1
|
Li J, Szymanski DB, Kim T. Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach. BMC PLANT BIOLOGY 2023; 23:308. [PMID: 37291489 DOI: 10.1186/s12870-023-04252-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Morphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date. RESULTS Here, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules - growth, shrinkage, catastrophe, and rescue - to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells. CONCLUSION Our modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.
Collapse
Affiliation(s)
- Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Daniel B Szymanski
- Botany and Plant Pathology, Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Yu Q, Liu J, Jiang J, Liu F, Zhang Z, Yu X, Li M, Alam I, Ge L. Genome-Wide Identification, Characterization, and Expression Analysis of SPIRAL1 Family Genes in Legume Species. Int J Mol Sci 2023; 24:ijms24043958. [PMID: 36835373 PMCID: PMC9959322 DOI: 10.3390/ijms24043958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
The SPIRAL1 (SPR1) gene family encodes microtubule-associated proteins that are essential for the anisotropic growth of plant cells and abiotic stress resistance. Currently, little is known about the characteristics and roles of the gene family outside of Arabidopsis thaliana. This study intended to investigate the SPR1 gene family in legumes. In contrast to that of A. thaliana, the gene family has undergone shrinking in the model legume species Medicago truncatula and Glycine max. While the orthologues of SPR1 were lost, very few SPR1-Like (SP1L) genes were identified given the genome size of the two species. Specifically, the M. truncatula and G. max genomes only harbor two MtSP1L and eight GmSP1L genes, respectively. Multiple sequence alignment showed that all these members contain conserved N- and C-terminal regions. Phylogenetic analysis clustered the legume SP1L proteins into three clades. The SP1L genes showed similar exon-intron organizations and similar architectures in their conserved motifs. Many essential cis-elements are present in the promoter regions of the MtSP1L and GmSP1L genes associated with growth and development, plant hormones, light, and stress. The expression analysis revealed that clade 1 and clade 2 SP1L genes have relatively high expression in all tested tissues in Medicago and soybean, suggesting their function in plant growth and development. MtSP1L-2, as well as clade 1 and clade 2 GmSP1L genes, display a light-dependent expression pattern. The SP1L genes in clade 2 (MtSP1L-2, GmSP1L-3, and GmSP1L-4) were significantly induced by sodium chloride treatment, suggesting a potential role in the salt-stress response. Our research provides essential information for the functional studies of SP1L genes in legume species in the future.
Collapse
Affiliation(s)
- Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiayu Jiang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Fudong Liu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoye Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Mengru Li
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (I.A.); (L.G.)
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (I.A.); (L.G.)
| |
Collapse
|
3
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
4
|
Shevchenko GV, Krutovsky KV. Mechanical stress effects on transcriptional regulation of genes encoding microtubule- and actin-associated proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:17-30. [PMID: 35210715 PMCID: PMC8847523 DOI: 10.1007/s12298-021-01123-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Plant cytoskeleton regulation has been studied using a new approach based on both (1) pharmacological analysis of tubulin and actin inhibitors and (2) mechanical stimulation achieved by using a slow-rotating (2 rpm) clinostat in combination with transcriptional analysis of genes encoding TUA6, ACT2, MAP65-1, CLASP, PLDδ, FH4 and FH1 proteins in Arabidopsis thaliana seedling roots. The obtained data suggest feedback between the organization of microtubule (MT) and actin filament (AF) networks and the expression of the ACT2, TUA6, MAP65-1, CLASP and FH1/FH4 genes. Different regulation of feedback between MT/AF organization and TUA6, ACT2, MAP65-1, CLASP, FH4 and FH1 gene expression was noted during slow clinorotation, possibly due to altered mechanical impact on the cortical cytoskeleton. For the first time, the expression of the tubulin-associated gene MAP65-1 was shown to be dependent upon the organization of AFs. TUA6, MAP65-1, CLASP, FH1 and FH4 likely participate in mechanical signal transduction. Our work demonstrated that slow clinorotation is able to cause mechanical stress.
Collapse
Affiliation(s)
- Galina V. Shevchenko
- Institute of Botany, National Academy of Sciences of Ukraine, Kiev, 01004 Ukraine
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August University of Göttingen, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russian Federation
- Department of Genomics and Bioinformatics, Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russian Federation
- Scientific and Methodological Center, G. F. Morozov Voronezh State University of Forestry and Technologies, 394087 Voronezh, Russian Federation
| |
Collapse
|
5
|
Zhang Y, Li Z, Chen N, Huang Y, Huang S. Phase separation of Arabidopsis EMB1579 controls transcription, mRNA splicing, and development. PLoS Biol 2020; 18:e3000782. [PMID: 32692742 PMCID: PMC7413564 DOI: 10.1371/journal.pbio.3000782] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 08/07/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Tight regulation of gene transcription and mRNA splicing is essential for plant growth and development. Here we demonstrate that a plant-specific protein, EMBRYO DEFECTIVE 1579 (EMB1579), controls multiple growth and developmental processes in Arabidopsis. We demonstrate that EMB1579 forms liquid-like condensates both in vitro and in vivo, and the formation of normal-sized EMB1579 condensates is crucial for its cellular functions. We found that some chromosomal and RNA-related proteins interact with EMB1579 compartments, and loss of function of EMB1579 affects global gene transcription and mRNA splicing. Using floral transition as a physiological process, we demonstrate that EMB1579 is involved in FLOWERING LOCUS C (FLC)-mediated repression of flowering. Interestingly, we found that EMB1579 physically interacts with a homologue of Drosophila nucleosome remodeling factor 55-kDa (p55) called MULTIPLE SUPPRESSOR OF IRA 4 (MSI4), which has been implicated in repressing the expression of FLC by forming a complex with DNA Damage Binding Protein 1 (DDB1) and Cullin 4 (CUL4). This complex, named CUL4-DDB1MSI4, physically associates with a CURLY LEAF (CLF)-containing Polycomb Repressive Complex 2 (CLF-PRC2). We further demonstrate that EMB1579 interacts with CUL4 and DDB1, and EMB1579 condensates can recruit and condense MSI4 and DDB1. Furthermore, emb1579 phenocopies msi4 in terms of the level of H3K27 trimethylation on FLC. This allows us to propose that EMB1579 condensates recruit and condense CUL4-DDB1MSI4 complex, which facilitates the interaction of CUL4-DDB1MSI4 with CLF-PRC2 and promotes the role of CLF-PRC2 in establishing and/or maintaining the level of H3K27 trimethylation on FLC. Thus, we report a new mechanism for regulating plant gene transcription, mRNA splicing, and growth and development. This study reveals that a plant-specific protein, EMB1579, controls multiple growth and developmental processes in Arabidopsis thaliana by regulating gene transcription and mRNA splicing through the formation of liquid-like droplets via liquid-liquid phase separation.
Collapse
Affiliation(s)
- Yiling Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhankun Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yao Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Zhang Y, Wang Y, Ye D, Xing J, Duan L, Li Z, Zhang M. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110196. [PMID: 31779899 DOI: 10.1016/j.plantsci.2019.110196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 05/12/2023]
Abstract
Ethephon efficiently regulates plant growth to modulate the maize (Zea mays L.) stalk strength and yield potential, yet there is little information on how ethylene governs a specific cellular response for altering internode elongation. Here, the internode elongation kinetics, cell morphological and physiological properties and transcript expression patterns were investigated in the ethephon-treated elongating internode. Ethephon decreased the internode elongation rate, shortened the effective elongation duration, and advanced the growth process. Ethephon regulated the expression patterns of expansin and secondary cell wall-associated cellulose synthase genes to alter cell size. Moreover, ethephon increased the activities and transcripts level of phenylalanine ammonia-lyase and peroxidase, which contributed to lignin accumulation. Otherwise, ethephon-boosted ethylene evolution activated ethylene signal and increased ZmGA2ox3 and ZmGA2ox10 transcript levels while down-regulating ZmPIN1a, ZmPIN4 and ZmGA3ox1 transcript levels, which led to lower accumulation of gibberellins and auxin. In addition, transcriptome profiles confirmed previous results and identified several transcription factors that are involved in the ethephon-modulated transcriptional regulation of cell wall biosynthesis and modification and responses to ethylene, gibberellins and auxin. These results indicated that ethylene-modulated auxin and gibberellins signaling mediated the transcriptional operation of cell wall modification to regulate cell elongation in the ethephon-treated maize internode.
Collapse
Affiliation(s)
- Yushi Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yubin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Delian Ye
- College of Crop Science, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Jiapeng Xing
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Morello L, Pydiura N, Galinousky D, Blume Y, Breviario D. Flax tubulin and CesA superfamilies represent attractive and challenging targets for a variety of genome- and base-editing applications. Funct Integr Genomics 2019; 20:163-176. [PMID: 30826923 DOI: 10.1007/s10142-019-00667-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Flax is both a valuable resource and an interesting model crop. Despite a long history of flax genetic transformation only one transgenic linseed cultivar has been so far registered in Canada. Implementation and use of the genome-editing technologies that allow site-directed modification of endogenous genes without the introduction of foreign genes might improve this situation. Besides its potential for boosting crop yields, genome editing is now one of the best tools for carrying out reverse genetics and it is emerging as an especially versatile tool for studying basic biology. A complex interplay between the flax tubulin family (6 α-, 14 β-, and 2 γ-tubulin genes), the building block of microtubules, and the CesA (15-16 genes), the subunit of the multimeric cellulose-synthesizing complex devoted to the oriented deposition of the cellulose microfibrils is fundamental for the biosynthesis of the cell wall. The role of the different members of each family in providing specificities to the assembled complexes in terms of structure, dynamics, activity, and interaction remains substantially obscure. Genome-editing strategies, recently shown to be successful in flax, can therefore be useful to unravel the issue of functional redundancy and provide evidence for specific interactions between different members of the tubulin and CesA gene families, in relation to different phase and mode of cell wall biosynthesis.
Collapse
Affiliation(s)
- Laura Morello
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy
| | - Nikolay Pydiura
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine
| | - Dmitry Galinousky
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Akademicheskaya St. 27, 220072, Minsk, Belarus
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osypovskoho St. 2a, Kyiv, 04123, Ukraine.
| | - Diego Breviario
- Istituto di Biologia e Biotecnologia Agraria IBBA-CNR, Via Alfonso Corti 12, 20133, Milan, Italy.
| |
Collapse
|
8
|
Kim K, Yoshinaga N, Bhattacharyya S, Nakazawa H, Umetsu M, Teizer W. Large-scale chirality in an active layer of microtubules and kinesin motor proteins. SOFT MATTER 2018; 14:3221-3231. [PMID: 29670958 DOI: 10.1039/c7sm02298k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the early developmental process of organisms, the formation of left-right laterality requires a subtle mechanism, as it is associated with other principal body axes. Any inherent chiral feature in an egg cell can in principal trigger this spontaneous breaking of chiral symmetry. Individual microtubules, major cytoskeletal filaments, are known as chiral objects. However, to date there lacks convincing evidence of a hierarchical connection of the molecular nature of microtubules to large-scale chirality, particularly at the length scale of an entire cell. Here we assemble an in vitro active layer, consisting of microtubules and kinesin motor proteins, on a glass surface. Upon inclusion of methyl cellulose, the layered system exhibits a long-range active nematic phase, characterized by the global alignment of gliding MTs. This nematic order spans over the entire system size in the millimeter range and, remarkably, allows hidden collective chirality to emerge as counterclockwise global rotation of the active MT layer. The analysis based on our theoretical model suggests that the emerging global nematic order results from the local alignment of MTs, stabilized by methyl cellulose. It also suggests that the global rotation arises from the MTs' intrinsic curvature, leading to preferential handedness. Given its flexibility, this layered in vitro cytoskeletal system enables the study of membranous protein behavior responsible for important cellular developmental processes.
Collapse
Affiliation(s)
- Kyongwan Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Du P, Kumar M, Yao Y, Xie Q, Wang J, Zhang B, Gan S, Wang Y, Wu AM. Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. BMC Genomics 2016; 17:967. [PMID: 27881090 PMCID: PMC5122032 DOI: 10.1186/s12864-016-3303-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 11/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Xklp2 (TPX2) proteins belong to the microtubule-associated (MAP) family of proteins. All members of the family contain the conserved TPX2 motif, which can interact with microtubules, regulate microtubule dynamics or assist with different microtubule functions, for example, maintenance of cell morphology or regulation of cell growth and development. However, the role of members of the TPX family have not been studied in the model tree species Eucalyptus to date. Here, we report the identification of the members of the TPX2 family in Eucalyptus grandis (Eg) and analyse the expression patterns and functions of these genes. RESULTS In present study, a comprehensive analysis of the plant TPX2 family proteins was performed. Phylogenetic analyses indicated that the genes can be classified into 6 distinct subfamilies. A genome-wide survey identified 12 members of the TPX2 family in the sequenced genome of Eucalyptus grandis. The basic genetic properties of the TPX2 family in Eucalyptus were analysed. Our results suggest that the TPX2 family proteins within different sub-groups are relatively conserved but there are important differences between groups. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression levels of the genes in different tissues. The results showed that in the whole plant, the levels of EgWDL5 transcript are the highest, followed by those of EgWDL4. Compared with other tissues, the level of the EgMAP20 transcript is the highest in the root. Over-expression of EgMAP20 in Arabidopsis resulted in organ twisting. The cotyledon petioles showed left-handed twisting while the hypocotyl epidermal cells produced right-handed helical twisting. Finally, EgMAP20, EgWDL3 and EgWDL3L were all able to decorate microtubules. CONCLUSIONS Plant TPX2 family proteins were systematically analysed using bioinformatics methods. There are 12 TPX2 family proteins in Eucalyptus. We have performed an initial characterization of the functions of several members of the TPX2 family. We found that the gene products are localized to the microtubule cytoskeleton. Our results lay the foundation for future efforts to reveal the biological significance of TPX2 family proteins in Eucalyptus.
Collapse
Affiliation(s)
- Pingzhou Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Manoj Kumar
- Faculty of Life Science, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Yuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.,College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiaoli Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Siming Gan
- Research Institute of tropical forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Yuqi Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China. .,Boyce Thompson Institute for Plant Research, Ithaca, 14853, USA.
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
11
|
Eleftheriou EP, Adamakis IDS, Michalopoulou VA. Hexavalent chromium-induced differential disruption of cortical microtubules in some Fabaceae species is correlated with acetylation of α-tubulin. PROTOPLASMA 2016; 253:531-42. [PMID: 26015161 DOI: 10.1007/s00709-015-0831-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/07/2015] [Indexed: 05/09/2023]
Abstract
The effects of hexavalent chromium [Cr(VI)] on the cortical microtubules (MTs) of five species of the Fabaceae family (Vicia faba, Pisum sativum, Vigna sinensis, Vigna angularis, and Medicago sativa) were investigated by confocal laser scanning microscopy after immunolocalization of total tubulin with conventional immunofluorescence techniques and of acetylated α-tubulin with the specific 6-11B-1 monoclonal antibody. Moreover, total α-tubulin and acetylated α-tubulin were quantified by Western immunoblotting and scanning densitometry. Results showed the universality of Cr(VI) detrimental effects to cortical MTs, which proved to be a sensitive and reliable subcellular marker for monitoring Cr(VI) toxicity in plant cells. However, a species-specific response was recorded, and a correlation of MT disturbance with the acetylation status of α-tubulin was demonstrated. In V. faba, MTs were depolymerized at the gain of cytoplasmic tubulin background and displayed low α-tubulin acetylation, while in P. sativum, V. sinensis, V. angularis, and M. sativa, MTs became bundled and changed orientation from perpendicular to oblique or longitudinal. Bundled MTs were highly acetylated as determined by both immunofluorescence and Western immunoblotting. Tubulin acetylation in P. sativum and M. sativa preceded MT bundling; in V. sinensis it followed MT derangement, while in V. angularis the two phenomena coincided. Total α-tubulin remained constant in all treatments. Should acetylation be an indicator of MT stabilization, it is deduced that bundled MTs became stabilized, lost their dynamic properties, and were rendered inactive. Results of this report allow the conclusion that Cr(VI) toxicity disrupts MTs and deranges the MT-mediated functions either by depolymerizing or stabilizing them.
Collapse
Affiliation(s)
- Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | | | - Vasiliki A Michalopoulou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| |
Collapse
|
12
|
Wang T, McFarlane HE, Persson S. The impact of abiotic factors on cellulose synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:543-52. [PMID: 26552883 DOI: 10.1093/jxb/erv488] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.
Collapse
Affiliation(s)
- Ting Wang
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, 3010, Melbourne, Australia
| |
Collapse
|
13
|
Muratov A, Baulin VA. Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. Biophys Chem 2015; 207:82-9. [PMID: 26422460 DOI: 10.1016/j.bpc.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism.
Collapse
Affiliation(s)
- Alexander Muratov
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain.
| |
Collapse
|
14
|
Ambrose C, Wasteneys GO. Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:1636-45. [PMID: 25008974 PMCID: PMC4160572 DOI: 10.1093/pcp/pcu094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 06/25/2014] [Indexed: 05/19/2023]
Abstract
The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nuclear MTOC activity and GFP-tagged End-Binding Protein 1b (EB1b) to track microtubule growth directions. We found that microtubules initiate from nuclei and enter the cortex in two directions along the long axis of the cell, creating bipolar longitudinal CMT arrays. Such arrays were observed in all cell types showing nuclear MTOC activity, including root hairs, recently divided cells in root tips, and the leaf epidermis. In order to confirm the causal nature of nuclei in bipolar array formation, we displaced nuclei by centrifugation, which generated a corresponding shift in the bipolarity split point. We also found that bipolar CMT arrays were associated with bidirectional trafficking of vesicular components to cell ends. Together, these findings reveal a conserved function of plant nuclear MTOCs and centrosomes/spindle pole bodies in animals and fungi, wherein all structures serve to establish polarities in microtubule growth.
Collapse
Affiliation(s)
- Chris Ambrose
- Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- Department of Botany, The University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
15
|
Abstract
Historically, cell biologists studied organisms that represented a reasonable sampling of life's diversity, whereas recently research has narrowed into a few model systems. As a result, the cells of plants have been relatively neglected. Here I choose three examples to illustrate how plants have been informative and could be even more so. Owing to their ease of imaging and genetic tractability, multicellular plant model systems provide a unique opportunity to address long-standing questions in cell biology.
Collapse
Affiliation(s)
- Magdalena Bezanilla
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
|
17
|
Cao L, Wang L, Zheng M, Cao H, Ding L, Zhang X, Fu Y. Arabidopsis AUGMIN subunit8 is a microtubule plus-end binding protein that promotes microtubule reorientation in hypocotyls. THE PLANT CELL 2013; 25:2187-201. [PMID: 23735294 PMCID: PMC3723620 DOI: 10.1105/tpc.113.113472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Linhai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lian Ding
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
18
|
Seung D, Webster MW, Wang R, Andreeva Z, Marc J. Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:224-236. [PMID: 32481102 DOI: 10.1071/fp12248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/13/2012] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) is involved in plant development and responses to environmental stress including the formation of longitudinal microtubule arrays in elongating cells, although the underlying mechanism for this is unknown. We explored ABA-induced microtubule reorientation in leek (Allium porrum L.) leaf epidermal cells transiently expressing a GFP-MBD microtubule reporter. After 14-18h incubation with ABA, the frequency of cells with longitudinal arrays of cortical microtubules along the outer epidermal wall increased with dose-dependency until saturation at 20μM. Time-course imaging of individual cells revealed a gradual increase in the occurrence of discordant, dynamic microtubules deviating from the normal transverse microtubule array within 2-4h of exposure to ABA, followed by reorientation into a completely longitudinal array within 5-8h. Approximately one-half of the ABA-induced reorientation occurred independently of cytoplasmic streaming following the application of cytochalasin D. Reorientation occurred also in the elongation zone of Arabidopsis root tips. Transient expression of AtEB1b-GFP reporter and analysis of 'comet' velocities in Allium revealed that the microtubule growth rate increased by 55% within 3h of exposure to ABA. ABA also increased the sensitivity of microtubules to depolymerisation by oryzalin and exacerbated oryzalin-induced radial swelling of Arabidopsis root tips. The swelling was further aggravated in AtPLDδ-null mutant, suggesting PLDδ plays a role in microtubule stability. We propose that ABA-induced reorientation of transverse microtubule array initially involves destabilisation of the array combined with the formation of dynamic, discordant microtubules.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Michael W Webster
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Richard Wang
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Zornitza Andreeva
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Jan Marc
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 2012; 483:448-52. [PMID: 22437613 DOI: 10.1038/nature10874] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/17/2012] [Indexed: 12/18/2022]
Abstract
Spontaneous collective motion, as in some flocks of bird and schools of fish, is an example of an emergent phenomenon. Such phenomena are at present of great interest and physicists have put forward a number of theoretical results that so far lack experimental verification. In animal behaviour studies, large-scale data collection is now technologically possible, but data are still scarce and arise from observations rather than controlled experiments. Multicellular biological systems, such as bacterial colonies or tissues, allow more control, but may have many hidden variables and interactions, hindering proper tests of theoretical ideas. However, in systems on the subcellular scale such tests may be possible, particularly in in vitro experiments with only few purified components. Motility assays, in which protein filaments are driven by molecular motors grafted to a substrate in the presence of ATP, can show collective motion for high densities of motors and attached filaments. This was demonstrated recently for the actomyosin system, but a complete understanding of the mechanisms at work is still lacking. Here we report experiments in which microtubules are propelled by surface-bound dyneins. In this system it is possible to study the local interaction: we find that colliding microtubules align with each other with high probability. At high densities, this alignment results in self-organization of the microtubules, which are on average 15 µm long, into vortices with diameters of around 400 µm. Inside the vortices, the microtubules circulate both clockwise and anticlockwise. On longer timescales, the vortices form a lattice structure. The emergence of these structures, as verified by a mathematical model, is the result of the smooth, reptation-like motion of single microtubules in combination with local interactions (the nematic alignment due to collisions)--there is no need for long-range interactions. Apart from its potential relevance to cortical arrays in plant cells and other biological situations, our study provides evidence for the existence of previously unsuspected universality classes of collective motion phenomena.
Collapse
Affiliation(s)
- Yutaka Sumino
- Aichi University of Education, Aichi 448-8542, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Eren EC, Gautam N, Dixit R. Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton (Hoboken) 2012; 69:144-54. [PMID: 22266809 DOI: 10.1002/cm.21009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 11/11/2022]
Abstract
There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with quantitative data from biological experiments in order to test the validity of the models and to further improve them. It is our hope that this review will serve to provide guidelines for how to combine quantitative and experimental techniques to develop higher-level models of the plant cytoskeleton in the future.
Collapse
Affiliation(s)
- Ezgi Can Eren
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
21
|
Lucas JR, Sack FD. Polar development of preprophase bands and cell plates in the Arabidopsis leaf epidermis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:501-509. [PMID: 21972819 DOI: 10.1111/j.1365-313x.2011.04809.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Preprophase bands are belts of cortical microtubules that appear at the end of interphase and predict where cell plates will fuse with parental walls during division. Phragmoplasts are microtubule-rich arrays that orchestrate the growth and guidance of cell plates during cytokinesis. Descriptions of the development of these arrays often assume non-polar formation, with preprophase bands developing more or less simultaneously around the cell circumference. Phragmoplasts are often described as initiating at the cell center and then expanding evenly outwards until fusion with parent cell walls. We analyzed the spatio-temporal development of both arrays because initial observations of array growth in the Arabidopsis leaf epidermis revealed directional variability. Almost all preprophase bands formed in a polar fashion, with initiation and maturation occurring first in the cell cortex near the inside of the leaf, and later in the outer cell cortex. A similar polarity developed in phragmoplasts and cell plates, raising the possibility that polarized division is common in plants. Together, these findings identify additional polar features of the epidermis, and thereby provide a visually accessible system for identifying new proteins and subcellular components involved in the development of cell division and the previously formed division site.
Collapse
Affiliation(s)
- Jessica Regan Lucas
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
22
|
Sauret-Güeto S, Calder G, Harberd NP. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:628-39. [PMID: 21985616 DOI: 10.1111/j.1365-313x.2011.04817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth.
Collapse
|
23
|
Polko JK, van Zanten M, van Rooij JA, Marée AFM, Voesenek LACJ, Peeters AJM, Pierik R. Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. THE NEW PHYTOLOGIST 2012; 193:339-48. [PMID: 21973123 DOI: 10.1111/j.1469-8137.2011.03920.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
• Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). • To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. • Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. • This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole.
Collapse
Affiliation(s)
- Joanna K Polko
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Shamina NV. "Bouquet arrest", monopolar chromosomes segregation, and correction of the abnormal spindle. PROTOPLASMA 2012; 249:43-51. [PMID: 21274580 DOI: 10.1007/s00709-010-0260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 12/27/2010] [Indexed: 05/30/2023]
Abstract
According to our data, the arrest of univalents in bouquet arrangement is a widespread meiotic feature in cereal haploids and allohaploids (wide hybrids F(1)). We have analyzed 83 different genotypes of cereal haploids and allohaploids with visualization of the cytoskeleton and found a bouquet arrest in 45 of them (in 30% to 100% pollen mother cells (PMCs)). The meiotic plant cell division in 26 various genotypes with a zygotene bouquet arrest was analyzed in detail. In three of them in PMCs, a very specific monopolar conic-shaped figure at early prometaphase is formed. This monopolar figure consists of mono-oriented univalents and their kinetochore fibers converging in pointed pole. Such figures are never observed at wild-type prometaphase or in asynaptic meiosis in the variants without a bouquet arrest. Later at prometaphase, the bipolar central spindle fibers join in this monopolar figure, and a bipolar spindle with all univalents connected to one pole is formed. As a result of monopolar chromosome segregation at anaphase and normal cytokinesis at telophase, a dyad with one member carrying a restitution nucleus and the other enucleated is formed. However, such phenotype has only three genotypes among 26 analyzed with a bouquet arrest. In the remaining 23 haploids and allohaploids, the course of prometaphase was altered after the conic monopolar figure formation. In these variants, the completely formed conic monopolar figure was disintegrated into a chaotic network of spindle fibers and univalents acquired a random orientation. This arrangement looks like a mid-prometaphase in the wild-type meiosis. At late prometaphase, a bipolar spindle is formed with the univalents distributed more or less equally between two poles, similar to the phenotypes without a bouquet arrest. The product of cell division is a dyad with aneuploid members. Thus, the spindle abnormality-monopolar chromosome orientation-is corrected. In some cells the correction of the prometaphase monopolus occurs by means of its splitting into two half-spindles and their rotation along the future division axis.
Collapse
Affiliation(s)
- Nataliya V Shamina
- Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of RAS, Novosibirsk, Russia.
| |
Collapse
|
25
|
Polko JK, Voesenek LACJ, Peeters AJM, Pierik R. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment. AOB PLANTS 2011; 2011:plr031. [PMID: 22476501 PMCID: PMC3249691 DOI: 10.1093/aobpla/plr031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Many plant species can actively reorient their organs in response to dynamic environmental conditions. Organ movement can be an integral part of plant development or can occur in response to unfavourable external circumstances. These active reactions take place with or without a directional stimulus and can be driven either by changes in turgor pressure or by asymmetric growth. Petiole hyponasty is upward movement driven by a higher rate of cell expansion on the lower (abaxial) compared with the upper (adaxial) side. Hyponasty is common among rosette species facing environmental stresses such as flooding, proximity of neighbours or elevated ambient temperature. The complex regulatory mechanism of hyponasty involves activation of pathways at molecular and developmental levels, with ethylene playing a crucial role. SCOPE We present current knowledge on the mechanisms that promote hyponasty in the context of other organ movements, including tropic and nastic reactions together with circumnutation. We describe major environmental cues resulting in hyponasty and briefly discuss their perception and signal transduction. Since ethylene is a central agent triggering hyponasty, we focus on ethylene in controlling different stages during plant development and summarize current knowledge on the relationship between ethylene and cell growth.
Collapse
Affiliation(s)
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
26
|
Liu L, Tüzel E, Ross JL. Loop formation of microtubules during gliding at high density. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:374104. [PMID: 21862840 DOI: 10.1088/0953-8984/23/37/374104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.
Collapse
Affiliation(s)
- Lynn Liu
- Department of Physics, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
27
|
|
28
|
Wang C, Zhang L, Chen W. Plant cortical microtubules are putative sensors under abiotic stresses. BIOCHEMISTRY (MOSCOW) 2011; 76:320-6. [DOI: 10.1134/s0006297911030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K. Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. THE PLANT CELL 2011; 23:628-40. [PMID: 21325138 PMCID: PMC3077781 DOI: 10.1105/tpc.110.081901] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/30/2010] [Accepted: 01/21/2011] [Indexed: 05/17/2023]
Abstract
The kinesins are a family of microtubule-based motor proteins that move directionally along microtubules and are involved in many crucial cellular processes, including cell elongation in plants. Less is known about kinesins directly regulating gene transcription to affect cellular physiological processes. Here, we describe a rice (Oryza sativa) mutant, gibberellin-deficient dwarf1 (gdd1), that has a phenotype of greatly reduced length of root, stems, spikes, and seeds. This reduced length is due to decreased cell elongation and can be rescued by exogenous gibberellic acid (GA₃) treatment. GDD1 was cloned by a map-based approach, was expressed constitutively, and was found to encode the kinesin-like protein BRITTLE CULM12 (BC12). Microtubule cosedimentation assays revealed that BC12/GDD1 bound to microtubules in an ATP-dependent manner. Whole-genome microarray analysis revealed the expression of ent-kaurene oxidase (KO2), which encodes an enzyme involved in GA biosynthesis, was downregulated in gdd1. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed that GDD1 bound to the element ACCAACTTGAA in the KO2 promoter. In addition, GDD1 was shown to have transactivation activity. The level of endogenous GAs was reduced in gdd1, and the reorganization of cortical microtubules was altered. Therefore, BC12/GDD1, a kinesin-like protein with transcription regulation activity, mediates cell elongation by regulating the GA biosynthesis pathway in rice.
Collapse
Affiliation(s)
- Juan Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiafu Jiang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yunyuan Xu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cui Zhang
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Du
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Luo
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guoxing Zou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Mingluan Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yunqing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhukuan Cheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Kang Chong
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
30
|
Lloyd C. Dynamic Microtubules and the Texture of Plant Cell Walls. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:287-329. [DOI: 10.1016/b978-0-12-386043-9.00007-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Wang C, Zhang LJ, Huang RD. Cytoskeleton and plant salt stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:29-31. [PMID: 21301221 PMCID: PMC3122001 DOI: 10.4161/psb.6.1.14202] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a highly dynamic component of plant cells and mainly based on microtubules (MTs), and actin filaments (AFs). The important functions of dynamic cytoskeletal networks have been indicated for almost every intracellular activity, from cell division to cell movement, cell morphogenesis and cell signal transduction. Recent studies have also indicated a close relationship between the plant cytoskeleton and plant salt stress tolerance. Salt stress is a significant factor that adversely affects crop productivity and quality of agricultural fields worldwide. The complicated regulatory mechanisms of plant salt tolerance have been the subject of intense research for decades. It is well accepted that cellular changes are very important in plant responses to salt stress. Because the organization and dynamics of cytoskeleton may play an important role in enhancing plant tolerance through various cell activities, study on salt stress-induced cytoskeletal network has been a vital topic in the subject of plant salt stress tolerance mechanisms. In this article, we introduce our recent work and review some current information on the dynamic changes and functions of cytoskeletal organization in response to salt stress. The accumulated data point to the existence of highly dynamic cytoskeletal arrays and the activation of complex cytoskeletal regulatory networks in response to salt stresses. The important role played by cytoskeleton in mediating the plant cell's response to salt stresses is particularly emphasized.
Collapse
Affiliation(s)
- Che Wang
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang, China.
| | | | | |
Collapse
|
32
|
Chan J, Crowell E, Eder M, Calder G, Bunnewell S, Findlay K, Vernhettes S, Höfte H, Lloyd C. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls. J Cell Sci 2010; 123:3490-5. [PMID: 20876662 DOI: 10.1242/jcs.074641] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.
Collapse
Affiliation(s)
- Jordi Chan
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Elizabeth Crowell
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Magdalena Eder
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Grant Calder
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Susan Bunnewell
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
33
|
Understanding phase behavior of plant cell cortex microtubule organization. Proc Natl Acad Sci U S A 2010; 107:11709-14. [PMID: 20547876 DOI: 10.1073/pnas.1007138107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant microtubules are found to be strongly associated with the cell cortex and to experience polymerization/depolymerization processes that are responsible for the organization of microtubule cortical array. Here we propose a minimal model that incorporates the basic assembly dynamics and intermicrotubule interaction to understand the unexplored phase behavior of such a system. Through kinetic Monte Carlo simulations and theoretical calculations, we show that the self-organized patterns of plant cell cortical microtubules can be regulated by controlling single microtubule assembly dynamics. Biologically, this means that the structural reorganization can be regulated by microtubule-associated proteins via changing microtubule dynamic instability parameters, such as the microtubule plus-end growing rate, GTP-tubulin hydrolysis rate, etc. Such regulation is indirectly confirmed by various in vivo experiments. For the physical aspects, we not only construct the phase diagram that determines under what parameters ordered microtubule arrays form, but also predict that the essentially different ordered structures may appear through continuous and discontinuous transitions. The present study will play a central role in our understanding of the basic mechanism of plant cell noncentrosomal microtubule arrays.
Collapse
|
34
|
Eren EC, Dixit R, Gautam N. A three-dimensional computer simulation model reveals the mechanisms for self-organization of plant cortical microtubules into oblique arrays. Mol Biol Cell 2010; 21:2674-84. [PMID: 20519434 PMCID: PMC2912353 DOI: 10.1091/mbc.e10-02-0136] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We use a 3D computer simulation model that is based on experimental data to understand how the noncentrosomal plant cortical microtubules self-organize into specific ordered patterns in both wild-type and mutant plants. The noncentrosomal cortical microtubules (CMTs) of plant cells self-organize into a parallel three-dimensional (3D) array that is oriented transverse to the cell elongation axis in wild-type plants and is oblique in some of the mutants that show twisted growth. To study the mechanisms of CMT array organization, we developed a 3D computer simulation model based on experimentally observed properties of CMTs. Our computer model accurately mimics transverse array organization and other fundamental properties of CMTs observed in rapidly elongating wild-type cells as well as the defective CMT phenotypes observed in the Arabidopsis mor1-1 and fra2 mutants. We found that CMT interactions, boundary conditions, and the bundling cutoff angle impact the rate and extent of CMT organization, whereas branch-form CMT nucleation did not significantly impact the rate of CMT organization but was necessary to generate polarity during CMT organization. We also found that the dynamic instability parameters from twisted growth mutants were not sufficient to generate oblique CMT arrays. Instead, we found that parameters regulating branch-form CMT nucleation and boundary conditions at the end walls are important for forming oblique CMT arrays. Together, our computer model provides new mechanistic insights into how plant CMTs self-organize into specific 3D arrangements.
Collapse
Affiliation(s)
- Ezgi Can Eren
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
35
|
Crowell EF, Gonneau M, Vernhettes S, Höfte H. Regulation of anisotropic cell expansion in higher plants. C R Biol 2010; 333:320-4. [PMID: 20371106 DOI: 10.1016/j.crvi.2010.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plant growth and development depend on anisotropic cell expansion. Cell wall yielding provides the driving force for cell expansion, and is regulated in part by the oriented deposition of cellulose microfibrils around the cell. Our current understanding of anisotropic cell expansion combines hypotheses generated by more than 50 years of research. Here, we discuss the evolving views of researchers in the field of cellulose synthesis, and highlight several unresolved questions. Recent results using live-cell imaging have illustrated novel roles for cortical microtubules in cellulose synthesis, and further research using these approaches promises to reveal exciting links between the cytoskeleton, intracellular trafficking, and anisotropic growth.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, UMR 1318 INRA-AgroParisTech, route de Saint-Cyr (RD10), Versailles cedex, France
| | | | | | | |
Collapse
|
36
|
Esue O, Rupprecht L, Sun SX, Wirtz D. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 2010; 5:e8855. [PMID: 20140233 PMCID: PMC2816638 DOI: 10.1371/journal.pone.0008855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K(+), Na(+)), but is enhanced by divalent cations (Mg(2+), Ca(2+)), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution. CONCLUSIONS/SIGNIFICANCE These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.
Collapse
Affiliation(s)
- Osigwe Esue
- Department of Pharmaceutical Development, Genentech, South San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
37
|
|
38
|
Beyer D, Surányi G, Vasas G, Roszik J, Erdodi F, M-Hamvas M, Bácsi I, Bátori R, Serfozo Z, Szigeti ZM, Vereb G, Demeter Z, Gonda S, Máthé C. Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 2009; 54:440-9. [PMID: 19464311 DOI: 10.1016/j.toxicon.2009.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/12/2009] [Indexed: 12/29/2022]
Abstract
We aimed to study the histological and cytological alterations induced by cylindrospermopsin (CYN), a protein synthesis inhibitory cyanotoxin in roots of common reed (Phragmites australis). Reed is an ecologically important emergent aquatic macrophyte, a model for studying cyanotoxin effects. We analyzed the histology and cytology of reed roots originated from tissue cultures and treated with 0.5-40 microg ml(-1) (1.2-96.4 microM) CYN. The cyanotoxin decreased root elongation at significantly lower concentrations than the elongation of shoots. As general stress responses of plants to phytotoxins, CYN increased root number and induced the formation of a callus-like tissue and necrosis in root cortex. Callus-like root cortex consisted of radially swollen cells that correlated with the reorientation of microtubules (MTs) and the decrease of MT density in the elongation zone. Concomitantly, the cyanotoxin did not decrease, rather it increased the amount of beta-tubulin in reed plantlets. CYN caused the formation of double preprophase bands; the disruption of mitotic spindles led to incomplete sister chromatid separation and disrupted phragmoplasts in root tip meristems. This work shows that CYN alters reed growth and anatomy through the alteration of MT organization.
Collapse
Affiliation(s)
- Dániel Beyer
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen H-4010, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shi FM, Yao LL, Pei BL, Zhou Q, Li XL, Li Y, Li YZ. Cortical microtubule as a sensor and target of nitric oxide signal during the defence responses to Verticillium dahliae toxins in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:428-438. [PMID: 19183295 DOI: 10.1111/j.1365-3040.2009.01939.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The molecular mechanisms of signal transduction of plants in response to Verticillium dahliae (VD) are not known. Here, we show that Arabidopsis reacts to VD-toxins with a rapid burst of nitric oxide (NO) and cortical microtubule destabilization. VD-toxins treatment triggered a disruption of cortical microtubules network. This disruption can be influenced by NO production. However, cortical microtubule disruptions were not involved in regulating the NO production. The results indicated that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubule. Cortical microtubules may act as a target of NO signal and as a sensor to mediate the activation of PR-1 gene expression. These results suggested that NO production and cortical microtubule dynamics appeared to be parts of the important signalling system and are involved in the defence mechanisms to VD-toxins in Arabidopsis.
Collapse
Affiliation(s)
- Fu-Mei Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Li H, Zeng X, Liu ZQ, Meng QT, Yuan M, Mao TL. Arabidopsis microtubule-associated protein AtMAP65-2 acts as a microtubule stabilizer. PLANT MOLECULAR BIOLOGY 2009; 69:313-24. [PMID: 19002591 DOI: 10.1007/s11103-008-9426-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/24/2008] [Indexed: 05/04/2023]
Abstract
Nine genes that encode proteins of the MAP65 family have been identified in the Arabidopsis thaliana genome. In this study, we reported that AtMAP65-2, a member of the AtMAP65 family, could strongly stabilize microtubules (MTs). Bacterially-expressed AtMAP65-2 fusion proteins induced the formation of large MT bundles in vitro. Although AtMAP65-2 showed little effect on MT assembly or nucleation, AtMAP65-2 greatly stabilized MTs that were subjected to low-temperature treatment in vitro. Analyses of truncated versions of AtMAP65-2 indicated that the region that encompassed amino acids 495-578, which formed a flexible extended loop, played a crucial role in the stabilization of MTs. Analysis of suspension-cultured Arabidopsis cells that expressed the AtMAP65-2-GFP fusion protein showed that AtMAP65-2 co-localized with MTs throughout the cell cycle. Cortical MTs that were decorated with AtMAP65-2-GFP were more resistant to the MT-disrupting drug propyzamide and to ice treatment in vivo. The results of this study demonstrate that AtMAP65-2 strongly stabilizes MTs and is involved in the regulation of MT organization and dynamics.
Collapse
Affiliation(s)
- Hua Li
- Department of Plant Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
41
|
Plett JM, Mathur J, Regan S. Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3923-33. [PMID: 19648171 PMCID: PMC2736899 DOI: 10.1093/jxb/erp228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The single-celled trichome of Arabidopsis thaliana is a widely used model system for studying cell development. While the pathways that control the later stages of trichome development are well characterized, the early signalling events that co-ordinate these pathways are less well understood. Hormones such as gibberellic acid, salicylic acid, cytokinins, and ethylene are known to affect trichome initiation and development. To understand the role of the plant hormone ethylene in trichome development, an Arabidopsis loss-of-function ethylene receptor mutant, etr2-3, which has completely unbranched trichomes, is analysed in this study. It was hypothesized that ETR2 might affect the assembly of the microtubule cytoskeleton based on analysis of the cytoskeleton in developing trichomes, and exposures to paclitaxol and oryzalin, which respectively act either to stabilize or depolymerize the cytoskeleton. Through epistatic and gene expression analyses it is shown that ETR2 is positioned upstream of CHROMATIN ASSEMBLY FACTOR1 and TRYPTICHON and is independent of the GLABRA2 and GLABRA3 pathways. These results help extend understanding of the early events that control trichome development and identify a signalling pathway through which ethylene affects trichome branching.
Collapse
Affiliation(s)
- Jonathan M. Plett
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Sharon Regan
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
42
|
Lloyd C, Chan J. The parallel lives of microtubules and cellulose microfibrils. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:641-6. [PMID: 18977684 DOI: 10.1016/j.pbi.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 05/08/2023]
Abstract
A major breakthrough was the recent discovery that cellulose synthases really do move along the plasma membrane upon tracks provided by the underlying cortical microtubules. It emphasized the cytoplasmic contribution to cell wall organization. A growing number of microtubule-associated proteins has been identified and shown to affect the way that microtubules are ordered, with downstream effects on the pattern of growth. The dynamic properties of microtubules turn out to be key in understanding the behaviour of the global array and good progress has been made in deciphering the rules by which the array is self-organized.
Collapse
Affiliation(s)
- Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
43
|
Gao XQ, Chen J, Wei PC, Ren F, Chen J, Wang XC. Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. PLANT CELL REPORTS 2008; 27:1655-65. [PMID: 18612643 DOI: 10.1007/s00299-008-0581-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 06/20/2008] [Indexed: 05/20/2023]
Abstract
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University 100094, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Elsner J. Effect of steady torque twisting on the orientation of cortical microtubules in the epidermis of the sunflower hypocotyl. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:422-32. [PMID: 18557902 DOI: 10.1111/j.1438-8677.2008.00052.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Orientation of cortical microtubules (cMTs) is suggested to be affected by mechanical stress existing in cell walls. However, in mutants exhibiting helical (chiral) growth, there is a correlation between orientation of cMTs in outer tissues and helical growth direction. The aim of this research was to examine the effect of a chiral mechanical stimulation on cMTs. For this purpose, the orientation of cMTs was investigated in hypocotyls subjected to either a right- or a left-handed twist, resulting from a steady torque. cMTs were visualised in fixed material using the immunofluorescence method. The cMTs in untouched control hypocotyls were mostly transverse with respect to the cell long axis. In immobilised, but not twisted control hypocotyls, the transverse orientation was also most frequent, while applied twisting resulted in a change in cMT orientation from transverse to oblique. The data provide additional evidence that changes in tissue stress can be reorganized by cortical microtubules.
Collapse
Affiliation(s)
- J Elsner
- Department of Biophysics and Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| |
Collapse
|
45
|
Reddy GV, Gordon SP, Meyerowitz EM. Unravelling developmental dynamics: transient intervention and live imaging in plants. Nat Rev Mol Cell Biol 2007; 8:491-501. [PMID: 17522592 DOI: 10.1038/nrm2188] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant development is dynamic in nature. This is exemplified in developmental patterning, in which roots and shoots rapidly elongate while simultaneously giving rise to precisely positioned new organs over a time course of minutes to hours. In this Review, we emphasize the insights gained from simultaneous use of live imaging and transient perturbation technologies to capture the dynamic properties of plant processes.
Collapse
Affiliation(s)
- G Venugopala Reddy
- Department of Botany and Plant Sciences, 2150 Batchelor Hall, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|
46
|
Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, Yuan M. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. THE PLANT CELL 2007; 19:877-89. [PMID: 17337629 PMCID: PMC1867367 DOI: 10.1105/tpc.106.048579] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microtubule-associated proteins (MAPs) play important roles in the regulation of microtubule function in cells. We describe Arabidopsis thaliana MAP18, which binds to microtubules and inhibits tubulin polymerization in vitro and colocalizes along cortical microtubules as patches of dot-like structures. MAP18 is expressed mostly in the expanding cells. Cells overexpressing MAP18 in Arabidopsis exhibit various growth phenotypes with loss of polarity. Cortical microtubule arrays were significantly altered in cells either overexpressing MAP18 or where it had been downregulated by RNA interference (RNAi). The cortical microtubules were more sensitive to treatment with microtubule-disrupting drugs when MAP18 was overexpressed, but more resistant when MAP18 was eliminated in cells expressing MAP18 RNAi. Our study demonstrated that MAP18 may play a role in regulating directional cell growth and cortical microtubule organization by destabilizing microtubules.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Bartolini F, Gundersen GG. Generation of noncentrosomal microtubule arrays. J Cell Sci 2007; 119:4155-63. [PMID: 17038542 DOI: 10.1242/jcs.03227] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most proliferating and migrating animal cells, the centrosome is the main site for microtubule (MT) nucleation and anchoring, leading to the formation of radial MT arrays in which MT minus ends are anchored at the centrosomes and plus ends extend to the cell periphery. By contrast, in most differentiated animal cell types, including muscle, epithelial and neuronal cells, as well as most fungi and vascular plant cells, MTs are arranged in noncentrosomal arrays that are non-radial. Recent studies suggest that these noncentrosomal MT arrays are generated by a three step process. The initial step involves formation of noncentrosomal MTs by distinct mechanisms depending on cell type: release from the centrosome, catalyzed nucleation at noncentrosomal sites or breakage of pre-existing MTs. The second step involves transport by MT motor proteins or treadmilling to sites of assembly. In the final step, the noncentrosomal MTs are rearranged into cell-type-specific arrays by bundling and/or capture at cortical sites, during which MTs acquire stability. Despite their relative stability, the final noncentrosomal MT arrays may still exhibit dynamic properties and in many cases can be remodeled.
Collapse
|
48
|
Chan J, Calder G, Fox S, Lloyd C. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat Cell Biol 2007; 9:171-5. [PMID: 17220881 DOI: 10.1038/ncb1533] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/25/2006] [Indexed: 11/08/2022]
Abstract
Plant-cell expansion is controlled by cellulose microfibrils in the wall with microtubules providing tracks for cellulose synthesizing enzymes. Microtubules can be reoriented experimentally and are hypothesized to reorient cyclically in aerial organs, but the mechanism is unclear. Here, Arabidopsis hypocotyl microtubules were labelled with AtEB1a-GFP (Arabidopsis microtubule end-binding protein 1a) or GFP-TUA6 (Arabidopsis alpha-tubulin 6) to record long cycles of reorientation. This revealed microtubules undergoing previously unseen clockwise or counter-clockwise rotations. Existing models emphasize selective shrinkage and regrowth or the outcome of individual microtubule encounters to explain realignment. Our higher-order view emphasizes microtubule group behaviour over time. Successive microtubules move in the same direction along self-sustaining tracks. Significantly, the tracks themselves migrate, always in the direction of the individual fast-growing ends, but twentyfold slower. Spontaneous sorting of tracks into groups with common polarities generates a mosaic of domains. Domains slowly migrate around the cell in skewed paths, generating rotations whose progressive nature is interrupted when one domain is displaced by collision with another. Rotary movements could explain how the angle of cellulose microfibrils can change from layer to layer in the polylamellate cell wall.
Collapse
Affiliation(s)
- Jordi Chan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
49
|
Zaffryar S, Zimerman B, Abu-Abied M, Belausov E, Lurya G, Vainstein A, Kamenetsky R, Sadot E. Development-specific association of amyloplasts with microtubules in scale cells of Narcissus tazetta. PROTOPLASMA 2007; 230:153-63. [PMID: 17458630 DOI: 10.1007/s00709-006-0238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 10/24/2005] [Indexed: 05/15/2023]
Abstract
Narcissus tazetta is one of the major geophyte crops worldwide, but little is known about its cell biology. The narcissus storage organ was studied by monitoring scale cell biology during the growth stage and dormancy, and it was found that amyloplasts gradually increased in size and reached a maximum at dormancy. In parallel, microtubules changed their organisation: during the growth phase (February to March) they were oblique; during April and May, microtubules formed a network with round "holes"; by late June and the beginning of July, when dormancy started, they were organised in parallel arrays. The holes formed in the microtubule array corresponded to amyloplasts. A closer look showed that during a short time window, while the plants were preparing for dormancy, the microtubules surrounded the amyloplasts. In vitro reconfirmation of this phenomenon was obtained when fluorescent bovine brain microtubules enwrapped isolated amyloplasts that had been purified between April and July but not those purified between January and March. Interestingly, protease treatment of amyloplasts did not completely prevent binding of microtubules, which suggests the existence of a protease-resistant factor that docks microtubules to the outer membrane of amyloplasts.
Collapse
Affiliation(s)
- S Zaffryar
- Department of Ornamental Horticulture, Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:571-8. [PMID: 17010658 DOI: 10.1016/j.pbi.2006.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/15/2006] [Indexed: 05/04/2023]
Abstract
Plant cell cortical microtubule arrays attain a high degree of order without the benefit of an organizing center such as a centrosome. New assays for molecular behaviors in living cells and gene discovery are yielding insight into the mechanisms by which acentrosomal microtubule arrays are created and organized, and how microtubule organization functions to modify cell form by regulating cellulose deposition. Surprising and potentially important behaviors of cortical microtubules include nucleation from the walls of established microtubules, and treadmilling-driven motility leading to polymer interaction, reorientation, and microtubule bundling. These behaviors suggest activities that can act to increase or decrease the local level of order in the array. The SPIRAL1 (SPR1) and SPR2 microtubule-localized proteins and the radial swollen 6 (rsw-6) locus are examples of new molecules and genes that affect both microtubule array organization and cell growth pattern. Functional tagging of cellulose synthase has now allowed the dynamic relationship between cortical microtubules and the cell-wall-synthesizing machinery to be visualized, providing direct evidence that cortical microtubules can organize cellulose synthase complexes and guide their movement through the plasma membrane as they create the cell wall.
Collapse
Affiliation(s)
- Alex Paradez
- Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA
| | | | | |
Collapse
|