1
|
Mukhtasimova N, Bouzat C, Sine SM. Novel interplay between agonist and calcium binding sites modulates drug potentiation of α7 acetylcholine receptor. Cell Mol Life Sci 2024; 81:332. [PMID: 39110172 PMCID: PMC11335256 DOI: 10.1007/s00018-024-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood. To investigate these relationships, we manipulated the number of agonist binding sites, and monitored potentiation of ACh-elicited single-channel currents through α7 receptors by PNU-120596 (PNU) both in the presence and absence of calcium. When ACh is present alone, it elicits brief, sub-millisecond channel openings, however when ACh is present with PNU it elicits long clusters of potentiated openings. In receptors harboring five agonist binding sites, PNU potentiates regardless of the presence or absence of calcium, whereas in receptors harboring one agonist binding site, PNU potentiates in the presence but not the absence of calcium. By varying the numbers of agonist and calcium binding sites we show that PNU potentiation of α7 depends on a balance between agonist occupancy of the orthosteric sites and calcium occupancy of the allosteric sites. The findings suggest that in the local cellular environment, fluctuations in the concentrations of neurotransmitter and calcium may alter this balance and modulate the ability of PNU to potentiate α7.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
2
|
Msekela DJ, Sine SM. Pathogenic residue insertion in neuronal nicotinic receptor alters intra- and inter-subunit interactions that tune channel gating. J Biol Chem 2024; 300:107266. [PMID: 38583864 PMCID: PMC11067541 DOI: 10.1016/j.jbc.2024.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024] Open
Abstract
We describe molecular-level functional changes in the α4β2 nicotinic acetylcholine receptor by a leucine residue insertion in the M2 transmembrane domain of the α4 subunit associated with sleep-related hyperkinetic epilepsy. Measurements of agonist-elicited single-channel currents reveal the primary effect is to stabilize the open channel state, while the secondary effect is to promote reopening of the channel. These dual effects prolong the durations of bursts of channel openings equally for the two major stoichiometric forms of the receptor, (α4)2(β2)3 and (α4)3(β2)2, indicating the functional impact is independent of mutant copy number per receptor. Altering the location of the residue insertion within M2 shows that functionally pivotal structures are confined to a half turn of the M2 α-helix. Residue substitutions within M2 and surrounding α-helices reveal that both intrasubunit and intersubunit interactions mediate the increase in burst duration. These interactions impacting burst duration depend linearly on the size and hydrophobicity of the substituting residue. Together, the results reveal a novel structural region of the α4β2 nicotinic acetylcholine receptor in which interhelical interactions tune the stability of the open channel state.
Collapse
Affiliation(s)
- Deborah J Msekela
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Steven M Sine
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.
| |
Collapse
|
3
|
Alhalhooly L, Sine SM. Ion transport in muscle acetylcholine receptor maintained by conserved salt bridges between the pore and lipid membrane. Proc Natl Acad Sci U S A 2024; 121:e2320416121. [PMID: 38588428 PMCID: PMC11032472 DOI: 10.1073/pnas.2320416121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.
Collapse
Affiliation(s)
- Lina Alhalhooly
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN55905
| | - Steven M. Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN55905
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN55905
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN55905
| |
Collapse
|
4
|
Manigat F, Connell LB, Stewart BN, LePabic AR, Tessier CJG, Emlaw JR, Calvert ND, Rössl A, Shuhendler AJ, daCosta CJB, Campbell-Valois FX. pUdOs: Concise Plasmids for Bacterial and Mammalian Cells. ACS Synth Biol 2024; 13:485-497. [PMID: 38235654 PMCID: PMC10878396 DOI: 10.1021/acssynbio.3c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
The plasmids from the Université d'Ottawa (pUdOs) are 28 small plasmids each comprising one of four origins of replication and one of seven selection markers, which together afford flexible use in Escherichia coli and several related gram-negative bacteria. The promoterless multicloning site is insulated from upstream spurious promoters by strong transcription terminators and contains type IIP or IIS restriction sites for conventional or Golden Gate cloning. pUdOs can be converted into efficient expression vectors through the insertion of a promoter at the user's discretion. For example, we demonstrate the utility of pUdOs as the backbone for an improved version of a Type III Secretion System reporter in Shigella. In addition, we derive a series of pUdO-based mammalian expression vectors, affording distinct levels of expression and transfection efficiency comparable to commonly used mammalian expression plasmids. Thus, pUdOs could advantageously replace traditional plasmids in a wide variety of cell types and applications.
Collapse
Affiliation(s)
- France
O. Manigat
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Louise B. Connell
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Brittany N. Stewart
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdel-Rahman LePabic
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christian J. G. Tessier
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Johnathon R. Emlaw
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nicholas D. Calvert
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anthony Rössl
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Adam J. Shuhendler
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- University
of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Corrie J. B. daCosta
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Center
for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular
Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- bioGARAGE,
Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Centre
for Infection, Immunity and Inflammation, Department of Biochemistry,
Microbiology and Immunology, University
of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Saito A, Matsui S, Chino A, Sato S, Takeshita N. Discovery and pharmacological characterization of novel positive allosteric modulators acting on skeletal muscle-type nicotinic acetylcholine receptors. Biochem Biophys Res Commun 2023; 668:27-34. [PMID: 37235916 DOI: 10.1016/j.bbrc.2023.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Skeletal muscle-type nicotinic acetylcholine receptors (m-nAChRs) are ligand-gated ion channels that open after activation by ACh and whose signals cause muscle contraction. Defects in neurotransmission are reported in disorders such as myasthenia gravis (MG) and congenital myasthenia syndromes (CMS). Although treatments for these disorders exist, therapies which significantly increase muscle strength have yet to be reported. Positive allosteric modulators (PAMs), which promote ACh signaling through AChRs, are expected to be promising therapeutic agents. In this study, we identified an m-nAChR PAM called AS3513678 by high-throughput screening using human myotube cells and modified it to obtain novel compounds (AS3566987 and AS3580239) that showed even stronger PAM activity. AS3580239 caused a leftward shift in the ACh concentration-response curve and was 14.0-fold potent at 10 μM compared with vehicle. Next, we examined the effect of AS3580239 on electrically-induced isometric contraction of the extensor digitorum longus (EDL) muscle in wild-type (WT) and MG model rats. AS3580239 enhanced EDL muscle contraction in both WT and MG model rats at 30 μM. These data suggest that AS3580239 improved neurotransmission and enhanced muscle strength. Thus, m-nAChR PAMs may be a useful treatment for neuromuscular diseases.
Collapse
Affiliation(s)
- Asako Saito
- Astellas Pharma Inc, 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Shigeo Matsui
- Astellas Pharma Inc, 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Ayaka Chino
- Astellas Pharma Inc, 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Shota Sato
- Astellas Pharma Inc, 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Nobuaki Takeshita
- Astellas Pharma Inc, 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|
6
|
Mazzaferro S, Msekela DJ, Cooper EC, Maheshwari A, Sine SM. Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening. Int J Mol Sci 2022; 23:12124. [PMID: 36292983 PMCID: PMC9602795 DOI: 10.3390/ijms232012124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 02/03/2023] Open
Abstract
We describe genetic and molecular-level functional alterations in the α4β2 neuronal nicotinic acetylcholine receptor (nAChR) from a patient with sleep-related hyperkinetic epilepsy and a family history of epilepsy. Genetic sequencing revealed a heterozygous variant c.851C>G in the CHRNA4 gene encoding the α4 subunit, resulting in the missense mutation p.Ser284Trp. Patch clamp recordings from genetically engineered nAChRs incorporating the α4-Ser284Trp subunit revealed aberrant channel openings in the absence of agonist and markedly prolonged openings in its presence. Measurements of single channel current amplitude distinguished two pentameric stoichiometries of the variant nAChR containing either two or three copies of the α4-Ser284Trp subunit, each exhibiting aberrant spontaneous and prolonged agonist-elicited channel openings. The α4-Ser284 residue is highly conserved and located within the M2 transmembrane α-helix that lines the ion channel. When mapped onto the receptor’s three-dimensional structure, the larger Trp substitution sterically clashes with the M2 α-helix from the neighboring subunit, promoting expansion of the pore and stabilizing the open relative to the closed conformation of the channel. Together, the clinical, genetic, functional, and structural observations demonstrate that α4-Ser284Trp enhances channel opening, predicting increased membrane excitability and a pathogenic seizure phenotype.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Deborah J. Msekela
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Edward C. Cooper
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Atul Maheshwari
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Sine
- Departments of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Departments of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Yamashita M, Egashira Y, Nakamura S, Sakata S, Ono F. Receptor subunit compositions underly distinct potencies of a muscle relaxant in fast and slow muscle fibers. Front Physiol 2022; 13:1026646. [PMID: 36304584 PMCID: PMC9592714 DOI: 10.3389/fphys.2022.1026646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
A line of studies in the 1960s–1980s suggested that muscle relaxants do not work uniformly on all skeletal muscles, though its mechanism has not been clarified. We showed here that a classical non-depolarizing muscle relaxant pancuronium inhibits fast muscle fibers at lower concentration compared to slow muscle fibers in zebrafish. The difference of effective concentration was observed in locomotion caused by tactile stimulation as well as in synaptic currents of the neuromuscular junction induced by motor neuron excitation. We further showed that this difference arises from the different composition of acetylcholine receptors between slow and fast muscle fibers in the neuromuscular junction of zebrafish. It will be interesting to examine the difference of subunit composition and sensitivity to muscle relaxants in other species.
Collapse
|
8
|
Rahman MM, Basta T, Teng J, Lee M, Worrell BT, Stowell MHB, Hibbs RE. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat Struct Mol Biol 2022; 29:386-394. [PMID: 35301478 DOI: 10.1038/s41594-022-00737-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Binding of the neurotransmitter acetylcholine to its receptors on muscle fibers depolarizes the membrane and thereby triggers muscle contraction. We sought to understand at the level of three-dimensional structure how agonists and antagonists alter nicotinic acetylcholine receptor conformation. We used the muscle-type receptor from the Torpedo ray to first define the structure of the receptor in a resting, activatable state. We then determined the receptor structure bound to the agonist carbachol, which stabilizes an asymmetric, closed channel desensitized state. We find conformational changes in a peripheral membrane helix are tied to recovery from desensitization. To probe mechanisms of antagonism, we obtained receptor structures with the active component of curare, a poison arrow toxin and precursor to modern muscle relaxants. d-Tubocurarine stabilizes the receptor in a desensitized-like state in the presence and absence of agonist. These findings define the transitions between resting and desensitized states and reveal divergent means by which antagonists block channel activity of the muscle-type nicotinic receptor.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Brady T Worrell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Mazzaferro S, Strikwerda JR, Sine SM. Stoichiometry-selective modulation of α4β2 nicotinic ACh receptors by divalent cations. Br J Pharmacol 2022; 179:1353-1370. [PMID: 34768309 DOI: 10.1111/bph.15723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE α4β2 nicotinic ACh receptors (nAChRs) comprise the most abundant class of nAChRs in the nervous system. They assemble in two stoichiometric forms, each exhibiting distinct functional and pharmacological signatures. However, whether one or both forms are modulated by calcium or magnesium has not been established. EXPERIMENTAL APPROACH To assess the functional consequences of calcium and magnesium, each stoichiometric form was expressed in clonal mammalian fibroblasts and single-channel currents were recorded in the presence of a range of ACh concentrations. KEY RESULTS In the absence of divalent cations, each stoichiometric form exhibits high unitary conductance and simple gating kinetics composed of solitary channel openings or short bursts of openings. However, in the presence of calcium and magnesium, the conductance and gating kinetics change in a stoichiometry-dependent manner. Calcium and magnesium reduce the conductance of both stoichiometric forms, with each cation producing an equivalent reduction, but the reduction is greater for the (α4)2 (β2)3 form. Moreover, divalent cations promote efficient channel opening of the (α4)3 (β2)2 stoichiometry, while minimally affecting the (α4)2 (β2)3 stoichiometry. For the (α4)3 (β2)2 stoichiometry, at high but not low ACh concentrations, calcium in synergy with magnesium promote clustering of channel openings into episodes of many openings in quick succession. CONCLUSION AND IMPLICATIONS Modulation of the α4β2 nAChR by divalent cations depends on the ACh concentration, the type of cation and the subunit stoichiometry. The functional consequences of modulation are expected to depend on the regional distributions of the stoichiometric forms and synaptic versus extrasynaptic locations of the receptors.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - John R Strikwerda
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Mazzaferro S, Whiteman ST, Alcaino C, Beyder A, Sine SM. NACHO and 14-3-3 promote expression of distinct subunit stoichiometries of the α4β2 acetylcholine receptor. Cell Mol Life Sci 2021; 78:1565-1575. [PMID: 32676916 PMCID: PMC7854996 DOI: 10.1007/s00018-020-03592-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the superfamily of pentameric ligand-gated ion channels, and in neuronal tissues, are assembled from various types of α- and β-subunits. Furthermore, the subunits α4 and β2 assemble in two predominant stoichiometric forms, (α4)2(β2)3 and (α4)3(β2)2, forming receptors with dramatically different sensitivity to agonists and allosteric modulators. However, mechanisms by which the two stoichiometric forms are regulated are not known. Here, using heterologous expression in mammalian cells, single-channel patch-clamp electrophysiology, and calcium imaging, we show that the ER-resident protein NACHO selectively promotes the expression of the (α4)2(β2)3 stoichiometry, whereas the cytosolic molecular chaperone 14-3-3η selectively promotes the expression of the (α4)3(β2)2 stoichiometry. Thus, NACHO and 14-3-3η are potential physiological regulators of subunit stoichiometry, and are potential drug targets for re-balancing the stoichiometry in pathological conditions involving α4β2 nAChRs such as nicotine dependence and epilepsy.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| | - Sara T Whiteman
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
11
|
Vila OF, Qu Y, Vunjak-Novakovic G. In vitro models of neuromuscular junctions and their potential for novel drug discovery and development. Expert Opin Drug Discov 2019; 15:307-317. [PMID: 31846349 DOI: 10.1080/17460441.2020.1700225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Neuromuscular Junctions (NMJs) are the synapses between motor neurons and skeletal muscle fibers, and they are responsible for voluntary motor function. NMJs are affected at early stages of numerous neurodegenerative and neuroimmunological diseases. Due to the difficulty of systematically studying and manipulating NMJs in live subjects, in vitro systems with human tissue models would provide a powerful complement to simple cell cultures and animal models for mechanistic and drug development studies.Areas covered: The authors review the latest advances in in vitro models of NMJs, from traditional cell co-culture systems to novel tissue culture approaches, with focus on disease modeling and drug testing.Expert opinion: In recent years, more sophisticated in vitro models of human NMJs have been established. The combination of human stem cell technology with advanced tissue culture systems has resulted in systems that better recapitulate the human NMJ structure and function, and thereby allow for high-throughput quantitative functional measurements under both healthy and diseased conditions. Although they still have limitations, these advanced systems are increasingly demonstrating their utility for evaluating new therapies for motoneuron and autoimmune neuromuscular diseases, and we expect them to become an integral part of the drug discovery process in the near future.
Collapse
Affiliation(s)
- Olaia F Vila
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yihuai Qu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | |
Collapse
|
12
|
Novel long-chain neurotoxins from Bungarus candidus distinguish the two binding sites in muscle-type nicotinic acetylcholine receptors. Biochem J 2019; 476:1285-1302. [PMID: 30944155 DOI: 10.1042/bcj20180909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 12/30/2022]
Abstract
αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α-δ subunits. Three isoforms (αδ-BgTx-1-3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17-0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve-muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α-δ site as compared with α-ε or α-γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.
Collapse
|
13
|
Mazzaferro S, Bermudez I, Sine SM. Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cell Mol Life Sci 2019; 76:1151-1167. [PMID: 30600358 PMCID: PMC8022356 DOI: 10.1007/s00018-018-2993-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/28/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
Abstract
Neuronal nicotinic receptors containing α4 and β2 subunits assemble in two pentameric stoichiometries, (α4)3(β2)2 and (α4)2(β2)3, each with distinct pharmacological signatures; (α4)3(β2)2 receptors are strongly potentiated by the drug NS9283, whereas (α4)2(β2)3 receptors are unaffected. Despite this stoichiometry-selective pharmacology, the molecular identity of the target for NS9283 remains elusive. Here, studying (α4)3(β2)2 receptors, we show that mutations at either the principal face of the β2 subunit or the complementary face of the α4 subunit prevent NS9283 potentiation of ACh-elicited single-channel currents, suggesting the drug targets the β2-α4 pseudo-agonist sites, the α4-α4 agonist site, or both sites. To distinguish among these possibilities, we generated concatemeric receptors with mutations at specified subunit interfaces, and monitored the ability of NS9283 to potentiate ACh-elicited single-channel currents. We find that a mutation at the principal face of the β2 subunit at either β2-α4 pseudo-agonist site suppresses potentiation, whereas mutation at the complementary face of the α4 subunit at the α4-α4 agonist site allows a significant potentiation. Thus, monitoring potentiation of single concatemeric receptor channels reveals that the β2-α4 pseudo-agonist sites are required for stoichiometry-selective drug action. Together with the recently determined structure of the (α4)3(β2)2 receptor, the findings have implications for structure-guided drug design.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Isabel Bermudez
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 OBP, UK
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Santhanam N, Kumanchik L, Guo X, Sommerhage F, Cai Y, Jackson M, Martin C, Saad G, McAleer CW, Wang Y, Lavado A, Long CJ, Hickman JJ. Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. Biomaterials 2018; 166:64-78. [PMID: 29547745 PMCID: PMC5866791 DOI: 10.1016/j.biomaterials.2018.02.047] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/20/2018] [Accepted: 02/24/2018] [Indexed: 01/01/2023]
Abstract
There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs.
Collapse
Affiliation(s)
- Navaneetha Santhanam
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Lee Kumanchik
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Frank Sommerhage
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Yunqing Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Max Jackson
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Candace Martin
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - George Saad
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Christopher W. McAleer
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Ying Wang
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA,Department of Biomedical Engineering, 305 Weill Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Lavado
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Christopher J. Long
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA,correspondence:
| |
Collapse
|
15
|
Mazzaferro S, Bermudez I, Sine SM. α4β2 Nicotinic Acetylcholine Receptors: RELATIONSHIPS BETWEEN SUBUNIT STOICHIOMETRY AND FUNCTION AT THE SINGLE CHANNEL LEVEL. J Biol Chem 2016; 292:2729-2740. [PMID: 28031459 DOI: 10.1074/jbc.m116.764183] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
Acetylcholine receptors comprising α4 and β2 subunits are the most abundant class of nicotinic acetylcholine receptor in the brain. They contribute to cognition, reward, mood, and nociception and are implicated in a range of neurological disorders. Previous measurements of whole-cell macroscopic currents showed that α4 and β2 subunits assemble in two predominant pentameric stoichiometries, which differ in their sensitivity to agonists, antagonists, and allosteric modulators. Here we compare agonist-elicited single channel currents from receptors assembled with an excess of either the α4 or β2 subunit, forming receptor populations biased toward one or the other stoichiometry, with currents from receptors composed of five concatemeric subunits in which the subunit stoichiometry is predetermined. Our results associate each subunit stoichiometry with a unique single channel conductance, mean open channel lifetime, and sensitivity to the allosteric potentiator 3-[3-(3-pyridinyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS-9283). Receptors with the composition (α4β2)2α4 exhibit high single channel conductance, brief mean open lifetime, and strong potentiation by NS-9283, whereas receptors with the composition (α4β2)2β2 exhibit low single channel conductance and long mean open lifetime and are not potentiated by NS-9283. Thus single channel current measurements reveal bases for the distinct functional and pharmacological properties endowed by different stoichiometries of α4 and β2 subunits and establish pentameric concatemers as a means to delineate interactions between subunits that confer these properties.
Collapse
Affiliation(s)
- Simone Mazzaferro
- From the Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering and
| | - Isabel Bermudez
- the School of Life Sciences, Oxford Brookes University, Oxford OX3 OBP, United Kingdom
| | - Steven M Sine
- From the Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering and .,Departments of Neurology and.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 and
| |
Collapse
|
16
|
Groot-Kormelink PJ, Ferrand S, Kelley N, Bill A, Freuler F, Imbert PE, Marelli A, Gerwin N, Sivilotti LG, Miraglia L, Orth AP, Oakeley EJ, Schopfer U, Siehler S. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor. PLoS One 2016; 11:e0163129. [PMID: 27649498 PMCID: PMC5029940 DOI: 10.1371/journal.pone.0163129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/03/2016] [Indexed: 12/15/2022] Open
Abstract
High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.
Collapse
Affiliation(s)
- Paul J. Groot-Kormelink
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sandrine Ferrand
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicholas Kelley
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anke Bill
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Felix Freuler
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pierre-Eloi Imbert
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anthony Marelli
- Genomics Institute of the Novartis Research Foundation, Novartis Institutes for BioMedical Research, San Diego, California, United States of America
| | - Nicole Gerwin
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Lucia G. Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Loren Miraglia
- Genomics Institute of the Novartis Research Foundation, Novartis Institutes for BioMedical Research, San Diego, California, United States of America
| | - Anthony P. Orth
- Genomics Institute of the Novartis Research Foundation, Novartis Institutes for BioMedical Research, San Diego, California, United States of America
| | - Edward J. Oakeley
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ulrich Schopfer
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sandra Siehler
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Engel AG, Ohno K, Wang HL, Milone M, Sine SM. REVIEW ■ : Molecular Basis of Congenital Myasthenic Syndromes: Mutations in the Acetylcholine Receptor. Neuroscientist 2016. [DOI: 10.1177/107385849800400314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The congenital myasthenic syndromes include end-plate (EP) acetylcholinesterase deficiency, presynaptic abnormalities affecting the evoked release or size of transmitter quanta, and acetylcholine (ACh) receptor (AChR) channelopathies stemming from a kinetic abnormality and/or deficiency of AChR. A kinetic abnor mality predicts, and AChR deficiency may predict, one or more mutations in an AChR subunit gene. These clues have led to the identification of 53 mutations in different subunits of AChR in 55 kinships of the congenital myasthenic syndromes. The mutations either increase or decrease the response to ACh, produce AChR deficiency, or both. In the slow-channel syndromes, prolonged opening episodes of AChR cause cationic overloading of the EP and an EP myopathy; the mutations occur in different subunits and different domains of the subunits and have dominant positive effects. The M1 and M2 mutations slow channel closure, increase apparent affinity for ACh, and variably enhance desensitization, and the extracellular αG153S enhances affinity for ACh, promoting reopening of the diliganded receptor. In the low-affinity fast-channel syndrome, εP121L reduces affinity for ACh and reopening of the diliganded receptor, resulting in a de creased response to ACh and shorter burst durations. Severe EP AChR deficiency results from heterozy gous or homozygous mutations that terminate translation prematurely; these are concentrated in the ε subunit, probably because substitution of the fetal γ for the adult ε subunit can rescue the phenotype from fatal null mutations in ε. Variable AChR deficiency and variable functional abnormalities stem from hetero allelic nonsense and missense mutations in AChR subunit genes. NEUROSCIENTIST 4:185-194, 1998
Collapse
Affiliation(s)
- Andrew G. Engel
- Muscle Research Laboratory and Department of Neurology,
Mayo Clinic and Mayo Foundation Rochester, Minnesota
| | - Kinji Ohno
- Muscle Research Laboratory and Department of Neurology,
Mayo Clinic and Mayo Foundation Rochester, Minnesota
| | - Hai-Long Wang
- Department of Physiology and Biophysics and Receptor
Biology Laboratory Mayo Clinic and Mayo Foundation Rochester, Minnesota
| | - Margherita Milone
- Muscle Research Laboratory and Department of Neurology,
Mayo Clinic and Mayo Foundation Rochester, Minnesota
| | - Steven M. Sine
- Department of Physiology and Biophysics and Receptor
Biology Laboratory Mayo Clinic and Mayo Foundation Rochester, Minnesota
| |
Collapse
|
18
|
Pagán OR, Montgomery E, Deats S, Bach D, Baker D. Evidence of Nicotine-Induced, Curare-Insensitive, Behavior in Planarians. Neurochem Res 2015; 40:2087-90. [DOI: 10.1007/s11064-015-1512-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
19
|
Lebbe EKM, Peigneur S, Maiti M, Devi P, Ravichandran S, Lescrinier E, Ulens C, Waelkens E, D'Souza L, Herdewijn P, Tytgat J. Structure-function elucidation of a new α-conotoxin, Lo1a, from Conus longurionis. J Biol Chem 2014; 289:9573-83. [PMID: 24567324 DOI: 10.1074/jbc.m114.556175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Conotoxins are peptide toxins found in the venom of marine cone snails and potent antagonists of various subtypes of nicotinic acetylcholine receptors (nAChRs). nAChRs are cholinergic receptors forming ligand-gated ion channels in the plasma membranes of certain neurons and the neuromuscular junction. Because nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, nAChR dysfunctions have been implicated in a variety of severe pathologies such as epilepsy, myasthenic syndromes, schizophrenia, Parkinson disease, and Alzheimer disease. To expand the knowledge concerning cone snail toxins, we examined the venom of Conus longurionis. We isolated an 18-amino acid peptide named α-conotoxin Lo1a, which is active on nAChRs. To the best of our knowledge, this is the first characterization of a conotoxin from this species. The peptide was characterized by electrophysiological screening against several types of cloned nAChRs expressed in Xenopus laevis oocytes. The three-dimensional solution structure of the α-conotoxin Lo1a was determined by NMR spectroscopy. Lo1a, a member of the α4/7 family, blocks the response to acetylcholine in oocytes expressing α7 nAChRs with an IC50 of 3.24 ± 0.7 μM. Furthermore, Lo1a shows a high selectivity for neuronal versus muscle subtype nAChRs. Because Lo1a has an unusual C terminus, we designed two mutants, Lo1a-ΔD and Lo1a-RRR, to investigate the influence of the C-terminal residue. Lo1a-ΔD has a C-terminal Asp deletion, whereas in Lo1a-RRR, a triple-Arg tail replaces the Asp. They blocked the neuronal nAChR α7 with a lower IC50 value, but remarkably, both adopted affinity for the muscle subtype α1β1δε.
Collapse
Affiliation(s)
- Eline K M Lebbe
- From Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ponce D, López-Vera E, Aguilar MB, Sánchez-Rodríguez J. Preliminary results of the in vivo and in vitro characterization of a tentacle venom fraction from the jellyfish Aurelia aurita. Toxins (Basel) 2013; 5:2420-33. [PMID: 24322597 PMCID: PMC3873694 DOI: 10.3390/toxins5122420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022] Open
Abstract
The neurotoxic effects produced by a tentacle venom extract and a fraction were analyzed and correlated by in vivo and in vitro approaches. The tentacle venom extract exhibited a wide range of protein components (from 24 to >225 kDa) and produced tetanic reactions, flaccid paralysis, and death when injected into crabs. Two chromatography fractions also produced uncontrolled appendix movements and leg stretching. Further electrophysiological characterization demonstrated that one of these fractions potently inhibited ACh-elicited currents mediated by both vertebrate fetal and adult muscle nicotinic acetylcholine receptors (nAChR) subtypes. Receptor inhibition was concentration-dependent and completely reversible. The calculated IC(50) values were 1.77 μg/μL for fetal and 2.28 μg/μL for adult muscle nAChRs. The bioactive fraction was composed of a major protein component at ~90 kDa and lacked phospholipase A activity. This work represents the first insight into the interaction of jellyfish venom components and muscle nicotinic receptors.
Collapse
Affiliation(s)
- Dalia Ponce
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos, Universidad Nacional Autónoma de México,77500 Cancún, Quintana Roo, Mexico; E-Mail:
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| | - Estuardo López-Vera
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, Mexico
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Querétaro, Mexico; E-Mail:
| | - Judith Sánchez-Rodríguez
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos, Universidad Nacional Autónoma de México,77500 Cancún, Quintana Roo, Mexico; E-Mail:
| |
Collapse
|
21
|
Abstract
Drug modulation of ion channels is a powerful means to alter physiological responses for therapeutic benefit, yet the structural bases of modulation remain poorly understood. Here we study potentiation of nicotinic α7 acetylcholine receptors, which are emerging drug targets in several neurological disorders. α7 receptors are ligand-gated ion channels composed of five identical subunits, each bearing a site for the potentiating drug PNU-120596 (PNU). How the individual subunits contribute to PNU potentiation is not known. Taking advantage of a PNU-resistant mutant, we generated receptors composed of normal and PNU-resistant subunits and tagged one of the subunits with conductance mutations to report subunit stoichiometry. We then used patch clamp recording to monitor PNU potentiation of single α7 receptors with defined stoichiometry in real time. We find that potentiation depends steeply on the number of PNU-resistant subunits and that four, and possibly five, subunits must be sensitive to PNU for potentiation to occur. Thus, by monitoring the activity of every possible subunit combination, our findings predict that at the macroscopic level, PNU potentiation is highly cooperative.
Collapse
|
22
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
23
|
Single-channel and structural foundations of neuronal α7 acetylcholine receptor potentiation. J Neurosci 2011; 31:13870-9. [PMID: 21957249 DOI: 10.1523/jneurosci.2652-11.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal α7 acetylcholine receptor in the presence of the α7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the submillisecond α7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multisecond-long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation.
Collapse
|
24
|
Brams M, Pandya A, Kuzmin D, van Elk R, Krijnen L, Yakel JL, Tsetlin V, Smit AB, Ulens C. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Biol 2011; 9:e1001034. [PMID: 21468359 PMCID: PMC3066128 DOI: 10.1371/journal.pbio.1001034] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022] Open
Abstract
Cys-loop receptors (CLR) are pentameric ligand-gated ion channels that mediate fast excitatory or inhibitory transmission in the nervous system. Strychnine and d-tubocurarine (d-TC) are neurotoxins that have been highly instrumental in decades of research on glycine receptors (GlyR) and nicotinic acetylcholine receptors (nAChR), respectively. In this study we addressed the question how the molecular recognition of strychnine and d-TC occurs with high affinity and yet low specificity towards diverse CLR family members. X-ray crystal structures of the complexes with AChBP, a well-described structural homolog of the extracellular domain of the nAChRs, revealed that strychnine and d-TC adopt multiple occupancies and different ligand orientations, stabilizing the homopentameric protein in an asymmetric state. This introduces a new level of structural diversity in CLRs. Unlike protein and peptide neurotoxins, strychnine and d-TC form a limited number of contacts in the binding pocket of AChBP, offering an explanation for their low selectivity. Based on the ligand interactions observed in strychnine- and d-TC-AChBP complexes we performed alanine-scanning mutagenesis in the binding pocket of the human α1 GlyR and α7 nAChR and showed the functional relevance of these residues in conferring high potency of strychnine and d-TC, respectively. Our results demonstrate that a limited number of ligand interactions in the binding pocket together with an energetic stabilization of the extracellular domain are key to the poor selective recognition of strychnine and d-TC by CLRs as diverse as the GlyR, nAChR, and 5-HT3R. Ligand-gated ion channels play an important role in fast electrochemical signaling in the brain. Cys-loop receptors are a class of pentameric ligand-gated ion channels that are activated by specific neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), glycine (Gly), and γ-aminobutyric acid (GABA). Each type of cys-loop receptor contains an extracellular domain that specifically recognizes only one of these four neurotransmitters and opens an ion-conducting channel pore upon ligand binding. In this study, we investigated the poor specificity with which two potent neurotoxic inhibitors, namely strychnine and d-tubocurarine, are recognized by different cys-loop receptors. Using X-ray crystallography we solved 3-dimensional structures of strychnine or d-tubocurarine in complex with ACh binding protein (AChBP), a well-recognized structural homolog of the nicotinic ACh receptor. Based on ligand-receptor interactions observed in AChBP structures we designed mutant GlyR and α7 nAChR to identify hot spots in the binding pocket of these receptors that define potent inhibition by strychnine and d-tubocurarine, respectively. Combined, our results offer detailed understanding of the molecular recognition of antagonists that have high affinity but poor specificity for different cys-loop receptors.
Collapse
Affiliation(s)
- Marijke Brams
- Laboratory of Structural Neurobiology, KULeuven, Leuven, Belgium
| | - Anshul Pandya
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Dmitry Kuzmin
- Department of Molecular Basis of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - René van Elk
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Liz Krijnen
- Laboratory of Structural Neurobiology, KULeuven, Leuven, Belgium
| | - Jerrel L. Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Victor Tsetlin
- Department of Molecular Basis of Neurosignaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - August B. Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Chris Ulens
- Laboratory of Structural Neurobiology, KULeuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
25
|
Jha A, Auerbach A. Acetylcholine receptor channels activated by a single agonist molecule. Biophys J 2010; 98:1840-6. [PMID: 20441747 DOI: 10.1016/j.bpj.2010.01.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 11/30/2022] Open
Abstract
The neuromuscular acetylcholine receptor (AChR) is an allosteric protein that alternatively adopts inactive versus active conformations (R<-->R). The R shape has a higher agonist affinity and ionic conductance than R. To understand how agonists trigger this gating isomerization, we examined single-channel currents from adult mouse muscle AChRs that isomerize normally without agonists but have only a single site able to use agonist binding energy to motivate gating. We estimated the monoliganded gating equilibrium constant E(1) and the energy change associated with the R versus R change in affinity for agonists. AChRs with only one operational binding site gave rise to a single population of currents, indicating that the two transmitter binding sites have approximately the same affinity for the transmitter ACh. The results indicated that E(1) approximately 4.3 x 10(-3) with ACh, and approximately 1.7 x 10(-4) with the partial-agonist choline. From these values and the diliganded gating equilibrium constants, we estimate that the unliganded AChR gating constant is E(0) approximately 6.5 x 10(-7). Gating changes the stability of the ligand-protein complex by approximately 5.2 kcal/mol for ACh and approximately 3.3 kcal/mol for choline.
Collapse
Affiliation(s)
- Archana Jha
- Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA
| | | |
Collapse
|
26
|
Selectivity of Imidacloprid for fruit fly versus rat nicotinic acetylcholine receptors by molecular modeling. J Mol Model 2009; 16:993-1002. [PMID: 19865835 DOI: 10.1007/s00894-009-0601-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/26/2009] [Indexed: 01/16/2023]
Abstract
For better understanding of the mechanisms of selective binding of the representative nicotinic acetylcholine receptor (nAChR) agonist neonicotinoid Imidacloprid (IMI), three-dimensional models of fruit fly alpha 1 beta 2 and rat alpha 4beta 2 nAChRs were generated by homology modeling, using the crystal structure of the acetylcholine-binding protein (AChBP) of Lymnaea stagnalis and the nAChR of mus musculus as the templates, respectively. The conformational stability of the two models was studied by molecular dynamics (MD) and the quality of the models was confirmed. Especially, insecticide Imidacloprid was docked into the putative binding site of the fruit fly alpha 1 beta 2 and rat alpha 4 beta 2 nAChRs by Surflex-docking. The calculated docking energies were in agreement with the experimental data and the putative binding sites were also consistent with the results from labeling and mutagenesis experiments. Furthermore, the mechanisms of Imidacloprid selectively acting on fruit fly versus rat nAChRs were discussed.
Collapse
|
27
|
Spitzmaul G, Corradi J, Bouzat C. Mechanistic contributions of residues in the M1 transmembrane domain of the nicotinic receptor to channel gating. Mol Membr Biol 2009; 21:39-50. [PMID: 14668137 DOI: 10.1080/09687680310001607341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nicotinic receptor (AChR) is a pentamer of homologous subunits with an alpha(2)betaepsilondelta composition in adult muscle. Each subunit contains four transmembrane domains (M1-M4). Position 15' of the M1 domain is phenylalanine in alpha subunits while it is isoleucine in non-alpha subunits. Given this peculiar conservation pattern, we studied its contribution to muscle AChR activation by combining mutagenesis with single-channel kinetic analysis. AChRs containing the mutant alpha subunit (alphaF15'I) as well as those containing the reverse mutations in the non-alpha subunits (betaI15'F, deltaI15'F, and epsilonI15'F) show prolonged lifetimes of the diliganded open channel resulting from a slower closing rate with respect to wild-type AChRs. The kinetic changes are not equivalent among subunits, the beta subunit, being the one that produces the most significant stabilization of the open state. Kinetic analysis of betaI15'F of AChR channels activated by the low-efficacious agonist choline revealed a 10-fold decrease in the closing rate, a 2.5-fold increase in the opening rate, a 28-fold increase in the gating equilibrium constant in the diliganded receptor, and a significant increase opening in the absence of agonist. Mutations at betaI15' showed that the structural bases of its contribution to gating is complex. Rate-equilibrium linear free-energy relationships suggest an approximately 70% closed-state-like environment for the beta15' position at the transition state of gating. The overall results identify position 15' as a subunit-selective determinant of channel gating and add new experimental evidence that gives support to the involvement of the M1 domain in the operation of the channel gating apparatus.
Collapse
Affiliation(s)
- Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca, Argentina
| | | | | |
Collapse
|
28
|
Millar NS. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:766-76. [PMID: 19540210 DOI: 10.1016/j.bcp.2009.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of neurotransmitter-gated ion channels, a family that also includes receptors for gamma-aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been implicated in several neurological and psychiatric disorders and are major targets for pharmaceutical drug discovery. In addition, nAChRs are important targets for neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have been one of the most intensively studied families of neurotransmitter receptors. They were the first neurotransmitter receptors to be biochemically purified and the first to be characterized by molecular cloning and heterologous expression. Although much has been learnt from studies of native nAChRs, the expression of recombinant nAChRs has provided dramatic advances in the characterization of these important receptors. This review will provide a brief history of the characterization of nAChRs by heterologous expression. It will focus, in particular, upon studies of recombinant nAChRs, work that has been conducted by many hundreds of scientists during a period of almost 30 years since the molecular cloning of nAChR subunits in the early 1980s.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Tantama M, Licht S. Functional equivalence of the nicotinic acetylcholine receptor transmitter binding sites in the open state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:936-44. [PMID: 19366595 DOI: 10.1016/j.bbamem.2009.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/14/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The subunits of the muscle-type nicotinic acetylcholine receptor (AChR) are not uniformly oriented in the resting closed conformation: the two alpha subunits are rotated relative to its non-alpha subunits. In contrast, all the subunits overlay well with one another when agonist is bound to the AChR, suggesting that they are uniformly oriented in the open receptor. This gating-dependent increase in orientational uniformity due to rotation of the alpha subunits might affect the relative affinities of the two transmitter binding sites, making the two affinities dissimilar (functionally non-equivalent) in the initial ligand-bound closed state but similar (functionally equivalent) in the open state. To test this hypothesis, we measured single-channel activity of the alphaG153S gain-of-function mutant receptor evoked by choline, and estimated the resting closed-state and open-state affinities of the two transmitter binding sites. Both model-independent analyses and maximum-likelihood estimation of microscopic rate constants indicate that channel opening makes the binding sites' affinities more similar to each other. These results support the hypothesis that open-state affinities to the transmitter binding sites are primarily determined by the alpha subunits.
Collapse
Affiliation(s)
- Mathew Tantama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 573B, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
30
|
Tantama M, Licht S. Use of calculated cation-pi binding energies to predict relative strengths of nicotinic acetylcholine receptor agonists. ACS Chem Biol 2008; 3:693-702. [PMID: 19032090 DOI: 10.1021/cb800189y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agonists and antagonists of the nicotinic acetylcholine receptor (nAChR) are used to treat nicotine addiction, neuromuscular disorders, and neurological diseases. In designing small molecule therapeutics with the nAChR as a target, it is useful to identify chemical parameters that correlate with ability to activate the receptor. Previous studies have shown that cation-pi interactions at the transmitter binding sites of the nAChR are important for receptor activation by strong agonists such as acetylcholine. We hypothesized that a calculated estimate of cation-pi binding ability could be used to predict the efficiency for channel opening (i.e., the gating efficiency) associated with activation of the acetylcholine receptor by a series of structurally related organic cations. We demonstrate that the calculated cation-pi energy is strongly correlated with gating efficiency but only weakly correlated with closed-state binding affinity. Our results suggest that cation-pi interactions contribute significantly to the open-state affinity of these cations and that the calculated cation-pi energy will be a useful parameter for designing nAChR agonists and antagonists.
Collapse
Affiliation(s)
- Mathew Tantama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 573B, Cambridge, Massachusetts 02139
| | - Stuart Licht
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16, Room 573B, Cambridge, Massachusetts 02139
| |
Collapse
|
31
|
Liu M, Dilger JP. Synergy between pairs of competitive antagonists at adult human muscle acetylcholine receptors. Anesth Analg 2008; 107:525-33. [PMID: 18633030 DOI: 10.1213/ane.0b013e31817b4469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Synergistic neuromuscular blocking effects have been observed clinically with certain pairs of nicotinic acetylcholine receptor (nAChR) competitive antagonists. The mechanism for synergy has not been elucidated. We tested the hypothesis that synergy arises from a differential selectivity of antagonists for the two ligand binding sites on adult human nAChR. METHODS We expressed nAChR in BOSC23 cells. We applied ACh with or without antagonists to outside-out patches and measured macroscopic currents at room temperature. We determined the IC(90) for (+)-tubocurarine, metocurine, pancuronium, vecuronium, cisatracurium, rocuronium, and atracurium. For 15 combinations of two antagonists, we determined the IC(90) for one antagonist in the presence of the IC(70) of a second antagonist. We constructed isobolograms for 90% inhibition. For single antagonists, we measured inhibition of receptors containing mutations in the epsilon- and delta-subunits to determine site selectivity. RESULTS Two pairs of antagonists, metocurine+cisatracurium and cisatracurium+ atracurium exhibited additive inhibition. Ten combinations, including (+)-tubocurarine+ pancuronium and pancuronium+vecuronium, were highly synergistic such that the combination was two to three times more effective than expected for additivity. Three combinations were 1.5-1.6 times more effective than expected for additivity. Inhibition by (+)-tubocurarine and metocurine was sensitive to mutations in the epsilon-subunit only. Vecuronium was affected by the delta-subunit mutation only. Inhibition by other antagonists was decreased by mutations in either subunit. CONCLUSIONS Many combinations of antagonists exhibited synergistic effects on adult human nAChR. Synergy was observed with structurally similar and dissimilar antagonists. The degree of synergy did not always correlate well with site specificity assayed with mutants. In some, but not all cases, the synergy at the receptor level correlated with clinical determinations of synergy. We conclude that the synergistic actions of muscle relaxants can be partially explained by direct interactions with adult human nAChR.
Collapse
Affiliation(s)
- Man Liu
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11790, USA
| | | |
Collapse
|
32
|
Millar NS, Gotti C. Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 2008; 56:237-46. [PMID: 18723036 DOI: 10.1016/j.neuropharm.2008.07.041] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric neurotransmitter receptors. They are members of the Cys-loop family of ligand-gated ion channels which also include ionotropic receptors for 5-hydroxytryptamine (5-HT), gamma-aminobutyric acid (GABA) and glycine. Nicotinic receptors are expressed in both the nervous system and at the neuromuscular junction and have been implicated in several neurological and neuromuscular disorders. In vertebrates, seventeen nAChR subunits have been identified (alpha1-alpha10, beta1-beta4, gamma, delta and epsilon) which can co-assemble to generate a diverse family of nAChR subtypes. This review will focus on vertebrate nAChRs and will provide an overview of the extent of nAChR diversity based on studies of both native and recombinant nAChRs.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
33
|
Dilger JP, Vidal AM, Liu M, Mettewie C, Suzuki T, Pham A, Demazumder D. Roles of amino acids and subunits in determining the inhibition of nicotinic acetylcholine receptors by competitive antagonists. Anesthesiology 2007; 106:1186-95. [PMID: 17525594 PMCID: PMC2367005 DOI: 10.1097/01.anes.0000267602.94516.7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Binding sites for agonists and competitive antagonists (nondepolarizing neuromuscular blocking agents) are located at the alpha-delta and alpha-epsilon subunit interfaces of adult nicotinic acetylcholine receptors. Most information about the amino acids that participate in antagonist binding comes from binding studies with (+)-tubocurarine and metocurine. These bind selectively to the alpha-epsilon interface but are differentially sensitive to mutations. To test the generality of this observation, the authors measured current inhibition by five competitive antagonists on wild-type and mutant acetylcholine receptors. METHODS HEK293 cells were transfected with wild-type or mutant (alphaY198F, epsilonD59A, epsilonD59N, epsilonD173A, epsilonD173N, deltaD180K) mouse muscle acetylcholine receptor complementary DNA. Outside-out patches were excised and perfused with acetylcholine in the absence and presence of antagonist. Concentration-response curves were constructed to determine antagonist IC50. An antagonist-removal protocol was used to determine dissociation and association rates. RESULTS Effects of mutations were antagonist specific. alphaY198F decreased the IC50 of (+)-tubocurarine 10-fold, increased the IC50 of vecuronium 5-fold, and had smaller effects on other antagonists. (+)-Tubocurarine was the most sensitive antagonist to epsilonD173 mutations. epsilonD59 mutations had large effects on metocurine and cisatracurium. deltaD180K decreased inhibition by pancuronium, vecuronium, and cisatracurium. Inhibition by these antagonists was increased for receptors containing two delta subunits but no epsilon subunit. Differences in IC50 arose from differences in both dissociation and association rates. CONCLUSION Competitive antagonists exhibited different patterns of sensitivity to mutations. Except for pancuronium, the antagonists were sensitive to mutations at the alpha-epsilon interface. Pancuronium, vecuronium, and cisatracurium were selective for the alpha-delta interface. This suggests the possibility of synergistic inhibition by pairs of antagonists.
Collapse
Affiliation(s)
- James P Dilger
- Department of Anesthesiology, Stony Brook University, NY 11794-8480, USA, and Department of Anesthesiology, Surugadai Nihon University Hospital, Kanda, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Binding of neurotransmitter triggers gating of synaptic receptor channels, but our understanding of the structures that link the binding site to the channel is just beginning to develop. Here, we identify an intersubunit triggering element required for rapid and efficient gating of muscle nicotinic receptors using a structural model of the Torpedo receptor at 4 A resolution, recordings of currents through single receptor channels, measurements of inter-residue energetic coupling, and functional consequences of disulfide trapping. Mutation of the conserved residues, alphaTyr 127, epsilonAsn 39, and deltaAsn 41, located at the two subunit interfaces that form the agonist binding sites, markedly attenuates acetylcholine-elicited channel gating; mutant cycle analyses based on changes in the channel gating equilibrium constant reveal strong energetic coupling among these residues. After each residue is substituted with Cys, oxidizing conditions that promote disulfide bond formation attenuate gating of mutant, but not wild-type receptors. Gating is similarly attenuated when the Cys substitutions are confined to either of the binding-site interfaces, but can be restored by reducing conditions that promote disulfide bond breakage. Thus, the Tyr-Asn pair is an intersubunit trigger of rapid and efficient gating of muscle nicotinic receptors.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Departments of Physiology and Biomedical Engineering and Neurology, Receptor Biology Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Steven M. Sine
- Departments of Physiology and Biomedical Engineering and Neurology, Receptor Biology Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
35
|
López-Vera E, Jacobsen RB, Ellison M, Olivera BM, Teichert RW. A novel alpha conotoxin (alpha-PIB) isolated from C. purpurascens is selective for skeletal muscle nicotinic acetylcholine receptors. Toxicon 2007; 49:1193-9. [PMID: 17382984 DOI: 10.1016/j.toxicon.2007.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/26/2022]
Abstract
The alpha-conotoxin family is comprised of peptides that share the following arrangement of cysteine residues in the primary amino acid sequence: -CC-C-C-, where each dash represents a variable number of amino acids. The number of amino acids between cysteine residues has been used to group the alpha-conotoxins into distinct subfamilies. These subfamilies include the alpha 4/7-, alpha 4/3- and alpha 3/5-conotoxins, so named for the number of amino acids between 2nd/3rd and 3rd/4th cysteine residues, respectively. The alpha 3/5-conotoxins antagonize vertebrate-muscle nicotinic acetylcholine receptors (nAChRs), while the alpha 4/7- and alpha 4/3-conotoxins primarily inhibit vertebrate neuronal nAChRs. To date, these three subfamilies are the most extensively characterized of the alpha-conotoxin family. Here we report the purification and characterization of an unusual alpha 4/4-conotoxin, alpha-conotoxin PIB (alpha-PIB), from the venom of Conus purpurascens, with the following amino-acid sequence: ZSOGCCWNPACVKNRC (Z=pyroglutamate, O=hydroxyproline). This peptide demonstrates high affinity inhibition of vertebrate-muscle nAChRs, and paralytic effects when injected in vivo. Testing of alpha-PIB against other receptors indicated that the inhibitory effect is specific for skeletal muscle nAChRs. alpha-PIB shares the key biochemical and pharmacological characteristics of the alpha-conotoxin family.
Collapse
Affiliation(s)
- Estuardo López-Vera
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
36
|
Purohit Y, Grosman C. Estimating binding affinities of the nicotinic receptor for low-efficacy ligands using mixtures of agonists and two-dimensional concentration-response relationships. ACTA ACUST UNITED AC 2006; 127:719-35. [PMID: 16735756 PMCID: PMC2151536 DOI: 10.1085/jgp.200509438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The phenomenon of ligand-induced ion channel gating hinges upon the ability of a receptor channel to bind ligand molecules with conformation-specific affinities. However, our understanding of this fundamental phenomenon is notably limited, not only because the changes in binding site structure and ligand conformation that occur upon gating are largely unknown but, also, because the strength of these ligand–receptor interactions are experimentally elusive. Both high- and low-efficacy ligands pose a number of analytical and experimental challenges that can render the estimation of their conformation-specific binding affinities impossible. In this paper, we present a novel assay that overcomes some of the hurdles presented by weak agonists of the muscle nicotinic receptor and allows the estimation of their closed-state affinities. The method, which we have termed the “activation-competition” assay, consists of a single-channel concentration–response assay performed in the presence of a binary mixture of ligands of widely different efficacies. By plotting the channel response (i.e., the open probability) as a function of the concentration of each agonist in the mixture, interpreting the observed response in the framework of a plausible kinetic scheme, and fitting the open probability surface with the corresponding function, the affinities of the closed receptor for the two agonists can be simultaneously extracted as free parameters. Here, we applied this methodology to estimate the closed-state affinity of the muscle nicotinic receptor for choline (a very weak agonist) using acetylcholine (ACh) as the partner in the mixture. We estimated the dissociation equilibrium constant of choline (KD) from the wild type's closed state to be 4.1 ± 0.5 mM (and that of ACh to be 106 ± 6 μM). We also discuss the use of accurate estimates of affinities for low-efficacy agonists as a tool to discriminate between binding and gating effects of mutations, and in the context of the rational design of therapeutic drugs.
Collapse
Affiliation(s)
- Yamini Purohit
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | | |
Collapse
|
37
|
Purohit Y, Grosman C. Block of muscle nicotinic receptors by choline suggests that the activation and desensitization gates act as distinct molecular entities. ACTA ACUST UNITED AC 2006; 127:703-17. [PMID: 16735755 PMCID: PMC2151541 DOI: 10.1085/jgp.200509437] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ion channel block in muscle acetylcholine nicotinic receptors (AChRs) is an extensively reported phenomenon. Yet, the mechanisms underlying the interruption of ion flow or the interaction of the blocker with the channel's gates remain incompletely characterized. In this paper, we studied fast channel block by choline, a quaternary-ammonium cation that is also an endogenous weak agonist of this receptor, and a valuable tool in structure-function studies. Analysis of the single-channel current amplitude as a function of both choline concentration and voltage revealed that extracellular choline binds to the open-channel pore with millimolar apparent affinity (K(B) congruent with 12 mM in the presence of approximately 155 mM monovalent and 3.5 mM divalent, inorganic cations), and that it permeates the channel faster than acetylcholine. This, together with its relatively small size ( approximately 5.5 A along its longest axis), suggests that the pore-blocking choline binding site is the selectivity filter itself, and that current blockages simply reflect the longer-lived sojourns of choline at this site. Kinetic analysis of single-channel traces indicated that increasing occupancy of the pore-blocking site by choline (as judged from the reduction of the single-channel current amplitude) is accompanied by the lengthening of (apparent) open interval durations. Consideration of a number of possible mechanisms firmly suggests that this prolongation results from the local effect of choline interfering with the operation of the activation gate (closure of blocked receptors is slower than that of unblocked receptors by a factor of approximately 13), whereas closure of the desensitization gate remains unaffected. Thus, we suggest that these two gates act as distinct molecular entities. Also, the detailed understanding gained here on how choline distorts the observed open-time durations can be used to compensate for this artifact during activation assays. This correction is necessary if we are to understand how choline binds to and gates the AChR.
Collapse
Affiliation(s)
- Yamini Purohit
- Department of Molecular and Integrative Physiology, Center for Biophysics and Computational Biology, and Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | | |
Collapse
|
38
|
Teichert RW, Rivier J, Torres J, Dykert J, Miller C, Olivera BM. A uniquely selective inhibitor of the mammalian fetal neuromuscular nicotinic acetylcholine receptor. J Neurosci 2005; 25:732-6. [PMID: 15659611 PMCID: PMC6725330 DOI: 10.1523/jneurosci.4065-04.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have purified and characterized a novel conotoxin from the venom of Conus obscurus, which has the unique property of selectively and potently inhibiting the fetal form of the mammalian neuromuscular nicotinic acetylcholine receptor (nAChR) (alpha1beta1gammadelta-subunits). Although this conotoxin, alphaA-conotoxin OIVB (alphaA-OIVB), is a high-affinity antagonist (IC50 of 56 nm) of the fetal muscle nAChR, it has >1800-fold lower affinity for the adult muscle nAChR (alpha1beta1epsilondelta-subunits) and virtually no inhibitory activity at a high concentration on various neuronal nAChRs (IC50 > 100 microm in all cases). The peptide (amino acid sequence, CCGVONAACPOCVCNKTCG), with three disulfide bonds, has been chemically synthesized in a biologically active form. Although the neuromuscular nAChRs are perhaps the most extensively characterized of the receptors/ion channels of the nervous system, the precise physiological roles of the fetal form of the muscle nAChR are essentially unknown.alphaA-OIVB is a potentially important tool for delineating the functional roles ofalpha1beta1gammadelta receptors in normal development, as well as in various adult tissues and in pathological states. In addition to its potential as a research tool, alphaA-OIVB may have some direct biomedical applications.
Collapse
Affiliation(s)
- Russell W Teichert
- Department of Biology, University of Utah, Salt lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Celie PHN, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK. Crystal Structure of Acetylcholine-binding Protein from Bulinus truncatus Reveals the Conserved Structural Scaffold and Sites of Variation in Nicotinic Acetylcholine Receptors. J Biol Chem 2005; 280:26457-66. [PMID: 15899893 DOI: 10.1074/jbc.m414476200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of acetylcholine-binding protein (AChBP) from the mollusk Lymnaea stagnalis is the established model for the ligand binding domains of the ligand-gated ion channel family, which includes nicotinic acetylcholine, 5-hydroxytryptamine (5-HT3), gamma-aminobutyric acid (GABA), types A and C, and glycine receptors. Here we present the crystal structure of a remote homolog, AChBP from Bulinus truncatus, which reveals both the conserved structural scaffold and the sites of variation in this receptor family. These include rigid body movements of loops that are close to the transmembrane interface in the receptors and changes in the intermonomer contacts, which alter the pentamer stability drastically. Structural, pharmacological and mutational analysis of both AChBPs shows how 3 amino acid changes in the binding site contribute to a 5-10-fold difference in affinity for nicotinic ligands. Comparison of these structures will be valuable for improving structure-function studies of ligand-gated ion channel receptors, including signal transduction, homology modeling, and drug design.
Collapse
Affiliation(s)
- Patrick H N Celie
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Mukhtasimova N, Free C, Sine SM. Initial coupling of binding to gating mediated by conserved residues in the muscle nicotinic receptor. ACTA ACUST UNITED AC 2005; 126:23-39. [PMID: 15955875 PMCID: PMC2266616 DOI: 10.1085/jgp.200509283] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined functional consequences of intrasubunit contacts in the nicotinic receptor alpha subunit using single channel kinetic analysis, site-directed mutagenesis, and structural modeling. At the periphery of the ACh binding site, our structural model shows that side chains of the conserved residues alphaK145, alphaD200, and alphaY190 converge to form putative electrostatic interactions. Structurally conservative mutations of each residue profoundly impair gating of the receptor channel, primarily by slowing the rate of channel opening. The combined mutations alphaD200N and alphaK145Q impair channel gating to the same extent as either single mutation, while alphaK145E counteracts the impaired gating due to alphaD200K, further suggesting electrostatic interaction between these residues. Interpreted in light of the crystal structure of acetylcholine binding protein (AChBP) with bound carbamylcholine (CCh), the results suggest in the absence of ACh, alphaK145 and alphaD200 form a salt bridge associated with the closed state of the channel. When ACh binds, alphaY190 moves toward the center of the binding cleft to stabilize the agonist, and its aromatic hydroxyl group approaches alphaK145, which in turn loosens its contact with alphaD200. The positional changes of alphaK145 and alphaD200 are proposed to initiate the cascade of perturbations that opens the receptor channel: the first perturbation is of beta-strand 7, which harbors alphaK145 and is part of the signature Cys-loop, and the second is of beta-strand 10, which harbors alphaD200 and connects to the M1 domain. Thus, interplay between these three conserved residues relays the initial conformational change from the ACh binding site toward the ion channel.
Collapse
Affiliation(s)
- Nuriya Mukhtasimova
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
41
|
Peter C, Korngreen A, Witzemann V. Mutation of single murine acetylcholine receptor subunits reveals differential contribution of P121 to acetylcholine binding and channel opening. Pflugers Arch 2005; 450:178-84. [PMID: 15864502 DOI: 10.1007/s00424-005-1387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is a heteropentameric, ligand-gated ion channel at the neuromuscular junction, where it is responsible for signal transduction between the motorneuron and the muscle. Point mutations in the subunits of the receptor change the channel's electrophysiological properties and underlie inherited forms of muscle weakness, the congenital myasthenic syndromes. One point mutation (P121L) has been identified in the epsilon-subunit of patients suffering from the fast-channel congenital myasthenic syndrome, which is evoked by reduced AChR openings. We introduced the P121L mutation into all murine AChR subunits and performed electrophysiological studies in Xenopus laevis oocytes. The P121L mutation in the epsilon-subunit of the adult mouse AChR affected ligand binding and channel gating in a manner similar to that described for human AChR. At equivalent positions in the alpha- and beta-subunits, the mutation caused only minor electrophysiological changes. Mutation of the delta-subunit had similar, but less pronounced functional consequences compared to epsilonP121L, reflecting the asymmetry of the acetylcholine binding sites and the dominant effect of the alpha-epsilon site on channel opening.
Collapse
Affiliation(s)
- Christoph Peter
- Abt. Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
42
|
Gao F, Bren N, Burghardt TP, Hansen S, Henchman RH, Taylor P, McCammon JA, Sine SM. Agonist-mediated Conformational Changes in Acetylcholine-binding Protein Revealed by Simulation and Intrinsic Tryptophan Fluorescence. J Biol Chem 2005; 280:8443-51. [PMID: 15591050 DOI: 10.1074/jbc.m412389200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We delineated acetylcholine (ACh)-dependent conformational changes in a prototype of the nicotinic receptor ligand binding domain by molecular dynamics simulation and changes in intrinsic tryptophan (Trp) fluorescence. Prolonged molecular dynamics simulation of ACh-binding protein showed that binding of ACh establishes close register of Trps from adjacent subunits, Trp(143) and Trp(53), and draws the peripheral C-loop inward to occlude the entrance to the binding cavity. Close register of Trp(143) and Trp(53) was demonstrated by ACh-mediated quenching of intrinsic Trp fluorescence, elimination of quenching by mutation of one or both Trps to Phe, and decreased lifetime of Trp fluorescence by bound ACh. Occlusion of the binding cavity by the C-loop was demonstrated by restricted access of an extrinsic quencher of binding site Trp fluorescence by ACh. The collective findings showed that ACh initially establishes close register of conserved Trps from adjacent subunits and then draws the C-loop inward to occlude the entrance to the binding cavity.
Collapse
Affiliation(s)
- Fan Gao
- Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Christianson JC, Green WN. Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J 2004; 23:4156-65. [PMID: 15483627 PMCID: PMC524400 DOI: 10.1038/sj.emboj.7600436] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/14/2004] [Indexed: 01/23/2023] Open
Abstract
Control of ligand-gated ion channel (LGIC) expression is essential for the formation, maintenance and plasticity of synapses. Treatment of mouse myotubes with proteasome inhibitors increased the number of surface nicotinic acetylcholine receptors (AChRs), indicating LGIC expression is regulated by the ubiquitin-proteasome system (UPS). Elevated surface expression resulted from increased AChR delivery to the plasma membrane and not from decreased turnover from the surface. The rise in AChR trafficking was the direct result of increased assembly of subunits in the endoplasmic reticulum (ER). Because proteasome inhibitors also blocked ER-associated degradation (ERAD) of unassembled AChR subunits, the data indicate that the additional AChRs were assembled from subunits normally targeted for ERAD. Our data show that AChR surface expression is regulated by the UPS through ERAD, whose activity determines oligomeric receptor assembly efficiency.
Collapse
Affiliation(s)
- John C Christianson
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| | - William N Green
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
44
|
Pennington RA, Gao F, Sine SM, Prince RJ. Structural basis for epibatidine selectivity at desensitized nicotinic receptors. Mol Pharmacol 2004; 67:123-31. [PMID: 15496507 DOI: 10.1124/mol.104.003665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The agonist binding sites of the fetal muscle nicotinic acetylcholine receptor are formed at the interfaces of alpha-subunits and neighboring gamma- and delta-subunits. When the receptor is in the nonconducting desensitized state, the alpha-gamma site binds the agonist epibatidine 200-fold more tightly than does the alpha-delta site. To determine the structural basis for this selectivity, we constructed gamma/delta-subunit chimeras, coexpressed them with complementary wild-type subunits in HEK 293 cells, and determined epibatidine affinity of the resulting complexes. The results reveal three determinants of epibatidine selectivity: gamma104-117/delta106-delta119, gamma164-171/delta166-177, and gammaPro190/deltaAla196. Point mutations reveal that three sequence differences within the gamma104-117/delta106-delta119 region are determinants of epibatidine selectivity: gammaLys104/deltaTyr106, gammaSer111/deltaTyr113, and gammaTyr117/deltaTyr119. In the delta-subunit, simultaneous mutation of these residues to their gamma equivalent produces high affinity, gamma-like epibatidine binding. However, converting gamma to delta affinity requires replacement of the gamma104-117 segment with delta sequence, suggesting interplay of residues in this region. The structural basis for epibatidine selectivity is explained by computational docking of epibatidine to a homology model of the alpha-gamma binding site.
Collapse
Affiliation(s)
- Richard A Pennington
- School of Biological Sciences, University of Manchester, G38 Stopford Bldg., Oxford Rd, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
45
|
Bouzat C, Gumilar F, Spitzmaul G, Wang HL, Rayes D, Hansen SB, Taylor P, Sine SM. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 2004; 430:896-900. [PMID: 15318223 DOI: 10.1038/nature02753] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 06/14/2004] [Indexed: 11/09/2022]
Abstract
Neurotransmitter receptors from the Cys-loop superfamily couple the binding of agonist to the opening of an intrinsic ion pore in the final step in rapid synaptic transmission. Although atomic resolution structural data have recently emerged for individual binding and pore domains, how they are linked into a functional unit remains unknown. Here we identify structural requirements for functionally coupling the two domains by combining acetylcholine (ACh)-binding protein, whose structure was determined at atomic resolution, with the pore domain from the serotonin type-3A (5-HT3A) receptor. Only when amino-acid sequences of three loops in ACh-binding protein are changed to their 5-HT3A counterparts does ACh bind with low affinity characteristic of activatable receptors, and trigger opening of the ion pore. Thus functional coupling requires structural compatibility at the interface of the binding and pore domains. Structural modelling reveals a network of interacting loops between binding and pore domains that mediates this allosteric coupling process.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquimicas, UNS-CONICET, Bahia Blanca 8000, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Grosman C. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels. Biochemistry 2004; 42:14977-87. [PMID: 14674774 PMCID: PMC1463891 DOI: 10.1021/bi0354334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing ("gating") a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed right harpoon over left harpoon open equilibrium constant because the ion-impermeable --> ion-permeable transition of the ion pathway is accompanied by a low-affinity --> high-affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates toward the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed right harpoon over left harpoon open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
Collapse
Affiliation(s)
- Claudio Grosman
- Department of Molecular and Integrative Physiology and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
47
|
Sine SM, Wang HL, Ohno K, Shen XM, Lee WY, Engel AG. Mechanistic Diversity Underlying Fast Channel Congenital Myasthenic Syndromes. Ann N Y Acad Sci 2003; 998:128-37. [PMID: 14592870 DOI: 10.1196/annals.1254.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A host of missense mutations in muscle nicotinic receptor subunits have been identified as the cause of congenital myasthenic syndromes (CMS). Two classes of CMS phenotypes have been identified: slow channel myasthenic syndromes (SCCMSs) and fast channel myasthenic syndromes (FCCMSs). Although both have similar phenotypic consequences, they are physiologic opposites. Expression of the FCCMS phenotype requires the missense mutation to be accompanied by a second mutation, either a null or a missense mutation, in the second allele encoding the same receptor subunit. This seemingly rare scenario has arisen with surprisingly high incidence over the past few years, and analyses of the syndromes have revealed a diverse array of mechanisms underlying the pathology. This review focuses on new mechanisms underlying the FCCMS.
Collapse
Affiliation(s)
- Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biophysics, Mayo Medical School, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Kuch U, Molles BE, Omori-Satoh T, Chanhome L, Samejima Y, Mebs D. Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. Toxicon 2003; 42:381-90. [PMID: 14505938 DOI: 10.1016/s0041-0101(03)00168-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Malayan krait (Bungarus candidus) is one of the most medically significant snake species in Southeast Asia. No specific antivenom exists to treat envenoming by this species. Death within 30 min after its bite has been reported from Java, suggesting the presence of highly lethal postsynaptic neurotoxins in the venom of these snakes. We purified and identified the major postsynaptic toxin in the venom of B. candidus from Java. The toxin was indistinguishable from alpha-bungarotoxin (A31), a toxin originally isolated from Bungarus multicinctus, in its mass (7983.75 Da), LD50 (0.23 microg/g in mice i.p.), affinity to nicotinic acetylcholine receptors, and by its 40 N-terminal amino acid residues as determined by Edman degradation. Identity with alpha-bungarotoxin was confirmed by cloning and sequencing a genomic DNA from B. candidus which encodes the 74 amino acid sequence of alpha-bungarotoxin (A31) and part of its signal peptide, revealing complete identity to the alpha-bungarotoxin (A31) gene in exon and 98.9% identity in intron sequences. The entire mitochondrial cytochrome b gene of the krait species B. candidus from Java and B. multicinctus from Taiwan was sequenced for comparison, suggesting that these snakes are phylogenetically closely related. alpha-Bungarotoxin appears to be widely present and conserved in Southeast and East Asian black-and-white kraits across populations and taxa.
Collapse
Affiliation(s)
- Ulrich Kuch
- Zentrum der Rechtsmedizan, Klinikum der Johann Wolfgang Goethe-Universität, Kennedyallee 104, 60596 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Wang HL, Gao F, Bren N, Sine SM. Curariform antagonists bind in different orientations to the nicotinic receptor ligand binding domain. J Biol Chem 2003; 278:32284-91. [PMID: 12799358 DOI: 10.1074/jbc.m304366200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Curariform alkaloids competitively inhibit muscle acetylcholine receptors (AChR) by bridging the alpha and non-alpha subunits that form the ligand-binding site. Here we delineate bound orientations of d-tubocurarine (d-TC) and its methylated derivative metocurine using mutagenesis, ligand binding measurements, and computational methods. When tested against a series of lysine mutations in the epsilon subunit, the two antagonists show marked differences in the consequences of the mutations on binding affinity. The mutations epsilon L117K, epsilon Y111K, and epsilon L109K decrease affinity of metocurine by up to 3 orders of magnitude but only slightly alter affinity of d-TC. At the alpha subunit face of the binding site, the mutation alpha Y198T decreases affinity of both antagonists, but alpha Y198F preferentially enhances affinity of d-TC. Computation of antagonist docking orientations, based on our structural model of the alpha-epsilon site of the human AChR, indicates distinct orientations of each antagonist; the flatter metocurine fits into a pocket formed principally by the epsilon subunit, whereas the more compact d-TC spans the narrower crevasse between alpha and epsilon subunits. The side chains of epsilon Tyr-111 and epsilon Thr-117 juxtapose one of two quaternary nitrogens in metocurine but are remote from the equivalent quaternary nitrogen in d-TC, which instead closely approaches alpha Tyr-198. The different docked orientations arise through tilt of the curariform scaffold by approximately 60 degrees normal to the nitrogen-nitrogen axis, together with a 20 degrees rotation about the axis. The overall mutagenesis and computational results show that despite their similar structures, d-TC and metocurine bind in distinctly different orientations to the adult human AChR.
Collapse
Affiliation(s)
- Hai-Long Wang
- Receptor Biology Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
50
|
|