of the circadian clock genes kaiA, kaiB, and kaiC, and of four genes that are under control of the circadian clock: psbA, nifH, ftsZ, and prx. Expression of kaiABC was influenced by co-culturing the cyanobacteria and whether grown in liquid media or on a solid substrate. Free-running (i.e. under continuous light) expression cycle of the circadian clock genes was observed in L. aestuarii but not in C. chthonoplastes. In the former organism, maximum expression of psbA and nifH occurred temporally separated and independent of the light regime, although the peak shifted in time when the culture was transferred to continuous illumination. Although functionally similar, both species of cyanobacteria displayed different 24-h transcriptional patterns in response to the experimental treatments, suggesting that their circadian clocks have adapted to different life strategies adopted by these mat-forming cyanobacteria.
Collapse
|
43
|
Genome-wide circadian regulation: A unique system for computational biology. Comput Struct Biotechnol J 2020; 18:1914-1924. [PMID: 32774786 PMCID: PMC7385043 DOI: 10.1016/j.csbj.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.
Collapse
Key Words
- ABSR, Autoregressive Bayesian spectral regression
- AMPK, AMP-activated protein kinase
- AR, Arrhythmic feeding
- ARSER, Harmonic regression based on autoregressive spectral estimation
- BMAL1, The aryl hydrocarbon receptor nuclear translocator-like (ARNTL)
- CCD, Cortical collecting duct
- CR, Calorie-restricted diet
- CRY, Cryptochrome
- Circadian regulatory network
- Circadian rhythms
- Circadian transcriptome
- Cycling genes
- DCT/CNT, Distal convoluted tubule and connecting tubule
- DD, Dark: dark
- Energetic cost
- HF, High fat diet
- JTK_CYCLE, Jonckheere-Terpstra-Kendall (JTK) cycle
- KD, Ketogenic diet
- LB, Ad libitum
- LD, Light:dark
- LS, Lomb-Scargle
- Liver-RE, Liver clock reconstituted BMAL1-deficient mice
- NAD, Nicotinamide adenine dinucleotides
- ND, Normal diet
- NR, Night-restricted feeding
- PAS, PER-ARNT-SIM
- PER, Period
- RAIN, Rhythmicity Analysis Incorporating Nonparametric methods
- RF, Restricted feeding
- SCN, Suprachiasmatic nucleus
- SREBP, The sterol regulatory element binding protein
- TTFL, Transcriptional-translational feedback loop
- WT, Wild type
- eJTK_CYCLE, Empirical JTK_CYCLE
Collapse
|
44
|
Conway M, Xu T, Kirkpatrick A, Ripp S, Sayler G, Close D. Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging. BMC Biol 2020; 18:79. [PMID: 32620121 PMCID: PMC7333384 DOI: 10.1186/s12915-020-00815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Luminescent reporter proteins are vital tools for visualizing cells and cellular activity. Among the current toolbox of bioluminescent systems, only bacterial luciferase has genetically defined luciferase and luciferin synthesis pathways that are functional at the mammalian cell temperature optimum of 37 °C and have the potential for in vivo applications. However, this system is not functional in all cell types, including stem cells, where the ability to monitor continuously and in real-time cellular processes such as differentiation and proliferation would be particularly advantageous. RESULTS We report that artificial subdivision of the bacterial luciferin and luciferase pathway subcomponents enables continuous or inducible bioluminescence in pluripotent and mesenchymal stem cells when the luciferin pathway is overexpressed with a 20-30:1 ratio. Ratio-based expression is demonstrated to have minimal effects on phenotype or differentiation while enabling autonomous bioluminescence without requiring external excitation. We used this method to assay the proliferation, viability, and toxicology responses of iPSCs and showed that these assays are comparable in their performance to established colorimetric assays. Furthermore, we used the continuous luminescence to track stem cell progeny post-differentiation. Finally, we show that tissue-specific promoters can be used to report cell fate with this system. CONCLUSIONS Our findings expand the utility of bacterial luciferase and provide a new tool for stem cell research by providing a method to easily enable continuous, non-invasive bioluminescent monitoring in pluripotent cells.
Collapse
Affiliation(s)
| | - Tingting Xu
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Steven Ripp
- 490 BioTech, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Gary Sayler
- 490 BioTech, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Dan Close
- 490 BioTech, Knoxville, TN, 37996, USA.
| |
Collapse
|
45
|
Alvarez Y, Glotfelty LG, Blank N, Dohnalová L, Thaiss CA. The Microbiome as a Circadian Coordinator of Metabolism. Endocrinology 2020; 161:bqaa059. [PMID: 32291454 PMCID: PMC7899566 DOI: 10.1210/endocr/bqaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
The microbiome is critically involved in the regulation of systemic metabolism. An important but poorly understood facet of this regulation is the diurnal activity of the microbiome. Herein, we summarize recent developments in our understanding of the diurnal properties of the microbiome and their integration into the circadian regulation of organismal metabolism. The microbiome may be involved in the detrimental consequences of circadian disruption for host metabolism and the development of metabolic disease. At the same time, the mechanisms by which microbiome diurnal activity is integrated into host physiology reveal several translational opportunities by which the time of day can be harnessed to optimize microbiome-based therapies. The study of circadian microbiome properties may thus provide a new avenue for treating disorders associated with circadian disruption from the gut.
Collapse
Affiliation(s)
- Yelina Alvarez
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lila G Glotfelty
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Niklas Blank
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Lenka Dohnalová
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Wang Y, Yuan L, Su T, Wang Q, Gao Y, Zhang S, Jia Q, Yu G, Fu Y, Cheng Q, Liu B, Kong F, Zhang X, Song CP, Xu X, Xie Q. Light- and temperature-entrainable circadian clock in soybean development. PLANT, CELL & ENVIRONMENT 2020; 43:637-648. [PMID: 31724182 DOI: 10.1111/pce.13678] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/13/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
In plants, the spatiotemporal expression of circadian oscillators provides adaptive advantages in diverse species. However, the molecular basis of circadian clock in soybean is not known. In this study, we used soybean hairy roots expression system to monitor endogenous circadian rhythms and the sensitivity of circadian clock to environmental stimuli. We discovered in experiments with constant light and temperature conditions that the promoters of clock genes GmLCLb2 and GmPRR9b1 drive a self-sustained, robust oscillation of about 24-h in soybean hairy roots. Moreover, we demonstrate that circadian clock is entrainable by ambient light/dark or temperature cycles. Specifically, we show that light and cold temperature pulses can induce phase shifts of circadian rhythm, and we found that the magnitude and direction of phase responses depends on the specific time of these two zeitgeber stimuli. We obtained a quadruple mutant lacking the soybean gene GmLCLa1, LCLa2, LCLb1, and LCLb2 using CRISPR, and found that loss-of-function of these four GmLCL orthologs leads to an extreme short-period circadian rhythm and late-flowering phenotype in transgenic soybean. Our study establishes that the morning-phased GmLCLs genes act constitutively to maintain circadian rhythmicity and demonstrates that their absence delays the transition from vegetative growth to reproductive development.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Tong Su
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Wang
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya Gao
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Siyuan Zhang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian Jia
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guolong Yu
- MOA Key Lab of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfu Fu
- MOA Key Lab of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qun Cheng
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiao Zhang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaodong Xu
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiguang Xie
- Key Laboratory of Molecular and Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
47
|
Abstract
The lux operon is a useful reporter for bioluminescence imaging due to its independence of exogenous luciferin supply, but its relatively low brightness hampers the imaging of single cells. This chapter describes a procedure for the imaging of individual Escherichia coli cells using an improved ilux operon. The enhanced brightness of ilux enables long-term bioluminescence imaging of single bacteria with high sensitivity without the requirement for an external luciferin.
Collapse
|
48
|
Ray S, Lach R, Heesom KJ, Valekunja UK, Encheva V, Snijders AP, Reddy AB. Phenotypic proteomic profiling identifies a landscape of targets for circadian clock-modulating compounds. Life Sci Alliance 2019; 2:2/6/e201900603. [PMID: 31792063 PMCID: PMC6892409 DOI: 10.26508/lsa.201900603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
This study provides comprehensive insights into the mechanism of action and cellular effects of circadian period–modulating compounds, which is critical for clearly defining molecular targets to modulate daily rhythms for therapeutic benefit. Determining the exact targets and mechanisms of action of drug molecules that modulate circadian rhythms is critical to develop novel compounds to treat clock-related disorders. Here, we have used phenotypic proteomic profiling (PPP) to systematically determine molecular targets of four circadian period–lengthening compounds in human cells. We demonstrate that the compounds cause similar changes in phosphorylation and activity of several proteins and kinases involved in vital pathways, including MAPK, NGF, B-cell receptor, AMP-activated protein kinases (AMPKs), and mTOR signaling. Kinome profiling further indicated inhibition of CKId, ERK1/2, CDK2/7, TNIK, and MST4 kinases as a common mechanism of action for these clock-modulating compounds. Pharmacological or genetic inhibition of several convergent kinases lengthened circadian period, establishing them as novel circadian targets. Finally, thermal stability profiling revealed binding of the compounds to clock regulatory kinases, signaling molecules, and ubiquitination proteins. Thus, phenotypic proteomic profiling defines novel clock effectors that could directly inform precise therapeutic targeting of the circadian system in humans.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, UK
| | - Utham K Valekunja
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Akhilesh B Reddy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA .,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Davenport EJ, Neudeck MJ, Matson PG, Bullerjahn GS, Davis TW, Wilhelm SW, Denney MK, Krausfeldt LE, Stough JMA, Meyer KA, Dick GJ, Johengen TH, Lindquist E, Tringe SG, McKay RML. Metatranscriptomic Analyses of Diel Metabolic Functions During a Microcystis Bloom in Western Lake Erie (United States). Front Microbiol 2019; 10:2081. [PMID: 31551998 PMCID: PMC6746948 DOI: 10.3389/fmicb.2019.02081] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
This study examined diel shifts in metabolic functions of Microcystis spp. during a 48-h Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of recently sequenced lower Great Lakes Microcystis isolates showed distinct patterns of gene expression between samples collected across day (10:00 h, 16:00 h) and night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to Photosystem II (e.g., psbA), nitrogen and phosphate acquisition, cell division (ftsHZ), heat shock response (dnaK, groEL), and uptake of inorganic carbon (rbc, bicA). Genes transcribed during nighttime included those involved in phycobilisome protein synthesis and Photosystem I core subunits. Hierarchical clustering and principal component analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas daytime transcripts were separated from each other over the 48-h duration. Lack of uniform clustering within the daytime transcripts suggested that the partitioning of gene expression in Microcystis is dependent on both circadian regulation and physicochemical changes within the environment.
Collapse
Affiliation(s)
- Emily J. Davenport
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States
| | - Michelle J. Neudeck
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Paul G. Matson
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - George S. Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,*Correspondence: George S. Bullerjahn,
| | - Timothy W. Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Maddie K. Denney
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lauren E. Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Joshua M. A. Stough
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kevin A. Meyer
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States,Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Thomas H. Johengen
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States
| | - Erika Lindquist
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Susannah G. Tringe
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Robert Michael L. McKay
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
50
|
Werner A, Broeckling CD, Prasad A, Peebles CAM. A comprehensive time-course metabolite profiling of the model cyanobacterium Synechocystis sp. PCC 6803 under diurnal light:dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:379-388. [PMID: 30889309 DOI: 10.1111/tpj.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 05/07/2023]
Abstract
Cyanobacteria are a model photoautotroph and a chassis for the sustainable production of fuels and chemicals. Knowledge of photoautotrophic metabolism in the natural environment of day/night cycles is lacking, yet has implications for improved yield from plants, algae and cyanobacteria. Here, a thorough approach to characterizing diverse metabolites-including carbohydrates, lipids, amino acids, pigments, cofactors, nucleic acids and polysaccharides-in the model cyanobacterium Synechocystis sp. PCC 6803 (S. 6803) under sinusoidal diurnal light:dark cycles was developed and applied. A custom photobioreactor and multi-platform mass spectrometry workflow enabled metabolite profiling every 30-120 min across a 24-h diurnal sinusoidal LD ('sinLD') cycle peaking at 1600 μmol photons m-2 sec-1 . We report widespread oscillations across the sinLD cycle with 90%, 94% and 40% of the identified polar/semi-polar, non-polar and polymeric metabolites displaying statistically significant oscillations, respectively. Microbial growth displayed distinct lag, biomass accumulation and cell division phases of growth. During the lag phase, amino acids and nucleic acids accumulated to high levels per cell followed by decreased levels during the biomass accumulation phase, presumably due to protein and DNA synthesis. Insoluble carbohydrates displayed sharp oscillations per cell at the day-to-night transition. Potential bottlenecks in central carbon metabolism are highlighted. Together, this report provides a comprehensive view of photosynthetic metabolite behavior with high temporal resolution, offering insight into the impact of growth synchronization to light cycles via circadian rhythms. Incorporation into computational modeling and metabolic engineering efforts promises to improve industrially relevant strain design.
Collapse
Affiliation(s)
- Allison Werner
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, 2021 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Ashok Prasad
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Christie A M Peebles
- Cell and Molecular Biology Program, Colorado State University, 1005 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|