1
|
Andrusaite A, Lewis J, Frede A, Farthing A, Kästele V, Montgomery J, Mowat A, Mann E, Milling S. Microbiota-derived butyrate inhibits cDC development via HDAC inhibition, diminishing their ability to prime T cells. Mucosal Immunol 2024:S1933-0219(24)00084-9. [PMID: 39142634 DOI: 10.1016/j.mucimm.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Conventional dendritic cells (cDC) are central to maintaining the balance between protective immune responses and tolerance to harmless antigens, especially in the intestine. Short chain fatty acids (SCFAs) such as butyrate play critical roles in regulating intestinal immunity, but the underlying mechanisms remain unclear. Here we demonstrate that microbiota-derived butyrate alters intestinal cDC populations in vivo resulting in decreased numbers of the cDC2 lineage. By establishing a novel in vitro culture model, we show that butyrate has a direct and selective ability to repress the development of cDC2 from cDC precursors, an effect that is independent of G-protein coupled receptors (GPCRs) and is due to inhibition of histone deacetylase 3. Finally, cDC derived from pre-cDC in the presence of butyrate in vitro express lower levels of costimulatory molecules and have a decreased ability to prime naïve T cells. Together, our data show that butyrate affects the developmental trajectory of cDC, selectively repressing the cDC2 lineage and reducing their ability to stimulate T cells. These properties may help explain the ability of butyrate to maintain homeostasis in the intestine.
Collapse
Affiliation(s)
- Anna Andrusaite
- School of Infection and Immunity, University of Glasgow, UK.
| | - Jennifer Lewis
- School of Infection and Immunity, University of Glasgow, UK
| | - Annika Frede
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Verena Kästele
- School of Infection and Immunity, University of Glasgow, UK
| | | | - Allan Mowat
- School of Infection and Immunity, University of Glasgow, UK
| | - Elizabeth Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK
| | - Simon Milling
- School of Infection and Immunity, University of Glasgow, UK.
| |
Collapse
|
2
|
Jiang F, Hedaya OM, Khor E, Wu J, Auguste M, Yao P. RNA binding protein PRRC2B mediates translation of specific mRNAs and regulates cell cycle progression. Nucleic Acids Res 2023; 51:5831-5846. [PMID: 37125639 PMCID: PMC10287950 DOI: 10.1093/nar/gkad322] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Accumulating evidence suggests that posttranscriptional control of gene expression, including RNA splicing, transport, modification, translation and degradation, primarily relies on RNA binding proteins (RBPs). However, the functions of many RBPs remain understudied. Here, we characterized the function of a novel RBP, Proline-Rich Coiled-coil 2B (PRRC2B). Through photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation and sequencing (PAR-CLIP-seq), we identified transcriptome-wide CU- or GA-rich PRRC2B binding sites near the translation initiation codon on a specific cohort of mRNAs in HEK293T cells. These mRNAs, including oncogenes and cell cycle regulators such as CCND2 (cyclin D2), exhibited decreased translation upon PRRC2B knockdown as revealed by polysome-associated RNA-seq, resulting in reduced G1/S phase transition and cell proliferation. Antisense oligonucleotides blocking PRRC2B interactions with CCND2 mRNA decreased its translation, thus inhibiting G1/S transition and cell proliferation. Mechanistically, PRRC2B interactome analysis revealed RNA-independent interactions with eukaryotic translation initiation factors 3 (eIF3) and 4G2 (eIF4G2). The interaction with translation initiation factors is essential for PRRC2B function since the eIF3/eIF4G2-interacting defective mutant, unlike wild-type PRRC2B, failed to rescue the translation deficiency or cell proliferation inhibition caused by PRRC2B knockdown. Altogether, our findings reveal that PRRC2B is essential for efficiently translating specific proteins required for cell cycle progression and cell proliferation.
Collapse
Affiliation(s)
- Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Matthew Auguste
- Undergraduate Program in Biology and Medicine, Department of Biological Sciences: Molecular Genetics, University of Rochester, Rochester, NY 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
3
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Yoshida A, Phillips-Mason P, Tarallo V, Avril S, Koivisto C, Leone G, Diehl JA. Non-phosphorylatable cyclin D1 mutant potentiates endometrial hyperplasia and drives carcinoma with Pten loss. Oncogene 2022; 41:2187-2195. [PMID: 35210557 PMCID: PMC10056880 DOI: 10.1038/s41388-022-02243-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Cyclin D1 is a regulatory subunit of -Cyclin Dependent Kinases 4 and 6 (CDK4/6) and regulates progression from G1 to S phase of the cell cycle. Dysregulated cyclin D1-CDK4/6 contributes to abnormal cell proliferation and tumor development. Phosphorylation of threonine 286 of cyclin D1 is necessary for ubiquitin-dependent degradation. Non-phosphorylatable cyclin D1 mutants are stabilized and concentrated in the nucleus, contributing to genomic instability and tumor development. Studies investigating the tumor-promoting functions of cyclin D1 mutants have focused on the use of artificial promoters to drive the expression which unfortunately may not accurately reflect tumorigenic functions of mutant cyclin D1 in cancer development. We have generated a conditional knock-in mouse model where cyclin D1T286A is expressed under the control of its endogenous promoter following Cre-dependent excision of a lox-stop-lox sequence. Acute expression of cyclin D1T286A following tamoxifen-inducible Cre recombinase triggers inflammation, lymphocyte abnormality and ultimately mesenteric tumors in the intestine. Tissue-specific expression of cyclin D1T286A in the uterus and endometrium cooperates with Pten loss to drive endometrial hyperplasia and cancer. Mechanistically, cyclin D1T286A mutant activates NF-κB signaling, augments inflammation, and contributes to tumor development. These results indicate that mutation of cyclin D1 at threonine 286 has a critical role in regulating inflammation and tumor development.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Dermatology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Polly Phillips-Mason
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vincenzo Tarallo
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stefanie Avril
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher Koivisto
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gustavo Leone
- Medical College of Wisconsin Cancer Center, Department of Biochemistry, Medical College of Wisconsin, Wauwatosa, WI, 53226, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Epigenetic dysregulation in various types of cells exposed to extremely low-frequency magnetic fields. Cell Tissue Res 2021; 386:1-15. [PMID: 34287715 PMCID: PMC8526474 DOI: 10.1007/s00441-021-03489-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms regulate gene expression, without changing the DNA sequence, and establish cell-type-specific temporal and spatial expression patterns. Alterations of epigenetic marks have been observed in several pathological conditions, including cancer and neurological disorders. Emerging evidence indicates that a variety of environmental factors may cause epigenetic alterations and eventually influence disease risks. Humans are increasingly exposed to extremely low-frequency magnetic fields (ELF-MFs), which in 2002 were classified as possible carcinogens by the International Agency for Research on Cancer. This review summarizes the current knowledge of the link between the exposure to ELF-MFs and epigenetic alterations in various cell types. In spite of the limited number of publications, available evidence indicates that ELF-MF exposure can be associated with epigenetic changes, including DNA methylation, modifications of histones and microRNA expression. Further research is needed to investigate the molecular mechanisms underlying the observed phenomena.
Collapse
|
6
|
Lee J, Kim HJ, Lee SJ, Lee MS. Effects of Hahella chejuensis-Derived Prodigiosin on UV-Induced ROS Production, Inflammation and Cytotoxicity in HaCaT Human Skin Keratinocytes. J Microbiol Biotechnol 2021; 31:475-482. [PMID: 33397835 PMCID: PMC9705880 DOI: 10.4014/jmb.2011.11024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.
Collapse
Affiliation(s)
- Jieun Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,S.J. Lee Phone: +82-31-670-3356 E-mail:
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors M.S. Lee Phone: +82-42-879-8292 E-mail:
| |
Collapse
|
7
|
Katopodis P, Khalifa MS, Anikin V. Molecular characteristics of uveal melanoma and intraocular tumors. Oncol Lett 2021; 21:9. [PMID: 33240415 PMCID: PMC7681201 DOI: 10.3892/ol.2020.12270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant melanomas within the eye present different types of metabolic and metastatic behavior. Uveal melanoma (UM) affects a quarter of a million individuals in the USA; however, the molecular pathogenesis is not well understood. Although UV radiation is a risk factor in cutaneous melanomas, it is not crucial for UM progression. Apart from chromosomal abnormalities, numerous major tumorigenic signaling pathways, including the PI3K/Akt, MAPK/ERK, Ras-association domain family 1 isoform A and Yes-associated protein/transcriptional co-activator with PDZ-binding motif signaling pathways, are associated with intraocular tumors. The present review describes the current insights regarding these signaling pathways that regulate the cell cycle and apoptosis, and could be used as potential targets for the treatment of UMs.
Collapse
Affiliation(s)
- Periklis Katopodis
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
| | - Mohammad S. Khalifa
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
| | - Vladimir Anikin
- College of Health, Medicine and Life Sciences, Brunel University, Uxbridge, London UB8 3PH, UK
- Division of Thoracic Surgery, The Royal Brompton and Harefield National Health Service Foundation Trust, Harefield Hospital, London UB9 6JH, UK
- Department of Oncology and Reconstructive Surgery, Sechenov First Moscow State Medical University, Moscow 119146, Russia
| |
Collapse
|
8
|
Yoshida A, Choi J, Jin HR, Li Y, Bajpai S, Qie S, Diehl JA. Fbxl8 suppresses lymphoma growth and hematopoietic transformation through degradation of cyclin D3. Oncogene 2020; 40:292-306. [PMID: 33122824 PMCID: PMC7808939 DOI: 10.1038/s41388-020-01532-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Overexpression of D-type cyclins in human cancer frequently occurs as a result of protein stabilization, emphasizing the importance of identification of the machinery that regulates their ubiqutin-dependent degradation. Cyclin D3 is overexpressed in ~50% of Burkitt’s lymphoma correlating with a mutation of Thr-283. However, the E3 ligase that regulates phosphorylated cyclin D3 and whether a stabilized, phosphorylation deficient mutant of cyclin D3, has oncogenic activity are undefined. We describe the identification of SCF-Fbxl8 as the E3 ligase for Thr-283 phosphorylated cyclin D3. SCF-Fbxl8 poly-ubiquitylates p-Thr-283 cyclin D3 targeting it to the proteasome. Functional investigation demonstrates that Fbxl8 antagonizes cell cycle progression, hematopoietic cell proliferation, and oncogene-induced transformation through degradation of cyclin D3, which is abolished by expression of cyclin D3T283A, a non-phosphorylatable mutant. Clinically, the expression of cyclin D3 is inversely correlated with the expression of Fbxl8 in lymphomas from human patients implicating Fbxl8 functions as a tumor suppressor. Fbxl8 suppresses cell division, cell proliferation, and tumorigenesis through phosphorylation-dependent degradation of cyclin D3. Fbxl8 suppresses oncogene-induced transformation of hematopoietic cells and lymphoma cell proliferation through cyclin D3 degradation.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jaewoo Choi
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong Ri Jin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yan Li
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sagar Bajpai
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shuo Qie
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Joshi HR, Hill HR, Zhou Z, He X, Voelkerding KV, Kumánovics A. Frontline Science: Cxxc5 expression alters cell cycle and myeloid differentiation of mouse hematopoietic stem and progenitor cells. J Leukoc Biol 2020; 108:469-484. [PMID: 32083332 DOI: 10.1002/jlb.1hi0120-169r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc finger epigenetic regulators. Various hematopoietic and nonhematopoietic roles have been assigned to CXXC5. In the present study, the role of Cxxc5 in myelopoiesis was studied using overexpression and short hairpin RNA-mediated knockdown in mouse early stem and progenitor cells defined as Lineage- Sca-1+ c-Kit+ (LSK) cells. Knockdown of Cxxc5 in mouse progenitor cells reduced monocyte and increased granulocyte development in ex vivo culture systems. In addition, ex vivo differentiation and proliferation experiments demonstrated that the expression of Cxxc5 affects the cell cycle in stem/progenitor cells and myeloid cells. Flow cytometry-based analyses revealed that down-regulation of Cxxc5 leads to an increase in the percentage of cells in the S phase, whereas overexpression results in a decrease in the percentage of cells in the S phase. Progenitor cells proliferate more after Cxxc5 knockdown, and RNA sequencing of LSK cells, and single-cell RNA sequencing of differentiating myeloid cells showed up-regulation of genes involved in the regulation of cell cycle after Cxxc5 knockdown. These results provide novel insights into the physiologic function of Cxxc5 during hematopoiesis, and demonstrate for the first time that it plays a role in monocyte development.
Collapse
Affiliation(s)
- Hemant R Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Harry R Hill
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Departments of Medicine and Pediatrics, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Zemin Zhou
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Xiao He
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Karl V Voelkerding
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Attila Kumánovics
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,ARUP Institute for Clinical and Experimental pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Hoesl C, Hundt JE, Rose C, Wolf R, Schneider MR, Dahlhoff M. Epidermal overexpression of LRIG1 disturbs development and homeostasis in skin by disrupting the ERBB system. J Dermatol Sci 2019; 96:185-188. [DOI: 10.1016/j.jdermsci.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/09/2023]
|
11
|
Kang H, Heo S, Shin JJ, Ji E, Tak H, Ahn S, Lee KJ, Lee EK, Kim W. A miR‐194/PTBP1/CCND3 axis regulates tumor growth in human hepatocellular carcinoma. J Pathol 2019; 249:395-408. [DOI: 10.1002/path.5325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Hoin Kang
- Department of BiochemistryThe Catholic University of Korea, College of Medicine Seoul South Korea
- Institute of Aging and Metabolic DiseasesThe Catholic University of Korea, College of Medicine Seoul South Korea
| | - Sungeun Heo
- Department of Molecular Science and TechnologyAjou University Suwon South Korea
| | - Jung Jae Shin
- Department of Molecular Science and TechnologyAjou University Suwon South Korea
| | - Eunbyul Ji
- Department of BiochemistryThe Catholic University of Korea, College of Medicine Seoul South Korea
| | - Hyosun Tak
- Department of BiochemistryThe Catholic University of Korea, College of Medicine Seoul South Korea
| | - Sojin Ahn
- Department of BiochemistryThe Catholic University of Korea, College of Medicine Seoul South Korea
| | - Kyung Jin Lee
- Department of Convergence Medicine, Asan Institute for Life SciencesUniversity of Ulsan College of Medicine Seoul South Korea
| | - Eun Kyung Lee
- Department of BiochemistryThe Catholic University of Korea, College of Medicine Seoul South Korea
- Institute of Aging and Metabolic DiseasesThe Catholic University of Korea, College of Medicine Seoul South Korea
| | - Wook Kim
- Department of Molecular Science and TechnologyAjou University Suwon South Korea
| |
Collapse
|
12
|
Sultan S. The effect of maternal type 2 diabetes on fetal endothelial gene expression and function. Acta Diabetol 2019; 56:73-85. [PMID: 30167870 DOI: 10.1007/s00592-018-1207-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/05/2018] [Indexed: 01/12/2023]
Abstract
AIMS Maternal type 2 diabetes (T2D) can result in adverse pathological outcomes to both the mother and fetus. The present study aimed to investigate the pathological effects of maternal T2D on the gene expression patterns and functions of fetal human umbilical vein endothelial cells (HUVECs), a representative of fetal vascular cells. METHODS Cell proliferation, apoptosis, mitochondrial ROS production and cell cycle were measured using flowcytometry. Genome-wide expression was measured using Affymetrix microarray. Gene expression of CCND2, STAT1, ITGB8, ALDH2, and ADAMTS5 was measured using real-time PCR. RESULTS HUVECs derived from T2D mothers (T2D-HUVECs) showed elevated levels of mitochondrial superoxide anions, reduced cell proliferation, and increased apoptosis rates relative to HUVECs derived from healthy control mothers (C.HUVECs). In addition , T2D-HUVECs showed a decreased proportion of cells in G0/G1 and cell cycle arrest at the S phases relative to controls. Interestingly, microarray experiments revealed significant differences in genome-wide expression profiles between T2D-HUVECs and C.HUVECs. In particular, the analysis identified 90 upregulated genes and 42 downregulated genes. The upregulated genes CCND2, STAT1, ITGB8, ALDH2, and ADAMTS5 were validated as potential biomarkers for fetal endothelial dysfunction. Functional network analysis revealed that these genes are the important players that participate in the pathogenesis of endothelial dysfunction, which in turn influences the inflammatory response, cellular movement, and cardiovascular system development and function. CONCLUSION Sustained alterations in the overall function of T2D-HUVEC and gene expression profiles provided insights into the role of maternal T2D on the pathophysiology of the fetal endothelial dysfunction.
Collapse
Affiliation(s)
- Samar Sultan
- Medical Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Yamaga Y, Fukuda A, Nakanishi Y, Goto N, Matsumoto Y, Yoshioka T, Maruno T, Chiba T, Seno H. Gene expression profile of Dclk1 + cells in intestinal tumors. Dig Liver Dis 2018; 50:1353-1361. [PMID: 30001952 DOI: 10.1016/j.dld.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accumulating evidence has shown the existence of tumor stem cells with therapeutic potential. Previously, we reported that doublecortin like kinase 1 (Dclk1) marks tumor stem cells but not normal stem cells in the intestine of ApcMin/+ mice, and that Dclk1- and Lgr5-double positive tumor cells are the tumor stem cells of intestinal tumors. AIM To investigate molecules highly expressed in the Dclk1+ normal intestinal and Dclk1+ tumor cells in ApcMin/+ mice. METHODS We used microarray analyses to examine the gene expression profile of Dclk1+ cells in both mouse normal intestinal epithelium and ApcMin/+ mouse intestinal tumors. We also performed immunofluorescence analyses. RESULTS Genes related to microtubules and the actin cytoskeleton (e.g., Rac2), and members of the Src family kinases (i.e., Hck, Lyn, Csk, and Ptpn6) were highly expressed in both Dclk1+ normal intestinal and Dclk1+ tumor cells. Phosphorylated Hck and phosphorylated Lyn were expressed in Lgr5+ cells in the intestinal tumors of Lgr5EGFP-IRES-CreERT2/+; ApcMin/+ mice. CONCLUSION We revealed factors that are highly expressed in Dclk1+ intestinal tumor cells, which may help to develop cancer stem cell-targeted therapy in future.
Collapse
Affiliation(s)
- Yuichi Yamaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
14
|
Zhao Z, Yang F, Liu Y, Fu K, Jing S. MicroRNA-409-3p suppresses cell proliferation and cell cycle progression by targeting cyclin D2 in papillary thyroid carcinoma. Oncol Lett 2018; 16:5237-5242. [PMID: 30250593 DOI: 10.3892/ol.2018.9246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRs) function as tumor suppressors or oncogenes in tumor development and progression. The present study reported that miR-409-3p was significantly downregulated in human papillary thyroid carcinoma (PTC) tissues and cell lines. Overexpression of miR-409-3p suppressed cell proliferation and induced cell cycle G0/G1 phase arrest in PTC cells. Further study revealed that the transcriptional regulator cyclin D2 was a target of miR-409-3p, as miR-409-3p bound directly to its 3'-untranslated region and the miR-409-3p mimic reduced the protein expression levels of cyclin D2. In addition, restoration of cyclin D2 expression reversed the inhibitive effect of miR-409-3p on PTC cells. To the best of our knowledge, these findings demonstrate for the first time that miR-409-3p functions as a tumor suppressor in PTC and could serve as an efficient agent for therapy of PTC.
Collapse
Affiliation(s)
- Zhijun Zhao
- Department of Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fei Yang
- Department of Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan Liu
- Department of Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Kai Fu
- Department of Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shanghua Jing
- Department of Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
15
|
Yu X, Zhang Y, Cavazos D, Ma X, Zhao Z, Du L, Pertsemlidis A. miR-195 targets cyclin D3 and survivin to modulate the tumorigenesis of non-small cell lung cancer. Cell Death Dis 2018; 9:193. [PMID: 29416000 PMCID: PMC5833354 DOI: 10.1038/s41419-017-0219-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
miR-195 has recently been reported to function as a tumor suppressor in various cancers, including non-small cell lung cancer (NSCLC). However, the mechanisms by which miR-195 represses the tumorigenesis of NSCLC cells are not fully understood. We performed a high-throughput screen using an miRNA mimic library and confirmed the identification of miR-195 as a tumor suppressor in NSCLC. We demonstrated that overexpression or induced expression of miR-195 in lung tumors slows tumor growth and that repression of miR-195 accelerates tumor growth. In addition, we found that knockout of miR-195 promotes cancer cell growth. We demonstrated that miR-195 targets cyclin D3 to cause cell cycle arrest at the G1 phase and that miR-195 targets survivin to induce apoptosis and senescence in NSCLC cells. Overexpression of cyclin D3 or survivin reverses the effects of miR-195 in NSCLC cells. Through the analysis of data from The Cancer Genome Atlas, we confirmed that the expression of miR-195 is lower in tumors than in adjacent normal tissues and that low expression of miR-195 is associated with poor survival in both lung adenocarcinoma and squamous cell carcinoma patients. Specifically, we found that BIRC5, which codes for survivin, is upregulated in both adenocarcinoma and squamous cell carcinoma tissues and that high expression of BIRC5 is associated with poor survival in adenocarcinoma, but not squamous cell carcinoma. In addition, the ratio of miR-195 level to BIRC5 level is associated with both recurrence-free and overall survival in lung adenocarcinoma. Our results suggest that the miR-195/BIRC5 axis is a potential target for treatment of lung adenocarcinoma specifically, and NSCLC in general.
Collapse
Affiliation(s)
- Xiaojie Yu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yiqiang Zhang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David Cavazos
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Zhenze Zhao
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Liqin Du
- Department of Chemistry and Biochemistry, Texas State University at San Marcos, San Marcos, TX, USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA. .,Department of Pediatrics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
16
|
Liu Y, Liu WB, Liu KJ, Ao L, Cao J, Zhong JL, Liu JY. Overexpression of miR-26b-5p regulates the cell cycle by targeting CCND2 in GC-2 cells under exposure to extremely low frequency electromagnetic fields. Cell Cycle 2016; 15:357-67. [PMID: 26637059 DOI: 10.1080/15384101.2015.1120924] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The increasing prevalence of extremely low frequency electromagnetic fields (ELF-EMFs) exposure has raised considerable public concern regarding the potential hazardous effects of ELF-EMFs on male reproductive function. Increasing evidence indicates that miRNAs are necessary for spermatogenesis and male fertility. However, the regulation of miRNA expression and the roles of miRNAs in response to ELF-EMFs remain unclear. In our study, mouse spermatocyte-derived GC-2 cells were intermittently exposed to a 50 Hz ELF-EMF for 72 h (5 min on/10 min off) at magnetic field intensities of 1 mT, 2 mT and 3 mT. MiR-26b-5p was differentially expressed in response to different magnetic field intensities of ELF-EMFs. The host gene CTDSP1 showed an unmethylation status in GC-2 cells at different magnetic field intensities of ELF-EMF exposure. MiR-26b-5p had no significant, obvious influence on the cell viability, apoptosis or cell cycle of GC-2 cells. However, the overexpression of miR-26b-5p significantly decreased the percentage of G0/G1 phase cells and slightly increased the percentage of S phase cells compared to the sham group that was exposed to a 50 Hz ELF-EMF. Computational algorithms identified Cyclin D2 (CCND2) as a direct target of miR-26b-5p. MiR-26b-5p and a 50 Hz ELF-EMF altered the expression of CCND2 at both the mRNA and protein levels. Overexpressed miR-26b-5p in GC-2 cells can change the mRNA expression of CCND2 following 50 Hz ELF-EMF at 3 mT. These findings demonstrate that miR-26b-5p could serve as a potential biomarker following 50 Hz ELF-EMF exposure, and miR-26b-5p-CCND2-mediated cell cycle regulation might play a pivotal role in the biological effects of ELF-EMFs.
Collapse
Affiliation(s)
- Yong Liu
- a College of Bioengineering, Chongqing University , Chongqing , China.,b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| | - Wen-Bin Liu
- b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| | - Kai-Jun Liu
- b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| | - Lin Ao
- b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| | - Jia Cao
- b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| | - Julia Li Zhong
- a College of Bioengineering, Chongqing University , Chongqing , China
| | - Jin-Yi Liu
- b Institute of Toxicology, College of Preventive Medicine, Third Military Medical University , Chongqing , China
| |
Collapse
|
17
|
Li XX, Liu YM, Li YJ, Xie N, Yan YF, Chi YL, Zhou L, Xie SY, Wang PY. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98. J Cell Mol Med 2016; 20:1159-69. [PMID: 26840039 PMCID: PMC4882993 DOI: 10.1111/jcmm.12765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin‐D2‐regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p‐RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2‐3′ untranslated region is targeted by miR‐98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p‐RB1 expression was regulated by miR‐98. The results indicated that miR‐98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR‐98 might be related to regulation of Bcl‐2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR‐98 decreased in 4.5 g/l glucose‐treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR‐98 significantly decreased in aortas of established streptozotocin (STZ)‐induced diabetic rat model compared with that in control rats; but cyclin D2 and p‐RB1 levels remarkably increased in aortas of STZ‐induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up‐regulation and miR‐98 down‐regulation in the RAOECs. By regulating cyclin D2, miR‐98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Yue-Mei Liu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Ning Xie
- Yantaishan Hospital, Yantai, Shandong, China
| | - Yun-Fei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Yong-Liang Chi
- Shandong China Traditional Medical Affiliated Hospital, Jinan, China
| | - Ling Zhou
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China.,Institute of Epidemiology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
18
|
van den Berg SM, Seijkens TTP, Kusters PJH, Beckers L, den Toom M, Smeets E, Levels J, de Winther MPJ, Lutgens E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB J 2016; 30:1779-88. [PMID: 26813974 DOI: 10.1096/fj.201500175] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
Obesity is associated with chronic low-grade inflammation, characterized by leukocytosis and inflammation in the adipose tissue. Continuous activation of the immune system is a stressor for hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Here we studied how diet-induced obesity (DIO) affects HSPC population dynamics in the BM. Eight groups of age-matched C57Bl/6 mice received a high-fat diet (45% kilocalories from fat) ranging from 1 d up to 18 wk. The obesogenic diet caused decreased proliferation of lineage(-)Sca-1(+)c-Kit(+) (LSK) cells in the BM and a general suppression of progenitor cell populations including common lymphoid progenitors and common myeloid progenitors. Within the LSK population, DIO induced a shift in stem cells that are capable of self-renewal toward maturing multipotent progenitor cells. The higher differentiation potential resulted in increased lymphoid and myeloid ex vivo colony-forming capacity. In a competitive BM transplantation, BM from obese animals showed impaired multilineage reconstitution when transplanted into chow-fed mice. Our data demonstrate that obesity stimulates the differentiation and reduces proliferation of HSPCs in the BM, leading to a decreased HSPC population. This implies that the effects of obesity on HSPCs hampers proper functioning of the immune system.-Van den Berg, S. M., Seijkens, T. T. P., Kusters, P. J. H., Beckers, L., den Toom, M., Smeets, E., Levels, J., de Winther, M. P. J., Lutgens, E. Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow.
Collapse
Affiliation(s)
- Susan M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Smeets
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes Levels
- Department of Experimental Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Menno P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention, Ludwig Maximillians University, Munich, Germany
| |
Collapse
|
19
|
Zhuang Y, Mao JQ, Yu M, Dong LY, Fan YL, Lv ZQ, Xiao MD, Yuan ZX. Hyperlipidemia induces vascular smooth muscle cell proliferation involving Wnt/β-catenin signaling. Cell Biol Int 2015; 40:121-30. [PMID: 26346812 DOI: 10.1002/cbin.10543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023]
Abstract
Hyperlipidemia has been shown to stimulate vascular smooth muscle cell (VSMC) proliferation. Wnt signaling pathway plays a critical role in embryonic development and cell proliferation. In this study, Sprague-Dawley rats fed with high-fat or normal diet for 12 weeks were sacrificed, and the thoracic aorta was harvested to determine wnt3a, β-catenin, T-cell factor 4 (TCF4), and cyclin D1 expressions. VSMC proliferation within thoracic aorta and lipid accumulation within VSMCs were detected. Rat aortic VSMCs were cultured in serum from rats with hyperlipidemia or DKK-1; Wnt3a, β-catenin, TCF4, and cyclin D1 expressions, and cell cycle distribution were determined. The findings demonstrated that increased number of VSMCs, lipid droplets, and vacuoles within thoracic aorta in the high-fat-fed group. Compared with controls, VSMCs from high-fat-fed rats showed higher mRNA expressions of wnt3a, β-catenin, TCF4, and cyclin D1, as well as in VSMCs cultured with hyperlipidemic serum. After 24 h, VSMCs stimulated with hyperlipidemic serum showed significantly increased cell number and S-phase entry compared with cells exposed to normolipidemic serum. These effects were blocked by DKK-1. These results suggest that Wnt/β-catenin signaling plays an important role in hyperlipidemia-induced VSMC proliferation.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Jian-Qiang Mao
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Li-Ya Dong
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Yong-Liang Fan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Zhi-Qian Lv
- Department of Cardiothoracic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, PR China
| | - Ming-Di Xiao
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| | - Zhong-Xiang Yuan
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, PR China
| |
Collapse
|
20
|
Abstract
Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2.
Collapse
|
21
|
Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK. A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10. J Neuroimmune Pharmacol 2015; 10:318-32. [PMID: 25980325 PMCID: PMC4528965 DOI: 10.1007/s11481-015-9611-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 01/03/2023]
Abstract
We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.
Collapse
MESH Headings
- Animals
- Anisoles/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Coculture Techniques
- Cyclohexanols
- Dose-Response Relationship, Drug
- Female
- Interleukin-10/biosynthesis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Rebecca H. Robinson
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Xiaoxuan Fan
- Manager, Flow Cytometry Facility, Temple University School of Medicine, Philadelphia, PA 19140
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19140
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
22
|
Xia B, Yang S, Liu T, Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer 2015; 14:57. [PMID: 25889927 PMCID: PMC4359570 DOI: 10.1186/s12943-015-0322-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a significant cause of morbidity and mortality. MicroRNAs play important roles in cancer development and progression. The microRNA miR-211 is localized on intron 6 of the Trpm1 gene at 15q13-q14, a locus that is frequently lost in neoplasms. Its function and loss-of-function have been described in normal and cancer cells and tissues. miR-211 is known to be dysregulated in ovarian cancer: however, its function and the downstream effect of its loss-of-function in ovarian cancer have not been described before. METHODS We analyzed miR-211 expression in clinical samples of primary EOC tissues compared to normal epithelial ovarian tissues and in the EOC cell lines: OVCAR3, Caov3, OVCA429, SKOV3 and A2780 compared to human ovarian surface epithelial cells. We then investigated the effect of miR-211 on EOC cell proliferation and apoptosis by counting cell numbers, MTT, colony formation, cell cycle, and PI/Annexin V staining assays. A luciferase reporter system was developed to assess miR-211 regulation of the predicted targets. Expression level of discovered targets and correlation with miR-211 expression were analyzed in EOC tissues. Finally, OVCAR3 stably expressing miR-211 or control cells were injected subcutaneously into mice to determine in vivo effect of miR-211 on tumorigenesis. RESULTS We found that the expression of miR-211 is downregulated in EOC tissues and cell lines compared to normal epithelial ovarian tissue and human ovarian surface epithelial cells, respectively. miR-211 was found to arrest cells in the G0/G1-phase, inhibit proliferation and induce apoptosis. Cyclin D1 and CDK6 were found to be direct targets of miR-211, and when overexpressed in miR-211-expressing EOC cells, could restore proliferative ability. Finally, in vitro investigation confirmed that miR-211 is a tumor suppressor that controls Cyclin D1 and CDK6 expression. CONCLUSIONS Our results demonstrate that miR-211 is a tumor suppressor that controls expression of Cyclin D1 and CDK6, and that its downregulation results in overexpression of Cyclin D1 and CDK6 which increases proliferation ability of EOC cells to proliferate compared to normal cells.
Collapse
Affiliation(s)
- Bairong Xia
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Shanshan Yang
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Tianbo Liu
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Ge Lou
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| |
Collapse
|
23
|
QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies. BMC Genomics 2014; 15:1004. [PMID: 25410110 PMCID: PMC4253998 DOI: 10.1186/1471-2164-15-1004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/31/2014] [Indexed: 11/21/2022] Open
Abstract
Background The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus, Hereford and Simmental × Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake. Results A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected P-value <0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations. The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance, respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability ranged from 0.21 to 0.49 for residual feed intake across the 4 populations. Conclusions This GWAS study, which is the largest performed for feed efficiency and its component traits in beef cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive genetic variance within each population. Differences in the QTL identified among the different populations may be due to differences in power to detect QTL, environmental variation, or differences in the genetic architecture of trait variation among breeds. These results enhance our understanding of the biology of growth, feed intake and utilisation in beef cattle.
Collapse
|
24
|
WANG YUPING, CHEN JIE, WANG LIN, HUANG YUJI, LENG YE, WANG GUIYING. Fangchinoline induces G0/G1 arrest by modulating the expression of CDKN1A and CCND2 in K562 human chronic myelogenous leukemia cells. Exp Ther Med 2013; 5:1105-1112. [PMID: 23596478 PMCID: PMC3627453 DOI: 10.3892/etm.2013.924] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease caused by the oncoprotein BCR-ABL, which exhibits a constitutive tyrosine kinase activity. Imatinib mesylate (IM), an inhibitor of the tyrosine kinase activity of BCR-ABL, has been used as a first-line therapy for CML. However, IM is less effective in the accelerated phase and blastic phases of CML and certain patients develop IM resistance due to the mutation and amplification of the BCR-ABL gene. Fangchinoline, an important chemical constituent from the dried roots of Stephaniae tetrandrae S. Moore, exhibits significant antitumor activity in various types of cancers, including breast, prostate and hepatocellular carcinoma. However, the effects and the underlying mechanisms of fangchinoline in CML remain unclear. In the present study, we identified that fangchinoline inhibits cell proliferation in a dose- and time-dependent manner in K562 cells derived from the blast crisis of CML. Additional experiments revealed that fangchinoline induces cell cycle arrest at the G0/G1 phase and has no effect on apoptosis, which is mediated through the upregulation of cyclin-dependent kinase (CDK)-N1A and MCL-1 mRNA levels, as well as the downregulation of cyclin D2 (CCND2) mRNA levels. These findings suggest the potential of fangchinoline as an effective antitumor agent in CML.
Collapse
Affiliation(s)
- YUPING WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Department of Biochemistry, School of Medicine, Jinggangshan University, Jiangxi 343009
| | - JIE CHEN
- Department of Hematology, Changhai Hospital, The Second Military Medical University, Shanghai 200433
| | - LIN WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Department of Endocrinology, East Hospital, Tongji University School of Medcine, Shanghai 200120,
P.R. China
| | - YUJI HUANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
| | - YE LENG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
| | - GUIYING WANG
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092
- Correspondence to: Dr Guiying Wang, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China, E-mail:
| |
Collapse
|
25
|
Li D, Yang P, Li H, Cheng P, Zhang L, Wei D, Su X, Peng J, Gao H, Tan Y, Zhao Z, Li Y, Qi Z, Rui Y, Zhang T. MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci 2012; 91:440-447. [PMID: 22963810 DOI: 10.1016/j.lfs.2012.08.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
AIMS MicroRNA-1 (miR-1) has been demonstrated as a tumor-suppressive miRNA, which shows a down-regulated pattern in several human malignancies including hepatocellular carcinoma (HCC). However, the pathophysiologic roles of miR-1 and their mechanisms in HCC tumorigenesis are still not totally elucidated. MAIN METHODS Pre-miR-1 was cloned into pSuper plasmid to overexpress the miR-1 in hepatoma cells. Real-time PCR and Western blot were applied to detect miR-1, ET-1 mRNA and protein levels respectively. Dual luciferase reporter assay was conducted to investigate the binding site of miR-1 on 3'UTR of ET-1 mRNA. Proliferation of hepatoma cells was evaluated by MTT assay. KEY FINDINGS We observed that over-expression of miR-1 by miRNA-expressing plasmid transfection in HepG2 and Hep3B cells significantly reduced the proliferation of these cells. To explore the mechanism, we examined the potential target genes of miR-1 by bioinformatics. A potent mitogen, Endothelin-1 (ET-1), attracted our attention. Elevated expression of ET-1 but reduced miR-1 level was detected both in human liver cancer tissues and in hepatoma cell lines using Western Blot and miRNA real-time PCR respectively. By the over-expression and inhibition of miR-1 in HepG2 and Hep3B, we confirmed that miR-1 negatively regulated ET-1 expression in hepatoma cells. A luciferase reporter assay showed that miR-1 regulation was established by pairing to a complementary binding site within the ET-1 3'UTR. Finally, attenuated proliferation of hepatoma cells by over-expression of miR-1 could be partially restored by exogenous ET-1 treatment. SIGNIFICANCE Our findings demonstrate that miR-1 could inhibit ET-1 expression to attenuate the proliferation of hepatoma cells.
Collapse
Affiliation(s)
- Dong Li
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Pengyuan Yang
- Department of Pharmacology and School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hua Li
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Peng Cheng
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Ling Zhang
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Dong Wei
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Xiaomei Su
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Jingjing Peng
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Hui Gao
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Yong Tan
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Zhenguo Zhao
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Yan Li
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Zhongchun Qi
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China
| | - Yaocheng Rui
- Department of Pharmacology and School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Tao Zhang
- Department of Oncology, Chengdu Military General Hospital, Chengdu, Si Chuan Province, China.
| |
Collapse
|
26
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
27
|
Apostolidis PA, Lindsey S, Miller WM, Papoutsakis ET. Proposed megakaryocytic regulon of p53: the genes engaged to control cell cycle and apoptosis during megakaryocytic differentiation. Physiol Genomics 2012; 44:638-50. [PMID: 22548738 DOI: 10.1152/physiolgenomics.00028.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During endomitosis, megakaryocytes undergo several rounds of DNA synthesis without division leading to polyploidization. In primary megakaryocytes and in the megakaryocytic cell line CHRF, loss or knock-down of p53 enhances cell cycling and inhibits apoptosis, leading to increased polyploidization. To support the hypothesis that p53 suppresses megakaryocytic polyploidization, we show that stable expression of wild-type p53 in K562 cells (a p53-null cell line) attenuates the cells' ability to undergo polyploidization during megakaryocytic differentiation due to diminished DNA synthesis and greater apoptosis. This suggested that p53's effects during megakaryopoiesis are mediated through cell cycle- and apoptosis-related target genes, possibly by arresting DNA synthesis and promoting apoptosis. To identify candidate genes through which p53 mediates these effects, gene expression was compared between p53 knock-down (p53-KD) and control CHRF cells induced to undergo terminal megakaryocytic differentiation using microarray analysis. Among substantially downregulated p53 targets in p53-KD megakaryocytes were cell cycle regulators CDKN1A (p21) and PLK2, proapoptotic FAS, TNFRSF10B, CASP8, NOTCH1, TP53INP1, TP53I3, DRAM1, ZMAT3 and PHLDA3, DNA-damage-related RRM2B and SESN1, and actin component ACTA2, while antiapoptotic CKS1B, BCL2, GTSE1, and p53 family member TP63 were upregulated in p53-KD cells. Additionally, a number of cell cycle-related, proapoptotic, and cytoskeleton-related genes with known functions in megakaryocytes but not known to carry p53-responsive elements were differentially expressed between p53-KD and control CHRF cells. Our data support a model whereby p53 expression during megakaryopoiesis serves to control polyploidization and the transition from endomitosis to apoptosis by impeding cell cycling and promoting apoptosis. Furthermore, we identify a putative p53 regulon that is proposed to orchestrate these effects.
Collapse
Affiliation(s)
- Pani A Apostolidis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
| | | | | | | |
Collapse
|
28
|
Colmegna I, Pryshchep S, Oishi H, Goronzy JJ, Weyand CM. Dampened ERK signaling in hematopoietic progenitor cells in rheumatoid arthritis. Clin Immunol 2012; 143:73-82. [PMID: 22342385 DOI: 10.1016/j.clim.2012.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 02/07/2023]
Abstract
In rheumatoid arthritis (RA), hematopoietic progenitor cells (HPC) have age-inappropriate telomeric shortening suggesting premature senescence and possible restriction of proliferative capacity. In response to hematopoietic growth factors RA-derived CD34(+) HPC expanded significantly less than age-matched controls. Cell surface receptors for stem cell factor (SCF), Flt 3-Ligand, IL-3 and IL-6 were intact in RA HPC but the cells had lower transcript levels of cell cycle genes, compatible with insufficient signal strength in the ERK pathway. Cytokine-induced phosphorylation of ERK1/2 was diminished in RA HPC whereas phosphorylated STAT3 and STAT5 molecules accumulated to a similar extent as in controls. Confocal microscopy demonstrated that the membrane-proximal colocalization of K-Ras and B-Raf was less efficient in RA-derived CD34(+) cells. Thus, hyporesponsiveness of RA HPC to growth factors results from dampening of the ERK signaling pathways; with a defect localized in the very early steps of the ERK signaling cascade.
Collapse
Affiliation(s)
- Inés Colmegna
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, USA
| | | | | | | | | |
Collapse
|
29
|
Meng FK, Sun HY, Tan XY, Li CR, Zhou JF, Liu WL. Negative regulation of cyclin D3 expression by transcription factor c-Ets1 in umbilical cord hematopoietic cells. Acta Pharmacol Sin 2011; 32:1159-64. [PMID: 21841808 DOI: 10.1038/aps.2011.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM To investigate the role of transcription factor c-Ets1 in cyclin D3 expression and its effects on the proliferation of umbilical cord hematopoietic cells. METHODS Cyclin D3 promoter deletion constructs were generated and transfected into CD34(+) cells. Dual luciferase reporter assays and TFSEARCH software were used to identify negative regulatory domains and to predict putative transcription factors involved in cyclin D3 downregulation. Expression of c-Ets1 in CD34(+) cells was detected using electrophoretic mobility shift and super shift assays. Point mutants of c-Ets1 binding sites were constructed. The wild-type c-Ets1 and the mutant promoter constructs were co-transfected into CD34(+) cells to determine the promoter activity. The impact of c-Ets1 expression on the proliferation of CD34(+) cells was assessed using MTT assay. RESULTS Nine cyclin D3 promoter deletion constructs were generated. A negative regulatory domain containing c-Ets1 binding sites was identified between -439 bp and -362 bp. Transfection of the promoter deletion constructs containing mutant c-Ets1 binding sites enhanced cyclin D3 promoter activity. However, the opposite results were observed when CD34(+) cells were co-transfected with wildtype c-Ets1 and its promoter deletion constructs. The overexpression of c-Ets1 could suppress cyclin D3 mRNA and protein levels. In addition, it inhibits the proliferation of CD34(+) cells. CONCLUSION c-Ets1 functions as a negative transcription factor, down-regulating the expression of cyclin D3, which leads to inhibition of CD34(+) cell proliferation.
Collapse
|
30
|
Fernandes MS, Reddy MM, Croteau NJ, Walz C, Weisbach H, Podar K, Band H, Carroll M, Reiter A, Larson RA, Salgia R, Griffin JD, Sattler M. Novel oncogenic mutations of CBL in human acute myeloid leukemia that activate growth and survival pathways depend on increased metabolism. J Biol Chem 2010; 285:32596-605. [PMID: 20622007 DOI: 10.1074/jbc.m110.106161] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by multiple mutagenic events that affect proliferation, survival, as well as differentiation. Recently, gain-of-function mutations in the α helical structure within the linker sequence of the E3 ubiquitin ligase CBL have been associated with AML. We identified four novel CBL mutations, including a point mutation (Y371H) and a putative splice site mutation in AML specimens. Characterization of these two CBL mutants revealed that coexpression with the receptor tyrosine kinases FLT3 (Fms-like tyrosine kinase 3) or KIT-induced ligand independent growth or ligand hyperresponsiveness, respectively. Growth of cells expressing mutant CBL required expression and kinase activity of FLT3. In addition to the CBL-dependent phosphorylation of FLT3 and CBL itself, transformation was associated with activation of Akt and STAT5 and required functional expression of the small GTPases Rho, Rac, and Cdc42. Furthermore, the mutations led to constitutively elevated intracellular reactive oxygen species levels, which is commonly linked to increased glucose metabolism in cancer cells. Inhibition of hexokinase with 2-deoxyglucose blocked the transforming activity of CBL mutants and reduced activation of signaling mechanisms. Overall, our data demonstrate that mutations of CBL alter cellular biology at multiple levels and require not only the activation of receptor proximal signaling events but also an increase in cellular glucose metabolism. Pathways that are activated by CBL gain-of-function mutations can be efficiently targeted by small molecule drugs.
Collapse
Affiliation(s)
- Margret S Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Karaçay B, Li S, Bonthius DJ. Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss and gene expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res 2008; 32:1439-50. [PMID: 18565154 DOI: 10.1111/j.1530-0277.2008.00720.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol abuse during pregnancy injures the fetal brain. One of alcohol's most important neuroteratogenic effects is neuronal loss. Rat models have shown that the cerebellum becomes less vulnerable to alcohol-induced neuronal death as it matures. We determined if maturation-dependent alcohol resistance occurs in mice and compared patterns of gene expression during the alcohol resistant and sensitive periods. METHODS Neonatal mice received alcohol daily over postnatal day (PD) 2 to 4 or PD8 to 10. Purkinje cells and granule cells were quantified on PD25. The temporal expression patterns of 4 neuro-developmental genes and 3 neuro-protective genes in the cerebellum were determined daily over PD0 to 15 to determine how gene expression changes as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. The effect of alcohol on expression of these genes was determined when the cerebellum is alcohol sensitive (PD4) and resistant (PD10). RESULTS Purkinje and granule cells were vulnerable to alcohol-induced death at PD2 to 4, but not at PD8 to 10. Acquisition of maturation-dependent alcohol resistance coincided with changes in the expression of neurodevelopmental genes. The vulnerability of cerebellar neurons to alcohol toxicity declined in parallel with decreasing levels of Math1 and Cyclin D2, markers of immature granule cells. Likewise, the rising resistance to alcohol toxicity paralleled increasing levels of GABA alpha-6 and Wnt-7a, markers of mature granule neurons. Expression of growth factors and genes with survival promoting function (IGF-1, BDNF, and cyclic AMP response element binding protein) did not rise as the cerebellum transitioned from alcohol-vulnerable to alcohol-resistant. All 3 were expressed at substantial levels during the vulnerable period and were not expressed at higher levels later. Acute alcohol exposure altered the expression of neurodevelopmental genes and growth factor genes when administered either during the alcohol vulnerable period or resistant period. However, the patterns in which gene expression changed varied among the genes and depended on timing of alcohol administration. CONCLUSIONS Mice have a temporal window of vulnerability in the first week of life, during which cerebellar neurons are more sensitive to alcohol toxicity than during the second week. Expression of genes governing neuronal maturation changes in synchrony with the acquisition of alcohol resistance. Growth factors do not rise as the cerebellum transitions from alcohol-vulnerable to alcohol-resistant. Thus, a process intrinsic to neuronal maturation, rather than rising levels of growth factors, likely underlies maturation-dependent alcohol resistance.
Collapse
Affiliation(s)
- Bahri Karaçay
- Division of Child Neurology, Department of Pediatrics, 200 Hawkins Dr., University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
32
|
Denicourt C, Legault P, McNabb FAC, Rassart E. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene 2007; 27:1253-62. [PMID: 17873913 DOI: 10.1038/sj.onc.1210750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously reported the identification of a novel 17 kDa truncated isoform of the cyclin D2 activated in 13% of the leukemias induced by the Graffi murine leukemia retrovirus. Retroviral integration in the Gris1 locus causes an alternative splicing of the mouse cyclin D2 gene and expression of a truncated protein of 159 amino acids that is detected at high levels in the Gris1 tumors and also in normal mouse tissues mainly the brain and ovaries. A truncated form of the cyclin D2 was also found in human. We show here that both mouse- and human-truncated cyclin D2 are able to transform primary mouse embryo fibroblasts (MEF) when co-expressed with an activated Ras protein. The truncated cyclin D2 localizes only to the cytoplasm of transfected cells. It has retained the ability to interact with cyclin-dependent kinases (CDKs), although it is a poor catalyst of pRb phosphorylation. Interestingly, the presence of a similar, alternatively spliced cyclin D2 mRNA was also detected in some human brain tumors.
Collapse
Affiliation(s)
- C Denicourt
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Québec, Canada
| | | | | | | |
Collapse
|
33
|
Cytokine signaling to the cell cycle. Immunol Res 2007; 39:173-84. [DOI: 10.1007/s12026-007-0080-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
|
34
|
Kida A, Kakihana K, Kotani S, Kurosu T, Miura O. Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007; 26:6630-40. [PMID: 17486076 DOI: 10.1038/sj.onc.1210490] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cyclin D2 plays an important role in regulation of hematopoietic cell proliferation by cytokines and is implicated in oncogenesis of various hematopoietic malignancies. However, mechanisms regulating cyclin D2 stability and its expression level have remained to be known. Here, we demonstrate that interleukin-3 signaling stabilizes cyclin D2 by inhibition of glycogen synthase kinase-3beta (GSK3beta) through Janus kinase2-dependent activation of phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway in hematopoietic 32Dcl3 cells. On the other hand, osmotic stress was shown to induce a rapid proteasomal degradation of cyclin D2, which was mediated by activation of p38. GSK3beta and p38 was demonstrated to phosphorylate cyclin D2 on Thr280 in vitro, while a cyclin D2 mutant with this residue substituted with Ala was found to be resistant to ubiquitination and proteasome-dependent degradation in 32Dcl3 cells. Inhibition of the PI3K pathway or induction of osmotic stress also caused a rapid proteasomal degradation of cyclin D2 in primary leukemic or myeloma cells. These results indicate that cyclin D2 expression in normal and malignant hematopoietic cells is regulated by ubiquitin/proteasome-dependent degradation that is triggered by Thr280 phosphorylation by GSK3beta or p38, which is induced by inhibition of the PI3K pathway or by osmotic stress, respectively.
Collapse
Affiliation(s)
- A Kida
- Department of Hematology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Låhne HU, Kloster MM, Lefdal S, Blomhoff HK, Naderi S. Degradation of cyclin D3 independent of Thr-283 phosphorylation. Oncogene 2006; 25:2468-76. [PMID: 16331257 DOI: 10.1038/sj.onc.1209278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cyclin D3 has been shown to play a major role in the regulation of cell cycle progression in lymphocytes. It is therefore important to understand the mechanisms involved in the regulation of this protein. We have previously shown that both basal and cAMP-induced degradation of cyclin D3 in Reh cells is dependent on Thr-283 phosphorylation by glycogen synthase kinase-3beta (GSK-3beta). We now provide evidence of an alternative mechanism being involved in the regulation of cyclin D3 degradation. Treatment of lymphoid cells with okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A), induces rapid phosphorylation and proteasomal degradation of cyclin D3. This degradation is not inhibited by the GSK-3beta inhibitors lithium or Kenpaullone, or by substitution of Thr-283 with Ala on cyclin D3, indicating that cyclin D3 can be degraded independently of Thr-283 phosphorylation and GSK-3beta activity. Interestingly, in vitro experiments revealed that PP1, but not PP2A, was able to dephosphorylate cyclin D3 efficiently, and PP1 was found to associate with His-tagged cyclin D3. These results support the hypothesis that PP1 constitutively keeps cyclin D3 in a stable, dephosphorylated state, and that treatment of cells with OA leads to phosphorylation and degradation of cyclin D3 through inhibition of PP1.
Collapse
Affiliation(s)
- H U Låhne
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1112 Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Hermitte F, Brunet de la Grange P, Belloc F, Praloran V, Ivanovic Z. Very Low O2Concentration (0.1%) Favors G0Return of Dividing CD34+Cells. Stem Cells 2006; 24:65-73. [PMID: 16123391 DOI: 10.1634/stemcells.2004-0351] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Physiological bone marrow oxygen concentrations are everywhere lower than 4% and almost null in some areas. We compared the effects of 20%, 3%, and 0.1% O2 concentrations on cord blood CD34+ cell survival, cycle, and functionality in serum-free cultures for 72 hours with or without interleukin-3 (IL-3). As from 24 hours, IL-3 improved cell survival and proliferation in all conditions. After 72 hours, cells were 1.5 and 2.5 times more in quiescence (G0) at 3% and 0.1% O2, respectively, than at 20%; transforming growth factor-beta signaling seemed not to be involved. To explore cell cycle further, fresh CD34+ cells were stained with PKH26 and cultured for 72 hours, and then undivided and divided cells were sorted. At 0.1% O2, 46.5%+/-19.1% of divided cells returned to G0 compared with 7.9%+/-0.3% at 20%. Colony formation and nonobese diabetic/severe combined immunodeficient mice engraftment efficiency were similar after 3 days at 20% and 0.1% O2 concentrations but lower than at T0. In conclusion, a low O2 concentration, close to those found in bone marrow stem cell niches, induces the G0 return of CD34+ cells without impairing their functional capacity.
Collapse
Affiliation(s)
- Francis Hermitte
- CNRS UMR 5164, Université de Bordeaux 2, 33076 Bordeaux CEDEX, France
| | | | | | | | | |
Collapse
|
37
|
Brady G, Boggan L, Bowie A, O'Neill LAJ. Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1. J Biol Chem 2005; 280:30723-34. [PMID: 15946944 DOI: 10.1074/jbc.m500435200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Schlafen-1 (Slfn-1), the prototypic member of the Schlafen family of proteins, was described as an inducer of growth arrest in T-lymphocytes and causes a cell cycle arrest in NIH3T3 fibroblasts prior to the G1/S transition. How Slfn-1 exerts its effects on the cell cycle is not currently known. We report that synchronized murine fibroblasts expressing Slfn-1 do not exit G1 when stimulated with fetal calf serum, platelet-derived growth factor BB (PDGF-BB) or epidermal growth factor (EGF). The induction of cyclin D1 by these stimuli was blocked in the presence of Slfn-1 as were all downstream cell cycle processes. Overexpression of cyclin D1 in growth-arrested, Slfn-1-expressing cells induced an increase in cell growth consistent with this protein being the biological target of Slfn-1. Activation of the mitogen-activated protein kinase pathway by EGF or phorbol 12-myristate 13-acetate was unaffected by Slfn-1 expression. PDGF signaling was, however, almost completely blocked. This was due to a lack of PDGF receptor expression in Slfn-1-expressing cells consistent with Slfn-1 blocking the cell cycle in G1 where PDGF receptor expression is normally down-regulated. Finally, overexpression of Slfn-1 inhibited the activation of the cyclin D1 promoter. Slfn-1 therefore causes a cell cycle arrest during G1 by inhibiting induction of cyclin D1 by mitogens.
Collapse
Affiliation(s)
- Gareth Brady
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
38
|
Fong CJ, Burgoon LD, Zacharewski TR. Comparative microarray analysis of basal gene expression in mouse Hepa-1c1c7 wild-type and mutant cell lines. Toxicol Sci 2005; 86:342-53. [PMID: 15888666 DOI: 10.1093/toxsci/kfi194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepa-1c1c7 wild-type and benzo[a]pyrene-resistant derived mutant cell lines have been used to elucidate pathways and mechanisms involving the aryl hydrocarbon receptor (AhR). However, there has been little focus on other biological processes which may differ between the isolated lines. In this study, mouse cDNA microarrays representing 4858 genes were used to examine differences in basal gene expression between mouse Hepa-1c1c7 wild-type and c1 (truncated Cyp1a1 protein), c4 (AhR nuclear translocator, ARNT, deficient), and c12 (low AhR levels) mutant cell lines. Surprisingly, c1 mutants exhibited the greatest number of gene expression changes compared to wild-type cells, followed by c4 and c12 lines, respectively. Differences in basal gene expression were consistent with cell line specific variations in morphology, mitochondrial activity, and proliferation rate. MTT and direct cell count assays indicate both c4 and c12 mutants exhibit increased proliferative activity when compared to wild-type cells, while the c1 mutants exhibited decreased activity. This study further characterizes Hepa-1c1c7 wild-type and mutant cells and identifies significant differences in biological processes that should be considered when conducting comparative mechanistic studies with these lines.
Collapse
Affiliation(s)
- C J Fong
- Department of Biochemistry and Molecular Biology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
39
|
Fimognari C, Nüsse M, Berti F, Iori R, Cantelli-Forti G, Hrelia P. A mixture of isothiocyanates induces cyclin B1- and p53-mediated cell-cycle arrest and apoptosis of human T lymphoblastoid cells. Mutat Res 2004; 554:205-14. [PMID: 15450419 DOI: 10.1016/j.mrfmmm.2004.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/27/2004] [Accepted: 04/29/2004] [Indexed: 11/20/2022]
Abstract
As with other candidate chemopreventive agents, most of our knowledge on the biological effects of isothiocyanates (the many sulfur-containing metabolites found in cruciferous vegetables) comes from studies of single natural or synthetic compounds. To investigate whether the biological/chemopreventive effects of administration of single isothiocyanates can differ from those of a mixture of isothiocyanates, we tested the effects of a mixture of four different isothiocyanates on cell-cycle progression and apoptosis in human T leukemia Jurkat cells, and identified some of the molecular pathways triggered by the mixture. The mixture affected critical points of the cell cycle via modulation of the expression of cyclin B1. Moreover, it induced apoptosis, mediated by an increase in p53 and bax (expression of bcl-2 was unaffected). Comparison of the data with those previously obtained with the single isothiocyanates under identical experimental conditions provides evidence that the quantitative effects of a single, specific isothiocyanate can be significantly different from those of an isothiocyanate mixture at realistic doses.
Collapse
Affiliation(s)
- C Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Song S, Cooperman J, Letting DL, Blobel GA, Choi JK. Identification of cyclin D3 as a direct target of E2A using DamID. Mol Cell Biol 2004; 24:8790-802. [PMID: 15367695 PMCID: PMC516727 DOI: 10.1128/mcb.24.19.8790-8802.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor E2A can promote precursor B cell expansion, promote G(1) cell cycle progression, and induce the expressions of multiple G(1)-phase cyclins. To better understand the mechanism by which E2A induces these cyclins, we characterized the relationship between E2A and the cyclin D3 gene promoter. E2A transactivated the 1-kb promoter of cyclin D3, which contains two E boxes. However, deletion of the E boxes did not disrupt the transactivation by E2A, raising the possibility of indirect activation via another transcription factor or binding of E2A to non-E-box DNA elements. To distinguish between these two possibilities, promoter occupancy was examined using the DamID approach. A fusion construct composed of E2A and the Escherichia coli DNA adenosine methyltransferase (E47Dam) was subcloned in lentivirus vectors and used to transduce precursor B-cell and myeloid progenitor cell lines. In both cell types, specific adenosine methylation was identified at the cyclin D3 promoter. Chromatin immunoprecipitation analysis confirmed the DamID findings and localized the binding to within 1 kb of the two E boxes. The methylation by E47Dam was not disrupted by mutations in the E2A portion that block DNA binding. We conclude that E2A can be recruited to the cyclin D3 promoter independently of E boxes or E2A DNA binding activity.
Collapse
Affiliation(s)
- Siyuan Song
- Children's Hospital of Philadelphia, 802F ARC, 3516 Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
41
|
Shen X, Yang Y, Liu W, Sun M, Jiang J, Zong H, Gu J. Identification of the p28 subunit of eukaryotic initiation factor 3(eIF3k) as a new interaction partner of cyclin D3. FEBS Lett 2004; 573:139-46. [PMID: 15327989 DOI: 10.1016/j.febslet.2004.07.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2004] [Accepted: 07/08/2004] [Indexed: 11/27/2022]
Abstract
Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.
Collapse
Affiliation(s)
- Xiaoyun Shen
- State key laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Naderi S, Gutzkow KB, Låhne HU, Lefdal S, Ryves WJ, Harwood AJ, Blomhoff HK. cAMP-induced degradation of cyclin D3 through association with GSK-3beta. J Cell Sci 2004; 117:3769-83. [PMID: 15252116 DOI: 10.1242/jcs.01210] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study we report a new mechanism whereby cyclic AMP (cAMP) regulates the cell-cycle machinery. We demonstrate that elevation of intracellular levels of cAMP promotes degradation of cyclin D3 in proteasomes, and that this occurs via glycogen synthase kinase-3beta (GSK-3beta)-mediated phosphorylation of cyclin D3 at Thr-283. Elevation of cAMP did not change the subcellular distribution of either cyclin D3 or GSK-3beta. However, cAMP promoted the interaction between cyclin D3 and GSK-3beta both in vitro and in vivo, indicating that GSK-3beta-mediated phosphorylation of cyclin D3 might require the association between the two proteins. These results demonstrate how cAMP enhances degradation of cyclin D3. Furthermore, we provide evidence for a novel mechanism by which GSK-3beta might phosphorylate unprimed substrates in vivo.
Collapse
Affiliation(s)
- Soheil Naderi
- Department of Medical Biochemistry, University of Oslo, P.O. Box 1112 Blindern, Oslo, N-0317, Norway
| | | | | | | | | | | | | |
Collapse
|
43
|
Sasaki Y, Jensen CT, Karlsson S, Jacobsen SEW. Enforced expression of cyclin D2 enhances the proliferative potential of myeloid progenitors, accelerates in vivo myeloid reconstitution, and promotes rescue of mice from lethal myeloablation. Blood 2004; 104:986-92. [PMID: 15105286 DOI: 10.1182/blood-2003-07-2277] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe and prolonged cytopenias represent a considerable problem in clinical stem cell transplantations. Cytokine-induced ex vivo expansion of hematopoietic stem and progenitor cells has been intensively explored as a means of accelerating hematopoietic recovery following transplantation but have so far had limited success. Herein, overexpression of D-type cyclins, promoting G0/G1 to S transition, was investigated as an alternative approach to accelerate myeloid reconstitution following stem cell transplantation. With the use of retroviral-mediated gene transfer, cyclin D2 was overexpressed in murine bone marrow progenitor cells, which at limited doses showed enhanced ability to rescue lethally ablated recipients. Competitive repopulation studies demonstrated that overexpression of cyclin D2 accelerated myeloid reconstitution following transplantation, and, in agreement with this, cyclin D2-transduced myeloid progenitors showed an enhanced proliferative response to cytokines in vitro. Furthermore, cyclin D2-overexpressing myeloid progenitors and their progeny were sustained for longer periods in culture, resulting in enhanced and prolonged granulocyte production in vitro. Thus, overexpression of cyclin D2 confers myeloid progenitors with an enhanced proliferative and granulocyte potential, facilitating rapid myeloid engraftment and rescue of lethally ablated recipients.
Collapse
Affiliation(s)
- Yutaka Sasaki
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, BMC B10, Klinikgatan 26, 221 84, Lund, Sweden
| | | | | | | |
Collapse
|
44
|
Bernardin-Fried F, Kummalue T, Leijen S, Collector MI, Ravid K, Friedman AD. AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. J Biol Chem 2004; 279:15678-87. [PMID: 14747476 DOI: 10.1074/jbc.m310023200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation.
Collapse
|
45
|
Affiliation(s)
- Frank Traganos
- Brander Cancer Research Institute, New York Medical College, Hawthorne, New York 10532, USA
| |
Collapse
|
46
|
Virmani A, Rathi A, Heda S, Sugio K, Lewis C, Tonk V, Takahashi T, Roth JA, Minna JD, Euhus DM, Gazdar AF. Aberrant methylation of the cyclin D2 promoter in primary small cell, nonsmall cell lung and breast cancers. Int J Cancer 2003; 107:341-5. [PMID: 14506731 DOI: 10.1002/ijc.11393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA methylation alteration of several genes contributes to human tumorigenesis. Cyclin D2, a member of the D-type cyclins, is implicated in cell cycle regulation and malignant transformation. In our study, we examined the methylation status of the cyclin D2 promoter in small cell lung cancer (SCLC), nonsmall cell lung cancer (NSCLC), breast tumors and tumor cell lines. We observed that aberrant methylation of cyclin D2 was present in 32 of 56 (57%) SCLC cell lines, 7 of 32 (22%) SCLC tumor tissues; 25 of 61 (47%) NSCLC cell lines, 19 of 48 (40%) NSCLC tumor tissues; 18 of 30 (60%) breast tumor cell lines and 19 of 63 (30%) breast tumor tissues. Methylation was more frequent in the tumor cell lines compared to the primary breast and SCLC tumors (p = 0.007 and p = 0.001, respectively). Methylation was rare in the control tissue samples; 0 of 12 peripheral blood lymphocytes; 0 of 12 buccal epithelial cells; 0 of 18 nonmalignant lung tissues and 3 of 28 (11%) nonmalignant breast tissues. Promoter methylation correlated with loss of transcript by reverse transcription PCR (RT-PCR) in 9 of 11 (6 lung, 5 breast) tumor cell lines tested. Two cell lines that were not methylated also lacked expression, suggesting that other mechanisms of inactivation may be involved. Expression was restored by treatment with the demethylating agent, 5 aza 2' deoxycytidine, in all 9 methylated cell lines. Our results confirm earlier reports in breast cancer and indicate that aberrant methylation of cyclin D2 may contribute to the pathogenesis of the 2 major types of lung cancers.
Collapse
Affiliation(s)
- Arvind Virmani
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dong L, Sun H, Liu W, Xu H, Tao D. Expression of adherent molecule and cyclin by ligustrazine in bone marrow of mice with immune-induced aplastic anemia. JOURNAL OF TONGJI MEDICAL UNIVERSITY = TONG JI YI KE DA XUE XUE BAO 2003; 19:31-3. [PMID: 12840871 DOI: 10.1007/bf02895590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mice with immune-induced aplastic anemia (AA) were given 5 mg ligustrazine intraperitoneally twice a day. On the 14th day, the expression of CD49d, CD49c, cyclinD2 in bone marrow mononuclear cells (MNC) was examined by flow cytometry, and VCAM-1 on stromal cells was immunohistochemically measured by Strept Avidin-Biotin Complex (SABC). The expression of CD49d, CD49c, VCAM-1 and cyclinD2 in ligustrazine-treated group was significantly higher than that in AA group (P < 0.01), but the ratio of G0 + G1 phase cells was significantly lower than that in AA group (P < 0.01). The results showed that ligustrazine could improve the expression of adherent molecule and cyclin D2 in the bone marrow of mice with immune-induced aplastic anemia, thereby promoting the growth of hematopoietic cells.
Collapse
Affiliation(s)
- L Dong
- Department of Hematology, Tongji Hospital, Tongji Medical University, Wuhan 430030
| | | | | | | | | |
Collapse
|
48
|
Faderl S, Harris D, Van Q, Kantarjian HM, Talpaz M, Estrov Z. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia. Blood 2003; 102:630-7. [PMID: 12663443 DOI: 10.1182/blood-2002-06-1890] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High levels of cytokines are associated with a poor prognosis in acute myeloid leukemia (AML). However, cytokines may induce, on one hand, survival factor expression and cell proliferation and, on the other hand, expression of inhibitory signals such as up-regulation of suppressors of cytokine signaling (SOCS) and induce apoptotic cell death. Because blasts from patients with AML express high procaspase protein levels, we asked whether granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances procaspase protein production in AML cells. In the GM-CSF-responsive OCIM2 AML cell line, GM-CSF induced signal transducer and activator of transcription 5 (Stat 5) phosphorylation, up-regulated cyclin D2, and stimulated cell cycle progression. Concurrently, GM-CSF stimulated expression of SOCS-2 and -3 and of procaspases 2 and 3 and induced caspase 3 activation, poly(ADP[adenosine 5'-diphosphate]-ribose) polymerase (PARP) cleavage, and apoptotic cell death. The Janus kinase (Jak)-Stat inhibitor AG490 abrogated GM-CSF-induced expression of procaspase 3 and activation of caspase 3. Under the same conditions GM-CSF up-regulated production of BAX as well as Bcl-2, Bcl-XL, survivin, and XIAP. GM-CSF also increased procaspase 3 protein levels in OCI/AML3 and Mo7e cells, suggesting that this phenomenon is not restricted to a single leukemia cell line. Our data suggest that GM-CSF exerts a dual effect: it stimulates cell division but contemporaneously up-regulates Jak-Stat-dependent proapoptotic proteins. Up-regulation of procaspase levels in AML is thus a beacon for an ongoing growth-stimulatory signal.
Collapse
Affiliation(s)
- Stefan Faderl
- Department of Leukemia,, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kalejta RF, Shenk T. The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J Virol 2003; 77:3451-9. [PMID: 12610120 PMCID: PMC149542 DOI: 10.1128/jvi.77.6.3451-3459.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As viruses are reliant upon their host cell to serve as proper environments for their replication, many have evolved mechanisms to alter intracellular conditions to suit their own needs. For example, human cytomegalovirus induces quiescent cells to enter the cell cycle and then arrests them in late G(1), before they enter the S phase, a cell cycle compartment that is presumably favorable for viral replication. Here we show that the protein product of the human cytomegalovirus UL82 gene, pp71, can accelerate the movement of cells through the G(1) phase of the cell cycle. This activity would help infected cells reach the late G(1) arrest point sooner and thus may stimulate the infectious cycle. pp71 also induces DNA synthesis in quiescent cells, but a pp71 mutant protein that is unable to induce quiescent cells to enter the cell cycle still retains the ability to accelerate the G(1) phase. Thus, the mechanism through which pp71 accelerates G(1) cell cycle progression appears to be distinct from the one that it employs to induce quiescent cells to exit G(0) and subsequently enter the S phase.
Collapse
Affiliation(s)
- Robert F Kalejta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
50
|
Vega F, Orduz R, Medeiros LJ. Chromosomal translocations and their role in the pathogenesis of non-Hodgkin's lymphomas. Pathology 2002; 34:397-409. [PMID: 12408337 DOI: 10.1080/0031302021000009306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The discovery that non-Hodgkin's lymphomas are monoclonal and that recurrent chromosomal translocations are involved in their pathogenesis has greatly revolutionised their diagnosis and improved our understanding of these diseases. In the last decades, many genes deregulated by such recurrent chromosomal translocations have been identified. However, we have also learned that these genetic alterations are apparently insufficient, in themselves, to cause neoplastic cell transformation and that more complex genetic events must be involved. This review examines the involved genes in chromosomal translocations and current evidence and postulated mechanisms for their role in the pathogenesis of non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Francisco Vega
- Department of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|