1
|
Sharma V, Kumar A. MCL-1 as a potent target for cancer: Recent advancements, structural insights and SAR studies. Bioorg Chem 2025; 156:108211. [PMID: 39889551 DOI: 10.1016/j.bioorg.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
The myeloid cell leukemia-1 (Mcl-1) differentiation protein belongs to the B-cell lymphoma 2 (Bcl-2) family of proteins which regulates the apoptosis or cell death. Mcl-1 is known for its pro-survival in response to various stressors. Therefore, it acts as a prominent target in cancer treatment. Mcl-1 has emerged as one of the validated drug targets for anticancer drug discovery as their expression has been implicated in the pathogenesis of cancers. In this review, we have included the various inhibitors based on many heterocyclic rings such as pyrrole, pyrazole, coumarin, quinoline and indole. This manuscript incorporates the anticancer activity, structure activity relationship (SAR) and molecular modelling of recently synthesized Mcl-1 inhibitors. The clinical trial status of Mcl-1 inhibitors is also described. But till now, no Mcl-1 inhibitor has been approved by any drug authority. This review is based on extensive research in the field of designing Mcl-1 inhibitors from 2020 to till now. It will provide extensive information to researchers and scientists for designing of novel Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
2
|
Chen J, Chen G, Fang X, Sun J, Song J, Chen Z. Elevated MCL1 expression drives esophageal squamous cell carcinoma stemness and induces resistance to radiotherapy. J Thorac Dis 2024; 16:8684-8698. [PMID: 39831242 PMCID: PMC11740075 DOI: 10.21037/jtd-2024-2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance. This study aims to elucidate the role of myeloid cell leukemia-1 (MCL1) in ESCC and its association with radioresistance, thereby providing a novel strategy for enhancing the efficacy of radiotherapy. Methods We used The Cancer Genome Atlas (TCGA) database, Genotype-Tissue Expression (GTEx) project and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) of 10 pairs of fresh endoscopic biopsy samples from patients with ESCC to analyze the messenger RNA (mRNA) expression levels of MCL1 in esophageal cancer tissues as compared to normal tissues. Immunohistochemistry (IHC) staining and Western blotting were performed using an anti-MCL1 antibody to visualize protein expression. The mechanism of radioresistance of ESCC was examined by combining bioinformatics analysis, Western blotting, and clone formation and stemness sphere formation assays. Results The analysis of TCGA database and the results of RT-qPCR indicated that the mRNA level of MCL1 was overexpressed in esophageal cancer tissues. Subsequently, the results of IHC and Western blotting showed that the protein level of MCL1 expression in cancer tissues was significantly higher than that in adjacent normal tissues. Moreover, there was a significant upregulation of MCL1 in ESCC tissues and in radioresistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in ESCC. In terms of mechanism, MCL1 induced cell cycle arrest by regulating the expression of cyclin D3 and p21 through the JAK-STAT signaling pathway. G0/G1 phase arrest contributed to the stem cell-like phenotype. Blocking JAK-STAT signaling significantly improved the efficacy of radiotherapy for ESCC. Conclusions These findings indicate that MCL1 is a critical cell cycle regulator that drives the stemness and radioresistance of ESCC and may thus be a potential target in a combined therapeutic strategy aimed at overcoming radioresistance.
Collapse
Affiliation(s)
- Junjie Chen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoling Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinying Fang
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Sun
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahui Song
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
3
|
Adams J, Stebbing J. Effects of MCL-1 expression in colorectal cancer. Int J Cancer 2024. [PMID: 39740067 DOI: 10.1002/ijc.35308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Jessamy Adams
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
4
|
Suo S, Sun S, Nguyen LXT, Qian J, Li F, Zhao D, Yu W, Lou Y, Zhu H, Tong H, Yang M, Huang X, Zhao S, Qiao J, Liang C, Wang H, Zhang Y, Zhang X, Hoang DH, Chen F, Kang H, Valerio M, Sun J, Ghoda L, Li L, Marcucci G, Zhang B, Jin J. Homoharringtonine synergizes with venetoclax in early T cell progenitor acute lymphoblastic leukemia: Bench and bed. MED 2024; 5:1510-1524.e4. [PMID: 39151422 DOI: 10.1016/j.medj.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Early T cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a poor prognosis. To find a cure, we examined the synergistic effect of homoharringtonine (HHT) in combination with the BCL-2 inhibitor venetoclax (VEN) in ETP-ALL. METHODS Using in vitro cellular assays and ETP-ALL xenograft models, we first investigated the synergistic activity of HHT and VEN in ETP-ALL. Next, to explore the underlying mechanism, we employed single-cell RNA sequencing of primary ETP-ALL cells treated with HHT or VEN alone or in combination and validated the results with western blot assays. Based on the promising preclinical results and given that both drugs have been approved for clinical use, we then assessed this combination in clinical practice. FINDINGS Our results showed that HHT synergizes strongly with VEN both in vitro and in vivo in ETP-ALL. Mechanistic studies demonstrated that the HHT/VEN combination concurrently downregulated key anti-apoptotic proteins, i.e., MCL1, leading to enhanced apoptosis. Importantly, the clinical results were very promising. Six patients with ETP-ALL with either refractory/relapsed (R/R) or newly diagnosed disease were treated with an HHT/VEN-based regimen. All patients achieved complete remission (CR) after only one cycle of treatment. CONCLUSIONS Our findings demonstrate that a combination of HHT/VEN is effective on ETP-ALL and represents the "backbone" of a promising and safe regimen for newly diagnosed and R/R patients with ETP-ALL. FUNDING This work was funded by the National Cancer Institute, Gehr Family Foundation, George Hoag Family Foundation, National Natural Science Foundation of China, and Key Research and Development Program of Zhejiang Province of China.
Collapse
Affiliation(s)
- Shanshan Suo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Shu Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Le Xuan Truong Nguyen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Fenglin Li
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dandan Zhao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xin Huang
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shuqi Zhao
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Junjing Qiao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Chen Liang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Dinh Hoa Hoang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Fang Chen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Hyunjun Kang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Melissa Valerio
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Jie Sun
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China
| | - Lucy Ghoda
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Ling Li
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Bin Zhang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, P.R. China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
5
|
Cho J, Chung H, Lee S, Kim WH. Evaluation of MCL-1 as a prognostic factor in canine mammary gland tumors. PLoS One 2024; 19:e0306398. [PMID: 39012900 PMCID: PMC11251587 DOI: 10.1371/journal.pone.0306398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024] Open
Abstract
Myeloid cell leukemia-1 (MCL-1), which belongs to the anti-apoptotic B cell lymphoma-2 family protein, is overexpressed in various cancers and is associated with cell immortality, malignant transformation, chemoresistance, and poor prognosis in humans. However, the significance of MCL-1 in canine mammary gland tumors (MGTs) remains unknown. This study aimed to examine MCL-1 expression in normal canine mammary glands and tumors and to assess its correlation with clinical and histologic variables. In total, 111 samples were examined, including 12 normal mammary gland tissues, 51 benign MGTs, and 48 malignant MGTs. Immunohistochemistry revealed that 53% of benign tumors and 75% of malignant tumors exhibited high MCL-1 expression, whereas only 8% of normal mammary glands exhibited high MCL-1 expression. High MCL-1 expression correlated with tumor malignancy (p < 0.001), large tumor size (> 3 cm) (p = 0.005), high Ki-67 expression (p = 0.046), and metastasis (p = 0.027). Survival curve analysis of dogs with malignant MGTs demonstrated a significant association between high MCL-1 expression and shorter median overall survival (p = 0.027) and progression-free survival (p = 0.014). Our study identified MCL-1 as a prognostic factor and potential therapeutic target in canine MGTs.
Collapse
Affiliation(s)
- Jaeho Cho
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Heaji Chung
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Sungin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhang Z, Hou L, Liu D, Luan S, Huang M, Zhao L. Directly targeting BAX for drug discovery: Therapeutic opportunities and challenges. Acta Pharm Sin B 2024; 14:2378-2401. [PMID: 38828138 PMCID: PMC11143528 DOI: 10.1016/j.apsb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
For over two decades, the development of B-cell lymphoma-2 (Bcl-2) family therapeutics has primarily focused on anti-apoptotic proteins, resulting in the first-in-class drugs called BH3 mimetics, especially for Bcl-2 inhibitor Venetoclax. The pro-apoptotic protein Bcl-2-associated X protein (BAX) plays a crucial role as the executioner protein of the mitochondrial regulated cell death, contributing to organismal development, tissue homeostasis, and immunity. The dysregulation of BAX is closely associated with the onset and progression of diseases characterized by pathologic cell survival or death, such as cancer, neurodegeneration, and heart failure. In addition to conducting thorough investigations into the physiological modulation of BAX, research on the regulatory mechanisms of small molecules identified through biochemical screening approaches has prompted the identification of functional and potentially druggable binding sites on BAX, as well as diverse all-molecule BAX modulators. This review presents recent advancements in elucidating the physiological and pharmacological modulation of BAX and in identifying potentially druggable binding sites on BAX. Furthermore, it highlights the structural and mechanistic insights into small-molecule modulators targeting diverse binding surfaces or conformations of BAX, offering a promising avenue for developing next-generation apoptosis modulators to treat a wide range of diseases associated with dysregulated cell death by directly targeting BAX.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linghui Hou
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenglin Luan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518000, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Deng H, Han Y, Liu L, Zhang H, Liu D, Wen J, Huang M, Zhao L. Targeting Myeloid Leukemia-1 in Cancer Therapy: Advances and Directions. J Med Chem 2024; 67:5963-5998. [PMID: 38597264 DOI: 10.1021/acs.jmedchem.3c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
As a tripartite cell death switch, B-cell lymphoma protein 2 (Bcl-2) family members precisely regulate the endogenous apoptosis pathway in response to various cell signal stresses through protein-protein interactions. Myeloid leukemia-1 (Mcl-1), a key anti-apoptotic Bcl-2 family member, is positioned downstream in the endogenous apoptotic pathway and plays a central role in regulating mitochondrial function. Mcl-1 is highly expressed in a variety of hematological malignancies and solid tumors, contributing to tumorigenesis, poor prognosis, and chemoresistance, making it an attractive target for cancer treatment. This Perspective aims to discuss the mechanism by which Mcl-1 regulates apoptosis and non-apoptotic functions in cancer cells and to outline the discovery and optimization process of potent Mcl-1 modulators. In addition, we summarize the structural characteristics of potent inhibitors that bind to Mcl-1 through multiple co-crystal structures and analyze the cardiotoxicity caused by current Mcl-1 inhibitors, providing prospects for rational targeting of Mcl-1.
Collapse
Affiliation(s)
- Hongguang Deng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
9
|
Fessel J. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1. Int J Mol Sci 2024; 25:3909. [PMID: 38612719 PMCID: PMC11012190 DOI: 10.3390/ijms25073909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The goal of the treatment for Alzheimer's dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Medicine, Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
10
|
Yadav AK, Wang S, Shin YM, Jang BC. PHA-665752's Antigrowth and Proapoptotic Effects on HSC-3 Human Oral Cancer Cells. Int J Mol Sci 2024; 25:2871. [PMID: 38474118 DOI: 10.3390/ijms25052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
c-Met is a tyrosine-kinase receptor, and its aberrant activation plays critical roles in tumorigenesis, invasion, and metastatic spread in many human tumors. PHA-665752 (PHA) is an inhibitor of c-Met and has antitumor effects on many hematological malignancies and solid cancers. However, the activation and expression of c-Met and its role and the antitumor effect of PHA on human oral squamous cell carcinoma (OSCC) cells remain unclear. Here, we investigated the activation and expression of c-Met and the effects of PHA on the growth of a highly tumorigenic HSC-3 human OSCC cell line with high c-Met phosphorylation and expression. Of note, c-Met was highly expressed and phosphorylated on Y1234/1235 in HSC-3 cells, and PHA treatment significantly suppressed the growth and induced apoptosis of these cells. Moreover, PHA that inhibited the phosphorylation (activation) of c-Met further caused the reduced phosphorylation and expression levels of Src, protein kinase B (PKB), mammalian target of rapamycin (mTtor), and myeloid cell leukemia-1 (Mcl-1) in HSC-3 cells. In addition, the antiangiogenic property of PHA in HSC-3 cells was shown, as evidenced by the drug's suppressive effect on the expression of hypoxia-inducible factor-1α (HIF-1α), a critical tumor angiogenic transcription factor. Importantly, genetic ablation of c-Met caused the reduced growth of HSC-3 cells and decreased Src phosphorylation and HIF-1α expression. Together, these results demonstrate that c-Met is highly activated in HSC-3 human oral cancer cells, and PHA exhibits strong antigrowth, proapoptotic, and antiangiogenic effects on these cells, which are mediated through regulation of the phosphorylation and expression of multiple targets, including c-Met, Src, PKB, mTOR, Mcl-1, and HIF-1α.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
- The Hormel Institute, University of Minnesota, Austin, MN 55455, USA
| | - Saini Wang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Young-Min Shin
- Department of Dentistry, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
11
|
Fultang N, Schwab AM, McAneny-Droz S, Grego A, Rodgers S, Torres BV, Heiser D, Scherle P, Bhagwat N. PBRM1 loss is associated with increased sensitivity to MCL1 and CDK9 inhibition in clear cell renal cancer. Front Oncol 2024; 14:1343004. [PMID: 38371625 PMCID: PMC10869502 DOI: 10.3389/fonc.2024.1343004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
MCL1 is a member of the BCL2 family of apoptosis regulators, which play a critical role in promoting cancer survival and drug resistance. We previously described PRT1419, a potent, MCL1 inhibitor with anti-tumor efficacy in various solid and hematologic malignancies. To identify novel biomarkers that predict sensitivity to MCL1 inhibition, we conducted a gene essentiality analysis using gene dependency data generated from CRISPR/Cas9 cell viability screens. We observed that clear cell renal cancer (ccRCC) cell lines with damaging PBRM1 mutations displayed a strong dependency on MCL1. PBRM1 (BAF180), is a chromatin-targeting subunit of mammalian pBAF complexes. PBRM1 is frequently altered in various cancers particularly ccRCC with ~40% of tumors harboring damaging PBRM1 alterations. We observed potent inhibition of tumor growth and induction of apoptosis by PRT1419 in various preclinical models of PBRM1-mutant ccRCC but not PBRM1-WT. Depletion of PBRM1 in PBRM1-WT ccRCC cell lines induced sensitivity to PRT1419. Mechanistically, PBRM1 depletion coincided with increased expression of pro-apoptotic factors, priming cells for caspase-mediated apoptosis following MCL1 inhibition. Increased MCL1 activity has been described as a resistance mechanism to Sunitinib and Everolimus, two approved agents for ccRCC. PRT1419 synergized with both agents to potently inhibit tumor growth in PBRM1-loss ccRCC. PRT2527, a potent CDK9 inhibitor which depletes MCL1, was similarly efficacious in monotherapy and in combination with Sunitinib in PBRM1-loss cells. Taken together, these findings suggest PBRM1 loss is associated with MCL1i sensitivity in ccRCC and provide rationale for the evaluation of PRT1419 and PRT2527 for the treatment for PBRM1-deficient ccRCC.
Collapse
|
12
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Frigault MM, Mithal A, Wong H, Stelte-Ludwig B, Mandava V, Huang X, Birkett J, Johnson AJ, Izumi R, Hamdy A. Enitociclib, a Selective CDK9 Inhibitor, Induces Complete Regression of MYC+ Lymphoma by Downregulation of RNA Polymerase II Mediated Transcription. CANCER RESEARCH COMMUNICATIONS 2023; 3:2268-2279. [PMID: 37882668 PMCID: PMC10634346 DOI: 10.1158/2767-9764.crc-23-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Double-hit diffuse large B-cell lymphoma (DH-DLBCL) is an aggressive, and often refractory, type of B-cell non-Hodgkin lymphoma (NHL) characterized by rearrangements in MYC and BCL2. Cyclin-dependent kinase 9 (CDK9) regulates transcriptional elongation and activation of transcription factors, including MYC, making it a potential targeted approach for the treatment of MYC+ lymphomas. Enitociclib is a well-tolerated and clinically active CDK9 inhibitor leading to complete metabolic remissions in 2 of 7 patients with DH-DLBCL treated with once weekly 30 mg intravenous administration. Herein, we investigate the pharmacodynamic effect of CDK9 inhibition in preclinical models and in blood samples from patients [DH-DLBCL (n = 10) and MYC+ NHL (n = 5)] treated with 30 mg i.v. once weekly enitociclib. Enitociclib shows significant regulation of RNA polymerase II Ser2 phosphorylation in a MYC-amplified SU-DHL-4 cell line and depletion of MYC and antiapoptosis protein MCL1 in SU-DHL-4 and MYC-overexpressing SU-DHL-10 cell lines in vitro. Tumor growth inhibition reaching 0.5% of control treated SU-DHL-10 xenografts is achieved in vivo and MYC and MCL1 depletion as well as evidence of apoptosis activation after enitociclib treatment is demonstrated. An unbiased analysis of the genes affected by CDK9 inhibition in both cell lines demonstrates that RNA polymerase II and transcription pathways are primarily affected and novel enitociclib targets such as PHF23 and TP53RK are discovered. These findings are recapitulated in blood samples from enitociclib-treated patients; while MYC downregulation is most robust with enitociclib treatment, other CDK9-regulated targets may be MYC independent delivering a transcriptional downregulation via RNA polymerase II. SIGNIFICANCE MYC+ lymphomas are refractory to standard of care and novel treatments that downregulate MYC are needed. The utility of enitociclib, a selective CDK9 inhibitor in this patient population, is demonstrated in preclinical models and patients. Enitociclib inhibits RNA polymerase II function conferring a transcriptional shift and depletion of MYC and MCL1. Enitociclib intermittent dosing downregulates transcription factors including MYC, providing a therapeutic window for durable responses in patients with MYC+ lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Huang
- Vincerx Pharma, Inc., Palo Alto, California
| | | | | | | | | |
Collapse
|
14
|
Xu L, Guan H, Zhang X, Qiao S, Ma W, Liu P, Liu Q, Sun Y, Liu Y, Cai J, Zhang Z. Role of Txnrd3 in NiCl 2-induced kidney cell apoptosis in mice: Potential therapeutic effect of melatonin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115521. [PMID: 37757623 DOI: 10.1016/j.ecoenv.2023.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Nickel (Ni) exposure is a significant risk factor for kidney dysfunction and oxidative stress injury in humans. Thioredoxin reductase 3 (Txnrd3), an important enzyme in animals, plays a role in maintaining cellular homeostasis and regulating oxidative stress. However, its protective effect against kidney injury has been determined. Melatonin (Mel) has antioxidant and anti-apoptotic effects and therefore may be a preventive and therapeutic agent for kidney injury. Our study aimed to investigate the roles of Mel and Txnrd3 in the treatment of nickel-induced renal injury. We divided 80 wild-type mice and 80 Txnrd3 -/- mice (C57BL/6 N) into a control group treated with saline, Ni group treated with 10 mg/kg NiCl2, Mel group treated with 2 mg/kg Mel, and Ni + Mel group given NiCl2 and Mel for 21 days. Histopathological and ultrastructural observation of the kidney showed that nuclei were wrinkled and mitochondrial cristae were broken in the Ni group, and these changes were significantly attenuated by Mel treatment. Mitochondrial and nuclear damage improved significantly in the Ni + Mel and Txnrd3-/- Ni + Mel groups. Furthermore, NiCl2 exposure decreased T-AOC, SOD, and GSH activities in the kidney. The decreases in antioxidant enzyme activity were attenuated by Mel, and these improvements were abolished by Txnrd3 knockout. NiCl2-induced increases in the mRNA and protein levels of apoptosis factors (Bax, Cyt-c, caspase-3, and caspase-9) were attenuated by Mel treatment, and Txnrd3 knockout abolished the repressive effect of Mel on apoptosis genes. Overall, we concluded that Mel improves oxidative stress and apoptosis induced by NiCl2 by regulating Txnrd3 expression in the kidney. Our results provide evidence for the role of Mel in NiCl2-induced kidney injury and identify Txnrd3 as a potential therapeutic target for renal injury.
Collapse
Affiliation(s)
- Lihua Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, PR China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pinnan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaohan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Gsottberger F, Meier C, Ammon A, Parker S, Wendland K, George R, Petkovic S, Mellenthin L, Emmerich C, Lutzny-Geier G, Metzler M, Mackensen A, Chandramohan V, Müller F. Targeted inhibition of protein synthesis renders cancer cells vulnerable to apoptosis by unfolded protein response. Cell Death Dis 2023; 14:561. [PMID: 37626037 PMCID: PMC10457359 DOI: 10.1038/s41419-023-06055-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Cellular stress responses including the unfolded protein response (UPR) decide over the fate of an individual cell to ensure survival of the entire organism. During physiologic UPR counter-regulation, protective proteins are upregulated to prevent cell death. A similar strategy induces resistance to UPR in cancer. Therefore, we hypothesized that blocking protein synthesis following induction of UPR substantially enhances drug-induced apoptosis of malignant cells. In line, upregulation of the chaperone BiP was prevented by simultaneous arrest of protein synthesis in B cell malignancies. Cytotoxicity by immunotoxins-approved inhibitors of protein synthesis-was synergistically enhanced in combination with UPR-inducers in seven distinct hematologic and three solid tumor entities in vitro. Synergistic cell death depended on mitochondrial outer membrane permeabilization via BAK/BAX, which correlated with synergistic, IRE1α-dependent reduction of BID, accompanied by an additive fall of MCL-1. The strong synergy was reproduced in vivo against xenograft mouse models of mantle cell lymphoma, Burkitt's lymphoma, and patient-derived acute lymphoblastic leukemia. In contrast, synergy was absent in blood cells of healthy donors suggesting a tumor-specific vulnerability. Together, these data support clinical evaluation of blocking stress response counter-regulation using inhibitors of protein synthesis as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Franziska Gsottberger
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Christina Meier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Anna Ammon
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Kerstin Wendland
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rebekka George
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Srdjan Petkovic
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Lisa Mellenthin
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Charlotte Emmerich
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Markus Metzler
- Deptartment of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | | | - Fabian Müller
- Department of Internal Medicine 5, Haematology and Oncology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
16
|
Akyüz N, Janjetovic S, Ghandili S, Bokemeyer C, Dierlamm J. EBV and 1q Gains Affect Gene and miRNA Expression in Burkitt Lymphoma. Viruses 2023; 15:1808. [PMID: 37766215 PMCID: PMC10537407 DOI: 10.3390/v15091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities of the long arm of chromosome 1 (1q) represent the most frequent secondary chromosomal aberrations in Burkitt lymphoma (BL) and are observed almost exclusively in EBV-negative BL cell lines (BL-CLs). To verify chromosomal abnormalities, we cytogenetically investigated EBV-negative BL patient material, and to elucidate the 1q gain impact on gene expression, we performed qPCR with six 1q-resident genes and analyzed miRNA expression in BL-CLs. We observed 1q aberrations in the form of duplications, inverted duplications, isodicentric chromosome idic(1)(q10), and the accumulation of 1q12 breakpoints, and we assigned 1q21.2-q32 as a commonly gained region in EBV-negative BL patients. We detected MCL1, ARNT, MLLT11, PDBXIP1, and FCRL5, and 64 miRNAs, showing EBV- and 1q-gain-dependent dysregulation in BL-CLs. We observed MCL1, MLLT11, PDBXIP1, and 1q-resident miRNAs, hsa-miR-9, hsa-miR-9*, hsa-miR-92b, hsa-miR-181a, and hsa-miR-181b, showing copy-number-dependent upregulation in BL-CLs with 1q gains. MLLT11, hsa-miR-181a, hsa-miR-181b, and hsa-miR-183 showed exclusive 1q-gains-dependent and FCRL5, hsa-miR-21, hsa-miR-155, hsa-miR-155*, hsa-miR-221, and hsa-miR-222 showed exclusive EBV-dependent upregulation. We confirmed previous data, e.g., regarding the EBV dependence of hsa-miR-17-92 cluster members, and obtained detailed information considering 1q gains in EBV-negative and EBV-positive BL-CLs. Altogether, our data provide evidence for a non-random involvement of 1q gains in BL and contribute to enlightening and understanding the EBV-negative and EBV-positive BL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.A.); (S.J.); (S.G.); (C.B.)
| |
Collapse
|
17
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
18
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Demin S, Peschiulli A, Velter AI, Vos A, De Boeck B, Miller B, Rombouts FJR, Reuillon T, Lento W, Blanco MD, Jouffroy M, Steyvers H, Bekkers M, Altrocchi C, Pietrak B, Koo SJ, Szewczuk L, Attar R, Philippar U. Macrocyclic Carbon-Linked Pyrazoles As Novel Inhibitors of MCL-1. ACS Med Chem Lett 2023; 14:955-961. [PMID: 37465311 PMCID: PMC10351060 DOI: 10.1021/acsmedchemlett.3c00141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Myeloid cell leukemia-1 (MCL-1) is a member of the antiapoptotic BCL-2 proteins family and a key regulator of mitochondrial homeostasis. Overexpression of MCL-1 is found in many cancer cells and contributes to tumor progression, which makes it an attractive therapeutic target. Pursuing our previous study of macrocyclic indoles for the inhibition of MCL-1, we report herein the impact of both pyrazole and indole isomerism on the potency and overall properties of this family of compounds. We demonstrated that the incorporation of a fluorine atom on the naphthalene moiety was a necessary step to improve cellular potency and that, combined with the introduction of various side chains on the pyrazole, it enhanced solubility significantly. This exploration culminated in the discovery of compounds (Ra)-10 and (Ra)-15, possessing remarkable cellular potency and properties.
Collapse
Affiliation(s)
- Samuël Demin
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Aldo Peschiulli
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Adriana I. Velter
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Ann Vos
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Benoît De Boeck
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Bradley Miller
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Frederik J. R. Rombouts
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Tristan Reuillon
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - William Lento
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Maria Dominguez Blanco
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Matthieu Jouffroy
- Chemical
Process R&D, Discovery Process Research, Janssen Pharmaceutica N.V., Beerse B-2340, Belgium
| | - Helena Steyvers
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Mariette Bekkers
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Cristina Altrocchi
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Beth Pietrak
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Seong Joo Koo
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Lawrence Szewczuk
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Ricardo Attar
- Janssen
Research & Development LLC, 1400 McKean Road (Welsh Road), Spring House, Pennsylvania 19477, United States
| | - Ulrike Philippar
- Janssen
Research & Development, Janssen Pharmaceutica
N.V., Turnhoutseweg 30, Beerse B-2340, Belgium
| |
Collapse
|
20
|
Schofield JH, Schafer ZT. Regulators mount up: the metabolic roles of apoptotic proteins. FRONTIERS IN CELL DEATH 2023; 2:1223926. [PMID: 37521407 PMCID: PMC10373711 DOI: 10.3389/fceld.2023.1223926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.
Collapse
Affiliation(s)
- James H. Schofield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
21
|
McGriff A, Placzek WJ. Phylogenetic analysis of the MCL1 BH3 binding groove and rBH3 sequence motifs in the p53 and INK4 protein families. PLoS One 2023; 18:e0277726. [PMID: 36696417 PMCID: PMC9876281 DOI: 10.1371/journal.pone.0277726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
B-cell lymphoma 2 (Bcl-2) proteins are central, conserved regulators of apoptosis. Bcl-2 family function is regulated by binding interactions between the Bcl-2 homology 3 (BH3) motif in pro-apoptotic family members and the BH3 binding groove found in both the pro-apoptotic effector and anti-apoptotic Bcl-2 family members. A novel motif, the reverse BH3 (rBH3), has been shown to interact with the anti-apoptotic Bcl-2 homolog MCL1 (Myeloid cell leukemia 1) and have been identified in the p53 homolog p73, and the CDK4/6 (cyclin dependent kinase 4/6) inhibitor p18INK4c, (p18, cyclin-dependent kinase 4 inhibitor c). To determine the conservation of rBH3 motif, we first assessed conservation of MCL1's BH3 binding groove, where the motif binds. We then constructed neighbor-joining phylogenetic trees of the INK4 and p53 protein families and analyzed sequence conservation using sequence logos of the rBH3 locus. This showed the rBH3 motif is conserved throughout jawed vertebrates p63 and p73 sequences and in chondrichthyans, amphibians, mammals, and some reptiles in p18. Finally, a potential rBH3 motif was identified in mammalian and osteichthyan p19INK4d (p19, cyclin dependent kinase 4 inhibitor d). These findings demonstrate that the interaction between MCL1 and other cellular proteins mediated by the rBH3 motif may be conserved throughout jawed vertebrates.
Collapse
Affiliation(s)
- Anna McGriff
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - William J. Placzek
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
22
|
Kaloni D, Diepstraten ST, Strasser A, Kelly GL. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 2023; 28:20-38. [PMID: 36342579 PMCID: PMC9950219 DOI: 10.1007/s10495-022-01780-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.
Collapse
Affiliation(s)
- Deeksha Kaloni
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Sarah T Diepstraten
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Andreas Strasser
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Department of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Gemma L Kelly
- Blood Cells and Blood Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
23
|
Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma: a clinicopathological and molecular study of four cases. Hum Pathol 2022; 134:66-73. [PMID: 36549599 DOI: 10.1016/j.humpath.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Thyroid-like low-grade nasopharyngeal papillary adenocarcinoma (TLLGNPPA) is a rare nasopharyngeal carcinoma. To date, less than 60 cases of TLLGNPPA have been reported, and its clinical features and pathogenesis remain unclear. In this paper, four cases of TLLGNPPA were reported to clarify the clinicopathological and molecular features of this disease. Histopathological examination revealed that all tumors had papillary glandular arrangement, with a fibrovascular axis in the tumor stroma and focal nuclear groove. All tumors expressed pan-CK, CK7, and CK19, while TG and Pax-8 were negative, and the Ki-67 index was approximately 1-3%. The expression of TTF-1 was diffusely positive in two cases and focally positive in two cases. EBER was not expressed in four cases. Molecular testing was possible in three cases. No common driver event was noted, but unique, mutually exclusive molecular variants were found in each of the three tumors (FGFR4, PDK1, AXIN2, FOXL2, and PIK3C3), one also with copy number variants in MCL1 and STMN1. All four patients underwent surgical resection of the tumor and had no metastasis or recurrence from 7 to 60 months post-resection. Given the assertion that these tumors do not recur or metastasize in addition to their heterogeneous gene mutation spectrum, we propose that TLLGNPPA is a neoplasm with low malignant potential and should no longer to be referred to as an adenocarcinoma.
Collapse
|
24
|
Sullivan GP, Flanagan L, Rodrigues DA, Ní Chonghaile T. The path to venetoclax resistance is paved with mutations, metabolism, and more. Sci Transl Med 2022; 14:eabo6891. [PMID: 36475901 DOI: 10.1126/scitranslmed.abo6891] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Venetoclax is a B cell lymphoma 2 (BCL-2)-selective antagonist used to treat chronic lymphocytic leukemia (CLL) and acute myelogenous leukemia (AML). Although this has been a promising therapeutic option for these patients, many of these patients develop resistance and relapsed disease. Here, we summarize the emerging mechanisms of resistance to venetoclax treatment, discuss the promising combination strategies, and highlight the combinations that are currently in clinical trials. Efforts to understand mechanisms of resistance are critical to advance the development of new targeted therapeutic strategies and further our understanding of the biological functions of BCL-2 in tumor cells.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Lyndsey Flanagan
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Daniel Alencar Rodrigues
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Tríona Ní Chonghaile
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.,Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
25
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
26
|
Daressy F, Séguy L, Favre L, Corvaisier S, Apel C, Groo AC, Litaudon M, Dumontet V, Malzert-Fréon A, Desrat S, Roussi F, Robert A, Wiels J. NA1-115-7, from Zygogynum pancheri, is a new selective MCL-1 inhibitor inducing the apoptosis of hematological cancer cells but non-toxic to normal blood cells or cardiomyocytes. Biomed Pharmacother 2022; 154:113546. [PMID: 35988426 DOI: 10.1016/j.biopha.2022.113546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022] Open
Abstract
The overexpression of antiapoptotic members (BCL-2, BCL-xL, MCL-1, etc.) of the BCL-2 family contributes to tumor development and resistance to chemotherapy or radiotherapy. Synthetic inhibitors targeting these proteins have been developed, and some hematological malignancies are now widely treated with a BCL-2 inhibitor (venetoclax). However, acquired resistance to venetoclax or chemotherapy drugs due to an upregulation of MCL-1 has been observed, rendering MCL-1 an attractive new target for treatment. Six MCL-1 inhibitors (S64315, AZD-5991, AMG-176, AMG-397, ABBV-467 and PRT1419) have been evaluated in clinical trials since 2016, but some were affected by safety issues and none are currently used clinically. There is, therefore, still a need for alternative molecules. We previously described two drimane derivatives as the first covalent BH3 mimetics targeting MCL-1. Here, we described the characterization and biological efficacy of one of these compounds (NA1-115-7), isolated from Zygogynum pancheri, a plant belonging to the Winteraceae family. NA1-115-7 specifically induced the apoptosis of MCL-1-dependent tumor cells, with two hours of treatment sufficient to trigger cell death. The treatment of lymphoma cells with NA1-115-7 stabilized MCL-1, disrupted its interactions with BAK, and rapidly induced apoptosis through a BAK- and BAX-mediated process. Importantly, a similar treatment with NA1-115-7 was not toxic to erythrocytes, peripheral blood mononuclear cells, platelets, or cardiomyocytes. These results highlight the potential of natural products for use as specific BH3 mimetics non-toxic to normal cells, and they suggest that NA1-115-7 may be a promising tool for use in cancer treatment.
Collapse
Affiliation(s)
- Florian Daressy
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Line Séguy
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - Loëtitia Favre
- Inserm U955, Université Paris-Est Créteil, F-94009 Créteil, France; AP-HP, CHU Henri Mondor, Département de Pathologie, F-94009 Créteil, France
| | | | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Sandy Desrat
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aude Robert
- Inserm UMR1279, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| | - Joëlle Wiels
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
27
|
Pesch AM, Chandler BC, Michmerhuizen AR, Carter HM, Hirsh NH, Wilder-Romans K, Liu M, Ward T, Ritter CL, Nino CA, Jungles KM, Pierce LJ, Rae JM, Speers CW. Bcl-xL inhibition radiosensitizes PIK3CA/PTEN wild-type triple negative breast cancers with low Mcl-1 expression. CANCER RESEARCH COMMUNICATIONS 2022; 2:679-693. [PMID: 36381235 PMCID: PMC9648413 DOI: 10.1158/2767-9764.crc-22-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 04/18/2023]
Abstract
Patients with radioresistant breast cancers, including a large percentage of women with triple negative breast cancer (TNBC), demonstrate limited response to radiation (RT) and increased locoregional recurrence; thus, strategies to increase the efficacy of RT in TNBC are critically needed. We demonstrate that pan Bcl-2 family inhibition (ABT-263, rER: 1.52-1.56) or Bcl-xL specific inhibition (WEHI-539, A-1331852; rER: 1.31-2.00) radiosensitized wild-type PIK3CA/PTEN TNBC (MDA-MB-231, CAL-120) but failed to radiosensitize mutant PIK3CA/PTEN TNBC (rER: 0.90 - 1.07; MDA-MB-468, CAL-51, SUM-159). Specific inhibition of Bcl-2 or Mcl-1 did not induce radiosensitization, regardless of PIK3CA/PTEN status (rER: 0.95 - 1.07). In wild-type PIK3CA/PTEN TNBC, pan Bcl-2 family inhibition or Bcl-xL specific inhibition with RT led to increased levels of apoptosis (p < 0.001) and an increase in cleaved PARP and cleaved caspase 3. CRISPR-mediated PTEN knockout in wild-type PIK3CA/PTEN MDA-MB-231 and CAL-120 cells induced expression of pAKT/Akt and Mcl-1 and abolished Bcl-xL inhibitor-mediated radiosensitization (rER: 0.94 - 1.07). Similarly, Mcl-1 overexpression abolished radiosensitization in MDA-MB-231 and CAL-120 cells (rER: 1.02 - 1.04) but transient MCL1 knockdown in CAL-51 cells promoted Bcl-xL-inhibitor mediated radiosensitization (rER 2.35 ± 0.05). In vivo, ABT-263 or A-1331852 in combination with RT decreased tumor growth and increased tumor tripling time (p < 0.0001) in PIK3CA/PTEN wild-type TNBC cell line and patient-derived xenografts. Collectively, this study provides the preclinical rationale for early phase clinical trials testing the safety, tolerability, and efficacy of Bcl-xL inhibition and RT in women with wild-type PIK3CA/PTEN wild-type TNBC at high risk for recurrence.
Collapse
Affiliation(s)
- Andrea M. Pesch
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Benjamin C. Chandler
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Anna R. Michmerhuizen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Hannah M. Carter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Nicole H. Hirsh
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Meilan Liu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Tanner Ward
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Cassandra L. Ritter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Charles A. Nino
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Kassidy M. Jungles
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - James M. Rae
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Winder ML, Campbell KJ. MCL-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022; 21:1439-1455. [PMID: 35349392 PMCID: PMC9278428 DOI: 10.1080/15384101.2022.2054096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/03/2022] Open
Abstract
Pro-survival members of the BCL-2 family, including MCL-1, are emerging as important proteins during the development and therapeutic response of solid tumors. Notably, high levels of MCL-1 occur in breast cancer, where functional dependency has been demonstrated using cell lines and mouse models. The utility of restoring apoptosis in cancer cells through inhibition of pro-survival BCL-2 proteins has been realized in the clinic, where the first specific inhibitor of BCL-2 is approved for use in leukemia. A variety of MCL-1 inhibitors are now undergoing clinical trials for blood cancer treatment and application of this new class of drugs is also being tested in solid cancers. On-target compounds specific to MCL-1 have demonstrated promising efficacy in preclinical models of breast cancer and show potential to enhance the anti-tumor effect of conventional therapies. Taken together, this makes MCL-1 an extremely attractive target for clinical evaluation in the context of breast cancer.Abbreviations: ADC (antibody-drug conjugate); AML (Acute myeloid leukemia); APAF1 (apoptotic protease activating factor 1); bCAFs (breast cancer associated fibroblasts); BCL-2 (B-cell lymphoma 2); BH (BCL-2 homology); CLL (chronic lymphocytic leukemia); EGF (epidermal growth factor); EMT (epithelial to mesenchymal transition); ER (estrogen receptor); FDA (food and drug administration); GEMM (genetically engineered mouse model); HER2 (human epidermal growth factor 2); IL6 (interleukin 6); IMM (inner mitochondrial membrane); IMS (intermembrane space); MCL-1 (myeloid cell leukemia-1); MOMP (mitochondrial outer membrane permeabilisation); MM (multiple myeloma); PDX (patient-derived xenograft); OMM (outer mitochondrial membrane); PROTAC (proteolysis-targeting chimeras) TNBC (triple negative breast cancer); UPS (ubiquitin mediated proteolysis system).
Collapse
Affiliation(s)
- Matthew L Winder
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate,Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| |
Collapse
|
29
|
Huang JY, Lin C, Tsai SCS, Lin FCF. Human Papillomavirus Is Associated With Adenocarcinoma of Lung: A Population-Based Cohort Study. Front Med (Lausanne) 2022; 9:932196. [PMID: 35847783 PMCID: PMC9279738 DOI: 10.3389/fmed.2022.932196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent trends in the incidence of lung cancer have been reported despite the decreasing rate of smoking. Lung cancer is ranked among the top causes of cancer-related deaths. The ratio of adenocarcinoma to squamous cell carcinoma, as well as the ratio of women to men, is still increasing. Human papillomavirus (HPV) has been discovered in lung cancer tissues and blood specimens, particularly in Eastern countries. However, the association between HPV infection and lung adenocarcinoma remains unclear. Methods This population-based cohort study was conducted using data from Taiwan's single-payer national health insurance and cancer registry databases. Data on HPV infection, cancer, sex, age, comorbidities, urbanization, and occupation were collected. The cumulative incidence rates were generated using Kaplan–Meier curves and log-rank tests. COX regression analysis was used to estimate the hazard ratios of factors associated with cancer occurrence. We used data from 2007 and 2015. The cases were matched with sex and age in a 1:2 manner with 939,874 HPV+ and 1,879,748 HPV– individuals, respectively. Results The adjusted hazard ratios [95% confidence interval (CI)] for HPV infection in all lung cancers were 1.539 (1.436–1.649), male lung cancer 1.434 (1.312–1.566), female lung cancer 1.742 (1.557–1.948), squamous cell carcinoma (SCC) 1.092 (0.903–1.320), male SCC 1.092 (0.903–1.320), female SCC 0.949 (0.773–1.164), adenocarcinoma 1.714 (1.572–1.870), male adenocarcinoma 1.646 (1.458–1.858), and female adenocarcinoma 1.646 (1.458–1.858). The highest adjusted hazard ratio for lung cancer was chronic obstructive pulmonary disease (COPD) 1.799 (1.613–2.007), followed by male sex 1.567 (1.451–6.863) and HPV infection. The highest adjusted hazard ratio for adenocarcinoma was HPV infection 1.714 (1.572–1.870), followed by COPD 1.300 (1.102–1.533), and for SCC, male sex 5.645 (4.43–3.37), followed by COPD 2.528 (2.002–3.192). Conclusion Our study showed that HPV infection was associated with the occurrence of adenocarcinoma of the lung in both men and women but was not associated with SCC of the lung.
Collapse
Affiliation(s)
- Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chuck Lin
- College of William and Mary, Williamsburg, VA, United States
| | - Stella Chin-Shaw Tsai
- Superintendents' Office, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- *Correspondence: Frank Cheau-Feng Lin
| |
Collapse
|
30
|
Chen R, Chen Y, Xiong P, Zheleva D, Blake D, Keating MJ, Wierda WG, Plunkett W. Cyclin-dependent kinase inhibitor fadraciclib (CYC065) depletes anti-apoptotic protein and synergizes with venetoclax in primary chronic lymphocytic leukemia cells. Leukemia 2022; 36:1596-1608. [PMID: 35383271 PMCID: PMC9162916 DOI: 10.1038/s41375-022-01553-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Fadraciclib (CYC065) is a second-generation aminopurine CDK2/9 inhibitor with increased potency and selectivity toward CDK2 and CDK9 compared to seliciclib (R-roscovitine). In chronic lymphocytic leukemia (CLL), a disease that depends on the over-expression of anti-apoptotic proteins for its survival, inhibition of CDK9 by fadraciclib reduced phosphorylation of the C-terminal domain of RNA polymerase II and blocked transcription in vitro; these actions depleted the intrinsically short-lived anti-apoptotic protein Mcl-1 and induced apoptosis. While the simulated bone marrow and lymph node microenvironments induced Mcl-1 expression and protected CLL cells from apoptosis, these conditions did not prolong the turnover rate of Mcl-1, and fadraciclib efficiently abrogated the protective effect. Further, fadraciclib was synergistic with the Bcl-2 antagonist venetoclax, inducing more profound CLL cell death, especially in samples with 17p deletion. While fadraciclib, venetoclax, and the combination each had distinct kinetics of cell death induction, their activities were reversible, as no additional cell death was induced upon removal of the drugs. The best combination effects were achieved when both drugs were maintained together. Altogether, this study provides a rationale for the clinical development of fadraciclib in CLL, either alone or in combination with a Bcl-2 antagonist.
Collapse
Affiliation(s)
- Rong Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuling Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Xiong
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Sulkshane P, Teni T. Myeloid cell leukemia-1: a formidable barrier to anticancer therapeutics and the quest of targeting it. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:278-296. [PMID: 36045907 PMCID: PMC9400788 DOI: 10.37349/etat.2022.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.
Collapse
Affiliation(s)
- Prasad Sulkshane
- Glickman Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tanuja Teni
- Teni Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
32
|
Haiyilati A, Zhou L, Li J, Li W, Gao L, Cao H, Wang Y, Li X, Zheng SJ. Gga-miR-30c-5p Enhances Apoptosis in Fowl Adenovirus Serotype 4-Infected Leghorn Male Hepatocellular Cells and Facilitates Viral Replication through Myeloid Cell Leukemia-1. Viruses 2022; 14:v14050990. [PMID: 35632731 PMCID: PMC9146396 DOI: 10.3390/v14050990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the primary causative agent responsible for the hepatitis-hydropericardium syndrome (HHS) in chickens, leading to considerable economic losses to stakeholders. Although the pathogenesis of FAdV-4 infection has gained attention, the underlying molecular mechanism is still unknown. Here, we showed that the ectopic expression of gga-miR-30c-5p in leghorn male hepatocellular (LMH) cells enhanced apoptosis in FAdV-4-infected LMH cells by directly targeting the myeloid cell leukemia-1 (Mcl-1), facilitating viral replication. On the contrary, the inhibition of endogenous gga-miR-30c-5p markedly suppressed apoptosis and viral replication in LMH cells. Importantly, the overexpression of Mcl-1 inhibited gga-miR-30c-5p or FAdV-4-induced apoptosis in LMH cells, reducing FAdV-4 replication, while the knockdown of Mcl-1 by RNAi enhanced apoptosis in LMH cells. Furthermore, transfection of LMH cells with gga-miR-30c-5p mimics enhanced FAdV-4-induced apoptosis associated with increased cytochrome c release and caspase-3 activation. Thus, gga-miR-30c-5p enhances FAdV-4-induced apoptosis by directly targeting Mcl-1, a cellular anti-apoptotic protein, facilitating FAdV-4 replication in host cells. These findings could help to unravel the mechanism of how a host responds against FAdV-4 infection at an RNA level.
Collapse
Affiliation(s)
- Areayi Haiyilati
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Linyi Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; (A.H.); (L.Z.); (J.L.); (W.L.); (L.G.); (H.C.); (Y.W.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (X.L.); (S.J.Z.); Tel./Fax: +86-(10)-6273-4681 (S.J.Z.)
| |
Collapse
|
33
|
Choi SJ, Swarup N, Shin JA, Hong SD, Cho SD. Myeloid cell leukemia-1 expression in cancers of the oral cavity: a scoping review. Cancer Cell Int 2022; 22:182. [PMID: 35524332 PMCID: PMC9074253 DOI: 10.1186/s12935-022-02603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND B cell lymphoma-2 (Bcl-2) family members play important roles in cell survival as well as cell death. The role of myeloid cell leukemia-1 (Mcl-1), an important member of the Bcl-2 family, is well established in hematopoietic malignancies. However, the association between Mcl-1 and oral cavity, cancers is not clearly defined. METHODS A scoping review was conducted until June 30, 2021, using four major databases, PubMed, Scopus, Web of Science, and Embase. Medical subject headings keywords for Mcl-1, along with its other identifiers, and head and neck cancers (only oral cavity tumors) were used to evaluate the expression, function, molecular association, and therapeutic approach of Mcl-1 in oral cavity cancers and precancers. FINDINGS Mcl-1 expression was associated with the progression of oral cavity cancers. The molecular mechanism and pathways of Mcl-1 in oral cavity cancers established via experimental results have been highlighted in this review. Moreover, the various synthetic and naturally derived therapeutic agents targeting Mcl-1 have been documented. NOVELTY/IMPROVEMENT Based on our present review, Mcl-1 appears to be an effective anticancer target that can be used in the therapeutic management of oral cancers.
Collapse
Affiliation(s)
- Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Neeti Swarup
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
34
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
35
|
Pereira-Castro I, Garcia BC, Curinha A, Neves-Costa A, Conde-Sousa E, Moita LF, Moreira A. MCL1 alternative polyadenylation is essential for cell survival and mitochondria morphology. Cell Mol Life Sci 2022; 79:164. [PMID: 35229202 PMCID: PMC11072748 DOI: 10.1007/s00018-022-04172-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023]
Abstract
Alternative polyadenylation in the 3' UTR (3' UTR-APA) is a mode of gene expression regulation, fundamental for mRNA stability, translation and localization. In the immune system, it was shown that upon T cell activation, there is an increase in the relative expression of mRNA isoforms with short 3' UTRs resulting from 3' UTR-APA. However, the functional significance of 3' UTR-APA remains largely unknown. Here, we studied the physiological function of 3' UTR-APA in the regulation of Myeloid Cell Leukemia 1 (MCL1), an anti-apoptotic member of the Bcl-2 family essential for T cell survival. We found that T cells produce two MCL1 mRNA isoforms (pA1 and pA2) by 3' UTR-APA. We show that upon T cell activation, there is an increase in both the shorter pA1 mRNA isoform and MCL1 protein levels. Moreover, the less efficiently translated pA2 isoform is downregulated by miR-17, which is also more expressed upon T cell activation. Therefore, by increasing the expression of the more efficiently translated pA1 mRNA isoform, which escapes regulation by miR-17, 3' UTR-APA fine tunes MCL1 protein levels, critical for activated T cells' survival. Furthermore, using CRISPR/Cas9-edited cells, we show that depletion of either pA1 or pA2 mRNA isoforms causes severe defects in mitochondria morphology, increases apoptosis and impacts cell proliferation. Collectively, our results show that MCL1 alternative polyadenylation has a key role in the regulation of MCL1 protein levels upon T cell activation and reveal an essential function for MCL1 3' UTR-APA in cell viability and mitochondria dynamics.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal.
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal.
| | - Beatriz C Garcia
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal
| | - Ana Curinha
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal
- Department of Molecular Biology and Genetics, John Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eduardo Conde-Sousa
- i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, Porto, Portugal.
- Gene Regulation, IBMC, Instituto de Biologia Molecular E Celular, Universidade Do Porto, Porto, Portugal.
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
36
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
37
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S, Peng L. Targeting Cell Death: Pyroptosis, Ferroptosis, Apoptosis and Necroptosis in Osteoarthritis. Front Cell Dev Biol 2022; 9:789948. [PMID: 35118075 PMCID: PMC8804296 DOI: 10.3389/fcell.2021.789948] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
New research has shown that the development of osteoarthritis (OA) is regulated by different mechanisms of cell death and types of cytokines. Therefore, elucidating the mechanism of action among various cytokines, cell death processes and OA is important towards better understanding the pathogenesis and progression of the disease. This paper reviews the pathogenesis of OA in relation to different types of cytokine-triggered cell death. We describe the cell morphological features and molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis, and summarize the current research findings defining the molecular mechanisms of action between different cell death types and OA.
Collapse
Affiliation(s)
- Jian Yang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Shasha Hu
- Department of Pathology, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Yangyang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Jiangling Yao
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Dong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xiaoqian Liu
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Zhengdong Guo
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
| | - Siyuan Zhang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
- *Correspondence: Lei Peng,
| |
Collapse
|
38
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
39
|
Shimizu K, Gi M, Suzuki S, North BJ, Watahiki A, Fukumoto S, Asara JM, Tokunaga F, Wei W, Inuzuka H. Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Rep 2021; 37:109988. [PMID: 34758305 PMCID: PMC8621139 DOI: 10.1016/j.celrep.2021.109988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/02/2021] [Accepted: 10/21/2021] [Indexed: 01/29/2023] Open
Abstract
The anti-apoptotic myeloid cell leukemia 1 (MCL1) protein belongs to the pro-survival BCL2 family and is frequently amplified or elevated in human cancers. MCL1 is highly unstable, with its stability being regulated by phosphorylation and ubiquitination. Here, we identify acetylation as another critical post-translational modification regulating MCL1 protein stability. We demonstrate that the lysine acetyltransferase p300 targets MCL1 at K40 for acetylation, which is counteracted by the deacetylase sirtuin 3 (SIRT3). Mechanistically, acetylation enhances MCL1 interaction with USP9X, resulting in deubiquitination and subsequent MCL1 stabilization. Therefore, ectopic expression of acetylation-mimetic MCL1 promotes apoptosis evasion of cancer cells, enhances colony formation potential, and facilitates xenografted tumor progression. We further demonstrate that elevated MCL1 acetylation sensitizes multiple cancer cells to pharmacological inhibition of USP9X. These findings reveal that acetylation of MCL1 is a critical post-translational modification enhancing its oncogenic function and provide a rationale for developing innovative therapeutic strategies for MCL1-dependent tumors. MCL1, an anti-apoptotic BCL2 family protein, is frequently overexpressed in a variety of cancers, and its oncogenic function is finely regulated by post-translational modifications such as phosphorylation and ubiquitination. Shimizu et al. dissect the molecular mechanism of acetylation-mediated MCL1 stability control, providing insights into potential therapeutic intervention targeting the MCL1 protein.
Collapse
Affiliation(s)
- Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Min Gi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Brian J North
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Asami Watahiki
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Fukumoto
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
40
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
41
|
Lee EF, Fairlie WD. Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochem Soc Trans 2021; 49:2381-2395. [PMID: 34515749 PMCID: PMC8589430 DOI: 10.1042/bst20210749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The discovery of a new class of small molecule compounds that target the BCL-2 family of anti-apoptotic proteins is one of the great success stories of basic science leading to translational outcomes in the last 30 years. The eponymous BCL-2 protein was identified over 30 years ago due to its association with cancer. However, it was the unveiling of the biochemistry and structural biology behind it and its close relatives' mechanism(s)-of-action that provided the inspiration for what are now known as 'BH3-mimetics', the first clinically approved drugs designed to specifically inhibit protein-protein interactions. Herein, we chart the history of how these drugs were discovered, their evolution and application in cancer treatment.
Collapse
Affiliation(s)
- Erinna F. Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| | - W. Douglas Fairlie
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
42
|
Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules 2021; 11:biom11101444. [PMID: 34680077 PMCID: PMC8533283 DOI: 10.3390/biom11101444] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein-protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein-protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.
Collapse
|
43
|
BH3 Mimetics in Hematologic Malignancies. Int J Mol Sci 2021; 22:ijms221810157. [PMID: 34576319 PMCID: PMC8466478 DOI: 10.3390/ijms221810157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hematologic malignancies (HM) comprise diverse cancers of lymphoid and myeloid origin, including lymphomas (approx. 40%), chronic lymphocytic leukemia (CLL, approx. 15%), multiple myeloma (MM, approx. 15%), acute myeloid leukemia (AML, approx. 10%), and many other diseases. Despite considerable improvement in treatment options and survival parameters in the new millennium, many patients with HM still develop chemotherapy-refractory diseases and require re-treatment. Because frontline therapies for the majority of HM (except for CLL) are still largely based on classical cytostatics, the relapses are often associated with defects in DNA damage response (DDR) pathways and anti-apoptotic blocks exemplified, respectively, by mutations or deletion of the TP53 tumor suppressor, and overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family. BCL2 homology 3 (BH3) mimetics represent a novel class of pro-apoptotic anti-cancer agents with a unique mode of action—direct targeting of mitochondria independently of TP53 gene aberrations. Consequently, BH3 mimetics can effectively eliminate even non-dividing malignant cells with adverse molecular cytogenetic alterations. Venetoclax, the nanomolar inhibitor of BCL2 anti-apoptotic protein has been approved for the therapy of CLL and AML. Numerous venetoclax-based combinatorial treatment regimens, next-generation BCL2 inhibitors, and myeloid cell leukemia 1 (MCL1) protein inhibitors, which are another class of BH3 mimetics with promising preclinical results, are currently being tested in several clinical trials in patients with diverse HM. These pivotal trials will soon answer critical questions and concerns about these innovative agents regarding not only their anti-tumor efficacy but also potential side effects, recommended dosages, and the optimal length of therapy as well as identification of reliable biomarkers of sensitivity or resistance. Effective harnessing of the full therapeutic potential of BH3 mimetics is a critical mission as it may directly translate into better management of the aggressive forms of HM and could lead to significantly improved survival parameters and quality of life in patients with urgent medical needs.
Collapse
|
44
|
Widden H, Placzek WJ. The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 2021; 4:1029. [PMID: 34475520 PMCID: PMC8413315 DOI: 10.1038/s42003-021-02564-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
MCL1 (myeloid cell leukemia-1) is a widely recognized pro-survival member of the Bcl-2 (B-cell lymphoma protein 2) family and a promising target for cancer therapy. While the role MCL1 plays in apoptosis is well defined, its participation in emerging non-apoptotic signaling pathways is only beginning to be appreciated. Here, we synthesize studies characterizing MCL1s influence on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that MCL1 plays in cellular homeostasis regulation. Throughout this review, we discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy Bcl-2 homology 3 (BH3)-mimetics in the future. In this review Widden and Placzek synthesize studies characterizing the influence that myeloid cell leukemia-1 (MCL1) has on cell proliferation, DNA damage response, autophagy, calcium handling, and mitochondrial quality control to highlight the broader scope that it plays in cellular homeostasis regulation. They discuss which pathways are likely to be impacted by emerging MCL1 inhibitors, as well as highlight non-cancerous disease states that could deploy BH3-mimetics in the future.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
45
|
Zhu PJ, Yu ZZ, Lv YF, Zhao JL, Tong YY, You QD, Jiang ZY. Discovery of 3,5-Dimethyl-4-Sulfonyl-1 H-Pyrrole-Based Myeloid Cell Leukemia 1 Inhibitors with High Affinity, Selectivity, and Oral Bioavailability. J Med Chem 2021; 64:11330-11353. [PMID: 34342996 DOI: 10.1021/acs.jmedchem.1c00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myeloid cell leukemia 1 (Mcl-1) protein is a key negative regulator of apoptosis, and developing Mcl-1 inhibitors has been an attractive strategy for cancer therapy. Herein, we describe the rational design, synthesis, and structure-activity relationship study of 3,5-dimethyl-4-sulfonyl-1H-pyrrole-based compounds as Mcl-1 inhibitors. Stepwise optimizations of hit compound 11 with primary Mcl-1 inhibition (52%@30 μM) led to the discovery of the most potent compound 40 with high affinity (Kd = 0.23 nM) and superior selectivity over other Bcl-2 family proteins (>40,000 folds). Mechanistic studies revealed that 40 could activate the apoptosis signal pathway in an Mcl-1-dependent manner. 40 exhibited favorable physicochemical properties and pharmacokinetic profiles (F% = 41.3%). Furthermore, oral administration of 40 was well tolerated to effectively inhibit tumor growth (T/C = 37.3%) in MV4-11 xenograft models. Collectively, these findings implicate that compound 40 is a promising antitumor agent that deserves further preclinical evaluations.
Collapse
Affiliation(s)
- Peng-Ju Zhu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ze-Zhou Yu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Fei Lv
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Long Zhao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Yuan Tong
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
46
|
Mittal P, Singh S, Sinha R, Shrivastava A, Singh A, Singh IK. Myeloid cell leukemia 1 (MCL-1): Structural characteristics and application in cancer therapy. Int J Biol Macromol 2021; 187:999-1018. [PMID: 34339789 DOI: 10.1016/j.ijbiomac.2021.07.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
Apoptosis, a major hallmark of cancer cells, regulates cellular fate and homeostasis. BCL-2 (B-cell CLL/Lymphoma 2) protein family is popularly known to mediate the intrinsic mode of apoptosis, of which MCL-1 is a crucial member. Myeloid cell leukemia 1 (MCL-1) is an anti-apoptotic oncoprotein and one of the most investigated members of the BCL-2 family. It is commonly known to be genetically altered, aberrantly overexpressed, and primarily associated with drug resistance in various human cancers. Recent advancements in the development of selective MCL-1 inhibitors and evaluating their effectiveness in cancer treatment establish its popularity as a molecular target. The overall aim is the selective induction of apoptosis in cancer cells by using a single or combination of BCL-2 family inhibitors. Delineating the precise molecular mechanisms associated with MCL-1-mediated cancer progression will certainly improve the efficacy of clinical interventions aimed at MCL-1 and hence patient survival. This review is structured to highlight the structural characteristics of MCL-1, its specific interactions with NOXA, MCL-1-regulatory microRNAs, and at the same time focus on the emerging therapeutic strategies targeting our protein of interest (MCL-1), alone or in combination with other treatments.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Sujata Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Rajesh Sinha
- Department of Dermatology, University of Alabama, Birmingham 35205, United States of America
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, New Delhi 110007, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
47
|
Luo Y, Jin H, Kim JH, Bae J. Guanylate-binding proteins induce apoptosis of leukemia cells by regulating MCL-1 and BAK. Oncogenesis 2021; 10:54. [PMID: 34294680 PMCID: PMC8298518 DOI: 10.1038/s41389-021-00341-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) are well-known for mediating host-defense mechanisms against cellular pathogens. Emerging evidence suggests that GBPs are also implicated in tumorigenesis; however, their underlying molecular mechanism is still unknown. In this study, we identified that GBP1 and GBP2 interact with MCL-1, the key prosurvival member of the BCL-2 family, via its BH3 domain. GBPs induce caspase-dependent apoptosis in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells, where the proapoptotic BCL-2 member, BAK, is an indispensable mediator. In particular, GBP2 completely inhibited the MCL-1-mediated promotion of the survival of CML cells through competitive inhibition, resulting in BAK liberation from MCL-1. Concurrently, GBP2 dramatically upregulates BAK expression via its inhibition of the PI3K/AKT pathway. Moreover, paclitaxel upregulates GBP2 expression, and paclitaxel-induced apoptotic activity was distinctively compromised by knockout of GBP2 in CML cells. Bioinformatics analyses of leukemia databases revealed that transcripts of GBPs were generally downregulated in leukemia patients and that GBPs were favorable prognosis markers. Thus, these findings provide molecular evidence of GBPs as apoptosis-inducing proteins of leukemia cells and suggest that GBPs are attractive targets for the development of chemotherapeutics.
Collapse
Affiliation(s)
- Yongyang Luo
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Hanyong Jin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Je Hyeong Kim
- Division of Pulmonology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, 15355, Korea.
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
48
|
Al-Odat O, von Suskil M, Chitren R, Elbezanti W, Srivastava S, Budak-Alpddogan T, Jonnalagadda S, Aggarwal B, Pandey M. Mcl-1 Inhibition: Managing Malignancy in Multiple Myeloma. Front Pharmacol 2021; 12:699629. [PMID: 34349655 PMCID: PMC8327170 DOI: 10.3389/fphar.2021.699629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.
Collapse
Affiliation(s)
- Omar Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Max von Suskil
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Weam Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.,Department of Hematology, Cooper Health University, Camden, NJ, United States
| | | | | | - Subash Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
49
|
Hino M, Iemura K, Ikeda M, Itoh G, Tanaka K. Chromosome alignment-maintaining phosphoprotein CHAMP1 plays a role in cell survival through regulating Mcl-1 expression. Cancer Sci 2021; 112:3711-3721. [PMID: 34107118 PMCID: PMC8409433 DOI: 10.1111/cas.15018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Antimitotic drugs such as vinca alkaloids and taxanes cause mitotic cell death after prolonged mitotic arrest. However, a fraction of cells escape from mitotic arrest by undergoing mitotic slippage, which is related to resistance to antimitotic drugs. Tipping the balance to mitotic cell death thus can be a way to overcome the drug resistance. Here we found that depletion of a mitotic regulator, CHAMP1 (chromosome alignment-maintaining phosphoprotein, CAMP), accelerates the timing of mitotic cell death after mitotic arrest. Live cell imaging revealed that CHAMP1-depleted cells died earlier than mock-treated cells in the presence of antimitotic drugs that resulted in the reduction of cells undergoing mitotic slippage. Depletion CHAMP1 reduces the expression of antiapoptotic Bcl-2 family proteins, especially Mcl-1. We found that CHAMP1 maintains Mcl-1 expression both at protein and mRNA levels independently of the cell cycle. At the protein level, CHAMP1 maintains Mcl-1 stability by suppressing proteasome-dependent degradation. Depletion of CHAMP1 reduces cell viability, and exhibits synergistic effects with antimitotic drugs. Our data suggest that CHAMP1 plays a role in the maintenance of Mcl-1 expression, implying that CHAMP1 can be a target to overcome the resistance to antimitotic drugs.
Collapse
Affiliation(s)
- Maho Hino
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| |
Collapse
|
50
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|